

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Mouratidis, Haralambos; Kolp, Manuel; Faulkner, Stephane; Giorgini,
Paolo.
Article title: A Secure Architectural Description Language for Agent Systems
Year of publication: 2005
Citation: Mouratidis, H. et al. (2005) ‘A Secure Architectural Description Language
for Agent Systems’ Proceedings 4th International Joint Conference on Autonomous
Agents and Multiagent Systems, Utrecht - The Netherlands, pp 578-585
Link to published version: http://dx.doi.org/10.1145/1082473.1082561
DOI: 10.1145/1082473.1082561

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://dx.doi.org/10.1145/1082473.1082561

A Secure Architectural Description Language for Agent
Systems

Haralambos Mouratidis
School of Computing and Technology,

University of East London, Barking
Campus, Longbridge Road, RM8 2AS,

England.
H.Mouratidis@uel.ac.uk

 Manuel Kolp,
ISYS- Information Systems Research
Unit, University of Louvain, Place des

Doyens,
B - 1348 Louvain-La-Neuve, Belgium

kolp@isys.ucl.ac.be

Paolo Giorgini
Department of Information and

Communication Technology, University
of Trento, Via Sommarive, 14 38050,

Rovo, Trento, Italy

paolo.giorgini@dit.unitn.it

Stephane Faulkner,
Management Research Unit, University

of Namur
8 rempart de la vierge, 5000 Namur,

Belgium
stephane.faulkner@fundp.ac.be

 ABSTRACT

Multi-agent systems are now being considered a prom ising
architectural approach for building Internet-based applications.
One of the m ost critical and im portant as pects of s oftware
deployed on the web has always been the security of their
architectures. However, des pite cons iderable work in s oftware
architecture during the las t decade, few res earch efforts have
aimed at truly defining language s for designing and formalizing
agent architectures and m ore specifically secure ones. This paper
identifies the foundations for an architectural description language
(ADL) to specify secure multi-agent systems. We propose a set
of system design primitives and conceptualize it with the Z
specification language to capture a "core" architectural model to
build secure MAS architectures. We apply it on an e-com merce
example to illustrate our proposal.

Keywords
Architectural Description Languages, Security, Multiagent
Systems

1. INTRODUCTION
The rise of the Internet and World-Wide-Web technologies has

resulted in a greater and wider use of information systems not
only by major corporations and governments but also from
individual users. Due to this wide usage, many of thes e systems
manage and store information that is considered sensitive, such as
medical, financial and private data. With the introduction of such
information to software sy stems, and all the advantages that this
might introduce (s uch as eas y acces s and s hare); the need to
secure systems that contain such information becomes a necessity
rather than an option. Imagine, for instance, the effects of medical
records of individuals becoming widely available.

However, securing s uch s ystems is not an eas y tas k. This

argument is supported by research [1, 2] as well as by various
surveys (see for example www. cert.org) regarding the security of
current information systems. This is m ainly due to the
requirements [2, 3] and challenges [1, 2] imposed when
considering security in the deve lopment of information sy stems.
Not surprisingly, this has been identified [1,2,3,4] and researchers
are looking for new software development paradigms that cope
with such requirements and provide answers to the security
challenges.

 One promising source of ideas for deploying Internet and web
based applications is the area of multiagent system architectures.
They appear to be more flexible, modular and robus
traditional; including object-oriented ones. They tend to be open
and dynamic in the sense they exist in a changing organizational
and operational environment where new components can be
added, modified or removed at any time. Moreover, the
integration of security issues within an agent system context will
require for the agents of the system to consider the security
requirements, when specifying their objectives and interactions,
and therefore cause the propagation of security requirements to
the whole system.

However, such architectures introduce a degree of complexity.
To cope with this ever-increasing complexity of the design, it has
been recognized the value of making explicit architectural
descriptions [5]. To help developers with such descriptions,
architectural descriptions languages and architectural styles are
employed. An architectural description language (ADL) provides
a formal syntax and semantics for specifying architectural
abstractions in a descriptive notation. Unfortunately, despite
considerable work in defining languages for architectural design
(see e.g., [5,6,7]) few research efforts have aimed at truly defining
languages for agent architectural design and even these do

One promising source of ideas for deploy ing Internet and web-
based applications is the area of m ultiagent system architectures.
They appear to be more flexible, modular and robust than
traditional; including object-oriented ones. They tend to be open
and dynamic in the sense they exist in a changing organizational
and operational environment wh ere new components can be
added, modified or removed at any tim e. M oreover, the
integration of security issues within an agent sy stem context will
require for the agents of the s ystem to cons ider the security
requirements, when specify ing th eir objectives and interactions ,
and therefore cause the propagation of security requirements to
the whole system.

