
 
 

University of East London Institutional Repository: http://roar.uel.ac.uk  
 
This paper is made available online in accordance with publisher policies. Please 
scroll down to view the document itself. Please refer to the repository record for this 
item and our policy information available from the repository home page for further 
information. 
 
Author(s): Lee, Sin Wee; Palmer-Brown, Dominic; Tepper, Jonathan; Roadknight, 
Christopher. 
Article title: Snap-Drift: Real-time, Performance-guided Learning 
Year of publication: 2003 
Citation: Lee, S. W.; Palmer-Brown, D.; Tepper, J. A; Roadknight, C.M. (2003). 
“Snap-Drift: Real-time, Performance-guided Learning.” In Proceedings of the 
International Joint Conference on Neural Networks (IJCNN’2003) (Portland, Oregon, 
20th - 24th July), Vol. 2, pp. 1412–1416. 
Link to published version: http://dx.doi.org/10.1109/IJCNN.2003.1223903  
DOI: 10.1109/IJCNN.2003.1223903 
 
 

http://roar.uel.ac.uk/
http://dx.doi.org/10.1109/IJCNN.2003.1223903


Snap-Drift: Real-time, Performance-guided Learning 

S. W. Lee, D. Palmer-Brown 
Leeds Metropolitan University, 

Computational Intelligence Research Group, 
Beckett Park, LS6 3QS Leeds, UK. 

htt~:llwww.lmu.ac.uWieslcom~lresearch/cid 

The Nottingham Trent University, 
School of Computing and Mathematics, 

Burton Street, NGI 4BU Nottingham, UK. 
C. M. Roadknight 

BTexact Technologies, 
BTAdastral Park, Martlesham Heath, IP5 3RE Ipswich, UK 

J. A. Tepper 

Abstract- A novel approach for real-time learning and mapping 
of patterns using an external performance indicator is described. 
The learning makes use of the ‘snap-drift’ algorithm based on the 
concept of fast, convergent, minimalist learning (snap) when the 
overall network performance has been poor and slower, cautious 
learning (drift towards user request input patterns) when the 
performance has been good, in a non-stationary environment 
where new patterns are being introduced over time. Snap is based 
on Adaptive Resonance; and drift is based on Learning Vector 
Quantization (LVQ) [l]. The two are combined in a semi- 
supervised system that shifts its learning style whenever it receives 
a change in performance feedback. The learning is capable of 
rapidly relearning and restahilising, according to changes in 
feedback or patterns. We have used this algorithm in the design of 
a modular neural network system, known as Performance-guided 
Adaptive Resonance Theory (P-ART) [2,3]. Simulation results 
show that it discovers alternative solutions in response to a 
significantly changed situation, in terms of the input vectors 
(patterns) and/or of the environment, which may require the 
patterns to he treated differently over time. 

I. THE PERFORMANCE-GUIDED ART (P-ART) ARCHITECTURE 

A.  The P-ARTsystem 

The ART1 [7] network rapidly organises itself into a stable 
state due to fast learning, resulting in weights that no longer 
adapt. There is no extemal feedback to improve the 
performance of the network once it has stabilised. 

The P-ART network proposed is a modular, multi-layered 
architecture as shown in Fig. 1. On the presentation of an input 
pattem at the input layer FO,, the dP-ART will leam to group 
the input pattems according to their general features using the 
novel learning principles developed in this work, known as 
‘snap-drift’ algorithm. The matching and reset mechanism, 
however, is that of ART [ I l l ;  If no existing matching prototype 
is found, i.e. when the stored pattem prototypes are not a good 
match for the input, the winning F2, node is reset and another 
F2, node is selected, whose pattem prototype will then he 
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matched against the input, and so on. When no corresponding 
output category can be found, the network considers the input 
as novel, and generates a new output category that learns the 
current input pattem. 

The top three F2, nodes are used as the input for the sP-ART 
module for selecting an appropriate output type (called a 
proxylet in the target application). For the purpose of selecting 
the required proxylet, the proxylet type information indicated 
by the P-ART points to (activates) pre-trained locations on the 
Kohonen Self-Organising Map (SOM) [ 10,121, which represent 
specific proxylets. If the proxylet is unavailable, one of its 
neighbours is selected (the most similar altemative available). 

