
↑ TOP of text, page 2 and following pages, aligned to line↑ 
 
 

 

A Real-Time Network Emulator: ADLARS Case Study  
 
 

 
 

R. Bashroush, I. Spence, P. Kilpatrick, TJ Brown 
Queens University Belfast, School of Computer Science, 

18 Malone Road, Belfast BT7 1NN, UK 
{r.bashroush, i.spence, p.kilpatrick, tj.brown}@qub.ac.uk 

 
 
Abstract.  As testing and benchmarking performance of 
web services and networked applications has proven to 
be cost-effective, and crucial in some applications, 
increased significance has been attached to the 
development of hardware and software network 
emulators and simulators. In this paper, we discuss a 
possible design of a light-weight real-time IP network 
emulator that can provide the same functionality and 
performance as hardware simulators. Also, as the 
systematic software engineering discipline has become a 
necessity in the software development life-cycle, we 
present a possible approach, utilizing mature software 
engineering disciplines, for building the software 
architecture of the emulator. We then use ADLARS [1], 
an Architecture Description Language for Real-time 
Systems developed within our research team to describe 
the architecture. The emulator’s architecture serves as a 
good test-bed for our ADL because of its real-time and 
concurrent nature. We conclude by testing our design 
and presenting a possible JAVA instantiation of the 
emulator over a UNIX system.

 
 
 
1. Introduction 
 
Simulation and Emulation play a crucial part in the 
development life cycle of many networked applications 
and web services as well as in protocol design. This is 
because they allow laboratory based testing and 
performance benchmarking, which is sufficiently close 
to real-life to provide useful information. 
 
In the domain of Simulation, there has been a lot of work 
done through open source projects like the Network 
Simulator NS-2 [2] which is a discrete event simulator 
targeted mainly for research networks, to commercial 
products like OPNET [3] that is one of the most popular 
Simulation tools in the market. Simulators are based on 
the idea of modeling the real-world environment and 
protocols. And with modeling arises some traditional 
problems like the difficulty involved in modeling 
complex environments which is sometimes impossible to 
do resulting in the need for approximation.  Another 
problem is the high learning curve usually associated 
with operating the tools. 

 
As for emulators, they do not use the concept of 
modeling, but instead operate on real networks and 
machines. There are many kinds of emulators available; 
some of them are application specific such as Raddel [4] 
which is best used to test network management systems. 
Others target specific operating environments, for 
example ONE [5] is an emulator that runs over Solaris 
and emulates the link between two interfaces on the 
same machine. Also Dummynet [6] falls into this 
category which is a FreeBSD kernel extension. Yet 
again, some emulators are limited only to specific 
attributes. An example of this is ENDE [7] which is an 
end-to-end network delay emulator. 
 
In the paper we describe a light-weight emulator that 
utilizes third party virtual interface applications (like 
TUN Driver [8] over UNIX) and does not have many of 
the limitations mentioned above. It can emulate a wide 
range of network characteristics like: packet classifier, 
bandwidth limiter, delay, jitter, packet loss, burst drop, 
re-order, duplicate, multi-path effects, queuing, etc. 
Additionally, it can run over any operating system 
(assuming the availability of third party software that 
can provide the virtual interface to the userland 
application to write to and read from). Our emulator is 
also transparent to the user application in the sense that it 
doesn’t impose any extra modifications on the operating 
system or the user application (such as recompilation 
with extra libraries, etc.).   
 
The next section explains the way our emulator operates 
and shows the different parts of the emulation 
framework. Section 3 gives a brief description of 
ADLARS [1] our ADL that is used in describing the 
software architecture of the emulator, and section 4 
recounts the different steps leading to the design of the 
emulator’s architecture. In section 5 we evaluate our 
design and present a working JAVA implementation of 
the emulator over Solaris. Section 6 concludes and 
highlights future work.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. The Emulation Framework 
 
This section presents the overall picture of the evaluation 
framework and explains the different blocks. 
 
The framework consists of three parts: the application to 
be tested; the third party virtual interface software; and 
the emulator. The emulation process can be utilized with 
one or more machines based on the nature of the 
application tested. 
 
For our emulator to asses the effects of particular 
network characteristics on a real-time connection, we 
need to intercept ongoing communication packets, 
expose them to the different effects/characteristics (that 
are set through a setup file read by our emulator or 
through a GUI), and then send them to their desired 
destination.  
 
We will show first how the IP packet interception takes 
place with the help of the virtual interface application. 
Then we will explain how our emulator would apply 
different effects to the intercepted packets with the help 
of an example. 
 
