

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Boldyreff, Cornelia; Nutter, David; Rank, Stephen; Smith, Mike; Wilcox,
Pauline; Dewar, Rick; Weiss, Dawid; Ritrovato, Pierluigi.
Article title: Environments to Support Collaborative Software Engineering
Year of publication: 2003
Citation: Boldyreff, C. et al. (2003) ‘Environments to Support Collaborative Software
Engineering’ In: 2nd Workshop on Cooperative Supports for Distributed Software
Engineering Processes, 25-28 March 2003, Benevento, Italy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/

Environments to Support Collaborative Software Engineering

Cornelia Boldyreff Mike Smith Dawid Weiss
David Nutter Pauline Wilcox Institute of Computing Science
Stephen Rank Rick Dewar Poznan University of Technology

Dept of Computer Science Dept of Computing Pierluigi Ritrovato
University of Durham Heriot-Watt University CRMPA

University of Salerno

Abstract

With increasing globalisation of software production,
widespread use of software components, and the need to
maintain software systems over long periods of time, there
has been a recognition that better support for collabora-
tive working is needed by software engineers. In this paper,
two approaches to developing improved system support for
collaborative software engineering are described: GENE-
SIS and OPHELIA. As both project are moving towards in-
dustrial trials and eventual public releases of their systems,
this exercise of comparing and contrasting our approaches
has provided the basis for future collaboration between our
projects particularly in carrying out comparative studies of
our approaches in practical use.

1 Introduction

From the advent of programming support environments
such as UNIX Programmer’s Workbench [7] in the late
1970s, through to the development of CASE tools and the
Integrated Project Support Environments such as the origi-
nal Eclipse [5] of the 1980s, and more recent Integrated De-
velopment Environments, there has been a trend for the soft-
ware industry to develop systems to support their own ac-
tivities throughout the software lifecycle from development
through to maintenance. Many research projects such as
the Portable Common Tool Environment (PCTE) IDE [15]
and Eureka Software Factory (ESF) [9], and more specific
projects such as PACT and associated toolsets [16] have de-
veloped prototype support environments. In addition, there
have been language-specific projects such as the Common
Ada Programming Support Environment [13] (an extensi-
ble framework providing a platform for tool support of Ada
development), and object-oriented design and development

toolsets, both from the research community and from com-
mercial tool suppliers, the most prominent being Rational.

Two important factors have driven recent developments
in improved system support for collaborative software en-
gineering. With increasing globalisation of the software
industry, cross organisational multi-company projects are
becoming commonplace. Most large software projects are
undertaken by teams of software staff working across a
number of organisations [14]. This is typical within the
open source software community where projects are under-
taken by variable-sized teams of individuals from around
the world. In both cases, the composition of the teams varies
over time as members join and leave the team throughout
the projects; and in some instances as one project takes over
the work of another as happens when a system passes from
the development team to the maintenance team and thus the
nature of the work and associated support changes.

Secondly the long life enjoyed by many large software
systems means that over time large numbers of people are
involved in their evolution as the composition of the sup-
port team itself changes. Thus, there is a recognised need
for more flexible environments to support these diverse ap-
proaches to software engineering. It is no longer safe to
assume that all the members of a project will be following
the same software process models, nor can it be assumed
that they will be all be employing the same methods and
associated software tools, or that important project knowl-
edge and expertise will be preserved over time as the project
team and software system changes evolves. A timely exam-
ple of this is the Linux kernel development effort which has
changed its SCM system from CVS to BitKeeper, and fre-
quently undergoes personnel changes as developers join and
leave the project.

Preservation of relevant software artefacts, i.e. all rel-
evant work products and documentation, both formal and
informal records, is of critical importance. Much of reverse
engineering is focused on rectifying situations where the

system code is the only reliable source of documentation.
However, preservation of software artefacts while necessary
is insufficient to support software evolution if they are dis-
organised and inaccessible both in the physical sense and
the intellectual sense.

