

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Licciardi, Carlo Alberto; Falcarin, Paolo
Article title: Analysis of NGN service creation technologies
Year of publication: 2003
Citation: Licciardi, C.A., Falcarin, P. (2003) ‘Analysis of NGN service creation
Technologies’, in IEC Annual Review of Communications, vol. 56, 2003, pp. 537-551.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/

1

Analysis of NGN service creation technologies

Paolo Falcar in Carlo Alberto L icciardi
Paolo.Falcarin@polito.it Carlo.Licciardi@TILAB.COM

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi, 24
I-10129 Torino, Italy

Telecom Italia Lab
Network Intelligence Dept.

Via R. Romoli, 274
I-10148 Torino, Italy

Abstract

Network Operators can see next Generation Networks (NGN) as new revenue stream, thanks to
the potential they could have in increasing the service offering. Therefore it’s important to
understand how proposed technologies and solutions in NGN market can enable, flexible and easy
service creation 3. This paper presents the result of the investigation of Eurescom P1109 project
[1] in the area of advanced technologies that enable the introduction of new services in NGNs [5] .
These technologies are evaluated with respect to some key evaluation criteria and then a
comparison is provided.

1. Introduction

NGNs have been promoted to network operators as a way to decrease operational costs of existing
infrastructure. Actually there is no clear business analysis that has proven this thesis. On the other
hand NGN can be seen by network operators and service providers as a new revenue stream from
their potential to increase service offerings. Therefore it is of paramount importance to understand
how proposed solutions in NGN market can enable flexible and easy service creation both to
service providers and 3rd party application developers.
EURESCOM P1109 Project “Next Generation Networks: the Service offering standpoint” [1] has
addressed this issue by evaluating NGNs service platforms in terms of functionality,
programmabil ity, flexibili ty, openness, and inter-operability. In other words the objective has been
to put to the test some of the major benefits promised by NGN, namely productivity, creativity and
new revenues from new business opportunities, and to see how well current product offerings
supported these capabilities, in terms of available tools for NGN service development; evaluating
how much easy and efficient is to develop and deploy NGN services [5]; evaluate product
maturity, standard compliance and interoperability. Among these issues this paper focuses on the
application provider point of view, trying to extract useful guidelines for network operators that
want to migrate to NGN in a profitable way [3]; moreover a description of different service
creation approaches is given, in order to show which options are available to developers.
The paper is structured in different sections: first section introduces motivations and background
needed to understand important issues for creation of NGN services; second section defines key
evaluation criteria (openness to 3rd party developer, easiness to use, simplicity, supported network
capabil ities…) for service creation technologies; they will be detailed in third section, dedicated to
the assessment of API, scripting languages and Service Creation Environments (SCE) that are key
enablers of open service development; finally results of the evaluation are collected and compared
in the last section.

2. Challenges and threats for Operators with NGN services

Operators are thinking about how to make NGN profitable in order to enable a new class of
services like: any-to-any ubiquitous communication services, IP multimedia services, and
audio/video conferencing.
All these services can be developed if NGNs address the main feature of service programmabil ity.
This means the abil ity of implementing new services following the customers’ needs, and to
differentiate the offer faster than competitors. Another important key point is the ability to offer to
customers the same service everywhere, providing a seamless access from different terminals
(mobile phones, soft-phones, UMTS phones…).
These goals can be obtained opening up levels of programmabil ity to third parties or also to the
users that want to personalize their own services. This means reducing costs and offer high quality
services.

2

During the P1109 project, product selection and evaluation has shown that SIP [4] is the preferred
technology to address NGN communications. The most of service creation environment (SCE) are
designed on top of SIP based application servers. When compared to current PSTN networks, Next
Generation Networks will be enriched by much more powerful terminals enabling the provision of
new and innovative services. This remark may mean that massively used simple services with
simple billing policies (e.g. flat rate) will demand much less resources from the
network/application providers than PSTN services.