As the interception of packets is a kernel dependent 
process, this service is usually provided by kernel 
extensions or third party software that differs according 
to the specific OS we are using. To better understand the 
process, we will take a specific example and build upon 
it throughout this section. For our example, we will take 
Solaris as the operating system and TUN Driver [8] to 
act as the packet interceptor. TUN Driver is a virtual 
P2P network device that provides low level kernel 
support for IP tunneling. The Driver can create virtual 
Ethernet devices on the local machine and map them to 
virtual IP addresses.  It also provides two interfaces: one 
character device (dev/tunX) for user application access, 
and another virtual P2P interface (tunX) for kernel 
access.  
 
So, if the OS writes an IP packet to tunX, it can be read 
by the user application from dev/tunX. The same thing 
happens if the user application writes an IP packet 
through dev/tunX, it will appear to the OS on tunX (as if 
coming from a real network through the virtual 
interface).  
 
Let us assume that we have two machines, one called 
Glen with IP address 143.117.60.123 and another called 
Fujin with IP address 143.117.60.100. We want to test 
the performance of the telnet application over a link with 
specific characteristics.  
 

When we telnet from Glen to Fujin, the emulator needs 
to intercept the communication and apply the desired 
effects. To do so, it needs the help of one of the virtual 
Ethernet interfaces (created in our case by the TUN 
Driver [8]). By making the OS forward the packets to 
the local virtual interface (lets call it tun0) instead of the 
real interface when sending the specific application data 
(telnet in our case), the emulator can then intercept the 
packets (by reading them on the dev/tunX interface of 
tun0), apply the desired effects (we will see how later) 
and then send them through UDP to the real destination, 
(Fujin). The emulator on Fujin would then receive the 
packets and hand them over to the operating system 
through the dev/tunX interface of tun1 (the virtual 
interface) on Fujin. With this scenario, we would have 
utilized the TUN Driver in a novel way to serve our 
emulation framework and the result is an emulated 
network that is totally transparent to the operating 
systems as well as the telnet application. 
 
To see how to allow the above configuration, (and 
continuing with the same example) let us say tun0, the 
virtual Ethernet interface on Glen, is given the virtual IP 
address: 10.0.0.123, and tun1, the virtual Ethernet 
interface on Fujin, the virtual IP address: 10.0.0.100. By 
setting the routing table on Glen to forward all the 
packets going to 10.0.0.100 (what will be virtual Fujin) 
to 10.0.0.123, all the packets sent to 10.0.0.100 will go 
through tun0 and then to the emulator. The same 
configuration would be applied on Fujin to enable two-
way communication.  The routing table on both 
machines would like figure 1 below. 
 
Routing table on Glen: 
 
+-----------------------------------+ 
|Destination | Gateway   | Interface| 
+-----------------------------------+  
|10.0.0.100  |10.0.0.123 |   tun0| 
+-----------------------------------+ 
 
Routing table on Fujin: 
 
+-----------------------------------+ 
|Destination | Gateway   | Interface| 
+-----------------------------------+  
|10.0.0.123  |10.0.0.100 |   tun1| 
+-----------------------------------+ 
 

Figure 1. The routing tables of Glen & Fujin 
 
So, to telnet from Glen to Fujin and let the IP traffic go 
through our emulator, we type: telnet 10.0.0.100. This 
way the operating system will forward the traffic to tun0 
(on Glen) that hence allow the emulator to read it from 



dev/tunX, apply the required effects, and send it on to 
Fujin using UDP on the real Ethernet interface. The 
emulator on Fujin would receive the packets, send them 
to tun1 (through dev/tunX) and the packets would look 
to the operating system as if they were coming from a 
real network experiencing the effects imposed by the 
emulator (delay, jitter, etc.). Figure 2 below summarizes 
the whole emulation framework. 
 
We could wrap the TUN Driver with a script (which 
would read the IP addresses from the user) that starts a 
virtual Ethernet interface (tun0, tun1, etc.) and adds the 
proper entries to the routing table. It would also provide 
the user application access to dev/tunX without the need 
for super user privileges.  
 
The same scenario could be applied to other OS’s given 
the appropriate third party virtual interface application.  
 
3. Architecture Description Language for Real-
time Systems (ADLARS) 
 
ADLARS [1] is an architecture description language that 
was developed within our group to support the 
description of real-time software architectures. It can be 
used to describe the architecture of families of related 
systems, and has facilities which allow the relationships 
between the system features and its architecture to be 

explicitly defined.  
 