At present, there are two complementary projects work-
ing on the development of support for collaborative soft-
ware engineering: GENESIS (GEneralised eNvironment
for procEsS management in cooperative Software Engineer-
ing) and OPHELIA (Open Platform and metHodologies for
devELopment tools IntegrAtion in a distributed environ-
ment).

GENESIS intends to develop an Open Source platform
that supports co-operation and communication among soft-
ware engineers belonging to distributed development teams
involved in modeling, controlling, and measuring software
development and maintenance processes. Moreover, it in-
cludes an artefact management module to store and manage
software artefacts produced by different teams in the course
of their work.

The OPHELIA project has a similar aim of developing
an open source platform to support software engineering in
a distributed environment. Its primary product is a set of
core interfaces that support interoperability between a range
of tool categories: project management, requirements cap-
ture, modelling and software design, code generation and
bug tracking accompanied by a methodology appropriate to
working in a distributed manner.

The remainder of the paper will consist of the following:
more detailed overviews of both GENESIS and OPHELIA.
A discussion of their key differences, similarities, and com-
plementary points; and finally an outline of areas where fu-
ture collaboration is planned.

2 GENESIS Overview

The GENESIS project’s focus is multi-site projects
where each site is able to execute instances of a software
process or subprocess that accept software artefacts as pro-
cess inputs and produce software artefacts as process out-
puts [8]. These artefacts form the basis for inter-site in-
teraction. Co-ordination of software engineering activities
at each site is supported by a workflow management sys-
tem (GOSPEL) based on a modified version of FlowMan-
ager [1], a notification engine, and a communication en-
gine following an Event/Condition/Action paradigm. These
components, together with an active artefact management
system, OSCAR [4], allow the management of both formal
and informal communication among software engineers.
The whole platform will be released under an Open Source
software licence and it has been conceived following a ser-
vice oriented approach facilitating extensibility and simpli-
fying its tailoring to any specific organisation’s software

process needs. These services form a layer sandwiched be-
tween a resource management system and the artefact man-
agement system. An overview of the GENESIS platform
architecture is given in figure

The Flowmanager system has already been applied by it-
self to the problem of software maintenance [2] providing
a useful case study for the future when comparing the inte-
grated GENESIS platform with its three components. The
MILOS environment [3] also addresses some of the prob-
lems targeted by GENESIS platform, emphasising support
for Extreme Programming [19] but the developers have de-
cided to replace the current client/server model with a peer-
to-peer architecture; a different approach to that chosen by
both GENESIS and OPHELIA.

Communication Engine
Notification andWorkflow management

System (GOSPEL)

Artefacts
Client
Metrics

Client

CommsGOSPEL
Resource

Client
Manager

Client Client

Workflow
Process

Repository Information
Resource Artefact

Repository

Resource Manager

PRESENTATION LAYER

SERVICES LAYER

DATA LAYER

API

Metric Engine

Artefact Management System (OSCAR)

Figure 1. GENESIS Platform Architecture

OSCAR

RMS

GOSPEL
Manager
Global Process

Local Process
Manager

OSCAR

RMS

GOSPEL
Developer

*

<<Agent>>

*

1

GLOBAL NODE

LOCAL NODE

Figure 2. GENESIS Site Deployment

The GENESIS platform components may operate inde-
pendently of one another if desired, in particular OSCAR

http://www.genesis-ist.org

is designed to be useful without the workflow management
system. Therefore, an organisation does not have to buy
into the whole GENESIS concept to utilise some of the
tools, albeit with reduced functionality. When two or more
GENESIS tools need to be used together, the communica-
tion engine must be used to link them, except where direct
calls such as the interface OSCAR provides to the workflow
management system can be employed.

