
TOWARDS AN AUTOMATED EVALUATION PROCESS
FOR SOFTWARE ARCHITECTURES

R. Bashroush, I. Spence, P. Kilpatrick, T.J. Brown

Queen’s University Belfast
School of Computer Science

18 Malone Road, Belfast BT7 1NN, UK
{r.bashroush, i.spence, p.kilpatrick, tj.brown}@qub.ac.uk

Abstract

Optimizing and editing enterprise software systems, after
the implementation process has started, is widely
recognized to be an expensive process. This has led to
increasing emphasis on locating mistakes within software
systems at the design stage, to help minimize
development costs. There is increasing interest in the field
of architecture evaluation techniques that can identify
problems at the design stage, either within complete, or
partially complete architectures. Most current techniques
rely on manual review-based evaluation methods that
require advanced skills from architects and evaluators.
We are currently considering what a formal Architecture
Description Language (ADL) can contribute to the
process of architecture evaluation and validation. Our
investigation is considering the inter-relationships
between the activities performed during the architecture
evaluation process, the characteristics an ADL should
possess to support these activities, and the tools needed to
provide convenient access to, and presentation of
architectural information.

Key Words
Software Architecture, Evaluation, Tools, ATAM

1. Introduction

Current software architecture evaluation techniques do
not depend on any specific form of architecture
description. Although their lack of dependence on any
particular formal description framework makes them
widely applicable, the lack of standardization can
introduce problems. There may be gaps between the
information contained in an architecture description and
the information required by the evaluation process. This
can lead to time-consuming effort being needed, to extract
information from the architecture description in an
appropriate form, or to provide additional information in
order to facilitate the evaluation process. If, on the other
hand, the architecture is described using an architecture
description language, it should be possible to introduce a

degree of standardization into the description process,
which is aligned with the requirements of the architecture
assessment process. To achieve this we must design the
ADL to take account of the evaluation process, so that
when an architecture is fully described in the language,
we can be confident of having all the information we
expect to need at the evaluation phase.
Our research targets this issue and studies the properties
an ADL should have in order to bring the architecture
description and the evaluation techniques together, in an
attempt to alleviate the human effort in the overall process
of evaluation.

In the course of this work we are using an ADL called
ADLARS [1] that is being developed within our group,
and was targeted originally at real-time software families.
The reason for choosing ADLARS is that with our own
ADL we can modify the language to incorporate
characteristics suggested by our investigation of the
evaluation process. As for the evaluation technique, we
have adopted the “Architecture Tradeoff Analysis
Method” (ATAM)[2] a technique that was developed at
CMU within one of the leading teams in the domain of
software evaluation, and is considered a good example of
a formal evaluation process.

In this paper we report on work-in-progress on combining
ATAM with ADLARS, and at identifying the most
suitable tool support to provide partial automation for
architecture evaluation in the context of software product
lines. In what follows, we will give a brief description of
the general steps of ATAM, highlighting the steps that
could make use of a formal description language like
ADLARS, given the necessary set of tools. Section 3
presents our proposals for the properties an architecture
description language should have to support the
evaluation process. Section 4 discusses the general need
for tool development and summarizes a recommended set
of tools that could be of value in the context of evaluation
showing a direct correlation with ATAM. Section 5
contains the conclusion and the anticipated future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Information Flows within the ATAM
Evaluation Process

Product-line architectures are designed to serve as the
basis for a whole family of intended products. They must
also satisfy a set of quality attributes and stakeholder
requirements. They must be described in a way that
satisfies a variety of requirements. Implementers will
need to extract enough technical detail to facilitate
implementation, while other stakeholders may need a
broader overview of the architecture. After the
architecture development stage, the architecture
description forms the principal input to the evaluation
process. Within this process the architecture will be
evaluated (using ATAM for example), against the set of
required attributes, with results being feed back into the
process (figure 1). We can think of the process as a flow
of information from one entity to the other. We used the
term Information Bottle-neck to describe points of large-
scale information flow within the process. These are
points where inadequacies in the information due to
human failure could introduce crucial time delay to the
overall process. Identifying these potential bottle-necks in
the overall process can help us to determine where best to
target tool support.

