

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Bresciani, Paolo; Giorgini, Paolo; Mouratidis, Haralambos; Manson,
Gordon.
Article title: Multi-agent systems and security requirements analysis
Year of publication: 2004
Citation: Bresciani, P. et al. (2004) ‘Multi-agent systems and security requirements
analysis’ In Lucena, C et al (eds) Software engineering for multi-agent systems II:
research issues and practical applications 2004 vol. 2940 pp. 35-48
Link to published version: http://dx.doi.org/10.1007/b96018
DOI: 10.1007/b96018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://dx.doi.org/10.1007/b96018

Multi-Agent Systems and
Security Requirements Analysis

Paolo Bresciani1, Paolo Giorgini2, Haralambos Mouratidis3, and Gordon Manson3

1ITC-irst, via sommarive 18, I-38050, Povo, Trento, Italy
bresciani@itc.it

2Department of Information and Communication Technology, University of Trento, Italy
paolo.Giorgini@dit.unitn.it

3Department of Computer Science, University of Sheffield, England
{haris, g.manson}@dcs.shef.ac.uk

 Abstract. Agent Oriented Software Engineering (AOSE) is a software
paradigm that has grasped the attention of researchers the last few years. As a
result, many different methods have been introduced to enable developers
develop multi-agent systems. However, so far, security requirements have been
mainly neglected, and the common approach towards the inclusion of security
within a system is to identify security requirements after the definition of the
system. This approach has provoked the emergence of computer systems
afflicted with security vulnerabilities. In this paper we propose an analysis,
based on the measures of criticality (how critical an actor of the system is) and
complexity (represents the effort required by the actors of the system to achieve
the requirements that have been imposed to them), which aims to identify
possible bottlenecks of a multi-agent system with respect to security. An
integrated agent-based health and social care information system is used as a
case study throughout this paper.

1 Introduction

In a world that becomes more and more reliant on software systems, security is an
important concern. Private information is stored in computer systems and without
security, organizations are not willing to share information or even use the
technology. In addition, possible security breaches can cost huge amount of time and
money.

Following the wide recognition of multi-agent systems, agent-oriented software
engineering has been introduced as a major field of research. Many agent-oriented
software engineering methodologies have been proposed [1,2] each one of those
offering different approaches in modeling multi-agent systems. However, only few
attempts [3] have been made to integrate security issues within the development
stages of methodologies.

Security requirements are generally difficult to analyse and model. It is difficult to
analyse because many times security requirements conflict with functional
requirements and many trade offs are required. Performing such trade offs can be

2

painful and time-consuming and it requires software and security engineering
expertise. In addition, there is lack of developers’ acceptance and expertise for secure
software development.

Usually the goal will be to provide as much security as possible trading sometimes
security concerns with other functional and non-functional requirements. To better
achieve this goal, agent-oriented software engineering methodologies must help
developers, through a systematic approach, to determine how complex is for each part
(actor) of the system to achieve the security requirements, and also identify the most
critical actors of the system with respect to security. Such an approach will help
developers to perform trade offs between security and other functional and non-
functional requirements based on quantitative measurements and thus minimizing the
risks of putting in danger the security of the system.

Within a multi-agent system, more likely, different agents will play different roles
and, with respect to security, some will be more critical than others. In addition, some
agents of the system might have been overloaded (assigned more security
requirements than they can handle) and thus fail to satisfy some of the security
requirements assigned to them.

Developers must be able to identify, through a systematic approach and without
much security knowledge, such cases and redefine the design of the system in such a
way that none of the agents of the system are overloaded and all the security
requirements assigned to the agents of the system are satisfied.

In this paper we propose an approach based on the concepts of criticality and
complexity, and we indicate how such a process can be integrated within the early
requirements analysis stage of the Tropos methodology. This work is within the
context of the Tropos project [2] and our aim is to provide a clear and well-guided
process of integrating security and functional requirements throughout the whole
range of the development process. Section 2 provides an overview of Tropos
methodology, and also introduces the electronic Single Assessment Process (eSAP)
system case study. In Section 3, we describe the process of analysing the complexity
and criticality of a system with respect to security, and we present an algorithm to
reduce the complexity and/or the criticality of the “overloaded” actors. Finally,
Section 4 presents some concluding remarks and directions for future work.

