

University of East London Institutional Repository: http://roar.uel.ac.uk

This is an original conference paper made available online in accordance with
publisher policies. Please scroll down to view the document itself. Please refer to the
repository record for this item and our policy information available from the repository
home page for further information.

Author(s): Mouratidis, Haralambos., Giorgini, Paolo., Weiss, Michael.
Article Title: Integrating Patterns and Agent-Oriented Methodologies to Provide
Better Solutions for the Development of Secure Agent-Based Systems
Year of publication: 2003
Citation: Mouratidis, H., Giorgini, P., Weiss, M. (2003) ‘Integrating Patterns and
Agent-Oriented Methodologies to Provide Better Solutions for the Development of
Secure Agent-Based Systems’ Proceedings 6th ChiliPLoP Annual Conference, Hot
Topic: Expressiveness of Pattern Languages, Arizona-USA
Link to published version:http://www.troposproject.org/papers_files/chili2003.pdf
Conference website: http://hillside.net/chiliplop/
DOI: (not stated)

Information on how to cite items within roar@uel:
http://www.uel.ac.uk/roar/openaccess.htm#Citing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://www.troposproject.org/papers_files/chili2003.pdf
http://hillside.net/chiliplop/
http://www.uel.ac.uk/roar/openaccess.htm#Citing

Integrating Patterns and Agent-Oriented Methodologies to Provide Better
Solutions for the Development of Secure Agent-Based Systems

Haralambos Mouratidis, Paolo Giorgini, Michael Weiss

Abstract
Although pattern languages have already been proposed for security modelling, such
languages mostly employ concepts and notations related to object-oriented systems, and
have mainly neglected the agent-oriented paradigm. In this position paper we argue about
the need to define a security pattern language applicable to agent-based systems that
employs concepts based in the agent-oriented paradigm. In addition, we motivate the
need to integrate such a language within the development stages of an agent-oriented
methodology, and we briefly discuss what such a language should contain,

Keywords: documenting pattern languages, linking requirements to patterns, patterns for
secure agent-based systems, integrating patterns with a development methodology, agent-
oriented software engineering methodologies

1. Introduction
Patterns capture existing well-proven experience in software development and help to
promote good design practice (Coplien, 1996). According to (Buschmann, 2001), a
pattern provides a scheme for refining the subsystems or components of a software
system, or the relationships between them. It describes a commonly recurring structure of
communicating components that solves a general problem within a particular context.

Another paradigm that has gained attention the last few years is based around the
concept of an agent (Franklin, 1996), an autonomous computational entity that interacts
with its environment and other agents in order to achieve its own goals. Over the last two
decades agent technology has been employed in different domains, from personal
assistants (Maes, 1994) to auctions (Byde, 2002) and mission-critical military tasks
(Tidhar, 1999), and is considered one of the most active research areas in computing. As
a result, Agent-Oriented Software Engineering (AOSE) has been proposed (Jennings,
2000) as an alternative paradigm for analysing and designing complex distributed
computing systems. According to this paradigm, a complex distributed computing system
can be viewed as a multi-agent system. The concept of a software agent as an
autonomous system (subsystem), capable of interacting with other software agents within
an environment (system) in order to satisfy its design objectives provides designers with
more flexibility in their analysis and design of a complex distributed system. Developers
can conceptualise the system as a society, similar to a human society, consisting of
entities that possess characteristics similar to humans such as mobility, intelligence and
the ability to communicate and cooperate (Jennings, 2000).

Security plays an important role in the development of computer systems. However, it
is usually considered as an afterthought (Mouratidis, 2002). The common approach
towards the inclusion of security within a system is to identify security requirements after
its definition. This approach has lead to computer systems afflicted with security
vulnerabilities (Stallings, 1999). From the viewpoint of the traditional security paradigm,

it should be possible to eliminate such problems through better software engineering
techniques (Anderson, 2001).

It has been argued that both patterns and the agent-oriented paradigm represent feasible
approaches for the integration of security to software engineering. Security patterns
capture design experience and proven solutions to security related problems in such a
way that non-security experts can apply them as well (Fernandez, 2001). In addition, they
prevent an ad-hoc solution as they help find proven solutions in a systematic and
structured way (Buschmann, 2001).