2.1 Benefits for NGN applications development

Application development in a NGN context is in many aspects very close to Internet application
development. As a matter of fact, the main development skills required from NGN application
developer are related to Java [13] and XML (eXtensible Mark-up Language) [22]. Thus NGN
applications development will be accessible to a broader developer community, because it is more
easy, productive and creative.
The easiness is due to the fact that need for knowledge that is specific to telecommunications is
less than before and it demands for a rapid learning curve.
Productivity depends on the fact that most products don’ t provide a speci fic SCE: this allows using
a standard IDE. This fact frees developers to choose the tools they are used to. Some systems
provide several levels of APIs (abstract, medium and low level): this gives to the developers the
flexibil ity of choosing the most appropriate level of abstraction for a given application (low level
to control all protocol and network specific details, high level to hide network specificity). All
these observations contribute for the developer productivity and, in average, a shorter time is
needed for application development.
Creativity can increase because there is a move to use high-level application environments that can
be used across different vendors. Having such modules can make the work of developers easier as
they can concentrate in the programming aspects rather than the underlying technologies. On the
other hand, the use of IT technologies makes the range of programmable features available to the
developer quite wide, promoting the mix of IT functionalities (e.g.: email, instant messaging,
presence, directories, web data) and telecommunications functionalities (e.g.: telephony, speech
processing, quality of service, billing). These two facts free developers to focus on the creation of
new types of applications that may bring new revenues to service providers.

2.2 Developer perspective

Developers have to overcome a set of challenges. They has to be adaptive in a very dynamic
environment, because there wil l not be a single standard programming interface and developers
need to select the most appropriate one from a wide range of choices.
Developers must become familiar with specific telecommunication problems such as billing,
quality of service and security and they should be able to tackle these issues in a much richer but
complex environment where the programmable features are very broad. However, the specific
telecommunication aspects mentioned previously are not well supported by current programming
interfaces.
A good understanding of communication technologies (like the SIP and Jabber [20] protocols) and
IT technologies (like Java and XML) is required in order to build innovative services.
Nevertheless, the simplicity and similarity of NGN communication technologies to other Internet
protocols (e.g. HTTP and SMTP) facilitates the developer’s job.
It is also important to follow the most relevant open source communities related to NGN to
integrate the state-of-the-art third party components on his/her developments.
Service creation approaches in NGN can be therefore summarized in three categories: based on
programmable APIs, scripting languages, or graphical SCE.

2.2.1 API

A whole variety and type of APIs are emerging in NGN products providing different levels of
functional abstraction. Some are standards conformant (e.g. JAIN [12], SIP-servlet [8]) and others
are not. This can present a very confusing picture to the developer community when having to
choose which API to use for a particular service. On the other side developers can freely choose
the tools they are used to, and l inking components that offers APIs able to give connectivity with
NGN protocols.

3

Some systems provide several levels of APIs (abstract, medium and low level): this gives the
developers the flexibility of choosing the most appropriate level of abstraction for a given
application (low level to control all protocol and network specific details, high level to hide
network specificity).

2.2.2 Scripting languages

Scripting Languages are l ightweight, highly customisable, and typically interpreted languages,
appropriate in the area of rapid application development, acting as glue to provide connections
among existing components. These characteristics allow them to be used to code or modi fy
applications at runtime, and interact with running programs. These qualities and features make
scripting languages applicable to the field of application programmabil ity next to Application
Programming Interfaces (APIs).
Scripting languages represent, in an XML-based fi le, the service behaviour that can be changed at
run-time; they act like a dynamic reconfiguration of the script interpreter that follows a pattern of
registering the static events and criteria that can be matched by events by the underlying network
components, followed by declaration of service logic that should be executed in response to such
an event. Typically, scripts are created, edited, and validated using regular editors or as a result of
applying transformation techniques.
For example the Service Creation Mark-up Language (SCML) [7] and the Call Processing
Language (CPL) are such scripting languages that connect existing components with a particular
API, depending on the script file content. This approach enables rapid prototyping, rapid
application development, and easy end-user customisation; if users are allowed editing their
scripting files, they can directly personalize the service behaviour.