2 Tropos Methodology

Before we can describe our approach, we think it is necessary to provide an
overview of Tropos methodology and how security can be integrated to it. Tropos is
an agent oriented software engineering methodology, tailored to describe both the
organisational environment of a system and the system itself, employing the same
concepts throughout the development stages. The Tropos methodology is intended to
support all the analysis and design activities in the software development process,
from the application domain analysis down to the system implementation [2]. Using
Tropos, developers build a model of the system-to-be and its environment that is
incrementally refined.

3

Tropos adopts Yu’s i* model [4] which offers the concepts of actors, goals, tasks,
resources and social dependencies for defining the obligations of actors (dependees)
to other actors (dependers). Actors have strategic goals and intentions within the
system or the organisation and represent (social) agents (organisational, human or
software), roles or positions (represent a set of roles). A goal represents the strategic
interests of an actor. In Tropos we differentiate between hard goals (only goals
hereafter) and soft goals; the latter having no clear definition or criteria for deciding
whether they are satisfied or not. A task represents a way of doing something. For
example a task can be executed in order to satisfy a goal. A resource represents a
physical or an informational entity while a dependency between two actors indicates
that one actor depends on another to accomplish a goal, execute a task, or deliver a
resource.

Tropos covers four stages of software development: Early Requirements analysis
consists of identifying and analysing the stakeholders and their intentions.
Stakeholders are modeled as social actors, while their intentions are modeled as goals
that, through a goal-oriented analysis, are decomposed into finer goals, which
eventually can support evaluation of alternatives. Late Requirements analysis
consists of analysing the system-to-be within its operating environment, along with
relevant functions and qualities. The system is introduced as an actor and the
dependencies between the system and the other actors of the organization are
explicitly modeled. These dependencies define the system’s requirements.
Architectural Design describes the system’s global architecture in terms of
subsystems (actors) interconnected through data and control flows (dependencies).
During this stage, new actors are introduced in the system as a result of analysis
performed at different levels of abstraction. In addition, capabilities needed by the
actors to fulfill their goals and tasks are identified. Detailed Design deals with the
specification of each architectural component in terms of inputs, outputs, control and
other relevant information. Tropos faces the detailed design stage on the basis of the
specifications resulting from the architectural design stage and the reasons for a given
element can be traced back to the early requirements analysis.

The security process in Tropos consists of analyzing the security needs of the
stakeholders and the system in terms of security constraints [5] imposed to the
stakeholders (early requirements) and the system (late requirements), identifying
secure entities [5] that guarantee the satisfaction of the security constraints, and
assigning capabilities to the system (architectural design) to help towards the
satisfaction of the secure entities.

In our work [3, 5] we define security constraints as constraints that are related to
the security of the system whereas secure entities represent any secure
goal/task/resource of the system [5]. Security constraints can be categorized into
Positive –they influence the security of the system positively (e.g., Allow Access only
to Personal Information) – or negative – they influence the security of the system
negatively (e.g., Send information plain text).

 To make the process easier to understand, we consider as an example the
electronic Single Assessment Process (eSAP) case study first introduced by
Mouratidis et. al [6]. The eSAP case study involves the development of an agent-
based health and social care system for the effective care of older people. Security in
such a system, as in any health and social care information system, is very important

4

since revealing a medical history could have serious consequences for particular
individuals. Taking into account a substantial part of the eSAP, we have defined the
following stakeholders for our case study: The Older Person (OP) actor is the older
person (patient) that wishes to receive appropriate health and social care. The
Professional actor represents health and/or social care professionals involved in the
care of the Older Person. The DoH actor represents the English Department of
Health, which is responsible for the effective care of the Older Person. The Benefits
Agency actor is an agency that helps the Older Person financially, and the R&D
Agency represents a research and development agency interested in obtaining medical
information.