On the other hand, it has also been argued that the agent-oriented paradigm represents
a feasible approach for the integration of security with software engineering (Mouratidis,
2002). As emphasized by (Jennings, 2000), agents act on behalf of individuals or
companies interacting according to an underlying organisational context. The integration
of security within this organizational context will require for the rest of the subsystems to
consider the security requirements when specifying their objectives and the interactions
between them, therefore causing the propagation of security requirements to the rest of
the subsystems. To this end, some agent-oriented software engineering methodologies
(Mouratidis, 2003) have started to consider security issues as an integral part of their
development stages and processes.

We believe the integration of patterns and agent-oriented methodologies will lead to a
better solution for the development of secure agent-based systems. It has been argued that
“if agents are to realise their potential as a software engineering paradigm, then it is
necessary to develop software engineering techniques that are specifically tailored to
them” (Wooldridge, 2000). Thus, we feel it is necessary for a pattern language related to
the security of agent-based systems to employ agent-oriented concepts.

 This paper is structured as follows. Section 2 motivates why a pattern language is
needed for the development of secure agent-based systems, and Section 3 discusses the
need to ground such a language within an agent-oriented development methodology.
Section 4 briefly describes what a pattern language for secure agent-based systems should
contain, and Section 5 provides some concluding remarks.

2. Need for a pattern language for secure agent-based systems
Research on security for multiagent systems is an important area within the agent
research community. Research is focused in three main categories (Jansen, 1999): protect
agencies from malicious agents; protect agents from other agents; and protect agents
from malicious agencies. This research is broader than the research focused on security of
mobile agent systems, which is really only a special instance of this classification.

However, one of the problems of developing secure systems is that often non-security
specialists have to develop them. Thus, even though agent-oriented methodologies that
integrate security and systems engineering have been started to emerge (Mouratidis,
2003), a critical question remains: How it can be assured that non-security specialists
will have the knowledge to transform the requirements to design? In projects that are
stressed on time and budget developers must “acquire” security knowledge within a short
timeframe and make sure that the system developed will work according to the
requirements. A developer should know which designs are suitable for their problem, and
any consequences an existing design will impose on their systems.

Object-oriented developers have realised the use of security patterns can be a valuable
solution, since it helps to easily identify in which situations a pattern of the language can
be applied and also identify the consequences of applying a specific pattern to the
security of the system. However, this is not the case for the developers of agent-based
systems who have, mainly, neglected the integration of security patterns during the
development stages of secure agent-based systems.

One of the reasons is the fact that not many security patterns for agent-based systems
have been documented. Nevertheless, many techniques used for securing agent-based
systems have been successfully employed in many examples and are well understood.
Thus, we believe it is time to start documenting them as patterns. However, as stated by
(Deugo, 1999), documenting some techniques as patterns, does not mean to document the
problem and the solution, since such documentation can be found in many papers
describing the techniques, but rather to provide a deeper understanding of the forces and
the context of the problems that give rise to the proposed solutions.

One might argue that many object-oriented patterns, such as Authenticator (Lee
Brown, 1999) or already proposed pattern languages for security modelling (Fernandez,
2001) can be applied to the development of secure agent-based systems. However, as
mentioned in the introduction, for the agents to realise their potential, software
engineering techniques specifically tailored to them must be developed (Wooldridge,
2000). The main role of such techniques (methodologies) will be to help in all the
development stages of agent-oriented systems and in particular capture and model the
unique characteristics that agent-oriented systems introduce such as flexibility,
autonomous problem-solving, and the richness of interactions between the individual
agents. Also, differences in the way agents and objects communicate and interact with
their environment, the level of autonomy agents possess, and the fact that agents are often
highly mobile motivate the separate notion of an agent pattern (Deugo, 1999). In
addition, the social nature of agent-based systems and the different security requirements
introduces a void that existing patterns – agent, object, or otherwise – have not filled.

