

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Falcarin, Paolo; Morisio, Maurizio
Title: Developing Secure Software and Systems
Year of publication: 2004
Citation: Falcarin, P. and Morisio, M. (2004) ’Developing Secure Software and
Systems’, in IEC Network Security: Technology Advances, Strategies, and Change
Drivers, Chicago: International Engineering Consortium (IEC), pp. 15-22

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/

1

Developing secure software and systems

Paolo Falcarin Maurizio Morisio
Paolo.Falcarin@polito.it Maurizio.Morisio@polito.it
Politecnico di Torino

Control and Computer Engineering Dept.
Corso Duca degli Abruzzi, 24

I-10129 Torino, Italy

Politecnico di Torino
Control and Computer Engineering Dept.

Corso Duca degli Abruzzi, 24
I-10129 Torino, Italy

Abstract

The development and maintenance of network and data security in software systems is done in
a late phase of design and coding or during deployment, often in an ad-hoc manner. Network
monitoring and recovery, encryption protocols, best practices for combating cyber-crime, or
disaster recovery planning are useful methodologies applied to enforce security of a deployed
system. Nevertheless these are not enough to protect from attacks directed to software
vulnerabilities hidden at design and code level.

Introducing security aspects in all the phases of the software development process is an
emerging approach to limit costs of adding securi ty features when it's too late and very expensive
in terms of time and resources. In this paper we illustrate some proposals to consider security
issues in the software process from the early phase of requirements to design and coding.

1. Introduction

Network security in all its aspects has become more crucial in recent years, in terms of protecting
and preserving corporate data and network resources in cases of attacks and disruption. A
complementary and needed strategy is building secure software applications. These are key-
enabler for the development of complex services integrated through open standard interfaces, but
currently the security concerns are often considered after deployment, when attacks or security
bugs are found and it is very expensive to fix the problems: that is because the implementation of
security features is widespread through several software modules and it is not fully understood by
the majority of developers.
This is mainly due to the fact that software engineering and security engineering are quite
independent disciplines. The two research and practitioners communities are just starting to
collaborate, most often security experts are not software engineering experts and vice versa, the
software engineering process does not consider security concerns in depth.
As a result, security issues are often considered only too late (when the system is deployed), with
high economical costs, both for fixing the software security bugs and for losses in services or
products.
The introduction of engineering-style development for secure software systems requires different
methodologies for different process phases; moreover the process has to be designed having
security issues in mind, and additional process-related activities (such as the definition of security
requirements or security inspections) have to be considered.
Before to proceed, we want to underline that all other facets of system/software dependability (like
reliability, safety, and availability) are not within the focus of this paper: we mean security in the
definition given by the Common Criteria [2], e.g.: confidentiality, access control, protection,
integrity, authentication, non-repudiation, etc...
In the next sections we will discuss existing approaches to introduce security early in the software
development process. Then we describe new proposals we consider necessary to enhance state-of-
the-art.

2. Existing approaches

Among the existing approaches, we briefly describe some existing solutions; for example there are
ideas for enhancing UML with security, different tools to check and correct security vulnerabilities
in the source code; moreover Aspect-Oriented Programming is used to separate security concerns
from service logic code, in order to obtain a more modular and maintainable source code.

2

2.1 Security at design level

Given the widespread use of UML it is important to include explicitly in a formalized manner the
security characteristics of a system within UML diagrams. Such additional information can be
added using stereotypes and attributes in the easiest case, or by means of UML extensions if
necessary. When design models (UML) are annotated with security related information it is
possible to carry on automatic verification of the design. Such tools enable the identification of
defects and security threats as early as possible in the life cycle, thus reducing the cost of their
correction.
SecureUML is a proposal for a UML profile for security; more specifically, SecureUML extends
UML to support authorization constraints. The capability of specifying significant information
related to access control, and of deriving complete access control infrastructures (using EJB
components), is presented in [11]. Basically, SecureUML defines a set of stereotypes and uses
them to automatically produce the code that controls how users can access the different parts of the
application. These stereotypes only consider the static parts of UML; dynamic ones are part of the
future work.
A more ambitious UML profile is UMLsec [14]. In this case, the approach is quite different: it
extends statecharts and component diagrams to enforce the following security requirements: fair
exchange, secrecy/confidentiality, secure information flow, and secure communication link. The
author describes the notation with a formal semantics based on Abstract State Machines language,
to precisely analyse designed models. The main goals of UMLsec are:

• Evaluate UML specifications for vulnerabilities in design.
• Encapsulate established rules of security engineering.
• Make available to developers not specialized in security a simpler way to check UML

models
• Consider security from early design phases
• Make verification cost-effective

UMLsec offers mostly-used security requirements as stereotypes with tags (secrecy, integrity,
etc…); it uses associated constraints to evaluate specifications and indicate possible
vulnerabilities; it ensures that stated security requirements enforce given security policy and that
UML specification satisfies the defined requirements.
Among the mandatory requirements, UMLsec provides basic security requirements such as
secrecy and integrity and it allows considering different threat scenarios depending on adversary
strengths. Moreover it allows including important security concepts and mechanisms (e.g. access
control) and it provides security primitives (e.g. (a)symmetric encryption).
The main goal of UMLsec is to automatically check security properties on an extended UML
model, stored in XMI standard format; then this model can be checked by a formal tool [19] to
verify security requirements.

2.2 Security and AOP

An emerging approach, coping with design and coding, is to express security issues with Aspect-
Oriented Programming (AOP) [12]: with this approach security experts write security code in
aspects and developers write application logic: then the designer uses particular tools (called
aspect-weavers) to generate at compile-time the complete application code. Aspect-Oriented
programming extensions to common programming languages (like AspectJ [4] for Java and
Aspectc [5] for C++) have become widespread and more stable in recent years as a way for
developers to obtain a more modular code even for crosscutting concerns like security. Usually
design decisions on how and where inserting security aspects are made by developers, instead of
designers. This does not fully protect against the introduction of security bugs due to developer’s
inexperience in security. What is missing is a methodology to integrate AOP at design level in
order to delegate compositions rules of aspects to designers and security experts and not to
developers. This goal could be achieved with extensions of UML for AOP: different ideas have
been recently proposed [6] [10] to cover this issue, and a working group in UML standardization
body is currently trying to introduce these extensions in the upcoming UML 2.0.

The AOP approach will allow developers to design applications in a security conscious way from
the ground up, instead of applying security in an ad hoc manner during and after development. To
reach this goal: developers should be able to write secure programs easily, without having to be
security experts; developers should be able to apply security to legacy source code, without
requiring revisions to the legacy code; developers should be able to apply security to COTS
components for which they do not have source code.

3

AOP approach can be used by the security expert to handle, for example, SSL communications
between components, or certificates exchange in a modular way. A key advantage offered by AOP
is the possibility to change security parts of applications even in a later phase of design and
implementation with a minimal cost, allowing to use more flexible software development
processes.