During the early requirements analysis stage, the dependencies, the goals and the
security constraints between these actors can be modeled using Tropos actors’
diagram as shown in Figure 11. In such a diagram each node represents an actor, and
the links between the different actors indicate that one depends on another to
accomplish some goals.

Legend

Fig. 1. The actor diagram of the eSAP system

In our example, the Older Person depends on the Benefits Agency to Receive
Financial Support. However, the Older Person worries about the privacy of their

1 The numbers next to the security constraints represent the criticality of the constraint (Section

3).

5

finances so they impose a constraint to the Benefits Agency actor, to keep their
financial information private. The Professional depends on the Older Person to
Obtain Information, however one of the most important and delicate matters for a
patient (in our case the Older Person) is the privacy of their personal medical
information, and the sharing of it. Thus most of the times the Professional is imposed
a constraint to share this information if and only if consent is achieved. One of the
main goals of the R&D Agency is to Obtain Clinical Information in order to perform
tests and research. To get this information the R&D Agency depends on the
Professional. However, the Professional actor is imposed a constraint (by the
Department of Health) to Keep Patient Anonymity.

3 Criticality and Complexity

In the previous section we have briefly described a process of analysing the security
of an organisational setting taking into consideration some security constraints, which
are imposed by the different stakeholders. However, more likely different security
constraints are having different impact on the security of the system. That is, one
constraint might put in danger the security of the system in a level that must be
satisfied even if it involves a trade off with some other functional or non-functional
requirements, whereas other constraints might not be as important. As a result,
different actors of the system impact the security of the system differently according
to what security constraints have been imposed to. Thus, it is important to provide an
analysis that identifies the impact each actor has on the security of the system. In
doing so we need to define how critical each security constraint is for the overall
security of the system. We call this measure, security criticality2 and we define it as
follows:

Security Criticality is the measure of how the security of the system will be

affected if the security constraint is not achieved.

Security criticality allows us to evaluate how critical each actor of the system is

with respect to security. This will help us to identify the security bottlenecks of the
system, and refine it by taking into consideration the different impact that each actor
has on the security of the system. We differentiate between ingoing and outgoing
security criticality. Ingoing security criticality is the security criticality that actors
assume when they are responsible for achieving a security constraint. On the other
hand, the outgoing security criticality represents the security criticality of the
achievement of a constraint for the imposer.

In order to calculate the criticality of the system, we consider the dependencies and
we assign a value for each security constraint (see numbers next to security
constraints in Figure 1). These values were assigned after closely studying the
system’s environment and after discussing them with the stakeholders. In the case of
an open secure dependency (a dependency that has no security constraints attached to
it), we assign a value of zero both for the ingoing and outgoing criticalities.

2 Criticality has been introduced by E. Yu in [4]

6

In this example we have assumed that criticality obtains integer values within the
range 1-5, where 1 = very low, 2 = low, 3 = medium, 4 = high, 5 = very high.
However, the range of acceptable values can change and it depends on each
developer. For example, developers might decide it is better for them to assign values
within the range 1-20. This will provide them with more accurate ratings of the
criticalities.

In addition, a maximum value of criticality is defined for each actor taking into
account, the actor’s abilities, their available time, and the responsibilities they have in
the organization.

As mentioned above, security criticality allows us to evaluate how critical each
actor of the system is with respect to security. Nevertheless, we need to be able to
evaluate how much effort is required by each of the actors to achieve their security
constraints. To perform such an evaluation, we introduce the concept of security
complexity and we identify it as follows:

Security Complexity is the measure of the effort required by the responsible actor

for achieving a security constraint.

Considering security complexity helps to design sub-systems to support actors that

might be in danger not achieving some security constraints, and therefore put in
danger the overall security of the system. This means, if an actor is overloaded with
security responsibilities, some of the security constraints should be delegated to
another existing actor of the system, or if this cannot happen, the developer should
introduce another actor and delegate some of the security constraints of the
“overloaded” actor.

In order to be realistic, we need to take into account both the system and security
complexity, where System Complexity is defined as the measure of the effort required
from the dependee for achieving the dependum [7]. This is necessary since it might be
the case that an actor’s security complexity is high, however since their system
complexity is very low, they are capable of achieving all the security constraints. On
the other hand, there might be cases where an actor’s security complexity might be
low but their system complexity is high and therefore they might not be able to
achieve all the security constraints imposed to them. Thus, by taking into
consideration both system and security complexity we can identify more precise the
degree of achievement of the security complexity.