Thus, security patterns have to be documented in a manner specific to agent-based
systems, using agent-oriented concepts. In addition, it is important to develop a pattern
language consisting of those patterns. Developing such a pattern language will provide a
mutual ontology that will enables the pattern language to be integrated within the
development stages of current agent- oriented methodologies. Having a mutual ontology
between a pattern language and agent-oriented methodologies will help the language to
be understandable by people working in the development of agent-based systems. The
modelling concepts, the notation and the development stages of an agent-oriented
methodology can provide such a mutual ontology.

3. Need to ground the pattern language within a development methodology
As mentioned above, we believe that the integration of patterns and agent-oriented
methodologies will provide a complete1 and mature solution for the development of
secure agent-based systems. We say complete since we believe those two paradigms

1 We must note, the word complete does not refer to the pattern language (since by definition a language
evolves and grows over time with the extensions of existing patterns, or introduction of new ones) but
rather to the integration of the pattern language and the agent-oriented methodology.

complement each other, and we say mature since such integration will provide novice
developers with the capability to implement secure agent systems.

However, two critical and important questions arise at this point (that have been also
considered as important questions from the organisers of this workshop): How can a
developer identify a starting point in using a pattern language? And how can a developer
select which patterns of the language to apply next according to the security
requirements of the system?

We believe answers to those questions can be given when a pattern language is fully
integrated with an agent-oriented development methodology. The modelling language
(ontology) of the methodology will provide a framework that will form the base for the
development and application of the pattern language. The patterns of the language (and
the relationships between them) would be expressed and described by employing
concepts from the methodology ontology. In addition, the guidelines and the structure
processes of the methodology will allow the explicit definition of the applicability of the
pattern language within the methodology stages and will allow developers to evaluate and
select from the different patterns of the language according to the system security
requirements.

We briefly present Tropos, as an example of a candidate, for the integration of patterns
with an agent-oriented methodology. Tropos2 is a methodology for building agent-
oriented software systems, tailored to describing both the organisational environment of a
system and the system itself. Tropos is characterised by three key aspects (Perini, 2001).
Firstly, it deals with all the phases of system requirements analysis and system design and
implementation adopting a uniform and homogeneous way that is based on the notion of
agents and all the related mentalistic notions, such as actors, goals, tasks, resources, and
intentional dependencies. Secondly, Tropos pays a great deal of attention to the early
requirements, emphasizing the need to understand not only what organisational goals are
required, but also how and why the intended system would meet the organisational goals.
This allows for a more refined analysis of the system dependencies, leading to a better
treatment not only of the system’s functional requirements but also of its non-functional
requirements, such as security, reliability, and performance (Perini, 2001). Thirdly,
Tropos is based on the idea of building a model of the system that is incrementally
refined and extended from a conceptual level to executable artefacts, by means of a
sequence of transformational steps (Bresciani, 2002).

Tropos adopts the i* modelling framework (Yu, 1995), which uses the concepts of
actors, who can be (social) agents (organisational, human or software), positions or roles,
goals and social dependencies (such as soft goals, tasks, and resources) for defining the
obligations of actors (dependees) to other actors (dependers). This means the system (as
well as its environment) can been seen as a set of actors, who depend on other actors to
help them fulfil their goals. The type of the dependency describes the nature of an
agreement (called dependum) between dependee and depender. Goal dependencies
represent delegation of responsibility for fulfilling a goal; softgoal dependencies are
similar to goal dependencies, but their fulfilment cannot be defined precisely; task
dependencies are used in situations where the dependee is required to perform a given
activity; and resource dependencies require the dependee to provide a resource to the
depender. In addition, Tropos ontology has been extended (Mouratidis, 2003) to offers

2 The name Tropos derives from the Greek and means “easily changeable”, “easily adaptable”.

concepts such as security constraint and secure entities and dependencies, to enable it to
model security issues during the development stages of an agent-based system.