2.2.3 SCE

Using graphical Service Creation Environments (SCE) allows fast development of services with
little knowledge of network protocols; service logic is designed using flow-charts of basic
components offered by the SCE, like the one used to edit services with XTML (see figure 10).
These components offer connectivity with different protocol stacks, linking to external code
(usually java and C++), and connecting to databases. Of course, each component instantiated has
to be programmed but the time to learn SCE’s use is quick and it frees developers from some
technical aspects. Depending on the chosen SCE, a developer can have more or less control on
protocol message fields; in the first case a developer needs a deeper knowledge of technical issues
to avoid risk of losing standard compliance; in the second case a service could be easily developed
but it is not sure if this approach scales to more complex services where a team of developer must
collaborate using the new approach based on graphical SCE.

3. Definition of evaluation criteria

In this section there is a definition of evaluation criteria used for classification and comparison of
different service creation technologies, in short: supported network capabili ties, mapping towards
reference architecture, interface abstraction, kind of interface (and description language),
suitabili ty for 3rd party development, easiness to use, industry support, maturity, and future-
proofness.
The first criterion is based on Network capabilities, i.e. the abstraction of underlying network
infrastructure that can be used by application developers to exploit network functionalities; they
can represent both functional (e.g. call control) and non-functional (e.g. authentication, logging…)
aspects. Parlay/OSA [6] consortia have defined a set of capabilities, which have been considered
as a basis for the following definitions of different network capabilities:
• Framework Functions is a part of the Open Service Access (OSA) API interface which

provides management capabili ties needed for accessing service interfaces in a secure and
manageable fashion. It controls authenticated access to Service Capabil ity Servers (SCSs) and
also supports standard interfaces like service registration, service discovery, authentication, etc.

• Generic Call Control (GCC) feature: it is the set of interactive procedures required to establish,
maintain, and release two party calls.

• Multi-Party Call Control (MPCC) feature is an enhancement of Generic Call Control
functionalities with leg handling capabilities, in order to allows for multi-party calls to be
established.

4

• Multi-media call control (MMCC) enhances the functionalities of the Multi-Party Call Control
Service with multi media capabil ities, allowing granular control of media stream (independent
setup and tear down of media streams within the same call).

• Conferencing Call control (CCC) extends the Multi-Party Call Control with the abili ty to
manage conference sessions. A conference can have zero or more members and includes the
capability to have, via an appropriate conference bridge a multicast conference, sub-
conferences.

• 3rd Party Call Control (TPCC) allows an application to set up and tear down a call between
two users.

• Generic User Interaction (GUIN) is used to enable network resources such as voice response
units to be connected to the caller to prompt them for information (typically digits) required by
the application logic. It may also be used to record and delete messages applicable to a single
call session.

• User location (UL) is the ability to determine the geographical location of a user: this may be
undertaken using the cell identity, from which a mobile user is connected; otherwise it may
also be provided using GPS information stored on the users terminal, or it can be ascertained
for fixed PSTN terminals, or IP based terminals.

• User status (US) is about the availabili ty of the user (also referenced as Presence information
[19]): it defines two main events, subscription to and notification of changes in the
communications state of a user.

• Data access session control (DASC) provides a means to control and manage data sessions and
the establishment of a new data session. This has typically applicable to GPRS sessions within
the underlying network infrastructure.

• Messaging is about accessing and managing mailbox folders: a messaging system is assumed
to have the following entities: Mailboxes, Folders and Messages.

• Terminal capabilities (TC): is provided so that an Application provider my request from the
network operator, what are the capabili ties of the users terminal. The application may, need to
send information such as pictures or text to the users terminal. The application provider is then
able to tailor the information appropriately.

• User profile (UP): It contains information to present the personalized user interface within the
capabilities of the terminal and serving network, and identification of subscriber services, their
status and related service preferences.

• Matching to CAMEL/IN is an evaluation criterion that indicates how a technology can cover
different aspects defined in CAMEL [21] specification for Intelligent Network and mobile
network interoperabil ity.