A non-specific performance measure is used because, as in 
many applications, there are no specific performance measures 
(or extemal feedback) in response to each individual network 
decision. The measure must be used to encourage or discourage 
reselection of outputs (proxylet types) to occur in order to 
improve system performance. 

B. The dP-ART Learning Principles 

On the presentation of a binary input pattem I, the network 
attempts to categorise the input pattem by comparing it against 
the stored knowledge of the existing distributed output 
categories of F2] layer. This is achieved by calculating the 
bottom-up activation, using (I): 

As this architecture is based on a distributed P-ART, there is 
more than one winning node, in this case D = 3. The three F2, 
nodes with the highest bottom-up activation are selected. If a 
distributed output category is found with the required matching 
level, using (2), as in ART: 
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where vigilance parameter 0 < p < 1, the three F21 nodes with 
the highest activation will enter into a resonant state and learn 
by modifying their weights to keep only the critical features for 
the selected output category. 

The top-down learning of the network can be illustrated 
using (3): 

If no existing matching prototype is found, i.e. when the 
stored wJ does not match the input, then the winning F2, node 
is reset and another F2, node with the highest Ti is selected, 
whose prototype will be compared against the input vector, and 
so on. When no corresponding distributed output category can 
be found, the network considers the input as novel, and expands 
by generating a new distributed output category and an 
associated set of weights. This new output node is then 
associated with the current input vector by making its weight 
vector equal to the input vector. 

The hottom-up learning of the P-ART can he illustrated 
using the following: 

1 (8) 
where I n w j ~ ( ~ ' ~ )  
wil(old) = The top-down weights vectors at the start of the input 

presentation I ~n W ~ I ( ~ ' ~ )  I 
W j p w )  = (1-P) 

p = Performance parameter 
I = Binary input vectors where 
p =The 'drift' constant 

In general, (3) can he stated as: 

wil(new) = a (fast-leaming ART) + p (LVQ) 

w,i(old) = The bottom-up weights of the network at the start of 

At the beginning of the first input presentation, the bottom- 
up weight wji are assigned with initial values corresponding to 
the initial top-down weights wij values using (9): 

the input presentation. 

(4) 

where a-p balance is guided by performance feedback. So, in 
principles, although P-ART, like ART, is an unsupervised 
learning; hut unlike ART, it is reinforced according to its 
performance. The network combines minimalist ART learning 
with Learning Vector Quantization (LVQ). By substitutingp in 
(3) with 0 for poor performance, (3) can be simplified to: 

Wil(new) = (I n wpIdJ) ( 5 )  

Thus fast learning is invoked, causing the top-down weights to 
reach their new asymptote on each input presentation: 

wJ + l n w p l d J  (6) 

In contrast, for excellent perfonnance where p = 1, (3) can be 
simplified to: 

wil(ne'") = (Wil(old) + p (1 Wil(old))) (7) 

Thus, a simple form of clustering or LVQ occurs at a speed 
determined by p. 

It is assumed that there is a considerable interval between 
updates o f p  during which time new previously unseen requests 
are likely to appear. Equation (7), or indeed (3) whenever 
performance is not perfect, enables the top-down weights to 
drift towards the input pattems. With alternate episodes o fp  = 0 
and p = 1, the characteristics of the learning of the network will 
be the joint effects of the ( 5 )  and (6) .  This joint effect can 
enable the network to learn using fast and convergent, snap 
learning when the performance is poor, yet be able to drift 
towards the input pattems when the performance is good. 

wij(0) 
wji (0) = - 

I + N  

where N 
By selecting this small initial value of wii, the network is 

likely to select a previously learned category node that to some 
extent matches the input vector rather than an uncommitted 
node. 