However, such architectures introduce a degree of com plexity.
To cope with this ever-increasing com plexity of the design, it has
been recognized the value of making explicit architectural
descriptions [5] . To help developers with such descriptions,
architectural descriptions languages and architectural sty les are
employed. An architectural desc ription language (ADL) provides
a form al s yntax and s emantics for s pecifying architectural
abstractions in a des criptive notation. Unfortunately , despite
considerable work in defining languages for architectural design
(see e.g., [5,6,7]) few research efforts have aimed at truly defining
languages for agent architectural design and even these do not

mailto:H.Mouratidis@uel.ac.uk
mailto:kolp@isys.ucl.ac.be
mailto:paolo.giorgini@dit.unitn.it
mailto:stephane.faulkner@fundp.ac.be

adequate include security . This paper deals with this issue in
defining a "core" set of structural, behavioural and security
concepts, including relationships and constraints that are
fundamental to propose an agent architectural description
language. The language, called SKwyRL-ADL, includes an agent,
a s ecurity and an architectural m odel and aim s at describing
secure multi-agent systems, more specifically those based on the
BDI (belief-desire-intention) model.

The rest of the paper is organized as follows. Section 2
introduces the m ain concepts of SKwyRL-ADL including the
security aspects. Section 3 des cribes our agent oriented approach
on an e-com merce s ystem s ecure architectural s pecification.
Section 4 pres ents the im plementation of the sy stem and finally
Section 5 concludes the paper.

2. SECURE SKwyRL ADL
The SKwy RL (Socio-Intentional Ar Chitecture for Kno wledge

Systems & Requirements ELicitation – http://www.isys.ucl.ac.be/
skwyrl) project proposes an agent ADL called SKwyRL-ADL [8]
that offers a set of concepts , based on the Belief-Desire-Intention
(BDI) agent model to form ally s pecify s ecure agent-oriented
architectures. SKwyRL-ADL is com pliant with m ost of the
classical ADLs proposed on the software architecture [6] and
security literature [9,10,11] . Fi gure 1 provides a description of
these concepts together with their relationships.

SKwyRL-ADL is com posed of three sub-models: the agent
model, the security model and the architectural m odel. The Z
specification language [12] is used to formally describe SKwyRL-
ADL concepts. Z is widely us ed as a form al s pecification
language in the field of software architecture community and has
been shown to be clear, concis e and relatively easy to learn. Due
to lack of space, we only detail and formalize some aspects of our
ADL. We refer the reader to [Fau04] for a more complete
formalization.
2.1 The agent Model
The agent m odel captures the s tates of an agent and its potential
behaviour. The agent needs knowledge about the environment in
order to reach decis ions. Knowledge is contained in agents in the
form of one of many knowledge bases. A Knowledge base
consists of a set of beliefs that the agent has about the
environment and a set of goals that it pursues.

Beliefs describe the environm ent of the agent in terms of states
of objects with individual identitie s and properties, and relations
on objects as being either true or false. We use predicate symbols
to specify a particular relation that holds (or fails to hold) between
several objects, and terms to represent objects. Each term can be
build from constant, variable or function symbols. From the above
primitives, we can define an AtomicBelief. The set of all
predicate, function, constant and variable symbols are denoted by
[PredSymb], [Function], [Constant], and [Variable], respectively.

[PredSymb], [Function], [Constant], [Variable]

[Terms]:= Function(Term,…) | Constant | Variable

AtomicBelief
head: PredSymb
terms: seq Term

head ≠ ∅ ∧ terms ≠ ∅

A Belief is specified either as an AtomicBelief, a negated
AtomicBelief, a s eries of AtomicBeliefs connected using logic
connectives, or an AtomicBelief characterized with a tem poral

pattern. The following tem poral patterns are used in SKwyRL-
ADL: ○ (in the next state), ● (in the previous state), ◊ (some time
in the future), ♦ (some time in the past), □ (always in the future),
■ (alway s in the past), W (alway s in the future unless), and U
(always in the future until).
[Belief]:= AtomicBelief
 | ¬AtomicBelief
 | AtomicBelief Connective AtomicBelief

 | Temp_Pattern AtomicBelief

 With Connective → ∧ | ∨ | ⇒
 [Temporal_Pattern]:= ○ | ● | ◊ | ♦ | □ | ■ | W | U

Knowledge Base

Security Mechanism

Belief Security Method

Action
1

1..*

1

1..*

Event
0..*

1..*

0..*

1..*

generate

Plan
trigger

Goal
11..* 11..*

Capability

Security Constraint

1..*

1..*

1..*

1..*
restrict

1..*

1..*

1..*

1..*
restrict

Protection Objective

1..*

1..*

1..*

1..*addsArchitecture Configuration

Effector Sensor

1..*1..*

Service

0..*

1..*

0..*

1..*

generate

1..*

1..*

1..*

1..*

Agent
1..* 1..*1..* 1..*

own

1..*

1..*

1..*

1..*
own

1..*

0..*

1..*

0..* react to

0..*

1..*

0..*

1..*
has

imposed

Interface
1

0..*

possess

1

0..*

connect to

1..* 1..*

1..*

1..* 1..*

1..*

Figure 1: Secure SKwyRL ADL Meta Model

A goal is a set of objects that desc ribe an environment state that
an agent wants to bring about. We consider goals according to
four patterns:
Achieve: P ⇒ ◊ Q (Q holds in current or some future state)
Cease: P ⇒ ◊ ¬Q
Maintain: P ⇒ □ Q (Q holds in current and all future states)
Avoid: P ⇒ □ ¬Q
With respect to beliefs, goals can be specified as follows:
[GoalPattern] := Achieve | Cease | Maintain | Avoid

Goal
head: GoalPattern
state: ˜ Belief

head ≠ ∅ ∧ state ≠ ∅
The goal patterns influence the set of possible agent behaviors:

achieve and ceas e goals generate actions , plans, or events, while
maintain and avoid goals restrict them. When a goal is required,
the agent identifies a set of plans to achieve or m aintain this goal.
From then on, the agent chooses according to its current beliefs
which of these plans will be executed.