Figure
One of the key project objectives is to keep the level of

invasiveness as low as possible. Each site is free to choose
whatever 3rd-party tools are appropriate to their processes,
varying from generic tools such as word processors, to more
specific software engineering tools such as design tools or
compilers. The only requirement being that the tool out-
put should be locatable by the artefact management system,
e.g., in a file system, on a web server, accessible from a
document management system, etc. Once submitted to the
artefact management system, an artefact’s primary content
remains unchanged but is augmented by metadata to facil-
itate its future use within the current project and potential
reuse by other projects. The artefact management system
also holds process descriptions and personnel profiles as
artefacts to assist project managers. Additionally, the pro-
cess tools can then use these artefacts as input to further
process stages.

Version control of artefacts is achieved through an ab-
straction over core configuration management system func-
tionalities. At any particular site’s instance of OSCAR,
these are mapped to an underlying SCM server, for exam-
ple, in the present prototype to CVS. In this way, conven-
tional configuration management discipline can be applied
to all artefacts, but the choice of system employed is left to
each site.

Two novel aspects of the GENESIS project are partic-
ularly relevant to our vision of collaborative software en-
gineering. First, the provision, through an integrated and
Open Source platform, of services supporting three key
software engineering aspects, namely the software process
enactment and management, the active artefacts manage-
ment, and the software engineers’ ability to communicate
and collaborate through these. Second, the choice of events
as a communication mechanism between software and hu-
man participants in the software process allows loose in-
teraction between them without requiring tightly integrated
tools.

3 OPHELIA Overview

The main goal of the OPHELIA project [17, 11] is to
unify various types of software development tools into an
abstract, transparent platform, where access to project ele-
ments and relationships among these elements is seamless

with regard to the underlying software used to create and
maintain them.

Among the central objectives of the project are: to pro-
vide an abstract set of programming interfaces, representing
types of tools used in software development; to define how
existing software can be adopted to those interfaces and to
develop a prototype implementation.

The novelty of the OPHELIA project thus lies in bridg-
ing tools from different vendors into one project workspace.
This integration is achieved using a set of CORBA [20]
interfaces, responsible for exposing a uniform view of el-
ements and services available in a certain area of soft-
ware development process. In case of OPHELIA these
include: requirements management, (UML) modelling,
project management (schedules), documentation manage-
ment, bug tracking and repositories of other elements of the
project (such as source code).

Having established an abstraction of all available project
elements, OPHELIA utilises them to provide other project-
wide valuable services, such as knowledge management,
semi-automatic conversion between project elements (i.e.
generation of template schedules or code from an UML
model), traceability (relationships among project elements),
change notifications and others.

The main product of the OPHELIA project is the spec-
ification of the interfaces mentioned above called Module
Interface Specifications (MIS). This architecture will there-
fore support the integration of a set of tools that the users
choose to work with, specific tools are not mandatory (how-
ever, all the integrated tools must implement their corre-
sponding MIS). Another product of the OPHELIA project
is a prototype implementation of this architecture, called
Orpheus, involving several Open Source development tools
(such as Java and MySQL running at the moment on Linux)
available on the market together with a deployment envi-
ronment. Orpheus is a proof of concept to test the interface
definitions and the platform architecture. An illustration of
the OPHELIA platform architecture is provided in figure

Ophelia Modules are responsible for providing the im-
plementation of the Module Interface Specifications and we
consider the Modeling Module to further explore the Ophe-
lia architecture.

The Ophelia Modeling Module Interface Specification
is a CORBA IDL definition of a set of methods to access
UML models. As part of the prototype Orpheus implemen-
tation we have implemented a Modeling Server that imple-
ments this interface and provides a common representation
of UML models in terms of XMI and access to model di-
agrams in different graphical formats including JPEG, GIF
and SVG. The Modeling Module Server was designed to en-
able geographically distributed software engineering teams
to access a central repository of UML models through the
Modeling Module Interface Specification. This means that

Figure 3. The OPHELIA Platform Architecture

UML models and their respective diagrams can be accessed
in a standard way by a variety of Ophelia aware tools.