In addition, an important factor in (realistically) calculating the overall complexity
is time. It might be the case that an actor can achieve different (secure) goals
sequentially, so in this case it would not be realistic to sum up the individual values of
complexity in order to evaluate the overall complexity of the actor. Sum up all the
different complexity values would be realistic only if all the goals should achieved at
the same time. However, in the real world this will be more likely the case of an
organization (department) in which different agents work, than the case of a single
agent.

Similar to criticality analysis, we have assumed that complexity (system and
security) can obtain integer values within the range 1-5, where 1 = very low, 2= low,
3=medium, 4=high, 5=very high. Also similarly to criticality, a maximum value of
(overall) complexity is defined for each actor.

7

Fig. 2. Rationale diagram of the Professional actor

To be able to precisely assign values for security and system complexity, each actor
of the system and their security constraints and goals respectively must be further
analysed. This is necessary because the security constraints and the goals modeled in
the actors’ diagram (figure 1) are quite superficial and it is difficult to evaluate their
complexity. Therefore, many different alternative tasks might be considered for their
satisfaction, each with different complexity value. To cope with this, we are extending
our analysis, by further analysing (for each actor involved in our system) the security
constraints (for the security complexity) and the actor’s goals (system complexity),
together with the different alternatives that can satisfy them. This kind of analysis,
apart from helping us to define more precisely the values for complexity, it provides a
basis to choose between different alternatives that can be employed for the
satisfaction of security constraints and the actor’s goals, something very important in
justifying the trade offs between security and the functional requirements of the
system.

For this analysis, we are employing Tropos rationale diagrams [4]. Differently than
actors’ diagram, which focuses on the external relationships between the actors of the
organization, each rationale diagram analyses the internal goals, security constraints
and dependencies of each actor (figure 2). In order to calculate the values of security
complexity for each actor, different weights have been assigned to the different
relationships involved in the satisfaction of the security constraints (secure goals), that
have been imposed to the actor, and the actor’s strategic goals. For reasons of
simplicity in this paper we have assumed weights can obtain integer numbers in the
range of 1-5 (1 being the lowest value with respect to complexity and 5 the highest).

8

In addition, in the cases where the dependum is a soft goal, minimal system
complexity values are assumed. This is the minimal effort requested from the
depender to achieve the soft goal. This has been decided since the concept of a soft
goal has no clear criteria for whether there are satisfied or not, and as such we cannot
assign a precise value required for achieving the soft goal.

For our case study, the rationale diagram of the Professional actor is shown in
figure 2. As it can be seen from the figure, different alternatives can be considered
for the satisfaction of the security goals imposed to the actor as well as the actor’s
strategic goals. For example, to identify problems, the Professional can evaluate info
manually or use eSAP. For each of those alternatives we have assigned a value as
shown in figure 2. In addition, the contribution of each alternative to the other
functional and security requirements is shown in figure 2 (as dashed line links). To
denote the contributions of the different alternatives, we employ a quantitative
approach presented by Giorgini et al [8]. Thus each contribution receives weights
between 0 and 1, where 0 means the alternative puts in maximum danger the security
or the functional requirement, while 1 means the alternative completely satisfies the
security or the functional requirement. To keep the diagram simple and
understandable we denote contributions to the Keep Patient Anonymity security
constraint, only from the Obtain OP Consent secure goal alternatives (figure 2).