The second criterion defines which place a technology covers in the categorization proposed in
P1109 project as reference architecture, depicted in figure 1.

Figure 1. The P1109 Reference architecture

This layered architecture defines a distinction among technologies, depending on their
characteristics: application server layer includes technologies used to execute services,
programmed with tools, represented by the Application Creation Environment layer; call server

������� � ����	
� ���
����������

Pack et
N et w or k

A pp l icat i on C r eat ion
En vir onm ent

������� �
����	
�������

A ccess
N etw ork
2N GN

M essagi ng
Ser ver

M ed ia
Ser ver

M essage
R esou r ce

C al l
Ser ver

M ed ia
R esou r ce

5

layer includes technologies handling routing and delivery of voice calls; media server layer
represents technologies involved in multimedia communications, and messaging server stands for
entities handling messaging and asynchronous communications. Media Gateway layer represents
networks related technologies.
Third criterion is the evaluation of interfaces offered by technologies to developers; the interface
evaluation defines the level of abstraction (AIL), the kind of interface (KOI), and its type of
Interface Definition Language (IDL).
Regarding the abstraction level of an interface, an abstract interface hides technical details of the
underlying technology to the developer, in order to gain more portabili ty, easiness of use, concise
programming; a mid level interface hides parts of the details of the underlying technology, but still
requires some level of knowledge form developer, and also the ability to choose controlling low
level details; a low level interface provides detailed access to the underlying technology (e.g. a
network protocol stack), such that the application developer has to manage with less portable and
more lengthy code, using technology specific API that are more difficult to learn.
The “kind of interface” should describe the communications method by which the technology in
question is exposing network capability to external systems. This should include the following
categories:

- Application Programming Interface: that can be Local, when the API is only resident on
the local execution platform or Distributed, when it is accessible from distributed nodes
in the network.

- Protocol based interface: if it is a direct interface to a protocol stack
- Scripting Language: if the information used to program a technology is passed using

scripting languages ‘ interpreted’ at runtime (e.g. XML-based and policy languages).
The type of interface defines the language used to define its API; we can classify them in
Computing language based (Java, C++), middleware based (OMG IDL in CORBA, WSDL in Web
Services), or data definition based (e.g. XML DTD for CPL or XML Schema).
Another criterion used in evaluation is programmability: that is suitabil ity to 3rd party application
development (TPAD), which describes the qualification of the technology in support of application
development by 3rd party developers, and the suitability to 3rd party service provider (TPSP),
which should describe the qualification of the technology in support of 3rd party service provider
hosting of applications and services.
An important criterion is also Usability or Ease-of-use (EOU): this can be measured depending on:

- The background needed by the developer, i .e. how much knowledge/experience is
required of the underlying technology

- Time-to-service, i.e. how quickly it is to develop and deploy applications using this
technology

- Power: the scope of what may be accomplished by using the technology in question.
An important issue to be evaluated is also the industry and standard support (IS/SS), which
measures technology’s availabil ity and maturity, showing how well this technology is supported in
the industry and provide a general statement as to the level of its maturity in relation to approved
standards.
Finally, the evaluation criterion of Roadmap technology (RT) should identify future publicly
available plans for the technology and where possible describe time scales and details of releases
(e.g. enhancements, features and functions), while the Future-proofness (FP) should describe how
well a technology relates to emerging technologies in the industry and possible factors that
promise a future for it.
Here follows a resuming table of all evaluation criteria and the possible values they can assume
when applied to a particular technology.

6

Table 2: Definition of Evaluation Criteria

4. Assessment of service creation technologies

In this section we describe some of the more interesting technologies that can be used for service
creation in NGN, using more relevant evaluation criteria defined in the previous section.