The architecture of the modeling module is essentially
client server. A client UML modeling tool ArgoUML [18]
has been extended through its plugin API in order to com-
municate with the remote Modeling Server that exposes
the Modeling Module Interface Specification. Because
the Modeling Server exposes this standard interface, other
Ophelia aware tools such as metrics, project management
and documentation, are able to access these UML models
in a standard way. A typical deployment configuration is
provided in figure

4 Key differences, similarities and comple-
mentary points

Although the two projects are addressing the common
goal of developing an environment to support collaborative
software engineering, it has been instructive at recent joint
meetings of staff from both projects to compare the two ap-
proaches. The two projects have taken different approaches
to their support for software evolution. This is reflected in
their approaches to tool integration, software process sup-
port, more significantly in the design of their repositories.

The OPHELIA project’s strategy is more focused on the
uniform integration of project management and system de-
velopment tools through a common set of abstract tool ser-
vices. Every kind of activity in project development is rep-
resented in a form of aModule Interface Specificationin-
terface, which constitutes a bridge between some particular
tool and the rest of the platform. In contrast the GENESIS
project aims to produce a software engineering environment
providing certain facilitating services (workflow, archiving
communication, etc) yet leaves the choice of specific tools

ArgoUML

ArgoUML Plugin

Client Tool

OPHELIA Plugin

Module Modelling

Modelling Module Interface

Server

CLIENT PC

CLIENT PC

OPHELIA SERVER PC

Figure 4. Typical Deployment of the Ophelia
Modeling Module

(modelling, programming etc) up to the end user.
There are no requirements for artefact repositories for

tools working as part of OPHELIA platform - every tool
may have its own repository (e.g. CVS), some tools may
share a repository (instance of a database), some types of
tools may not even employ a repository at all (such as
dynamically-generated metrics). What joins these all to-
gether is solely the implementation of CORBA interfaces
specified by the platform. Project elements are acquired not
from a common repository, but via requests made to each
individual module (type of tool). This also applies to meta-
data, such as version information, events generated by ob-
jects and others.

Though the artefact relationship model of both systems is
similar, their implementations differ. OPHELIA has a sep-
arate traceability service while GENESIS/OSCAR stores
relationships as an intrinsic part of the artefact they refer
to. To the user, the two systems will appear very similar
although the efficiency and dependability of the two ap-
proaches is an area for further investigation once both plat-
forms are in use.

Rather than the GENESIS approach of explicit coordina-
tion of activities via workflow management, a key concept
for OPHELIA is traceability by recording relationships be-
tween tools and their products without any notion of pro-
cess. This is determined by events at the application level
and predefined or automatically determined relationships
amongst objects, i.e., outputs of application tools. For ex-
ample, from the relationships established by a conversion
utility from project model to source code (and possibly doc-
umentation), a change to the requirement will result in no-
tifications sent to people responsible for source code and

documentation maintenance. In GENESIS, changes to arte-
facts give rise to events which can be notified to co-workers,
but events are also raised from within the work flow man-
agement system.

OPHELIA is a very generic architecture: the event types
and notifications can be bound to any of the pre-existing,
or defined types of events. In GENESIS, event notification
is realised through a notification engine which provides a
similarly generic service.

The focus on configuration management differs slightly.
For OSCAR, configuration management is an essential part
of the environment and the system will not work without ac-
cess to some form of SCM system. By contrast, OPHELIA
treats SCM as another client module exposing objects to the
rest of the integrated tools. Indeed one possible avenue for
future collaboration is that OSCAR could be integrated with
relative ease into the OPHELIA platform to provide artefact
management functionality!