For example, the Share Information Only if Consents Obtained security constraint
of the Professional actor is satisfied by the Obtain OP Consent secure goal. However,
this goal can be achieved by considering different alternatives, each one of those
alternatives having a different security complexity weight. Thus, the Professional can
Visit OP, Use Phone, Use eSAP, or Ask a Nurse to obtain the consent of the Older
Person. These tasks have been assigned with different weights of complexity
according to how much effort is required from the Professional to achieve them. Thus,
in the above-mentioned tasks we have assign weights of 5,4,3 and 2 respectively.
However, in deciding which task is best suited, developers should also consider how
this task affects (if it affects) other requirements of the system. For example, although
the Ask a Nurse is the less complex task for the Professional and the obvious choice
from the point of view of complexity, it is worth considering that the involvement of a
nurse could contribute negatively to the Keep Patient Anonymity security constraint
also imposed to the Professional actor. This could put in danger the privacy of the
Older Person, an undesired effect for our system. Thus, we have decided in this case
to choose the Use eSAP task, since it requires the less effort (apart from the Ask a
Nurse) and also it helps towards the older person’s privacy. When all the different
options have been considered and a choice about which one is best suited have been
made, the next step is to calculate the overall complexity for each actor. This process
takes part alongside with the calculation of the criticality for each actor.

In order to analyze the complexity and criticality with respect to security, we firstly
calculate, for each actor involved, the complexity and the criticality. Then, if some
actor assumes a greater value of complexity and criticality than the maximum value
they can assume, we want to reassign some security constraints to different actors of
the system in order to reduce the complexity or the criticality of the “overloaded”
actors. In other words, the problem we want to solve is: "how to reassign one (or
more) goals of actors whose complexity/criticality is greater that their maximum
complexity/criticality limit?", that is, how can we reconfigure the topology of the

9

actor diagram in order to end up with a “balanced” configuration? Of course we
would like to solve the problem by means of minimal topology modifications. In fact,
many solutions may be found by radically redesigning the diagram, but these
shouldn’t be considered as first choice solutions.

To take into account these needs, we propose in Figure 3 the Rebalance
algorithm that, given a representation of an actor diagram and its constraints, is
capable to produce a new configuration (if it exists), in which the constraints are
satisfied. For the shake of simplicity, the presented algorithm considers only the
complexity and not the criticality. However, it is relatively easy to extend the
algorithm to consider both the complexity and the criticality.

Let us assume there are m dependums and n actors. Moreover, let us suppose that
the fact that different actors may fulfill the different dependums, is coded by means of
a cost matrix CoM[1..n,1..m] where, for each actor i and dependum j, the cost
for i to fulfill j is CoM[i,j]. This cost may be different for different actors
fulfilling a given dependum (not all the actors have the same level of skills) and, in
particular, it may be infinite (MAXINT) for some actors (not all the actors can fulfill a
given dependum). On the other hand, the vector M_CoV[1..n] provides the
maximum complexity that each actor can hold. It is worth mentioning that the matrix
CoM and the vector M_CoV are constant data provided with the analysis of the
domain.

In addition, the actor diagram topology, is described by means of a variable
A[1..n,1..m] of booleans where a “1” in position (i,j) means that the
dependum j is assigned at the actor i. Of course, for each dependum j there is one
and only one “1”. The actor load defined by the current topology is computed by the
Function:

Compl(i,A)=∑
=

m

j 1

CoM[i,j]A[i,j])

The core of the algorithm is given by the Function Try_One_Actor that tries to
rearrange the matrix A in order to accommodate the load of actor i below its
maximum complexity capacity, starting to analyze dependum j first. It iteratively
considers possible reassignments for dependum j to other actors that can fulfill it
without exceeding their maximum capacity. This possibility is tested by the Function:

Fits(A,l,j)=(Compl(l,A)+CoM[l,j] ≤ M_CoV[l])

The problem is recursively scaled down by considering also other dependums

(j+1) if the reassignment of the current one (j) is not sufficient or not possible.
Backtrack is required in case the current reassignment of j to l is useless.

The above presented core function, considers only one overloaded actor. However,
it can be extended to consider more overloaded actors (see the Function
Reballance_Intransitive in Figure 5). Such function is recursively
called (with possible backtrack) only in the case at least one of the overloaded actors
can be re-balanced. Backtrack allows us to iteratively consider all the overloaded
actors in turn as the first to be processed. In fact, the solution may depend, in a

10

generic —even tough very idiosyncratic— case, by the processing order. The
recursion takes care for considering the other overloaded actors.