2.3 Security at code level

Modern programming languages and systems provide much support for security. Through strong
typing, they can substantially reduce the opportunities for coding errors that could result in buffer
overflows and other vulnerabilities. They also allow protection by encapsulation and in addition,
they sometimes include rich security infrastructures, for example libraries for authentication and
digital signature. Although common programming languages are not primarily concerned with
security, there is also the need of developing compilers considering secure programming issues, in
order to give the possibility to developers to build more trustworthy code without being security
gurus. For instance, access-control techniques that depend on the contents of the execution stack
have been already investigated [13] and they trigger discussions on how to enhance programming
languages in order to cope these issues; but until these problems are not faced by main compiler
vendors, there will not be a widespread diffusion of these to industry. Currently, instead, the main
approach is based on making a deeper debugging using tools that recognize bad design-patterns in
source code, which can expose security vulnerabilities. This is due to the fact that most security
attacks exploit instances of well-known classes of implementation flaws. Many of these flaws
could be detected and eliminated before software is deployed. These problems continue to be
present with growing frequency, not because they are not sufficiently understood by the security
community, but because techniques for preventing them have not been integrated into the software
development process phase of verification and validation of source code. Different strategies, more
or less automated, can be used to find out security vulnerabilities at source code level.
Following the classification of [16] we can list these main classes of security vulnerabilities.
Buffer-overflow is one of the most common problems of bad programming that hides memory-
handling vulnerabilities that can be exploited in a Denial-of-Service attack; buffers, such as strings
and arrays, can only contain a limited amount of data. When too much data is input to the buffer, it
can overflow, overwriting other parts of memory and allowing new code to be inserted and
executed. Another problem is due to race conditions, which happen when more than one thread
(process) are competing for the same resource. A malicious program could attempt to grab
resources before anyone else can get them, creating a problem of loss of secrecy and integrity.
Another issue to be considered are format strings: these define how the output of a command will
be formatted. If an untrusted source has the ability to dictate what format strings will be used in a
formatting command, such as print, the control can be leveraged to overwrite arbitrary memory
locations just like a buffer overflow attack.
Another issue is trust management: developers often make poor decisions about who and what to
trust. Servers should only trust one another if absolutely necessary to meet requirements. A
firewall does not remove the need to secure those servers behind it.
Moreover, database account names and passwords are often hard coded into client applications
that need access. These names and passwords can be pulled out and used to access the database
directly. Other attacks on databases included bypassing poorly set up access controls, statistical
inference attacks, and they can be damaged by malicious input.
Malicious input is the one received from users and external systems, which may be structured to
maliciously affect the behaviour of the program. This input should be checked to ensure it adheres
to the allowed values before it is used.
Latest but not least, bad implemented cryptography and cryptographic algorithms with known
flaws can both lead to severe vulnerabilities. Whenever possible, widely reviewed cryptographic
libraries should be used. Finally, as cryptography relies on random numbers, without a good
source of random numbers, the cryptographic output will be weaker. If an attacker can guess what
random numbers you are getting, they will be able to decipher the message with cryptanalysis.
In the code development phase, the goal is the protection of data and functions from unauthorized
access, e.g.: unauthorized read/write of data, unauthorized use of function or service, focus on
software faults that lead to security leaks. Current strategies are based on tools to find security
vulnerabilities in the source code. For example, an extensible open-source tool like Splint [15]
uses lightweight static analysis to detect common security vulnerabilities (including buffer
overflows and format string vulnerabilities) and can be extended to detect new vulnerabilities.

4

Instead Flawfinder [18] is a program that examines source code and reports possible security
weaknesses (``flaws'') sorted by risk level. It's very useful for quickly finding and removing at
least some potential security problems during debugging. Flawfinder works by using a built-in
database of C/C++ functions with well-known problems, such as buffer overflow risks, format
string problems, race conditions, and poor random number acquisition. Flawfinder produces a list
of ``hits'' (potential security flaws), sorted by risk in descendant order. This risk level depends not
only on the function, but also on the values of the parameters of the function. For example,
constant strings are often less risky than fully variable strings in many contexts. In some cases,
Flawfinder may be able to determine that the construct isn't risky at all.
Not every hit is actually a security vulnerability, and not every security vulnerability is necessarily
found. In fact, Flawfinder doesn't really understand the semantics of the code at all - it primarily
does simple text pattern matching (though it does ignore comments and strings as it should).
Anyway, Flawfinder can be a very useful aid in a coarse-grained finding and removing of security
vulnerabilities.
Finally, RATS [16] as its name states, it is a “Rough Auditing Tool for Security “, because it
performs only a rough analysis of source code. It will not find every error and will also find things
that are not errors (false positives).
Better tools are based on formal methods but for space reason we will not describe them here.