While the GENESIS project has concentrated on creat-
ing support tools, the OPHELIA project has actually under-
taken specific tool development. An open source require-
ments management tool has been developed and integrated
(via MIS) with ORPHEUS. Initial work has also been done
in integrating different types of development tools using
MIS specifications. For example, an integration of met-
rics generation based on data acquired from modelling MIS
(with underlying ArgoUML), or an integration of modelling
MIS with project management MIS (ArgoUML with Mi-
crosoft Project). Work on higher level services such as doc-
umentation generation and cross-module object traceability
has been started as well.

OPHELIA also differs from GENESIS in the level of in-
tegration. Tools integrated with OPHELIA need to be in
contact the system when performing any operation on the
data (such as load/save). Tools used to create data for use
in GENESIS do not need to be modified1, nor to have con-
tact with OSCAR when working on the data. Much of OS-
CAR’s integration will rely on internal transformation of
data to extract appropriate meta-data from files under its
control whilst OPHELIA relies on modification of the client
tools.

Both projects introduce unique object addresses (in the
form of URLs). In GENESIS these addresses may point to
any artefact, as well as any specific version of an artefact. In
OPHELIA only elements (objects) can be addressed. Ver-
sioning is therefore not part of the generic object definition
in OPHELIA.

Table
To ease development, GENESIS only deals with files,

while OPHELIA is more flexible, allowing tools to draw
their data from any system that has a MIS interface as well

1As long as they operate on standard files (rather than, for example,
databases) if they do not then they must be integrated with OSCAR.

Categories GENESIS OPHELIA/
ORPHEUS

Architecture Client/server Client/server
Deployment Model Coordinated by

master site
No explicit model

Technologies J2EE,
Xerces/Xalan,
MySQL/Postgres,
JMS, Tomcat

Java, Xindice,
MySQL

Configuration
Management

CVS (under ab-
straction layer)

None as yet

Integration Level Distinct services,
little tool integra-
tion

Tight tool integration

Data Sources Files only Files, databases
(via CORBA
proxy object)

Coordination Workflow man-
agement

No explicit coor-
dination

Relationships In standard arte-
fact metadata

Separate reposi-
tory

Communication Notification Delegated to each
tool

Table 1. Comparison Categories

as files. Consequently the tools that may be used at present
with GENESIS are restricted to those that can operate on
files alone. Treatment ofCoordinationandCommunication
also differs between the two platforms. While GENESIS
provides a notification service and task list driven by the
workflow system. OPHELIA on the other hand delegates
responsibiity for communication to the third party tools.

Deploymentof the systems differs too; while GENESIS
installations may be managed by a master installation, OR-
PHEUS installations are effectively created equal.

5 Identified areas for GENESIS/OPHELIA
collaboration

Currently both projects are completing the first releases
of their platforms; and as these undergo further develop-
ment, they will be also be trialled by the respective projects’
industrial partners and possibly within the open source de-
velopment community. Both projects intent to instrument
their developments and collect usage and performance data.
In order to make comparisons between these platforms in
use, a common set of basic measures and monitoring pro-
cedures will be agreed and implemented. It is intended that
these will allow joint studies on efficiency and dependabil-
ity. The two projects also intend to investigate the potential
for uniting both platforms in a multi-organisation project.

Acknowledgements

We would like to acknowledge our colleagues who have
contributed to the development of the research discussed
here and in the development of the GENESIS and OPHE-
LIA research programmes. Both projects are funded by the
European Commission under their IST programme.

References

[1] Aversano, Lerina; Cimitile, Aniello; Gallucci, Pier-
paolo; Villani, Maria Luisa (2002), “FlowManager: a
workflow management system based on Petri nets”, in
the Proceedings of the 26th Annual International Com-
puter Software and Applications Conference, COMP-
SAC02, IEEE Computer Press, pp. 1054-1059.

[2] Aversano, Lerina; Betti, Segio; Pompella, Eugenio;
Stefanucci, Silvio (2002) “Applying Workflow Man-
agement to Support Massive Maintenance” in the Pro-
ceedings of the 26th Annual International Computer
Software and Applications Conference, COMPSAC02,
IEEE Computer Press, pp. 1060-1061.