Tropos supports five development stages, namely early and late requirements,
architectural and detailed design and implementation. Early and late requirements
analysis represents the initial phases in the Tropos methodology and the final goal is to
provide a set of functional and non-functional requirements for the system-to-be. Both
phases, early and late, share the same conceptual and methodological approach. This
means, that most of the techniques used during the early requirements analysis are used
for the late as well. The main difference is that during the early requirements analysis, the
developer models the main stakeholders of the system and their dependencies, while in
the late requirements analysis the developer models the system itself by introducing it as
another actor and model its dependencies with the other actors of the organisation. The
architectural design stage defines the system’s global architecture in terms of actors
interconnected through data and control flows (represented as dependencies). In addition,
during this stage the actors of the system are mapped into a set of software agents, each
characterized by its specific capabilities. During the detailed design stage, the developer
specifies, in detail, the agents’ goals, beliefs, and capabilities as well as the
communication between the agents. For this reason, Tropos employs a set of Agent UML
diagrams (Bauer, 2001). During the implementation stage, the design of the system
produced in the previous stage is converted into code. In Tropos the implementation stage
follows step by step the design produced in the previous stages.

Taking as an example the eSAP System (Mouratidis, 2002b), an agent-based health
and social care information system for the effective care of older people. Such a system
has been partially analysed as presented in (Mouratidis, 2002 – Mouratidis, 2000b-
Mouratidis, 2003). After analysing in detail the goals, tasks and the security constraints of
the system, it is concluded (Mouratidis, 2002- Mouratidis, 2003) (during the architectural
design) that one of its secure goals is to Ensure Data Privacy. To solve this, a
combination of patterns can be applied. For example, an agent guard can be used to
protect access to the agency and thus provide a solution for the Access Control goal of the
eSAP System. Figure 1 shows how this pattern can be represented employing Tropos
concepts. At this stage this pattern would be more properly considered a proto-pattern.

Figure 1: The Agency Guard (proto-) pattern

The idea behind the above example is that requirements can be identified by the
methodology, during the early and late requirements stages, and patterns can be

employed during the architectural and detailed design stages to transform the
requirements to design. This helps to link the patterns used back to system requirements.
In addition, the choice of a particular pattern can be justified since Tropos allows
developers to perform different kinds of analysis, such as NFR and goal analysis, to
represent justification for the choice of different alternatives. Similarly, security
requirements can be identified and security patterns can be applied in the development of
agent-based systems, providing justification, which can be traced back to early
requirements analysis, for the reasons behind the choice of particular patterns.

4. What should a good pattern language for security of agent-based systems contain
A good pattern language for security of agent-based systems should contain patterns
belonging to each of the areas of research (Section 2) related to the security of agent-
based systems. Each of those patterns should be explicitly defined and also the relation
between them must be precisely identified. A categorisation of the patterns belonging to
the language could take place according to which area of the security of agent-based
systems they document. Thus, we can have patterns for the protection of agencies from
malicious agents, patterns for the protection of agents from another agents, and patterns
for the protection of agents from malicious agencies.

An example of the first area could be a pattern that all the requests for accessing
resources of the agency, or even move to this agency, are forwarded through an agent that
is responsible to grant or deny access to the requests. Another example of a pattern
belonging to this category could be a pattern that provides a solution in running a
malicious code from tampering with the agency. This can be achieved by restricting the
code in a protected environment.

Patterns that protect agents from another agents should be able to document the
communications between the agents but also proofs that such communication took place.
For example, a pattern could be documented to provide a non-repudiation service for
agents. Repudiation occurs when an agent communicating with another agent, later
claims the communication never took place. Although, an agent cannot prevent another
agent from repudiating a communication, it can make sure that it has enough evidence to
support their defence.

Ideally patterns that protect agents from malicious agencies must provide solutions to
problems such as masquerading, denial of service, eavesdropping, and alteration.
Unfortunately, a proven solution against all those problems simply does not exist yet.
However, techniques that help towards the detection or the protection against some of
those problems have been successfully employed. For example, the supervisor-worker
pattern proposes in (Fischmeister, 1999) could provide a solution to the eavesdropping
and alternation problems but is prone to masquerading or denial of service attacks.

Conclusions
In this paper we have argued for the need to develop a pattern language tailored to the
development of secure agent-based systems, which will employ concepts from the agent-
oriented paradigm. In addition, we have motivated reasons for integrating such a
language with an agent-oriented software engineering methodology in order to provide
better solutions for the development of secure agent-based systems. At the ChiliPloP
2003 workshop, we would like to discuss with attendees how methodologies (such as

Tropos) can provide a mutual ontology for representing the patterns in a pattern language,
and a context for applying patterns within different development stages.