This section presents a brief introduction to the language 
to enable understanding of the terminology used in the 
following section, for more details about the language 
please refer to [1]. 
 
The language, as described in [1], views Software 
Architectures to be existing in a three dimensional space: 
concurrency, structure and behavior, and provides the 
necessary capabilities to capture these dimensions.  
Concurrency is conveyed in Tasks in ADLARS. Tasks 
are concurrently executing units that communicate 
through given ports using pre-described protocols and 
events. Events fall into different kinds called event 
categories. Event category provide information about a 
certain type of events, like an event’s bandwidth. Tasks 
usually contain information like: Interaction themes, 
Features supported, Components and Input/Output 
alphabets. Interaction themes [9] are used to partition a 
Task’s interface (or port) into multiple planes each of 
which is concerned with a specific theme. There are 
several benefits for using interaction themes such as 
separation of concerns, reuse, controlled propagation of 
changes etc. The Features supported section contains a 
list of features from the candidate architecture’s feature 
model. Features are classified into mandatory (always 
supported by the Task) optional (may or may not 

    
  Glen 

Real Interface 
IP: 143.117.60.123 

 
 tun0 (the virtual interface) 
 IP: 10.0.0.123 

$ telnet 10.0.0.100 

The kernel 

The emulator 

tunX 

dev/tunX 

After consulting the 
routing table 

Note here that our packets also go through 
the OS TCP/IP stack before they are routed to 
the real interface, but to keep the figure 
simple we show a direct connection between 
our Emulator and the Ethernet interface. 

  
  Fujin 

telnetd 

 
 tun1 (the virtual interface) 
 IP: 10.0.0.100 

dev/tunX 

Real Interface
 IP: 143.117.60.100 The emulator 

The emulator doesn’t apply the effects on the 
packets coming from the real interface. Effects 
are only applied on the packets coming from 
the virtual interface. In this direction, the 
emulator only acts as packet forwarder. 

Figure 2. An overview of the Emulation framework. The arrows show the path traversed by packets traveling 
from Glen to Fujin. To see how the packets travel from Fujin to Glen, just reverse the arrow directions.

The kernel tunX 



be supported by the Task), and alternative (alternative 
features). The Components section is used to describe 
the passive internal components which produce the 
functionality that is invoked by the Task in response to 
arriving events. The Input/Output alphabets section of 
the Task lists the accepted and generated events by the 
task with their corresponding rates of occurrence. 
 
Structure, on the other hand, is described by 
Components which form the basic building blocks of 
ADLARS architectures. Component descriptions 
provide information on the related interaction themes to 
supported features, sub-component architecture, and 
interface. As for interaction themes and features 
supported, they contain similar information to the 
interaction themes and features supported sections in 
Tasks. The Sub-components section is similar to 
components in Tasks. The Arrangements section 
describes the way sub-components are connected within 
a component with the capability of making use of 
existing design patterns like façade, service-provider etc. 
The interface section describes the interface of a 
component in terms of services provided and required by 
the component given that the component is in a certain 
state (temporal state). 
And finally, behavior is captured within interaction 
themes. As we previously mentioned, each interaction 
themes bundle a part of the system’s interactions that are 
concerned with a specific behavior. For more 
information on the exact conceptual background and the 
semantic environment refer to [1]. 
 
4. Designing the Software Architecture of the 
Emulator 
 
At the moment, the process of developing software 
architectures is frequently ad-hoc, with each company or 
research group following its own developed discipline in 
its production line. The phases of developing software 
architecture make use of the feature model as a starting 
point, and proceeds in the following main phases: 
 
 Phase 0: Designing the feature model of the system. 
 Phase 1: Designing the ADLARS Tasks and the 

Event Categories (system events). This is a 
recursive procedure that would require changes to 
the feature model and the Tasks recursively. 
Different small testing scenarios might be used to 
increase confidence in the basic correctness of the 
task in development. 

 Phase 2: Designing the Components. This is a 
recursive procedure that might require changes to 
the existing Tasks or feature model (e.g. if you find 
that two different Components that you put in the 

same Task require two separate threads of 
execution, this would require a restructuring of the 
design). This may also require changes to the above 
layers. 

 Phase 3: Designing the Sub-Components (if 
needed). This as well might impose changes to the 
above layers (Components, Tasks and Feature 
model). 