There has been a wide variety of approaches for
evaluating and benchmarking the performance of software
designs; however, they all share the same aim which is
predicting problems in design prior to implementation.
We have chosen ATAM [2] as being a widely accepted
evaluation process that can constitute a good test-bed for
measuring the contribution of a formal ADL to the
evaluation process. ATAM emphasises the interaction
between the quality attributes in a system, and hence the
term “tradeoff” in the title. ATAM comprises nine steps
divided into four groups as summarized in [3, pp. 44]:
(for more details on ATAM read [2][3][4])

A. Presentation
 1. Present ATAM
 2. Present the business drivers
 3. Present the architecture

B. Investigation and Analysis
 4. Identify the architectural approaches
 5. Generate the quality attribute utility tree
 6. Analyze the architectural approaches
C. Testing
 7. Brainstorm and prioritise scenarios
 8. Analyze the architecture approaches
D. Reporting
 9. Present the results

The first phase in our work was to study the steps in
ATAM and locate the potential bottle-necks in the
process. As is shown above, the first three steps are the
presentation of the architecture and business drivers by
architects and stakeholders to the evaluation team who
will analyze the data in steps 4, 5 and 6. Here we notice
data flow from the architecture team to the evaluation
team. This flow is generally not governed by any standard
protocol or data format. This could cause a problem if the
first team (architects) does not pass all the required
information in the appropriate format (as the evaluation
team might not contain domain experts) to the second
team (evaluators). This is stated in [3, pp. 105],
confirming the importance of the clarity and completeness
of the documentation of the architecture to the evaluation
process: this constitutes the first potential bottle-neck.

Applying scenarios to architectures is the core of most
evaluation processes, and ATAM is no different. In
ATAM’s testing phase, use cases are employed to assess
whether the architecture meets its non-functional
requirements. As human interaction constitutes the main
part of this step, this could add a significant delay to the
overall process, especially if there is a large number of
scenarios, and hence the second potential bottle-neck.

We have looked at possible ways in which a formal
language with an appropriate set of tools could contribute
to the above process, especially with reference to
alleviating the bottle-necks. Here we note that some work
has already been done to this end, including UCM [5][6]
for capturing scenarios, and ABAS [7] (and lately the
work on “tactics”[14]) that integrates quality attributes
within standard architectural styles [8]. However, our
research is to investigate the properties of a formal ADL
and its corresponding set of tools that could facilitate the
usage and integration of these different concepts (ABAS,
UCM, etc.) in one development environment. Our first
task is to find the properties an ADL should have to be
capable of capturing all the necessary information about a
candidate architecture (section 3). The second is to
specify a suitable set of tools that would extract the
information from the architecture definition and output it
in a desired format (section 4).

Stakeholders

Software
Architects

System

Architecture

Requirements
and quality
attributes

Architects
and/or
Tools

Architecture
Description

Evaluation
Team

 Evaluation

Results

Figure 1. The Software Architecture Development and
Evaluation Lifecycle

Stakeholders

Software
Architects

System

Architecture

Requirements
and quality
attributes

Architects
and/or
Tools

Architecture
Description

Evaluation
Team

 Evaluation

Results

Figure 2. The Software Architecture Development and
Evaluation Lifecycle

3. ADL Properties to Support Evaluation

From analysis of the ATAM process, we identified the
following characteristics [15] of an ADL as being
desirable in the context of the evaluation process:

1. The ability to contain all the necessary information
that would enable the user to see the different
architectural views of a candidate system (Functional
view, Concurrent view, Code view, etc.) i.e. to be
capable of distinguishing among the different views.

2. A facility for adding textual descriptions to various
architecture components and tasks that can serve as
notes or comments that would be helpful for
documentation purposes.

3. The ability to capture information about the
architectural styles [8] (and sub-styles) used and
correlating styles with attributes. Important work has
been conducted in this area, and one of the important
outcomes is the Attribute-Based Architectural Styles
ABAS [7].

4. The capability of allowing the construction and
evaluation of Use Cases on the architecture described.
This is not a new idea, as the usage of Use Case Maps
UCM [5] for simulating scenarios has attracted much
research interest [6][9].

The first two properties above support architecture
presentation and documentation, corresponding to the first
three steps in the ATAM process. The third property
supports analysis of the architecture approaches used and
their corresponding quality attributes, and this would help
with the fourth, fifth and sixth steps in ATAM:
Investigation and Analysis. The fourth property in our list
will contribute to the automation of scenario analysis,
although automation may not apply to all possible types
of scenarios.

