
THE CONTRIBUTION OF ARCHITECTURE DESCRIPTION LANGUAGES TO THE
EVALUATION OF SOFTWARE ARCHITECTURES
R Bashroush, I Spence, P Kilpatrick, TJ Brown
School of Computer Science, The Queen’s University Belfast, Belfast

Key words to describe the work: Software Architecture, Architecture Evaluation, Tools, Architecture
Description Languages (ADL)

Key Results: The design (and currently implementation) of the ADLARS Development Studio a tool suite that
contributes and aids the evaluation process. A list of characteristics an ADL should posses in order to better
support evaluation. The restructuring and fine tuning of ADLARS (an Architecture Description Language
designed within our research group) to better capture architectures and support evaluation

How does the work advance the state-of-the-art?: The overall outcome of the work (a tool suite, an ADL, and
an ADL characteristics to support evaluation) contributes towards a more formal architecture evaluation process
benefiting from a formal ADL with the proper tool support. Also our work draws a first attempt in identifying the
characteristics an ADL should posses to support architecture evaluation.

Motivation (problems addressed): The architecture evaluation methods are usually informal and manual
processes that require advanced skills from both architects and evaluators. The use of a formal ADL (Like
ADLARS) for architecture description, with the proper tool suite (Like the ADLARS Development Studio) for
information extraction and presentation, helps to streamline and partially automate the architecture assessment
process.

Introduction
Identifying limitations and mistakes within software
architectures at the design stage is often cost-
efficient and reduces the overall system’s
development and marketing time. A number of
techniques have emerged over recent years, for
assessing both single-systems, and product-line
architectures. These techniques do not assume any
particular format or language for the description of
the architecture. Often however, they do require the
ability to extract a range of information from the
architecture description. In this research, we looked
at the relationships between the features that might
be provided by a formal architecture description
language (ADL), and the information required for
architecture assessment purposes. We also designed
a set of visual tools for use within the architecture
development and assessment process in order to
alleviate and aid the human part of the process.

Research Progress and Contribution
Architecture Trade-off Analysis Method ATAM [1]
was the evaluation method used in our experiments,
a well-established process that was developed at
CMU (and the only available formal and general
purpose method at the moment). During the early
stages of the research, ATAM was analysed and

modelled as a flow of information. Then, potential
bottle-necks were identified within the process
where an ADL with the appropriate tool support
could contribute. For example, one of the potential
bottle-necks identified was in the data flow from the
architecture team to the evaluation team. This flow
is generally not governed by any standard protocol
or data format. This could cause a problem if the
first team (architects) does not pass all the required
information in the appropriate format to the second
team (evaluators) as the evaluation team might not
always contain domain experts. This is stated in [1,
pp. 105] confirming the importance of the clarity
and completeness of the documentation of the
architecture to the evaluation process.
Possible ways in which a formal language, with an
appropriate set of tools, could contribute to the
above process, especially with reference to
alleviating the bottle-necks were researched.
First, we arrived to a list of characteristics an ADL
should posses to be capable of capturing all the
necessary information about a candidate
architecture. Figure 1 below shows the brief list of
the ADL requirements. For a detailed information
about this list, please refer to [2].
Second, a tool suite was designed for ADLARS [6]
(an ADL developed within our research group and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. The ability to contain all the necessary information that would
enable the user to extract different architectural views of a
candidate system (Functional view, Concurrent view, Code
view, etc.) i.e. to be capable of distinguishing among the
different views.
2. A facility for including textual descriptions within more
formal definitions of components and connectors within the
architecture. This kind of facility can be helpful for
documentation purposes. An example might be information that
has to do with non-functional requirements. This kind of textual
information embedded within the architecture definition, can be
useful at the evaluation stage as it can be extracted and
composed to provide ready-made documentation of the
architecture.
3. The ability to capture information about the architectural
styles being used, and the ability to correlate styles with required
quality attributes. Important recent work in this area, has led to
the emergence of the concept of Attribute-Based Architectural
Styles ABAS [3] and more recently Tactics [4].
4. The application of Use Cases and Scenarios to architecture
descriptions is a central feature of ATAM and other evaluation
methods. Support for the definition of scenarios and their
application to architecture descriptions is therefore an important
capability. The Use Case Maps (UCM) notation [5], has
attracted much research interest as a way of modelling scenarios.