Finally, if a solution involving the redistribution of dependums from actor to actor
requiring that recipient actors have not to be re-balanced themselves cannot be found
by means of the Function Reballance_Intransitive (Figure 5), the more
generic and entry point Function Rebalance try to consider also the possibility of
transitively affect the load of recipient actors even over their maximum capacity, by
calling the Function Try_Transitive (Figure 4). In this case the adjustments can
be spread all over the matrix, implying radical topology redesign. Minimizing
modifications became now more difficult even to be defined, and, in the current
version of the algorithm, no particular claim is done, except that termination and the
production of one solution (if it exists) is guaranteed. Termination is guaranteed by
the fact that each dependum is reassigned at most once (there is no need to reassign it
more than once; again, of course, the use of backtracking allow us to test all the re-
assignments).

CONST m:integer; {# of dependums}
 n:integer; {# of actors}
 M_CoV:array[1..n] of real;
 {max cost for each actor}
 CoM: array[1..n,1..m] od real;
 {the effort for actor i to provide goal j}

GLOBAL VAR VISITED_DEP: set of visited dependums;
 {initially empty}
 A: array[1..n,1..m] of boolean;
 {the assignament matrix properly
 initialized to reflect diagram
 topology}

LOCAL VAR SET_OF_UNBALLANCED: set of actors;

Function Rebalance(var A: ass_matrix): boolean;
begin
 result:=Reballance_Intransitive(A);
 if result=fail then
 begin
 SET_OF_UNBALLANCED:={i|Compl(i,A)>M_CoV[i]};
 copy_of_A:=A;
 while result=fail and
 not empty(SET_OF_UNBALLANCED) do
 begin
 i:=POP(SET_OF_UNBALLANCED);
 result:=Try_Transitive(i,A);
 if result=fail then A:=copy_of_A
 end
 end;
 RETURN result
end;

Fig. 3. The reassignment algorithm

Function Try_One_Actor(i,j: integer; var A: ass_matrix):boolean;
begin

11

 if j>m then RETURN fail;
 result:=fail;
 l:=0;
 if A[i,j]=1 then
 while Compl(A,i)>M_CoV[i] and l<n do
 begin
 l++;
 if l<>i and Fits(A,l,j) then
 begin
 copy_of_A:=A;
 A[l,j]:=1; A[i,j]:=0;
 if Compl(A,i)>M_CoV[i] then
 begin
 result:=Try_One_Actor(i,j+1,A);
 if result=fail then A:=copy_of_A
 end
 else result:=OK
 end
 end;
 if result=OK then RETURN result
 else RETURN Try_One_Actor(i,j+1,A)
end;

Function Try_Transitive(i: integer; var A:ass_matrix):boolean;
begin
 result:=fail;
 copy_of_A:=A;
 j:=0;
 if not empty(VISITED_DEP) then
 while j<m and result=fail do
 begin
 j++;
 if A[i,j]=1 and not j in VISITED_DEP then
 begin
 push(j,VISITED_DEP);
 l:=0;
 while l<n and
 (Compl(i,A)>M_CoV[i] or
 result=fail) do
 begin
 l++;
 if l<>i and CoM[l,j]<MAXINT then
 begin
 A[l,j]:=1; A[i,j]:=0;
result:=Reballance(A);
 if result=fail then A:=copy_of_A
 end
 end;
 if result=fail then VISITED_DEP:=VISITED_DEP-{j}
 end
 end;
 RETURN result
End

Fig. 4. The functions Try_One_Actor and Try_Transitive

Function Reballance_Intransitive (var A:ass_matrix):boolean;
begin

12

 result:=fail;
 SET_OF_UNBALLANCED:={i|Compl(i,A)>M_CoV[i]};
 if empty(SET_OF_UNBALLANCED) then result:=OK
 else
 begin
 copy_of_A:=A;
 while result=fail and
 not empty(SET_OF_UNBALLANCED) do
 begin
 i:=POP(SET_OF_UNBALLANCED);
 if Try_One_Actor(i,1,A)=OK then
 begin
 result:=Reballance_Intransitive(A);
 if result=fail then A:=copy_of_A
 end
 end
 end;
 RETURN result

end;

Fig. 5. The function Reballance_Intransitive

4 Conclusions

In this paper we have presented an analysis for evaluating the degree of complexity
and criticality of the actors of the system, with respect to security. Such an analysis
provides a valuable process for the developers of multi-agent systems in order to
identify possible security bottlenecks. In addition, we have proposed an algorithm to
reduce the complexity or the criticality of the “overloaded” actors.