A plan defines the sequence of actions to be chosen by the agent
to accomplish a task or achieve a goal. Actions are bas ic
executable commands of agent behaviour. P lans are s elected by
agents. Selected plans constrain the agent’s behaviour and act as
intention. Intentions represent the deliberative states of the agent,
i.e., which plans the agent has chos en for pos sible execution. A
plan consists of:

- An invocation condition detailing the circumstances, in terms
of event, that cause the plan to be triggered;
- An optional context that defines the preconditions of the plan,
i.e., what must be believed by the agent for a plan to be selected
for execution;
- The plan body , that specifies either the sequence or formulae
that the agent needs to perform;
- An end-state that defines the postconditions under which the
plan is succeeded;
- And finally a set of internal actions that specify what happens
when a plan fails or succeeds.

A plan is specified as follows:
[PlanName], [AtomicPlan]:= Action | Service

Plan
name: PlanName
Invocation: ˜ Invocation
context: ˜ Belief
body: seq AtomicPlan
endState: ˜ Belief

succeed: seq Atomicplan
failure: seq AtomicPlan

name ≠ ∅ ∧ invocation ≠ ∅ ∧ body ≠ ∅

An event is som ething that happens in the sy stem that can be

perceived, and it is either a goal (a new goal or the remove of a
goal), a belief (a new belief or the remove of a belief) or a plan
(the s uccess or failure of a plan). M AS are event-driven in the
sense that agents start interacting by initiating and perceiving
events. In the abs ence of event an agent s its idle. W henever an
event occurs, an agent initiates eith er a plan or a set of plans to
response to that event. In this last case, the agent chooses between
the plans it has available to achieve its goal. W e defined two
types of events: (1) An internal ev ent that an agent posts to itself;
and (2) An external event that an agent s ends to other agent or to
its environment.

According to the definition of event, both ty pes are specified
considering the nature of the event, which can be a goal, a belief
or a plan. The key difference between belief, plan or goal events
is how an agent s elects plans for execution. For belief and plan
events, the agent selects the first applicable plan for that event and
executes an instance of that plan only . The handling of goal event
is more complex. An agent can as semble a s et of plans for the
goal event and apply a sophisticated heuristic to choose the
appropriate plans. However, for this m atter, at the architectural
design level where ADLs are defi ned, we rem ain com pletely
independent from such heuristics, considering that they depend
directly on the used programming environment.

Finally an event is generated either by an action that m odifies
beliefs or adds new goals, or by services provided by another
agent. S ervices appear in the architectural m odel becaus e they
involve interactions among agen ts that compose the MAS.
Interactions serve as basic elements to support the construction of
configurations.

2.2 The Security Model
With res pect to s ecurity, an agent has zero or m ore protection

objectives and each s ecurity objective im poses one ore more
security cons traints on the agent. S ecurity cons traints m ight
restrict the goals and/or the capabilities of an agent. On the other
hand, an agent owns security mechanisms. A security mechanism
represents a set of standard secu rity methods that an agent might
have and they help towards the satisfaction of the protection
objectives of the agent. A security method defines a sequence of
actions and/or services to satisfy an agent’s security mechanisms.

2.2.1 Protection Objective
A protection objective indicates a des irable s ecurity attribute

that an agent m ight have, such as integrity , and availability . An
agent might impose a security objective by itself or more likely a
protection objective is imposed to an agent through its
environment (e.g. from a security policy or through other
systems/agents/stakeholders/developers). Moreover, a protection
objective alters the agent’s m otivational state by adding
constraint(s) to the agent with respect to s ecurity. A protection
objective im poses one or m ore s ecurity cons traints to an agent,
and each agent might have zero or m ore protection objectives . A
protection objective is specified as follows:
[POname], [POimposer]:= self | environment

ProtectionObjective
name: POname
imposed_by: POimposer
Imposed_to: Agent
constraints: ˜ SecurityConstraint

name ≠ ∅ ∧ imposed_to ≠ ∅ ∧ constraints ≠ ∅

(∀ po: ProtectionObjective) (∀ ag: Agent) (∀ sc:

SecurityConstraint) [(sc po) ∧ (po ag)] constrain(ag,sc)

2.2.2 Security Constraint
A security constraint defines a set of restrictions to the goals and

the capabilities of the agent. These restrictions are security related
and are imposed by the agent’s environm ent (either from a
security polic y, othe r systems/agents, the developers or the
stakeholders).

