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Abstract 

Assuring that a given code is faithfully executed with defined parameters and constraints on an 
un-trusted host is an open problem, which is especially important in the context of computing over 
communications networks. This work evaluates applicability of Aspect-Oriented Programming to 
the problem of remotely authenticating code during execution, which aims at assuring that the 
software is not maliciously tampered prior to and during execution. A flow of idiosyncratic 
signatures is continuously generated and associated to data transmitted by a function that is 
encapsulated in an aspect and whose execution is subordinated to the proper execution of the 
software being authenticated. The flow of signatures is validated by a remote component. 

1. Introduction 

Among the very broad range of security issues, this paper investigates how to apply AOSD 
techniques to implement software-tampering detection in applications running on an un-trusted 
host. There are many situations in which it is desirable to protect a piece of software from 
malicious tampering once it gets distributed to a user community (examples include time-limited 
evaluation copies of software, password-protected access to unencrypted software, e-voting and e-
commerce systems) or even when running on a server (e.g., systems handling critical information 
and financial transactions). 
In general, software, especially in the context of data networks, suffers from some inherent 
problems. These include modifications by an either malicious or inadvertent user, malware 
distribution (e.g., viruses and “Trojan horses” ), and the use of malicious software remotely for 
penetration, intrusion, denial-of-service (DoS), and distributed DoS (DDoS). For example, a rogue 
user may manipulate the code of a given protocol (such as TCP) and gain an unfair advantage in 
using network bandwidth. 
Tamper resistance is the set of methodologies for protecting software or hardware from 
unauthorized modification, distribution, and misuse [9]. One important technique is integrity 
checking and in particular self-checking, in which a program, while running, checks itself to verify 
that it has not been modified. We distinguish between static self-checking, in which the program 
checks its integrity only once, during start-up, and dynamic self-checking, in which the program 
repeatedly verifies its integrity at run time. Self-checking alone is not sufficient to robustly protect 
software from tampering since the self-checking function itself can be removed or inhibited.  
The level of protection from tampering can be improved by using techniques that slows down 
reverse engineering, such as customization and obfuscation, techniques that prevents using 
debuggers and emulators, and methods for marking or identifying code, such as watermarking. 
These techniques reinforce each other, but they do not make it bulletproof [8].  
We think that whichever self-checking technique, bundled within the application, can be identified 
and disabled by an attacker with enough knowledge, time, and reverse engineering tools. We 
noticed that current self-checking techniques rely on static code checkers whose position is hidden 
in the application and whose behavior is obfuscated or complex to understand. 
Hence, the presented solution extends the power of code checkers in two ways: it adds remote 
verification that self-checking has been performed and continuous replacement of (critical parts of) 
the self-checking code. 
Software tampering detection is indeed a crosscutting concern, because of its pervasive nature with 
regard to the business logic in an application. AOP, being an emerging technology promoting 
advanced separation of concerns, can be used to ease the design of different self-checking 
techniques and, in our approach, it is used to modularize self-checking code in an aspect whose 
behavior can be continuously updated with mobile code. 
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This paper describes the design and implementation of such a solution and its dynamic self-
checking mechanism that can raise the level of tamper-resistance protection against an adversary 
with static analysis tools and knowledge of our algorithm and most details of our implementation.  
We begin in Section 2 with a brief discussion of related work. In Section 3 we address our design 
objectives we used to create techniques for remote authentication of code execution. Section 4 
presents an overview of the proposed self-checking mechanism based on AOP, and possible 
threats are detailed in section 5. Finally, Section 6 concludes with a brief discussion of directions 
for future work. 