Our analysis helps to justify possible trade offs between security and functional
requirements. By knowing how critical an agent is with respect to security a decision
can be made. Our aim is to provide a clear well guided process of integrating security
and functional requirements throughout the whole range of the development stages.
Such a process must use the same concepts and notations throughout the development
phases. The ability to identify the bottlenecks of a multi-agent system with respect to
security and justify the decisions behind possible trade offs between security and
functional requirements can definitely help towards this aim.

It is worth mentioning that in this paper we only consider security requirements.
Nevertheless, our approach can be easily adapted to deal with other non-functional
requirements.

This work is an ongoing research. The presented analysis covers only the
requirements stage of the Tropos methodology. We are working towards extending
our analysis to the next stages of the methodology, since such an analysis can help in
the later stages of the development. For example, criticality and complexity can help
us to decide for different architectural choices during the architectural design stage of
the methodology, such as the choice between mobile and static agents.

In addition, we are working towards the development of a process that will allow
developers to assign weights to different alternatives in case the different stakeholders
disagree on the assignment.

13

The present version of the algorithm guarantees to find a solution that requires the
reassignments of dependums of overloaded actors only, if it exists. Otherwise, a
solution with transitive reassignments is in any case provided (if it exists), although
we cannot at present guarantee it is the best. We believe that, possibly after small
improvements, the algorithm can provide the “best” solution. We foresee to work to
prove this fact. Moreover, our future research plan includes also the study of the
complexity of the algorithm, and its implementation and test.

Acknowledgements

The third Author is grateful to the RANK Foundation for the funding of his research
project, in which this work was carried out.

References

[1] C. Iglesias, M. Garijo, J. Gonzales, “A survey of agent-oriented methodologies”,
Intelligent Agents IV, A. S. Rao, J. P. Muller, M. P. Singh (eds), Lecture Notes in
Computer Science, Springer-Verlag, 1999

[2] J. Castro, M. Kolp and J. Mylopoulos. “A Requirements-Driven Development
Methodology,” In Proc. of the 13th Int. Conf. On Advanced Information Systems
Engineering (CAiSE’01), Interlaken, Switzerland, June 2001.

[3] H. Mouratidis, P. Giorgini, G. Manson, “Modelling Secure Multiagent Systems”,
(to appear) in the Proceedings of the 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems, Melbourne-Australia, July 2003

[4] E. Yu, “Modelling Strategic Relationships for Process Reengineering”, PhD
thesis, Department of Computer Science, University of Toronto, Canada, 1995

[5] H. Mouratidis, P. Giorgini, G. Manson, I. Philp, “A Natural Extension of Tropos
Methodology for Modelling Security”, Proceedings of the Agent Oriented
Methodologies Workshop in OOPSLA 2002, Seattle-USA, November 2002

[6] H. Mouratidis, i. Philp, G. Manson, “Analysis and Design of eSAP: An
Integrated Health and Social Care Information System”, in the Proceedings of the
7th International Symposium on Health Information Managements Research
(ISHIMR2002), Sheffield, June 2002

[7] M. Garzetti, P. Giorgini, J. Mylopoulos, F. Sannicolo, “Applying Tropos
Methodology to a real case study: Complexity and Criticality Analysis”, in the
Proceedings of the Second Italian workshop on “WOA 2002 dagli oggetti agli
agenti dall’informazione alla conoscenza”, Milano, 18-19 November 2002

[8] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, R. Sebastiani. “Reasoning with Goal
Models”, in the Proceedings of the 21st International Conference on Conceptual
Modeling (ER2002), Tampere, Finland, October 2002.

	SELMAS 03 cover sheet
	selmas2003-post-proc