When a s ecurity cons traint res tricts a goal, the agent must
identify a possible way of achieving the goal without endanger
the s ecurity cons traint. On the other hand, when a security
constraint restricts a capability (in reality the security constraint
will restrict plans and/or events of the capability) the agent m ust
identify alternative way s of satis fying its goals without using the
specific capability.

It is possible tha t some re strictions are communication related.
For instance, a restriction that might apply for the communication
of one agent with another agent, might not apply for the
communication of the same agent with a third agent or vice vers a.
Also, a security constraint m ight restrict the goals/capabilities of
an agent for a s pecific time frame. For instance, a res triction that
might apply today may not be valid tomorrow. A security
constraint can be specified as follows:
[SCname], [SCrestriction] : Goal | Capability

[SCtimeFrame]:= All | Function, [SCcommunication]:= Agent | All

SecurityConstraint
name: SCname
restricts: SCrestriction

timeFrame: SCtimeFrame
constraints: SCcommunication

name ≠ ∅ ∧ restricts ≠ ∅

(∀ ag: Agent) [(g: Goal ag) (cap: Capability ag) (sc:

SecurityConstraint ag)] restrict(g, sc) restrict(cap,sc)

2.2.3 Security Mechanism
A s ecurity m echanism repres ents a s et of standard security

methods that an agent might have and they help towards the
satisfaction of the protection objectives of the agent.

The s ecurity m echanism allows s tructuring the security
behaviour of an agent with respect to its security inform ation.
Internally, each s ecurity m echanism is s tructured by a s et of
different security methods, allowing sy stem architects firstly to
build up a library of different security methods, and secondly to
build different s ecurity m echanisms for different agents of the
system, by adding and removing security methods from the
library. Because of this, a s ecurity m echanism could be either
available or unavailable to an agent at a specific point of time.

The security mechanism could be structured by different kind of
security methods. Some of them able to detect security breaches,
some of them able to prevent security breaches, and some of them
able to recover from security breaches. Therefore, the ty pe of a
security mechanism could be one of the following: (1) detecting:
which involves only detection secu rity methods; (2) preventing:
which involves only prevention security methods; (3) recovering:
which involves only recovery security methods;(4)
combinational: which involves security methods of all types

A security mechanism is specified as follows:
[SMname], [SMavailability]:= Available | Unavailable

[SMtype]:= Detecting | Preventing | Recovering | Combinational

SecurityMechanism
name: SMname
composed_of : ˜ SecurityMethod
type: SMtype
availability: SMavailability
help: ˜ Protection Objective

name ≠ ∅ ∧ composed_of ≠ ∅ ∧ type ≠ ∅

(∀ SM: SecurityMechanism) (∃ ag : Agent) • use(sm,ag)

2.2.4 Security Method
A security method defines a sequen ce of actions and/or services

such as cry ptographic algorithms and secure protocols used to
realise the protection objectives of the agent. Each s ecurity
method consists of the following:

1. An entry condition, indicating the factors (such as the
invocation of specific s ecurity m echanism) that caus e
the method to be triggered

2. The security action, which specifies the actions/services
that the agent needs to pe rform with respond to the
security method invocation

3. An end condition that specifies the desirable conditions
of the security action

The results report if the s ecurity action has failed or succeeded
and what the next steps should be (these steps would be
determined by whether the security action succeeded or failed). A
security action has succeeded if and only if the output condition
corresponds to an end condition.

2.3 The architectural Model
The architectural model describes the interactions among agents

that compose the M AS. Configurations are the central concept of
in architectural design [5] , allowing to define the topology of a
MAS. The topology is defined by a set of bindings between
provided and required services. An agent interacts with its
environment through an interface com posed of sensors and
effectors. An effector provides a s et of s ervices to the
environment. A sensor require s a s et of s ervices from the
environment. A service is an operation performed by an agent that
interacts by dialoguing with one or several agents. Finally, the
whole MAS is specified with an architecture which is composed
of a s et of configurations . The concept of architecture allows
representing agents by one or more detailed, lower-level
configuration descriptions.

Due to lack of s pace, this s ection only s pecifies the
configuration concept. A configur ation is a set of interconnecting
agent instances. Because there may be m ore than one us e of a
given agent in a MAS, we distinguish the different instances of
each agent ty pe that appear in a configuration. To this end, we
define the ty pe IAgent representing the name given to an agent
instance that has been instantiated within a configuration:

[IAgent]
Instantiating an agent also has the secondary effect of

instantiating the s ervices that are defined by its interface. We
define provided and required service ins tance ty pe s uch as
follows:

[IPservice], [IRservice]
Once the ins tances have been declared, a configuration is

specified by describing the collaborations. The collaborations
define the topology of the configuration, showing which agent
instance participates in which interactions. This is done by
defining a one-to-many mapping relation between provided and
required services.
[AgentType], [Instance]:= IAgent | IPservice | IRservice

Configuration
description: ˜ AgentType
instance: ˜ Instance

name ≠ ∅ ∧ invocation ≠ ∅ ∧ context ≠ ∅

collaboration: (IAgent X IRservice) (IAgent X IPservice)

The configuration separates the descriptions of composite
structures from the elem ents in thos e com positions. This allows
reasoning about the com position as a whole and changing the
composition without having to exam ine each of the individual
components in a system.