2. Related Work 

There has been a significant amount of work on the problem of executing un-trusted code on a 
trusted host computer [10, 11]. The field of tamper resistance is the dual problem: running trusted 
code on an un-trusted host. Although of considerable practical value, there has been little work 
done on this problem. Most of the work reported in the literature is ad hoc. It is not clear that any 
solution exist that has provable security guarantees and with measurable effectiveness. We present 
a list of some important work related to self-checking technology: for more details see [9, 2]. 
Obfuscation attempts to thwart reverse engineering by making it hard to understand the behavior 
of a program through static or dynamic analysis. Obfuscation techniques tend to be ad hoc, based 
on ideas about human behavior or methods aimed to defeat automated static or dynamic analysis. 
Collberg, et al. [2] presented classes of transformations to a binary that attempt to confuse static 
analysis of the control flow graph of a program. Wang, et al. [12] also proposed transformations to 
make it hard to determine the control flow graph of a program by obscuring the destination of 
branch targets and making the target of branches data-dependent. 
Customization takes one copy of a program and creates many very different versions. Distributing 
many different versions of a program stops widespread damage from a security break since 
published patches to break one version of an executable might not apply to other customized 
versions; then each instantiation of a protected program may be different [13].  
Software watermarking, which allows tracking of misused program copies, have been proposed in 
different ways: Collberg and Thomborson [14] provide a survey of research and commercial 
methods: they make the distinction between software watermarking methods that can be read from 
an image of a program and those that can be read from a running program.   
Self-checking is an essential element in an effective tamper-resistance strategy. Self-checking 
detects changes in the program and invokes an appropriate response if change is detected. This 
prevents both misuse and repetitive experiments for reverse engineering or other malicious attacks. 
Aucsmith [13] presents a self-checking technology in which embedded code segments verify the 
integrity of a software program as the program is running. These embedded code segments check 
that a running program has not been altered, even by one bit.  
On the other side, network security in all its aspects has become more crucial in recent years, in 
terms of protecting data travelling through the network and authenticating communicating entities 
(see for example [5, 6, 7]). However, no work has been done for assuring the integrity of the 
software implementing the communicating entities and generating the data. The presented work 
sets at addressing this issue, trying to use aspect-oriented programming and dynamic code 
downloading to enforce code-checkers relying on network security. 

3. Remote verification: the TrustedFlow™ Protocol 

The TrustedFlow protocol, as shown in Figure 1, is based on a Trusted Flow Generator (TFG) in 
the entrusted code of the program deployed on an un-trusted host, and a Trusted Tag Checker 
(TTC) function on an entrusting entity, i.e. another computer or as part of some network interface 
(e.g., firewall, gateway), running in a trusted environment. The TFG is a module that generates a 
pseudo-random sequence of n-bit tags (idiosyncratic signature) depending on a random seed and 
on the information to be sent (e.g. using AES [17] algorithm in counter-mode in order to use a 
stateless communication with the entrusting entity). Moreover a MAC (Message Authentication 
Code) of the data packet can be generated from a subset of the current idiosyncratic signature. 
The n-bit tags (where n is small) are interleaved in the sequence of messages (e.g., inside data 
packet headers) that are sent from a first computer through the network to a second computer. At 
the second computer, the validity of the pseudo-random sequence of n-bit tags is checked and 
verified by the TTC. Sending a valid pseudo-random sequence of n-bit tags verifies that the first 
computer has used the appropriate software (programs and parameters). Consequently, the second 
computer accepts and/or forwards only data packets from well-behaved sources.  
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Figure 1: TrustedFlow architecture 

The generator is a dynamic self-checking module and it is the main target of a reverse engineering 
attack. All existing approaches hide some self-checker in the application running on an un-trusted 
host. In our approach we consider as variants both the self-checking algorithm and the data used 
by this algorithm to verify software integrity. Once these features are variants and modularized 
with AOP they can become dynamically variable in time. Therefore, TTC can timely release new 
version of TFG, making invalid the former versions. Our approach is based on the assumption that 
even if attacker were able to understand and crack the application, the time needed to pursue this 
goal would be anyway longer than the validity of the attacked mobile code. 

4. Tamper ing detection with AOP and mobile code 

In this section we analyze possible applications of AOP to detect software tampering, focusing on 
the implementation of the TFG. 
The goal of the proposed methodology is to guarantee “entrusted code” execution in an un-trusted 
host, allowing detection of the following attacks: 

- Modification of values of fields, constants outside the specified range. 
- Execution of tampered version of software for malicious goals. 
- Substitution of relevant operations in the application to modify application behavior. 
- Replace entrusted code, with a cracked version for malicious goals. 
- Bypass code parts verifying licenses or billing. 