Now considering these requirements in the context of
ADLARS, the language as described in [1] already covers
the first two properties. ADLARS views software
architectures to be existing in a three dimensional space:
concurrency, structure and behaviour. Concurrency is
conveyed in Tasks, structure is described by Components
and behaviour is captured by Interaction Themes. This
satisfies the first property. Task and Component
definitions both have a field called Description that allows
the addition of textual notes. This serves the second
property in our list. For more information about ADLARS
please read [1].

Current work is being conducted to enable ADLARS to
support the notion of Attribute Based Architecture Styles
(ABAS) instead of regular architectural styles [8]. This
will serve the third property of the list. And finally, a
UCM extension tool is in the process of construction. The

tool would help in compiling UCM defined scenarios over
ADLARS described architectures. Tools are discussed in
more detail in the next section.

4. Recommended Set of Tools

The role of tools in the cycle of any software engineering
process has always been of great importance. The
relationships between tools, notations and process
activities are often succinctly portrayed in terms of the so-
called Triangle of Success [10] shown in figure 2.

As suggested by Quatrani [10], for successful software
engineering, you need all three facets – a notation, a
process, and a tool. “You can learn a notation, but if you
don’t know how to use it (process), you will probably fail.
You may have a great process, but if you can’t
communicate the process (notation), you will probably
fail. And lastly, if you cannot document the artifacts of
your work (tool), you will probably fail” [10]. Moreover,
in SPLC2002 [11] it was pointed out that there is a need
for tools and that not much has been done in tools
development.
In the context of software architectures, the ability to
retrieve information from an architecture definition for
documentation or presentation purposes is as important as
the ability to build the architecture. Imagine someone
writing poetry in a language that no one can read!
Extracting information from an architecture definition,
especially when considering enterprise software systems
that constitute thousands of lines of code, would be a very
time consuming process when conducted by a human
being, and here we sense the importance of the tools in
the software development life cycle.

We have spent some time considering the possible tools
that could be useful in our work and we arrived at the set
of proposed tools (the ADLARS Development Studio)
that is summarized in figure 4.

Notation
(An ADL that supports the Evaluation

process in our case)

 Process
(The Evaluation

process in our case)

 Tool
(The required set of tools

to support Evaluation)

Figure 3. The Triangle of Success [10]

Each tool would manage the extraction and presentation
of part of the ADLARS architecture description
throughout the development and evaluation processes.
Where appropriate, the tools would offer alternative views
of aspects of the architecture. The tools, combined with
appropriate ADL language features can ensure that all
necessary information is contained within the architecture
description, and can be retrieved in the best way to
facilitate the evaluation process.

A Table showing where each tool of the development
studio could contribute to the ATAM process is presented
at the end.

5. Conclusion and Future Work

Concepts and ideas [5][7][12] have been developed that
could help with different steps of the architecture
evaluation processes, a good overview of which is given
in [13]. Our research is concerned with studying the
different evaluation techniques to see how these
techniques could benefit from a formal language that
would capture widely-accepted concepts and ideas such
as those of UCM [5] and ABAS [7], in an attempt to drive
the evaluation process towards automation.

Architecture evaluation teams do not always comprise
domain experts, and the introduction of the team to the
domain properties, common problems and design patterns
can be a time consuming process. This is what motivates
the search for tools that would assist the evaluation team.
Our work in this field is still in its early stages and much
more remains to be done. This paper proposed a marriage
of ATAM and ADLARS; however, the reasoning
followed here could be applied to any ADL-Evaluation
method combination.

Currently several case studies on the application of
ADLARS are nearing completion [16]. These will form
the basis for applying the ATAM strategy in the context
of an ADLARS-described architecture and allow more
detailed definition of the tools of the ADLARS studio.
Also, ADLARS itself continues to evolve and current
work is focused on providing support for attribute based
architectural styles. We sense a great potential in ABAS,
especially in the evaluation domain, and so capturing
ABAS in our ADL and investigating the proper way of
presenting it will be high on our list of future priorities.

References

[1] T.J. Brown, I. Spence, P. Kilpatrick. ADLARS: A Relational
Architecture Description Language for Software Families. Proc.
of the 5th International Workshop on Product Family
Engineering, Siena, Italy, 2003.

[2] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson,
and J. Carriere. The architecture tradeoff analysis method. In
Proceedings of the 4th IEEE International Conf. on
Engineering of Complex Systems, CA, 1998, 68-78.