3. Agent Architecture for e-commerce
system

E-Media (http://www.isys.ucl.ac.be/skwyrl/emedia) is a ty pical
business-to-consumer application we have developed using the
architectural concepts explained in S ection 2. The application
offers an e-commerce architecture supporting the creation of
information sources that facilitate the on-line transaction of
products, services, and payments resulting in an effective and
efficient interaction among sellers, buyers and intermediaries.

This section describes how we have applied Secure SKwy RL
ADL to formally specify architectural aspects, such as interfaces,

knowledge bases, security objectiv es, security m echanisms, and
plans, of the e-Media system.

3.1 E-Media
E-Media provides an on-line interface that allows cus tomers to
examine the item s on the E-Media catalogue and place orders.
Customers can s earch the on-line s tore by either brows ing the
catalogue or query ing the item database. An online search engine
allows customers to search title, author/artist and description
fields through keywords or full-text search. If an item is not
available in the catalogue, the customer has the option to order it.
Moreover, Internet communica tions are supported. All web
information (e.g., product and cu stomer turnover, and sales
average) of s trategic im portance is recorded for monthly or on-
demand statistical analy sis. Based of this statistical and strategic
information, the system permanently m anages and adapts the
stock, pricing and prom otions policy . For example, for each
product, the sy stem can decide to increase or decrease stocks or
profit margins. It can als o adapt the cus tomer on-line interface
with new product promotions.

Apart from the main functional features of the s ystem, security
is a very important factor in the development of the E-Media
system. Customers need to know that their information remains
secure and accessible only to intended participants , and als o that
the risks, such as receiving wrong product because someone
intercepted and changed the order, as sociated with the online
purchase are m inimized. Therefore, from the cus tomer’s point of
view the main security objectives are confidentiality and integrity.
Confidentiality guarantees that the inform ation is accessible only
to authorized entities and inaccessible to others, whereas integrity
guarantees that information remains unmodified from source
entity to destination entity.

On the other hand, the stakeholder of the E-Media sy stem need
to m ake sure that the sy stem will alway s be available for
customers to buy , it can confirm the involvem ent of an entity in
certain communications, and it can prove the identity of an entity.
In other words, the main s ecurity objectives from the e-m edia’s
stakeholder point of view are availability , non-repudiation, and
authentication. Availability guarantees the accessibility and the
usability of inform ation and resources to authorized entities, non
repudiation confirm s the involvem ent of an entity in certain
communications, and authentication proves the identity of an
entity.

For both, the customer and the e-media stakeholder actors to
satisfy their s ecurity objectives , s ome security constraints are
imposed on their dependencies. Figure 2 models the dependencies
between the cus tomer, the E-M edia stakeholder and the E-M edia
system along with the security c onstraints imposed by the first
two actors on the sy stem, using the i* model notation [13] where
each node represents an actor (or sy stem com ponent) and each
link between two actors indicates that one actor depends on the
other for some goal to be atta ined. A dependency describes an
“agreement” (called dependum) be tween two actors: the depender
and the dependee. The depender is the depending actor, and the
dependee, the actor who is depended upon. The type of the
dependency describes the nature of the agreement. Goal
dependencies represent delegation of responsibility for fulfilling a
goal; softgoal dependencies are sim ilar to goal dependencies, but
their fulfilment cannot be defined precisely; task dependencies are
used in situations where the dependee is required.

Actors are represented as circles; dependums – goals, softgoals,
tasks and res ources – are res pectively repres ented as ovals,
clouds, hexagons and rectangles; dependencies have the form

depender → dependum → dependee. S ecurity cons traints are
represented as clouds.

Figure 2: E-Media dependencies

For the architecture of the e-m edia we have followed the
structure-in-5 organizational architectural s tyle presented notably
in [14]. More information about alternative architectural
selections can be found in [15] . According to the structure-in-5
style, the organization of the s oftware architecture can be
considered an aggregate of five s ub-structures [16] . The
Operational Core , which carries out the basic tasks and
procedures directly linked to the production of products and
services; the Strategic Appex , which m akes executive decis ions
ensuring that the organization fulfills its m ission in an effective
way and defines the general strate gy of the organization in its
environment.

The Middle Line , which establishes a hierarchy of authority
between the Strategic Appex and the Operational Core; the
Technostructure, which serves the organization by making the
work of others more effective, typically by standardizing work
processes, outputs and skills; the Support, which provides
specialized services, at various levels of the hierarchy, outside the
basic operating workflow. These sub-structures are realized in the
case of the e-m edia architecture by the Store Front , the Back
Store, the Billing Processor , the Coordinator and the Decision
Maker, as shown in Figure 3.