References

Anderson, R. (2001), “Security Engineering”, Wiley Computer Publishing

Bauer, B., Müller, J., Odell, J., (2001), “Agent UML: A Formalism for Specifying Multiagent
Interaction”. In Agent-Oriented Software Engineering, Paolo Ciancarini and Michael Wooldridge
(eds), Springer, Berlin, pp. 91-103

Bresciani P. and Giorgini. P. (2002), “The Tropos Analysis Process as Graph Transformation
System”, In Proceedings of the Workshop on Agent-oriented methodologies, at OOPSLA 2002,
Seattle, WA, USA

Byde, A., Priest, C. and Jennings N. R. (2002), “Decision procedures for multiple auctions”,
Proceedings of 1st Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems, Bologna,
Italy, 613-620

Coplien, J. (1996), Software Patterns, SIGS

Deugo, D., and Weiss, M. (1999), “A Case for Mobile Agent Patterns” Workshop on Mobile
Agents in the Context of Competition and Cooperation, at Autonomous Agents, 19-22, 1999

Fernandez, E., and Pan, R. (2001), “A Pattern Language for Security Models”, Conference on
Pattern Languages of Programming, (PLoP)

Fischmeister, S., and Lugmayr, W., (1999), “The Supervisor-Worker Pattern”, Conference on
Pattern Languages of Programming (PLoP)

Franklin, S. and Graesser, A. (1996), “Is it an Agent, or just a Program? A Taxonomy for
Autonomous Agents”, Proceedings of the Third International Workshop on Agent Theories,
Architectures, and Languages, Springer-Verlag

Gamma, E., Helm, R., Johnson, R., Vlissides, J., (1995), “Design Patterns: Elements of Reusable
Object-Oriented Software”, Addison-Wesley

Jansen, W., Karygiannis, T. (1999), “Mobile Agent Security”, National Institute of Standards and
Technology, Special Publication 800-19

Jennings, N. R. (2000), “On Agent-Based Software Engineering”, Artificial Intelligence, 117(2),
277-296

Lee Brown, F., DiVietri, J., Diaz de Villegas, G., Fernandez, E. B., (1999), “The Authenticator
Pattern”, Conference on Pattern Languages of Programming (PLoP)

Maes, P. (1994), “Agents that Reduce Work and Information Overload”, Communications of the
ACM, 37(7), 30-40

Mouratidis, H., Giorgini, P., Manson, G. And Philp, I. (2002), “A Natural Extension of Tropos
Methodology for Modelling Security”, In the Proceedings of the Agent Oriented Methodologies
Workshop (OOPSLA 2002), Seattle-USA

Mouratidis, H., Philp, I., Manson, G. (2002b), “Analysis and Design of eSAP: An Integrated
Health and Social Care Information System”, in the Proceedings of the 7th International
Symposium on Health Information Managements Research (ISHIMR2002), Sheffield

Mouratidis, H., Giorgini, P., Manson, G. (2003), “Modelling Secure Multiagent Systems”, (to
appear) in the proceedings of the 2nd International Conference on Autonomous Agents and
Multiagent Systems, Melbourne, Australia.

Perini, A., Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., (2001), “Towards an Agent
Oriented Approach to Software Engineering. In A. Omicini and M.Viroli, editors, WOA 2001 –
Dagli oggetti agli agenti: tendenze evolutive dei sistemi software, Modena-Italy

Stallings, W. (1999), “Cryptography and Network Security: Principles and Practice”, Second
Edition, Prentice-Hall

Tidhar, G., Heinze, C., Goss, S., Murray, G., Appla, D., and Lloyd. I. (1999), “Using Intelligent
Agents in Military Simulation or Using Agents Intelligently". In Proceedings of Eleventh
Innovative Applications of Artificial Intelligence Conference, Orlando, Florida

Wooldridge, M., Jennings, N.R., Kinny, D. (2000), “ The GAIA Methodology for Agent-
Oriented Analysis and Design”, Autonomous Agents and Multi-Agent Systems, 3(3), 285-312

Yu, E. (1995), “Modelling Strategic Relationships for Process Reengineering”, PhD thesis,
Department of Computer Science, University of Toronto, Canada

	chiliplop cover sheet
	chili2003