3. New proposals

In Figure 1 the different phases of a generic process are mapped to different methodologies used to
introduce security at different levels of the software development process; in the next paragraphs
we will describe some proposals to integrate these currently separated methodologies and tools.

��������� � �
	����� �
�
� ����� � � ���� � ���

������� ���

� 	 ��� �
	��
�� �� � �
�

���
� � �����

� �� ����� �� � �
�� �����

UML stereotypes
and extensions Security requirements

guidelines

Inspections and
exit/entry conditions

Tools for COTS
assessment

Tools for design
verification

Tools for secure
code synthesis

Tools for code
manipulation

Specific testing
strategies

Tools for code
checking

Best practices

Figure 1. Mapping of methodologies and tools for secure software to the process

3.1 Process

Definition and validation of a software process capable of handling the security issue from the
very beginning is a key issue: this must be capable of integrating tools, methods and organization
in the most suitable way. As all these tools and techniques come from different domains and are
tailored for particular systems and languages, in future they should have to be meaningfully
integrated in a comprehensive process. This is currently an open issue and a desirable goal in order
to have better results and faster development; these are key aspects for a broad adoption by
industry.
As security requirements often change in time, because of discovering new attacks and protocols’
faults, the process must be enough agile to permit fast correction of security bugs.

5

The necessary condition for agility is having security requirements traceability through design and
code; moreover it will be useful to include external prerequisites (derived from standards, laws,
regulations etc.) in a prescriptive way in the models. This leads to better understanding of the
processes. An explicit process is the basis for measurement, evaluation and improvement; and for
external security process assessments.
All these goals can be met with different actions, like: elicitation of industrial practices with
respect to security, process modelling, process instrumentation with measures, process analysis
(identification of potential improvements), use of security entry/exit conditions. These conditions
formally define if and how to proceed from one phase to the other of the process: on the one side
they can enforce application of inspections and other practices, and on the other side can sensibly
improve the quality of the final product.

3.2 Security Requirements

Developing methods and tools to specify and analyse security requirements from the very
beginning is a fundamental issue to merge software development and security.
While there is a stringent need to increase the importance of security in software engineering
curricula, not all software engineers will be ever able to become security experts, and vice versa.
A promising approach is to delegate security concerns to security experts and use methodologies
and tools to integrate the separate work in a final common result.
Among methodologies for the detection of defects in earlier phases, one is based on security
inspections. Inspecting documents for security (such as requirements or design documents) would
further contribute to finding security risks. Early detection of defects with respect to security leads
to reduction of rework efforts. Inspections and reading techniques in general are recognized to be
effective practices to identify defects in software artefacts, overall when these are delegated to
security experts. Inspections are complementary to testing, especially for the possibility of using
them on early phases of the lifecycle. However, inspections are normally targeted to functional
defects, while there is an emerging need of defining a family of inspection techniques targeted to
security defects, to be applied on requirements, design and coding artifacts.

3.3 UML and AOP

Often security is not well understood by all developers of a complex system; forcing every
developer to change his/her code to be compliant to existing or upcoming security requirements
could slow the entire development process. AOP can help to have a more agile process of
maintenance and evolution of security concerns: these tasks can be triggered by new security
requirements coming out in a later phase of design, during implementation, or, most frequently,
after deployment when attacks reveal security pitfalls. In this case it is necessary to individuate
which security concerns are involved and then rewrite the related security aspects: this approach
can lead to an easier evolution of the system and to a clearer tracing of security requirements
through design to code. This idea could be implemented with a model-driven architecture able to
provide designers with a complete set of views of the system. Therefore, there is an urgent need at
design level of an integration of UML and AOP: it is important to extend UML diagrams with
AOP constructs to be able to trace aspects (e.g.: security aspects) in classes of applications and to
give to designers an easier way to control the system development and easily change security
concerns in a later phase of software process cycle. Different proposals have been recently
published [10] [7] [9] [8], but a complete theory and related tool are currently lacking. These
UML extensions are realized extending UML meta-model or extending the notation with ad-hoc
UML profiles. The real need is increasing as more as possible automation of pointcuts generation
from design models to aspects’ source code: this is a key issue in order to give full control on
distribution of security aspects to security designers, without risking to delegate these ones to
common developers as it frequently happens.