The proposed approach is depicted in figure 2.  
TrustedFlow is made of a TFG (Trusted Flow Generator) adding bits (i.e. “ tag” ) to all network 
packets transmitted to the entrusting entity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The TrustedFlow approach with mobile code 

 
Such tags are generated possibly in a pseudo-random way that depends on the code being 
executed. The entrusting entity, operating in a trusted environment, includes a TFC (Trusted Flow 
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Checker) that locally generates the tags and compares them with the ones received from the 
entrusted code. If the comparison is correct, then the entrusted code has not been tampered.  
Seed generator is included in the mobile code: its task is generating the random seed that will be 
used by TFG as a starting point to generate bits sequences (i.e. tags) inserted in network packets. 
This tags depends on dynamic checking of entrusted code. 
Both seed generator and TFG are executed in an un-trusted host, and they may be enforced with 
obfuscation techniques to thwart fast reverse-engineering attacks. Disablement of the mobile code 
makes the application not usable because the TFC module on the trusted counterpart will stop 
network functionalities of the application.  
Reverse-engineering attacks can become more difficult, because the entrusted mobile code is not 
bundled in the application but it is downloaded at runtime. 
Moreover, even supposing de-compilation of the mobile module using ad-hoc packet sniffers 
and/or memory dump, the periodic change of the mobile code and its own checking algorithms, 
makes manual reverse engineering difficult, as more as the change period become smaller. 
In order to increase the robustness of the above-presented solution two techniques can possibly be 
used (alternatively or together): 

- The mobile module is obfuscated 
- The exact output of the mobile module (i.e., the seed and ultimately the tags) depends on 

a secret key hardwired in such module.  
The proposed system can be divided in four sub-problems: 
1-network level: defining merge algorithm of tags and data generated by the entrusted module; in 
this way TTC can verify tags (sequence number, handshake, tag flow identifier...).  This approach 
has been investigated in detail in [15]. 
2-security level: defining cryptographic aspects for tag calculation, starting from an initial seed 
used in generation phase and validation phase. 
3 tag interlocking with code execution: the choice of input data for seed generator function, must 
be driven by two ideas: verifying that sensible data are not tampered, and verifying that execution 
sequence is compliant with original specification used by TTC to perform validation 
4 mobility: the mobile code can be used to modularize a crosscutting concern like the software 
tampering checker: the mobility and limited duration of this code becomes the key issue to thwart 
software cracker. 
We analyze mobile code issue in Java environment and we notice that it can be realized with three 
different technologies: software agents, AOP and dynamic class-loading, dynamic AOP platforms.  
Agent platforms allow mobile code to be executed on a remote un-trusted host running an 
application: the agent runs in a different process and interacts with the application through a well- 
defined interface dependent on the chosen agent platform.  
So, after a preliminary analysis we think that agents cannot have full control on application code 
like AOP techniques. In the second approach, static AOP with dynamic class loading can lead to 
dynamic insertion of code extensions in the application running in an un-trusted host. 
An application can be woven with a set of aspects that intercept all relevant method invocations 
and field accesses: the advice code of each aspect can get actual parameters and field values using 
AOP features and then these data can be used as input for the seed generator algorithm, contained 
in the mobile code, and periodically renewed by the counterpart trusted application. 
AOP can then insert “hooks”  in relevant parts of application code that calls the advice method of 
different aspects; at runtime the set of relevant data (e.g. fields values, actual parameters of an 
invoked method, application class definitions determined with reflection) are available to the 
advice code. Among this set of data, the mobile code can select a subset to perform validity 
checking; in this case the algorithm, and the related subset, change in time with the mobile code. 
Moreover if different aspects and different types of mobile code are used they can validate the 
application and they may validate each other.  
Using dynamic AOP platform on a standard JVM [16] implies running JVM in debug mode. This 
means offering a possible weakness to attacker but it has some advantages. 
First of all the advantages of static AOP approach are still present, because with dynamic AOP, 
code structure, attribute values, and methods invocation sequence can be validated with algorithms 
whose validity lasts for a specified period of time. 
Moreover, there is no more presence of “hooks”  in application code (possible starting point for a 
“replacement”  attack), because these hooks are determined at runtime by the platform, depending 
on pointcut definitions included in the dynamically downloaded aspect. Moreover with dynamic 
AOP, it’ s possible to download and withdraw a set of different aspects, each one making some 
computation to generate the seed, in order to thwart attackers. 
Finally the dynamic change of the algorithm and the current data to be checked makes useless a 
good attack, because of its limited time validity.   
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Using a dynamic AOP platform or dynamic code downloading means the prototype relies on an 
external, un-trusted support for mobile code installment and execution. Reliance on such un-
trusted support makes the whole system vulnerable, for a limited time.  
In future, when dynamic AOP platform will become more secure, then our approach could be 
improved. However, we do not consider this being a problem for our purposes since our aim is to 
demonstrate the feasibility of the system through a prototype. A real and robust implementation of 
the TrustedFlow principle according to the proposed design would include an implementation of 
the mobile code support (limited to what is needed for the specific issue of handling the mobile 
module) within the entrusted code itself. In this way, the mobility support will be entrusted 
through TrustedFlow itself, i.e., the code for the mobility support as well will be interlocked with 
the TFG. 
Finally, using AOP and mobile code for dynamic self-checking can be used to integrate our system 
with other existing protection approaches. In the following we identify some possible applications. 
As Java platform does not allow application to access to the code segment, possible code 
verification techniques cannot be applied. If the applicaiton is implemented in C++, AOP can be 
used to calculate a hash of the code segment.  The mechanism could detect the change of a single 
bit in any non-modifiable part of the program, as the program is running and soon after the change 
occurs. This helps to detect an attack in which the program is modified temporarily and then 
restored after unspecified behavior occurs. Our approach modularizes self-checking code in 
aspects that can be independently replaced or modified, making future experimentation and 
enhancements easier, and making extensions to other executable formats easier. Other benefits are 
hardware platform independence, easy integration with other tamper-resistance methods 
techniques like customization: different version of the application and related aspects can be easily 
generated acting on aspect pointcuts definitions. The power of pointcuts composition rules in AOP 
is suitable for a flexible management and distribution of self-checking code in a large code base 