 
In phase 0 we use a feature modeling strategy which is 
similar to FORM [11] an extension to FODA (Feature 
Orient Domain Analysis) [10] to capture the system 
requirements. As described in [11], FODA and FORM 
are tools used to capture design requirements and 
attributes (Features) of the system that directly affect 
end-users. The end-users have to make decisions 
regarding the availability of features in the system. A 
feature model represents the standard features of a 
family of systems in the domain and the relationships 
between them. Alternative (represented with a 
semicircle) or optional (represented with a circle) 
features must be indicated in the feature model. 
Alternative features can be thought of as specializations 
of a more general category. There are four different 
types of features: 
 
 Capability: The capabilities of applications in a 

domain from the end-user’s perspective. 
 Operating Environment: The operating 

environments in which applications are used and 
operated. 

 Domain Technology: The application domain 
technology based on which requirements decisions 
are made. 

 Implementation Techniques: The implementation 
techniques (e.g., The way a buffer’s data structure is 
implemented, RED, CBQ etc.). 

 
For more information about FODA and FORM please 
read [10][11]. Part of the final version of the feature 
model generated for our emulator is shown in figure 3 
below.  
 
After going recursively through phases 1, 2 and 3, the 
final architecture of the emulator consisted of: 
 
a) Four Tasks:  

1. tPacketRouter: Forwards a given packet to the 
appropriate output port based on preset rules 

2. tSendReceive: Sends and receives packets 
3. tEffects: Applies preset effects on incoming 

packets (delay, jitter, drop, etc.) 
4. tInterface: The interface from which the user 

can control the emulator properties. Properties 
could also be loaded from a configuration file. 

 



Network Emulator 

User Interface Packet Router Read/Write Packets 

Packet Classifier Bandwidth Limiter Delay Jitter Packet Loss 

FIFO RED CBQ WFQ Token Bucket Leaky Bucket 

Real Network Interface Virtual Network Interface

UNIX 

TUN Driver

Queuing 

Effects 

Capability 

Domain Technology 

Implementation Techniques 

Operating Environment  

Figure 3. A part of the Feature Model of our Emulator application. The tree only expands the Effects feature and 
 part of the Read/Write Packets feature due to space limitation 



b) Eight Components:  
1. cForwardPackets: It enables the forwarding 

functionality in a Task. It forwards a given 
packet from a given input port to a given 
output port  

2. cBuffer: A Buffer functionality 
3. cModify: The ability of modifying a specific bit 

in a given packet 
 

4. cRoute: Packet routing functionality (between 
ports) 

5. cEffects: a wide range of effects that could be 
applied on a given packet. 

6. cSetNetworkConfiguration: the ability to set the 
different virtual IP address if our emulator is 
intended to act as a wrapper as well to the 
third party virtual Ethernet interface (e.g. TUN 
Driver) 

7. cSetEffectsAttributes: The ability to set the 
different effects and their values. For example 
whether to apply delay on the packets and the 
value of the delay in ms.  

8. cGetNetworkStatistics: The ability to show 
different network statistics (average drop rate, 
delay, etc.) 

 
c) Fourteen sub-components (Due to space limitation, 

we are only listing the sub-components. Their 
names were made as self-descriptive as possible of 
the function they do):  scListener, scSender, 
scDecodeIPpacket scDecodeTCPpacket, 
scDecodeUDPpacket, scDecodeIPXpacket, 
scDecodeNCPpacket, scDecodeNetBiospacket, 
scCodeIPpacket, scCodeUDPpacket, 
scCodeTCPpacket, scCodeIPXpacket, 
scCodeNCPpacket, scCodeNetBiospacket. 

 
d) And two event categories:  

1. setVar: the event sent to set a certain variable 
2. IPpacket. An IP packet datagram 

 
The ADLARS concurrent view of the emulator’s 
architecture is shown in figure 4. A sample ADLARS 
code snippet showing the engine layer is shown in figure 
5.  

 
 
Gray arrow means an IPpacket event 
Black arrow means a setVar event 

 
Figure 4. ADLARS visual representation 

systemDescription() { 
// creating instances of the tasks 
tSendReceive forwarder(), sender(), receiver(); 
tInterface interface(); 
tPacketRouter router(); 
tEffects satelliteEffect(), fiberEffect(); 
 