[3] Bowen, Seth; Maurer, Frank (2002) “Designing a Dis-
tributed Software Development Support System Using
a Peer-to-Peer architecture” Proceedings of the 26th
Annual International Computer Software and Appli-
cations Conference, COMPSAC02, IEEE Computer
Press,pp. 1087-1092.

[4] Boldyreff, Cornelia; Nutter, David and Rank, Stephen
(2002), “Active Artefact Management for Distributed
Software Engineering”, in the Proceedings of the 26th
Annual International Computer Software and Appli-
cations Conference, COMPSAC02, IEEE Computer
Press, pp. 1081-1086.

[5] “Eclipse: an integrated project support environment”
(1989), ed. by F. Bott. London : Peregrinus

[6] Dewar, RG; MacKinnon, LM; Pooley, RJ; Smith, AD;
Smith, MJ & Wilcox, PA (2002); “The OPHELIA
Project: Supporting Software Development in a Dis-
tributed Environment”, IADIS WWW/Internet 2002

[7] T.A. Dolotta, R.C. Haight, and J.R.Mashey (1978),
“The Programmer’s Workbench”, The Bell System
technical Journal, July-August 1978, Vol. 57, No. 6,
Part 2, pp. 2177-2200

[8] Gaeta, Matteo & Ritrovato, Pierluigi (2002), “Gener-
alised Environment for Process Management in Co-
operative Software Engineering”, Proceedings of the
Workshop on Cooperative Supports for Distributed

Software Engineering Processes, in the Proceedings of
the 26th IEEE Annual International Computer Software
and Application Conference, August 2002, pp. 1049-
1053.

[9] Fernstrom, C. “The Eureka Software Factory: Concepts
and accomplishments.” In: Lamsweerde, A. and A.
Fugetta (eds.): Proceedings of the 3rd European Soft-
ware Engineering Conference. Lecture Notes in Com-
puter Science No. 550: Springer-Verlag (1991)

[10] Genesis project website (2002)
[@:] http://www.genesis-ist.org/

[11] Hapke, M.; Jaszkiewicz, A. & Perani, S. (2001);
“OPHELIA – Open Platform and metHodologies for
devELopment tools IntegrAtion in a distributed envi-
ronment”, Proceedings of 3rd National Conference on
Software Engineering, Otwock/Warsaw, pp. 189-198.

[12] Kowalczykiewicz K., Weiss D. (2002) “Traceability:
Taming uncontrolled change in software development”,
Proceedings of IV National Software Engineering Con-
ference, Tarnowo Podgorne, Poland, 10 pages.

[13] Oberndorf, P. A. “The Common Ada Program-
ming Support Environment (APSE) Interface Set
(CAIS)”, IEEE Transactions on Software Engineering,
14(6):742-748, June 1988

[14] Oppenheimer, Heather L. (2002) “Project Manage-
ment Issues in Globally Distributed Development”, in
the Proceedings of the Global Software Development
Workshop, held on the 21st May 2002 in association
with ICSE ’02.

[15] Thomas, I. “PCTE interfaces: Supporting tools in soft-
ware engineering environments.” (November 1989),
IEEE Software, 6(6):15-23

[16] Thomas, I. “Tool Integration in the Pact Environment.”
(1989), In Proceedings of the Eleventh International
Conference on Software Engineering. Pittsburgh, PA,
USA. 31 of 31

[17] Ophelia project website (2002)
[@:] http://www.opheliadev.org

[18] ArgoUML project website (2002)
[@:] http://argouml.tigris.org

[19] Extreme Programming
[@:] http://www.extremeprogramming.org

[20] CORBA (2002) [@:] http://www.corba.org

	WCSDSEP 03 cover sheet
	Boldyreff, C., Nutter, D. et al (2003)a WCSDSEP