5. Possible threats 

The fundamental purpose of a dynamic self-checking mechanism is to detect any modification to 
the program as it is running, and upon detection to trigger an appropriate response.  
Using TrustedFlow protocol any software tampering on the un-trusted host should be remotely 
detected by TFC, whose response is blocking any further network communication coming from 
the suspected host.     
The two general attacks on a software self-checking mechanism are discovery and disablement. 
Methods of discovering such mechanisms, and our approach for preventing or inhibiting these 
methods, follows. 
Among discovery attacks, static inspection made with automated inspection tools (by a program) 
can be defeated by our approach, by the dynamic change of the TFG encapsulated in the mobile 
code. 
Off-the-shelf dynamic analysis tools such as debuggers and profilers pose a threat to our self-
checking approach, in particular when a dynamic AOP platform is used. Moreover using AOP 
with dynamic class loading, aspect’s advice code invocations are identifiable in the code.  
Obfuscation of the TFG and the limited time validity of its algorithm can slow down the attack. In 
this case the time needed to attack to succeed is longer than the current TFG time validity. 
The self-checking mechanism consists of a number of aspects, each testing a small set of code 
structure and properties. An attacker, having discovered one such aspect, could look for others by 
searching for similar code sequences. Customization of aspect code can help, so that generalizing 
from one to others is difficult: not only are there multiple aspects, each one performing a different 
test (computing a different part of the seed from a different subset of attribute values or code 
structure), but within each class the testers use different code sequences to do the same job.  
Disablement attacks can be defeated by the remote validation made by the TFC of the signed 
packets coming from the current TFG in the application. 
One possible disabling attack is to modify one or more aspects so that they fail to signal a 
modification. If no data are sent by the TFG, the TFC deduces that a tampering has been carried 
out, and network connectivity of the application is blocked.    
A possible improvement may be based on an overlapping coverage, so that each aspect is validated 
by several others. Disabling one or more of the aspect advices by modifying them will produce 
detection of these changes by the unmodified aspect advices. All or almost all of the aspects must 
be disabled for this kind of attack to succeed.  
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Another possible attack is to identify the mobile code using packet sniffer and/or memory dump: 
once identified and decompiled the mobile code the attacker can understand mobile code behavior 
and disable checking activities, but sending the correct information to the TFG. 
The time needed to perform such a complex attack is unlikely to succeed without discovery the 
behavior of all the aspects before their validity expires.  

6. Conclusions and Future Work 

We have designed a dynamic self-checking mechanism suitable to protect client-side software 
running in a potentially hostile environment. In future, our approach could be used in conjunction 
with other tamper-resistance techniques, like static copy-specific software customization. 
Directions for future research include developing of distributed hash functions in different aspects, 
obfuscations for the mobile code, and adding security features to a dynamic AOP platform.  
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