Figure 1. ADL properties to support evaluation [2]

was used in our experiments). ADLARS
Development Studio [2], the tool suite, was designed
to help in alleviating the aforementioned bottle-
necks, a summary of the tools can be found in figure
2 below.

Figure 2. ADLARS Development Studio

The possibility of fully automating the evaluation
process was considered, but rejected for two reasons:
first, the difficulty involved, and second, the fact that
those with experience in architecture evaluation
using ATAM stress the benefits of bringing all
stakeholders together, i.e. the human component.

Evaluating and Validating Research Outcomes
The validation and evaluation of the research
outcomes is an important stage of any research
practice. The software architectures for three case
studies were designed and descriptions were
constructed using ADLARS. This by itself helped in
refining and spotting limitations within the language
itself. The three case studies are: Floating Weather
Station, Network Emulator [7], Load Balancing over
Mirrored Web Servers. These case studies are to
serve as a test-bed for applying ATAM utilizing the
tool suite as soon as it is ready.

Conclusion
My research was concerned with studying the
different architecture evaluation techniques to see
how these techniques could benefit from the use of a
formal language for architecture description, and to
identify the features such a language should possess
in order to be capture all necessary information. The
aim was also to design a set of tools for extracting
and presenting this information in an appropriate
form. Taken together, the use of the ADL for
architecture description, and the tool suite for
information extraction and presentation, help to
streamline and partially automate the architecture
assessment process.

CodeBuilder
A tool that helps
building and editing
ADLARS systems
using Graphical and
textual editor

ADLARSdoc
A documentation
tool to extract
textual
descriptions out
of ADLARS code
(from Tasks and
Components),
and format the
output in a formal
human readable
report describing
the architecture

References. ArchView
A graphical tool to
extract necessary
information to show
one specific view of
the architecture at a
time (Concurrency,
Functional, Code,
etc.)

[1] P. Clements, R. Kazman, M. Klein. Evaluating Software
Architecture: Methods and Case Studies. SEI series in software
engineering. Addison-Wesley 2002.

[2] R. Bashroush, I. Spence, P. Kilpatrick, and TJ Brown.
Towards an Automated Evaluation Process for Software
Architectures. Proc. of the IAESTED international conference
on Software Engineering SE 2004, Innsbruck, Austria, 2004.

[3] M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, H.
Lipson. Attribute-Based Architecture Styles. Proc. of the First
Working IFIP Conference on Software Architecture (WICSA1),
San Antonio, TX, 1999.

[4] F. Bechmann, L. Bass, M. Klein, Deriving Architectural
Tactics: A step Toward Methodical Architectural Design
(CMU/SEI-2003-TR-004).

[5] R.J.A. Buhr, R.S. Casselman. Use Case Maps for Object-
Oriented Systems. Prentice Hall, 1996.

[6] T.J. Brown, I. Spence, P. Kilpatrick. ADLARS: A Relational
Architecture Description Language for Software Families. Proc.
of the 5th International Workshop on Product Family
Engineering, Siena, Italy, 2003

[7] R. Bashroush, I. Spence, P. Kilpatrick and T.J. Brown. A
Real-time Network Emulator: ADLARS Case Study. Proc. of
the 3rd Asia Pacific International Symposium on Information
Technology, Istanbul, Turkey, 2004.

StyleView
A graphical tool to
extract information
about the styles used and
display them in a
graphical format

ADLARS
Description

UCM extension
A Use Case Map extension to
enable the integration of UCM
scenarios within ADLARS to
help running given scenarios on
ADLARS code

	Introduction