During the learning phase, if the network encountered poor 
performance, by substituting p = 0 in (8), the bottom-up 
learning of the network can he illustrated as follows: 

= Number of input nodes 

This is fast, convergent learning. 

afier a considerable interval, (8) can be simplified as follows: 
In contrast, if the network encountered perfect performance 

This will resulted in the weights drifting towards the input 
vector. 

Essentially, the principle is that drift, by itself, will only 
results in slow (depending on p) reselection over time, thus 
keeping the network up-to-date without a radical set of 
reselections for exiting patterns. By contrast, snapping results 
in rapid reselection of a proportion of patterns to quickly 
respond to a significantly changed situation, in terms of the 
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input vectors (requests) and/or of the environment which may the range (0,l) are fed into the network to evaluate the 
require the same requests to be treated differently by dynamic stability and performance responsivity of the 
snapping from a new position in weight space. Thus, new learning. Initially, some very basic tests with performances 
category node selection may occur for one of two reasons: as of I or 0 were evaluated in a simplified system [2,3]. Below, 
a result of the drift itself, or as a result of the drift enabling a the simulations involve computing the performance based on 
further snap to occur (since drift has moved away from a parameter associated with the winning output neuron. 
convergence) if performancep goes down. Ultimately, a realistic commercial external performance 

feedback criteria will be established, which will be obtained 
from BT, to evaluate the improvement in performance of the C. The sP-ART Learning 

The distributed output representation of categories network learning under realistic external performance 
produced by the dP-ART acts as input to the sP-ART. The feedback. In the BT application, functions which contribute 
architecture of the sP-ART is the same as that described in to good / poor performance include latencies for request with 
section I with one exception; only the F22 node with the differing time to live, dropping rate for request with differing 
highest activation will be selected for learning. Each output time to live, different charging level according to quality of 
node of the sP-ART represents the set of available proxylet service, and so on. 
tvues in the network. These nroxvlet tvues have also been 
&Ld to generate training data 'for the S O M  so that the SOM 
can be independently trained to form regions whereby similar 
proxylets are organised in adjacent nodes on the map. This 
allows each output node of the sP-ART to be 'hardwired 
onto regions of the SOM. The task of the sP-ART is therefore 
to learn to associate the correct group of input patterns with 
an output node that is wired to the appropriate region of the 
SOM. The effect of learning and relearning within the sP- 
ART module is that specific output nodes will represent 
different groups of input patterns until the performance 
feedback indicates that it is indexing the correct regions of 
the SOM and thus selecting the correct proxylets. 

D. The Performance Feedback 

11. THE BRITISH TELECOM (BT) APPLICATION 

A. Application Layer Active Network (ALAN) 

The ALAN architecture was first proposed by Fry and 
Ghosh [4] to enable the user to supply JAVA based active- 
service codes known as proxylets that run on an edge system 
(Execution Environment for Proxylets - EEPs) provided by 
the network operator. The purpose of the architecture is to 
enhance the communication between servers and clients 
using the EEPs that are located at optimal points of the end- 
to-end path between the server and the clients without dealing 
with the current system architecture and equipment. This 
approach relies on the redirecting of selected request packets 

The external performance feedback into the P-ART will into the EEP, where the appropriate proxylets can be 
reflect the performance requirement in different executed to modify the packets contents without impacting 
circumstances. Various performance feedbacks profiles in 
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on the router’s performance and thus does not need any 
additional standardization. 

B. Automated Active Network Management using Distributed 
Genetic Algorithms 

Recently, a novel adaptive approach using Distributed 
Genetic Algorithm (GA) to this problem of automated 
network management was introduced by Marshall and 
Roadknight from British Telecom (BT) Research 
Laboratories, which solves this problem with some success. 

The algorithm was applied to the adaptive management 
solution and to the differentiated quality of service 
mechanism defined by Marshall & Roadknight [5,6] for 
ALAN and has shown promising results with respect to 
increasing the performance of the ALAN network. 

P-ART is used as a means of finding and optimising a set 
of conditions that produce optimum proxylets selection in the 
Execution Environment for Proxylets (EEP), which contains 
all the frequently requested proxylets (services). 