//connecting instances using event category 
connect(interface.port1, forwarder.port1)using(setVar); 
connect(interface.port2, sender.port1)using(setVar); 
connect(interface.port3, receiver.port1)using(setVar); 
connect(interface.port4, router.port1)using(setVar); 
connect(interface.port5, 
satelliteEffect.port1)using(setVar); 
connect(interface.port6, fiberEffect.port1)using(setVar); 
connect(receiver.port1, router.port1)using(IPpacket); 
connect(router.port2, 
satelliteEffect.port1)using(IPpacket); 
connect(router.port3, fiberEffect.port2)using(IPpacket); 
connect(satelliteEffect, receiver.port2)using(IPpacket); 
connect(fiberEffect.port3, 
receiver.port3)using(IPpacket); } 
 

Figure 5. ADLARS code snippet 
 

The design did not cover all possible network protocols, 
but it does embrace a number of the more common ones. 
However, the plug and play capability of the architecture 
means that it is easy to create or use OTS components 
for your desired protocol (or operating system) and plug 
it in the architecture to add support for your 
environment. This demonstrates two of the main 
advantages of ADLARS which are the strong support for 
modifiability and portability.  
 
5. JAVA implementation and Testing of the 
Emulator Design 
 
This section describes an implementation of the emulator 
we developed using JAVA. First we present a detailed 
list of the different JAVA classes we generated. Second 
we present different techniques we used for evaluating 
the precision of the attributes of our emulator. We have 
tested our emulator over a Sparc Solaris 2.7 machine. 
 
In what follows we describe the different JAVA classes 
we developed based on the ADLARS architecture of the 
system. 
 
Main.java: the main thread of execution that holds the 
global variables and starts the different listeners as well 
as the GUI. 
 
GUI.java: the graphical user interface of the system that 
enables the setting of the different emulation variables. 
See figure 6 below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 6.The AWT GUI of the emulator 
 
Queue.java & Node.java: A queue of node objects with 
classical queue functionality. The node object contains: 
the IP packet received, and a timestamp. The queue acts 
as the emulator input buffer. 
 
BufferListener.java: A thread of execution that extracts 
objects from the buffer (the queue) when they are 
available and hands them over to packetswitch.java 
 
Packetswitch.java: This class receives packets from the 
buffer, decodes them with the help of the appropriate 
decoder (IP.java for example) and sends them to the 
proper effects object (Effects.java) based on the value of 
certain IP header data. For example, you can send all 
TCP data or all the data coming from a certain port (e.g. 
21) to undergo specific effects. This provides our 
emulator with the capability of emulating complex 
networks comprising packet classification attributes 
(e.g.: QoS, multi-path effects, etc. ) 
 
Effects.java: This is the main class that applies the 
different effects on the packets. Among the effects we 
implemented: Bandwidth limitation, Jitter, Packet drop, 
Burst drop, Packet loss, Packet duplicate. For example, 
bandwidth limitation code snippet looks like: 
 
T = packet_size_in_bytes * 8 * 1000 / bandwidth 

bandwidth is set by the user and by holding the packet T 
milliseconds, the emulated connection bandwidth will be 
limited to the user set value bandwidth 
 
And jitter (random delay) is implemented as follows:  

 
Lower_limit = mean – 3 * standard_deviation; 
Upper_limit = mean + 3 * standard_deviation; 
Width = Upper_limit – Lower_limit; 
Delay = mean + Width * Math.random(); 

 
The standard_deviation  and mean are set by the user, 
considering it to be normally distributed (varying 
between Lower_limit and Upper_limit), jitter effect is 
emulated by holding the packet Delay milliseconds 
 
IP.java: this class carries the different information in the 
IP header to enable the decoding and encoding of the 
packets. This is useful when you want to set/Modify 
different fields of the IP header or implement packet 
classification based on data in the IP header.  
Note: To run the emulator with a different protocol suite, 
or to enable modifications to the TCP payload, you need 
to implement the appropriate JAVA class.  
 
Interface.java: A thread of execution that creates the 
different network sockets. It also enqueue incoming 
packets in the buffer and send packets after undergoing 
the required effects. 
 
 Now to test the performance of different attributes of 
our emulator, we used different techniques. For example, 
for testing the bandwidth limitation attribute we used the 
bing command [12]. The result is shown below (the 
user-set bandwidth is 24000bps): 
 
--- estimated link characteristics --- 
estimated throughput 24084bps 
minimum delay per packet 23.060ms (555 bits) 
average statistics (experimental) : 
packet loss: small 0%, big 2%, total 1% 
average throughput 24159bps 
average delay per packet 24.798ms (595 bits) 
weighted average throughput 23841bps 

 
From the above, we can see how precise the result is 
given the small number of packets sent during the test 
and the induced delay by the JAVA Virtual Machine 
JVM (this delay can be estimated - around 25 ms in our 
system -  and eliminated in the calculation of delays in 
the emulator to get better precision results).   
 