Figure 3: The E-Media Architecture in Structure-in-5

The Store Front interacts with customers and provides them
with a usable front-end web appli cation for consulting, searching

and shopping media items. The Back Store constitutes the Support
component. It manages the product database and communicates to
the Store Front relevant product in formation. It stores and backs
up all web information about custom ers, products and sales to be
able to produce s tatistical inform ation (e.g., analyses, average
charts and turnover reports). Such kind of information is
computed either for a predefin ed product (when the Coordinator
asks it) or on a monthly basis for every product. Based on this
monthly statistical information, it provides also the Decision
Maker with strategic information (e.g., sales increase or decrease,
performance charts, best sales, and s ales previs ion). The Billing
Processor handles custom er orders and bills. To this end, it
provides the customer with on-line shopping cart capabilities.

It also handles, under the responsibility of the Coordinator
component, stock orders to avoid shortages or congestions.
Finally, it ensures the secure management of financial
transactions for the Decis ion Maker. The Coordinator a ssumes
the central position of the archit ecture. It is responsible to
implements s trategic decis ions for the Decis ion M aker. It
supervises and coordinates the activities of the Billing Processor
(initiating the stock and pricing policy), the Front Store (adapting
the front end interface with new prom otions and
recommendations) and the Back S tore (param eterize s tatistical
computing) ensuring that the sy stem fulfills its mission in an
effective way . Finally , the Decision Maker a ssumes strategic
roles. It defines the Strategic Behavior (e.g., sales and turnover,
product visibility, and hits) of the sy stem ensuring that objectives
and responsibilities delegated to the Billing Processor,
Coordinator and Back Store are c onsistent with respect to their
capabilities.

3.2 Secure Architectural Description
The architecture described in Figure 3 gives an organizational

representation of the system-to-be including relevant actors and
their respective goals, tasks and re source inter-dependencies. This
model can serve as a basis to understand and discuss the
assignment of system functionalities but it is not adequate to
provide a precise specification of the sy stem details. As
introduced in Section 2, SKwy RL-ADL provides a finite set of
formal agent-oriented constructors that allow detailing in a form al
and consistent way the software architecture as well as its agent
components and their behaviors.

Due to lack of space, we only provide a partial s pecification in
SKwyRL-ADL of the Billing Processor agent. W e illustrate some
concepts detailed in Section 2 plus other ADL concepts
introduced in Figure 1. For a com plete SKwyRL-ADL
specification of E–Media, we refer the reader to [8] . Five aspects
of this agent com ponent are of concern here: the interface
representing the interactions in which the agent will participate,
the knowledge base defining the agent knowledge capacity , the
protection objectives indicating the desired security attributes of
the agent, the s ecurity mechanisms representing a s et of s tandard
security methods that an agent might have and they help towards
the satisfaction of the protection objectives of the agent, and the
capabilities defining agent behaviors. The partial high-level
formal description of the Billing Processor is as follows:
Agent:{Billing-Processor

Interface
Effector[provide(shopping_cart)]
Effector[provide(billing)]
Effector[provide(stock_orders)]
Effector[provide(finance_security)]
Sensor[require(strategic_behavior)]
Sensor[require(statistical_info)]

KnowledgeBase:
Stock_KB Pricing_Kb
BP_Customer_KB Providers_KB
BP_System_KB Statistical_KB

Protection Objectives:
Confidentiality_PO Integrity_PO
Availability_PO Non_Repudiation_PO
Authentication_PO AccessControl_PO

Security mechanisms:
Encipherment_SM DIgitalSignature_SM
AccessControl_SM DataIntegirty_SM
AuthenticationExchange_SM
TrafficPadding_SM RoutingControl_SM
Notarization_SM

Capabilities:
Shopping_Cart_Management_CP
Billing_CP Stock_Management_CP
Statistic_CP

}

The agent interface consists of a number of effectors and sensors
for the agent. Each effector provides a service to other agents, and
each s ensor requires a s ervice provided by another agent. An
interaction is then defined by the correspondence between a
required and a provided service. For exam ple, the Billing
Processor requires the statistical_info service that the Coordinator
provides. The specification of the service description is presented
below. Each provided or required service can be detailed by
describing the sender agent that initiates the service, a set of
receiver agents that interact with the sender, the reply -with that
defines the information about wh ich the service expresses an
interaction, and optionally a set of parameters that define the
information required to execute the s ervice. The parameters as
well as the reply -with inform ation can be represented with a
belief or a set of terms (e.g., function, constant or variable).
Service: {Ask(statistical_info)

sender: Coordinator
parameters: (tw: TimeWindows), (id: Id_product)
reply_with: to: Turnover ∨ sl: Sales
receiver: Back-Store

Effect: Add(Statistical_KB, Achieve(statistic(“today”,“on_product”)
}

The Billing Processor agent has six KBs. Each of them is
specified with a name, a KB_body and a KB_ty pe. The
specification of the Statistical_Kb is given below.
KnowledgeBase: {Statistical_KB