111. SIMULATIONS 

A. Assessment and Evaluation ofResults 

This section presents the simulations and evaluation of 
results performed on the P-ART module and thus evaluates 
the behaviour of the ‘snap-drift’ algorithm. 

The test patterns consist of 100 input vectors. Each test 
pattem characterizes the features/properties of a realistic 
network request, such as bandwidth, time, file size, loss and 
completion guarantee. These test patterns were presented in 
random order for 25 epochs where the performance, p ,  is 
calculated according to the average bandwidth of selections. 
This on-line continuous random presentation of test patterns 
simulates the possible real world scenario where the order of 
patterns presented is random so that a given network request 
might be repeatedly encountered while others are not used at 
all. 

B. Results 

In Fig. 2, we show the performance calculated across the 
simulation epochs. The network starts with low performance 
and the performance feedback is calculated and fed into the 
@-ART and sP-ART after every simulation epoch, to be 
applied during the following epoch. Epochs are of fixed 
length for convenience, but can be any length. 

Fig. 3 shows the selection frequency of the proxylet type. 
In this case, we have the following bandwidth bands: 

Low bandwidth proxylet: 0 -) 600 Kb/s 
Median bandwidth proxylet type: 601 -+ 1200 Kb/s 
High bandwidth proxylet type: >I201 Kh/s. 

At the first epoch (refer to Fig. 2), the performance is set to 
0 to invoked fast learning. A further snap occurs in epoch 7 
since low performance has been detected. Note that during 
epochs 7 and 8, there is a significantly higher selection of 
high bandwidth proxylet types, caused by the further snap 
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and continuous new inputs that feed into the network. As a 
result, performance has been significantly increased at the 
start of ninth epoch. 

At epochs 16,ZO and 27, from Fig. 2, there is a significant 
decrease in performance. As illustrated in Fig. 3, this is due 
to a significant increase in the selection of low bandwidth 
proxylet types and a decrease in high bandwidth proxylets. 
This is due to the drift that has occurred since the last snap, 
with a number of new patterns still appearing for the first 
time. The performance induced snap takes the weight vectors 
to new positions. Subsequently, a similar episode of 
decreased performance occurs, for similar reasons, and a 
further snap in a different direction of weight space follows, 
enabling reselections, resulting in improved performance. 

At the 28‘h epoch, wherep = 0.8121, the performance has 
stabilised around the average performance of 0.85. At this 
stage, most of the possible input patterns have been 
encountered. Until new input patterns are further introduced 
or there is a change in the performance circumstances, the 
network will maintains at this high level of performance. On 
different run, as shown in Fig. 4, the average proxylet 
execution time is introduced into the performance criterion 
calculation to encourage the selection of high execution time 
proxylet types. In this case, we have the following execution 
time bands: 

Short execution time proxylet: 1 + 300 ms 
Median execution time proxylet type: 301 --f 600 ms 
Long execution time proxylet type: > 600 ms 

This criterion is fed into the PART alternatively at every 
100 epoch. When the new performance criterion is introduced 
in the 1 OOth epoch, rapid reselection of a proportion occurs in 
response to the significantly changed situation. This is 
followed by stabilisation. Subsequently, if the average 
proxylet bandwidth is reintroduced into the system, a further 
snap will occurs, and performance recovers. 

These results indicate that the performance could be 
modified using a range or combination of performance 
parameters. Other parameters such as cost, file size will be 
added to the performance calculation to produce a more 
realistic simulation of network circumstances in the future. 

IV. CONCLUS~ONS 

A neural network architecture containing modules that 
combine ART style learning with LVQ according to 
performance feedback has been proposed. It is capable of 
stable learning of the network input request patterns in real- 
time and is able to map them onto the appropriate proxylets 
available to the system. The simulations have shown the 
plausibility of the ‘snap-drift’ algorithm, which is able to 
provide continuous real-time learning in order to improve the 
network performance, based on the external performance 
feedback. These system properties have been confirmed by 
the results obtained from the experiments performed using 
the P-ART module, which was evaluated using performance 
feedback scenarios. 
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