[3] P. Clements, R. Kazman, M. Klein. Evaluating Software
Architecture: Methods and Case Studies. SEI series in software
engineering. Addison-Wesley 2002.

[4] R. Kazman, M. Klein, and P. Clements, ATAM: Method for
architecture evaluation. Technical report, CMU/SEI-2000-TR-
004, 2000.

[5] R.J.A. Buhr, R.S. Casselman, Use Case Maps for object-
oriented systems (Prentice Hall, 1996).

[6] H. de Bruin, H. van Vliet. Scenario Based Generation and
Evaluation of Software Architecture, Proc. 3rd International
Conference, Erfurt, 2001, 128-139.

[7] M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, H.
Lipson. Attribute-Based Architecture Styles. Proc.of the First
Working IFIP Conference on Software Architecture, TX, 1999,
225-243.

[8] M. Shaw, D. Garlan. Software Architecture: Perspectives on
an emerging discipline (Prentice Hall, 1996).

[9] D. Petriu, M. Woodside. Software Performance Models from
System Scenarios in Use Case Maps. Proc. 12th International
Conference, Performance TOOLS 2002, London, 2002.

[10] T. Quatrani. Visual Modeling with Rational Rose and UML
(Addison-Wesley 1998).

[11] Software Product Lines, Second International Conference,
SPLC 2, San Diego, CA, USA. August 19-22, 2002,
Proceedings. LNCS 2379 Springer 2002.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, A.S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-21, ESD-90-TR-222.
November 1990.

[13] M. Ionita1, D. Hammer, H. Obbink. Scenario-Based
Software Architecture Evaluation Methods: An Overview. Proc.
ICSE 2002 Workshop Methods and Techniques for Software
Architecture Review and Assessment, Florida, 2002.

[14] F. Bechmann, L. Bass, M. Klein, Deriving Architectural
Tactics: A step Toward Methodical Architectural Design.
Technical Report CMU/SEI-2003-TR-004.

[15] R. Bashroush: The Contribution of Architecture Description
Languages to the Evaluation of Software Architectures.
Submitted to the Doctoral Symposium at the 26th international
conf. on Software Engineering, Scotland, UK, 2004.

[16] R. Bashroush, I. Spence, P. Kilpatrick and T.J. Brown. A
Real-time Network Emulator: ADLARS Case Study. Proc. of
the 3rd Asia Pacific International Symposium, Istanbul, 2004.

ATAM Step ADLARS conjugate
1 -
2 Feature Model Tree [12]1
3 ArchView- Visual tool capable of extracting different architectural views

(Functional, Concurrency, Code etc.) from the architecture description and
displaying them graphically

4 StyleView- extracts information from the Arrangements section in the
Component that specifies the style/pattern used

5 Attribute-Based Architectural Styles ABAS2
6 Attribute-Based Architectural Styles ABAS2
7 UCM extension- Capturing scenarios in the form of UCM and mapping them

to ADLARS definition files
8 3 Using UCM extension tool to run UCMs over ABASs
9 -
1 The Feature Model Tree [12] captures the business drivers in the form of features. It is the first
step conducted before building ADLARS Tasks and Components, please refer to [1] for more
details. Here its worth mentioning that currently not all business goals can be captured by the
Feature Model Tree.
2 To be included in the next version of ADLARS
3 Even though the 6th and the 8th steps in ATAM are the same, their ADLAR’s conjugates differ
as step 6 is in the analysis phase and step 8 is in the testing phase

Table 1. Contribution of ADLARS development studio to the ATAM process

ADLARS
Description

ADLARSdoc
A documentation tool to
extract textual descriptions out
of ADLARS code (from Tasks
and Components), and format
the output in a formal human
readable report describing the
architecture

ArchView
A graphical tool to extract
necessary information to show
one specific view of the
architecture at a time
(Concurrency, Functional,
Code, etc.)

StyleView
A graphical tool to extract
information about the styles
used (defined in the
Arrangements section of the
Component) and display them
in a graphical format

UCM extension
A Use Case Map extension to
enable the integration of UCM
scenarios within ADLARS to
help running given scenarios
on ADLARS code

CodeBuilder
A tool that helps building and
editing ADLARS systems
using Graphical and textual
editor

ADLARS definition file

Figure 4. ADLARS Development Studio [15]