KB_body:
statistic_computation(Date,Subject)
product_turnover(Id_Prod,TimeWindows,Turnover)
customer_turnover(Id_Card,TimeWindows,Turnover)
product_sales(Id_Prod,TimeWindows,Sales)
extrapol_sales(Id_Prod,TimeWindows,setoff Sales)

KB_type: closed_world }
The Billing Processor has six (6) protection objectives as shown

in its description. These protection objectives have been identified
by the security analy sis that took place for the e-m edia sy stem
and partially presented in section 3.1. Each of the protection
objectives is specified with a name, information of who imposed
it to the agent, the agent to which it is im posed to, and the
constraints that it im poses to the agent. F or exam ple, the
specification of the Non_Repudiation is as follows:
Protection Objective: {

name: Non_Repudiation_PO
imposed_by: Environment
imposed_to: Billing_Processor
constraints: ConfirmInvolvementInTransactions

 }

In addition, the Billing Processor has 8 different security
mechanisms that represent a set of standard security methods that
help towards the satisfaction of the protection objectives of the
Billing Processor. Each security m echanism is specified with a
name, the security methods it is composed of, a ty pe, its
availability to the agent, and an indication to which protection
objective helps . The Notarization s ecurity mechanism
specification for the Billing Processor agent is as follows:
Security Mechanism: {

name: Notarization_SM
composed_of: third_party_notary
type: Combinational
availability: Available
help: Non_Repudiation

 }
A third-party notary that must be trusted by all participants

provides notarization m echanisms. The notary can assure
integrity, origin, time or destination of data. For exam ple, a
message that has to be subm itted by a specific deadline m ay be
required to bear a tim e stamp from a trusted time service proving
the time of submission.

The Billing Processor agent has also som e capabilities. A
capability is com posed of plans and events that together serve to
give an agent certain abilities. For exam ple, the Billing Processor
Statistic_CP capability is defined as follows. The body contains
the plans that the capability can execute and the events it can post
to be handled by other plans or it can send to other agents.
Capability:{Statistic_CP

CP_body:
Plan Prov_Turnover_On_Demand
Plan Prov_Turnover
Plan Sales_Average
Plan Stock_Orders
SendEvent Grade
SendEvent Best_Sales
SendEvent Promotion

}
The Stock_Order plan of the Billing-Processor will m ake sure

that the level of stock of each product is permanently higher than
the minimal quantity , which is determ ined by the coordinator on
the basis of the strategic orie ntation provided by the Decision-
Maker. In the plan body , the quantity to order is determined and
then the order is sent to the publisher. Eventually , the level of
stock is updated in the system. In case of plan failure, the ‘fail”
instructions are carried out. So the billing-Processor searches for
the last order sent for this product and reorder the same quantity.
Then the stock level is updated with the quantity ordered.
Plan:{
Name: Stock_Orders

invoc:
 Maintain(current_stock(id,Availability > lb)

// with id: Id_Product
// From Coordinator.Ask(stock_orders).reply_with
// with lb: Lower_Bound
// From Coordinator.Ask(stock_orders).reply_with

context:
 current_stock(id,Availability < lb)

∧ ¬ time (now > “11 am”)
∧ (day(now =“monday”
∨ day(now =“wednesday”)

body:
 action: proceed_order(id, lb)

 effect: Add(Stock_Kb, Sent_Orders(id,qu,date))
endstate:

Add(Stock_Kb, Sent_Orders(id,qu,date))
succeed:

action: update_stock(id, av)
 //with av: availability

effect: Add(Stock_Kb, Stock(id, av))
fail:

action: search_last(sent_orders(),id) as qu: Quantity
 Add(Stock_Kb, Sent_Orders(id,qu,date))

 update_stock(id, av)
effect: Add(Stock_Kb, Stock(id, av))

}

4. E-Media Implementation
The E-Media application has b een implemented (~ 10.000 lines

of code) with JACK [17] , a BD I agent-oriented development
environment for JAVA. The implementation was based on the
structure-in-5 architecture described in Section 3.1 and the formal
SKwyRL-ADL specification overv iewed in Section 3.2, We
briefly describe the E-Media im plementation to illustrate the role
of the agents and their interactions as well as pres enting s ome
implementation of the secure architectural cons iderations for the
payment information.

When an on-line cus tomer gets connected to E-m edia, an
instance of the F ront-Store is created to display an interface that
allows the new com ing us er to regis ter. Then, the Back-Store
handles the information provided by the user and checks its
validity. If the access is granted, the user can purchase products
on E-Media by adding catalogue items to the shopping cart
managed by the Billing-Processor. At any time the user can use a
navigation-bar to switch from one section of the website to
another. Moreover, promotions a nd best sales are part of the
strategic behaviour objective. The prom otions policy is initiated
by the Decision-Maker based on the strategic information
provided by the Back-Store. The Coordinator chooses the best
promotions and consequently adap ts the Store Front lay out. The
Coordinator acts sim ilarly for the best sales: the Back-Store
computes the five bes t s ellers and the Coordinator accordingly
updates the Store-Front. Figure 4 describes the Store-Front
interface for the DVD section.