4. Conclusions

The main problem of current software development is to consider security concerns from the
beginning of the process. We have presented some existing approaches we have evaluated, and
some new proposals for further work State of the art is still immature in some parts of the process
and lot of things are needed to offer a more integrated and reliable solution. We believe that a

6

process-centered view is fundamental to trace security requirements through design and source
code, and that AOP is a key technology that can lead to a more agile process; this is because
evolution of security parts of a system is triggered by discovery of new attacks and vulnerabilities:
what is needed now is the possibility to easily upgrade and secure a system from design until after
deployment. For a more detailed description of the presented topics we suggest the following texts
on secure programming [1] [17] and to check out the following references.

5. Acknowledgments

The authors would like to thank for the precious collaboration, the following people: Wouter
Joosen (Katholieke Universiteit of Leuven, Belgium), Luciano Baresi (Politecnico di Milano,
Italy), Juergen Muench (Fraunhofer IESE, Kaiserslautern, Germany).

6. References

[1] Special Issue on security software, Software Practice and Experience, vol. 33, issue 5, 2003.
[2] Common Criteria. http://www.commoncriteria.org/
[3] T. Lodderstedt, D. Basin, and J. Doser, “SecureUML: A UML-Based Modeling Language for

Model-Driven Security”, 5th International Conference on the Unified Modeling Language, 2002.
[4] The AspectJ Programming Guide, the AspectJ team, available at http://aspectj.org
[5] The Aspectc project, available at http://www.aspectc.org/
[6] J. Suzuki and Y. Yamamoto. "Extending UML with Aspects: Aspect Support in the Design

Phase," In Proc. of the 3rd Aspect-Oriented Programming (AOP) Workshop at The 13th
European Conference on Object Oriented Programming (ECOOP'99), Springer LNCS 1743,
Lisbon, Portugal, June 1999.

[7] O. Aldawud, T. Elrad, and A. Bader, “A UML Profile for Aspect Oriented Modeling”. OOPSLA
2001 workshop on Aspect Oriented Programming.

[8] R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry, L. Seinturier, and L. Martelli, “A UML
Notation for Aspect-Oriented Software Design”. On-line at
http://jac.aopsys.com/papers/uml_short/uml.html

[9] M. M. Kandé, J. Kienzle, and A. Strohmeier, “From AOP to UML: Towards an Aspect-Oriented
Architectural Modeling Approach”.

[10] Third International Workshop on Aspect-Oriented Modeling. On-line at
http://lglwww.epfl.ch/workshops/aosd2003/

[11] Tool for automatic J2EE deployment of secureUML: http://www.io-
software.com/products/data/mda_security_factsheet_020902.pdf

[12] B. De Win, B. Vanhaute, and B. De Decker, “Security Through Aspect-Oriented Programming,
Advances in Network and Distributed Systems Security”. B. De Decker, F. Piessens, J. Smits and
E. Van Herreweghen, eds. Kluwer Academic Publishers, 2001, pp. 125-138.

[13] M. Abadi, “Built-in Object Security”, In proceedings of ECOOP 2003, Darmstadt, Germany,
July 2003.

[14] J. Jürjens, “Model-based Security with UMLsec”, UML Forum, Tokyo, April 2003.
[15] Splint homepage. http://www.splint.org/
[16] RATS tool, http://www.securesoftware.com/download_form_rats.htm
[17] D.A. Wheeler, Secure Programming for Linux and Unix. On-line at

http://www.dwheeler.com/secure-programs/
[18] Flawfinder homepage: http://www.dwheeler.com/flawfinder/
[19] Autofocus homepage: http://autofocus.in.tum.de/index-e.html

	IEC 2004 cs
	sec-report02