Delay and Packet loss are tested in the same way, and 
the error was in the range of 0.001.  
 
ping command [13] was used in testing jitter, burst drop 
and packet duplicate and error was in the range of 0 to 
0.001. For example, setting the jitter mean to 100 ms and 
standard deviation to 10 ms, the delay should vary in the 
range of 60 ms (6xStandard deviation) and be centred 
around 100, that is: min/avg/max = 70/100/130. The 
result we got was: 
 



----10.0.0.100 PING Statistics---- 
32 packets transmitted, 32 packets received, 0% 
loss 
round-trip (ms) min/avg/max = 170/235/300 
 
Subtracting the approximate VM induced delay and 
dividing by two to get the one-way trip values, the result 
would be min/avg/max = 72.5/105/125 less than 0.05 
error given that only 32 packets were used in the 
experiment. Almost 100% precision can be attained with 
100 or more data packets. 
 
6. Conclusion and Future Work 
 
This paper presented a novel design of a light-weight 
network emulator and the different stages involved in 
producing its formal architecture. A sample instantiation 
of the architecture using JAVA was then developed and 
methods for testing different attributes of the emulator 
were presented.   
 
With this simple and precise emulator design, 
complicated network properties can be emulated. From 
asymmetric ADSL links to variable bandwidth 
environment affected satellite links. The presence of 
separate buffers with separate Effects objects allows the 
emulation of multi-path environments and packet 
classification.  
 
The paper also presented a brief description of ADLARS 
[1], an architecture description language developed 
within our research team.  
 
The case study, in addition to producing a useable 
architecture for the emulator, helped us in fine tuning  
and testing our architecture description language 
(ADLARS) which is under ongoing development.  
 
Also, this case study will serve as part of the test-bed for 
experimenting with our ideas and research in the domain 
of Software Architecture Evaluation [14][15]. 
 
 

References. 
 
1. T.J. Brown, I. Spence, P. Kilpatrick. ADLARS: A 

Relational Architecture Description Language for 
Software Families. Proceedings of the Fifth International 
Workshop on Product Family Engineering PFE-5, Italy, 
2003. 

 
2. The Network Simulator, ns-2. 

http://www.isi.edu/nsnam/ns/  
 
3. OPNET, 

http://www.opnet.com/products/modeler/home.html 
 
4. Raddel: A Network emulation framework by 

sourceforge.net, http://raddle.sourceforge.net/ 
 
5. ONE: The Ohio Network Emulator, OHIO University, 

http://irg.cs.ohiou.edu/one/#manual 
 
6. L. Rizzo, Dummynet: a simple approach to the evaluation 

of network protocols. ACM Computer Communication 
Review, 1997. 

 
7. I. Yeom, ENDE: An End-to-end Network Delay 

Emulator. Master's thesis, Texas A&M University, 
College Station, TX, 1998. 

 
8. TUN Driver: A Virtual Point-to-Point Network Device, 

http://vtun.sourceforge.net/tun/ 
 
9. Mehdi Jazayeri, Alexander Ran, Frank van der Linden: 

Software Architecture for Product Families: Principles 
and Practice, Addison Wesley Longman, 2000. 

 
10. KC Kang, SG Cohen, JA Hess, WE Novak, AS Peterson: 

Feature-Oriented Domain Analysis (FODA) Feasibility 
Study. Technical Report, CMU/SEI-90-TR-21, ESD-90-
TR-222, Nov 1990. 

 
11. KC Kang, S. Kim, J. Lee, and K. Kim: FORM: A Feature-

Oriented Reuse Method with Domain-Specific Reference 
Architectures. Annals of Software Engineering, Vol. 5, 
pp. 143-168, 1998. 

 
12. bing, http://fgouget.free.fr/bing/bing_src-readme.shtml 
 
13. ping, http://fgouget.free.fr/bing/ping_src-man.shtml 
 
14. Rabih Bashroush, Ivor Spence, Peter Kilpatrick, TJ 

Brown: Towards an Automated Evaluation Process for 
Software Architectures. Submitted to the IAESTED 
international conference on Software Engineering SE 
2004, Austria, 2004. 

 
15. Rabih Bashroush: The Contribution of Architecture 

Description Languages to the Evaluation of Software 
Architectures. Submitted to the Doctoral Symposium at  
the 26th International Conference on Software 
Engineering ICSE 2004, Scotland, UK, 2004. 