Figure 4: Interface of e-media DVD section

To search the E-Media DVD catalogue, the user must fill at least
one field of the search engine (1). The Store-Front sends the
query parameters to the Back Store which provides the results
back to the Store-Front (2).

At any moment during the session, the user can click on a
product (best seller, query result, and shopping cart); a request is
then sent to Back Store to provide more information on this
product (3).

6. REFERENCES When the user starts the billing process, the Billing-Processor
displays all the items of the shopping cart and computes the total
and sub-total for each product. Next, it checks the validity of the
user Id-Card number, either by verify ing its database, or by
asking confirmation to the Bank Company (Figure 5), or both.
Once the payment is accepted, the Billing-P rocessor informs the
Store-Front. A confirmation me ssage is display ed and the
shopping cart is cleared.

[1] M. Barley, F. Massacci, H. Mouratidis, P. Scerri (eds).
Proceedings of the 1st International Workshop on Safety and
Security in Multiagent Systems, Third International Joint
Conference on Autonomous Agents and Multiagent Systems,
N.Y. –USA, 2004

[2] E. Fernandez-Medina, J. Cesar Hernandez Castro, L. Javier
Carcia Villalba (eds). The Second International Workshop on
Security in Information Systems, 6th International
Conference on Enterprise Information Systems, 2004.

[3] H. Mouratidis. A Security Oriented Approach in the
Development of Multiagent Systems: Applied to the
Management of the Health and Social Care Needs of Older
People in England. PhD thesis, University of Sheffield, U.K.,
2004

[4] J. Jurjens. Secure Systems Development with UML, Springer
Verlag, 2004

[5] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young
and G. Zelesnik, Abstractions for Software Architecture and
Tools to Support Them, IEEE Transactions on Software
Engineering, 21(4):314-335, 1995. Figure 5: Secure Payment Information.

[6] P. C. Clements. A Survey of Architecture Description
Languages. In Proc. of the Eighth International Workshop on
Software Specification and Design, Paderborn, Germany,
March 1996.

5. Conclusions
Nowadays, software engineering for new enterprise application

domains such as e-Business is forced to build up open but secure
systems able to cope with distributed, heterogeneous, and
dynamic information issues. Most of the se software systems exist
in a changing organizational and operational environment where
new components can be added, modi fied or removed at any time.
For thes e reas ons and m ore, agent architectures are gaining
popularity in that they do allow dy namic and evolving structures
which can change at run-time.

Architectural design has received considerable attention for the
past decade which has res ulted in a collection of formal
architectural description languages. Unfortunately , this work has
focused on object-oriented rather than agent-oriented s ystems.
This paper has defined a set of sy stem secure architectural
concepts to propose such a language for BDI-MAS. This ADL
allows formalizing each agent com ponent, behavior and
interaction in terms of secure architectural specifications.

The paper has proposed a validation of the framework: it has
been applied to develop E-M edia, an e-commerce platform
implemented on the JACK agent development environment.

The research reported here calls for further work. We are
currently working on: (1) The development of a CASE tool to
automatically generate code for the future m ulti-agent system
from Secure SKwy RL-ADL specifications; (2) the definition of a
set of rules to perform security and consistency analysis to be
included in verification tools such as PVS; and (3) the
identification of a suitable set of core abstractions, inspired by
organizational metaphors, to be used during the design of the
secure multi-agent system architecture.

[7] M. Shaw and D. Garlan, Software Architecture: Perspectives
on an Emerging Discipline, Prentice Hall, 1996.

[8] S. Faulkner, An Architectural Framework for Describing
BDI Multi-Agent Information Systems, Ph.D. thesis,
Department of Management Science, University of Louvain,
Belgium, May 2004.

[9] R. Anderson. Security Engineering: A Guide to Building
Dependable Distributed Systems. John Willey & Sons, New
York, 2001.

[10] B. Schneier. Secrets & Lies: Digital Security in a Networked
World, John Willey & Sons, 2000

[11] J. Viega, G. McGraw. Building a Secure Software. Addison-
Wesley, Reading MA, 2002

[12] J. M. Spivey, The Z Notation: A Reference Manual.
Prentice-Hall, second edition, 1992.

[13] E. Yu, “Modeling Strategic Relationships for Process
Reengineering,” Ph.D. thesis, Department of Computer
Science, University of Toronto, Canada, 1995.

[14] M. Kolp, P. Giorgini, and J. Mylopoulos. An Organizational
Perspective on Multi-agent Architectures. In Proc. of the 8th
Int. Workshop on Agent Theories, architectures, and
languages, ATAL’01, Seattle, USA, Aug. 2001.

[15] T. T. Do, S. Faulkner and M. Kolp. Organizational Multi-
Agent Architectures for Information Systems. in Proc. of the
5th Int. Conf. on Enterprise Information Systems (ICEIS
2003), Angers, France, April 2003.

[16] H. Mintzberg. Structure in fives: designing effective
organizations. Prentice-Hall, 1992.

[17] JACK Intelligent Agents. http://www.agent-software.com/

http://www.agent-software.com/

	IJCAAMS 05 cover sheet
	p578-mouratidis