4.1 OSA/Parlay
The Open Service Access (OSA)/Parlay [6] defines an architecture that enables the inter-working
between the IT applications and the telecommunications features in the mobile network through an
open standardized interface, i.e. the OSA/Parlay API’s. The network functionality is described as
Service Capability Features (SCFs) and applications could be deployed in a third party
administrative domain. SCFs implement groups of Parlay/OSA APIs (e.g. Call Control APIs,
Mobil ity APIs, etc.) and provide access to the network capabil ities that a Network Operator wants
to export through OSA interface. They are provided/implemented by Service Capabil ity Servers
(SCSs) that are logical entities that implement one or more SCFs and interact with the network
elements (e.g. SSP, HLR, Location server, etc.), as depicted in Figure 3.

 Evaluation Criteria Acronym Possible Values
Framework Functions FF yes, partially,no
Generic Call Control CC yes, partially,no
Multi-party call control MPCC yes, partially,no
Multi-media call control MMCC yes, partially,no
Conferencing Call control CCC yes, partially,no
3rd Party Call Control TPCC yes, partially,no

Network Generic User Interaction GUIN yes, partially,no
Capabilities User Location UL yes, partially,no

User Status - Presence US yes, partially,no
Data access session control DASC yes, partially,no
User Interaction-Messaging UI yes, partially,no
Terminal capabilities TC yes, partially,no
User Profile UP yes, partially,no
Matching CAMEL-IN CAMEL yes, partially,no
Interface Abstraction Level IAL abstract, high, low

Interface Kind Of Interface KOI local,distributed, XML, language
Interface Definition Language IDL C++, Java, IDL, WSDL,…

Programmability for application development TPAD yes, partially,no
for service provider TPSP yes, partially,no

Usability (Ease Of Use) EOU yes, partially,no
Support Industry Support IS wide,significant, emerging

Standard Support SS standard-based, proprietary
Product Maturity PM high,medium,low
Future Proofness FP wide,medium,low
 Mapping towards MRA Application, Call, Media,
 Reference Architecture Messaging, Media gateway

7

framework User Location Call control

HLR CSE WAP

Gateway,
Push-Proxy

Servers

E.g. Location server
MExE server
SAT server

Service capability server(s)

Interface
class

OSA interface

Open
Services
Access

discovery Application

Application
server

service
registration

Figure 3: OSA architecture

The goal of OSA/Parlay is to identify and specify a Programming Network Interface in order to
easily create applications using the network services provided by the Telco networks. The set of
SCFs could be incrementally extended, because one of the aims of OSA/Parlay is to provide an
extendible and scalable interface that allows for inclusion of new functionality in the network in
future releases with a minimum impact on the applications using the OSA/Parlay interface. Main
requirements and strong points of OSA/Parlay are:

• Hiding the complexity of the network, i ts protocols and specific implementation from the
applications;

• Being suitable to 3rd party application development, but developers need a certain level
of telecommunication expertise.

• Providing a secure, controlled access to network capabili ty provided by a network
operator to 3rd party service providers;

• Exposing almost all the network capabili ties (defined in the previous section) provided by
the corresponding network protocols and it eases the development of services combining
several service capabilities and integrating IT applications.

OSA/Parlay maturity has become significant, mainly after creation of the joint working group,
including 3GPP CN5, ETSI SPAN12, Parlay, and JAIN, with the goal to make these similar (but
partially different) specifications converging in 2002 in OSA Release 4 and 5.
Referring to the P1109 Reference Architecture, OSA/Parlay can be seen as a complete effort to
standardize interfaces among application server level and all underlying levels (call server, media
server, messaging server).
Industry support is growing fast and Application Servers specialized for Parlay/OSA applications
are proposed by several vendors proposing SDKs based on Web Services, J2EE development
framework, or on JAIN SPA.
Parlay/OSA APIs provide a medium level of abstraction of the network capabili ties. They provide
an abstraction from different specific protocols, but the abstraction level of Parlay/OSA APIs is
not judged oriented to traditional IT-developers and it could affects usability.
Several products are available, including Parlay/OSA Gateway, Parlay/OSA Framework,
Application Servers, and applications. Most of the vendors' solutions are oriented to mobile
network scenarios and several network trial have been already done, and some network operators
is planning to deploy OSA/Parlay solutions in 2003.
OSA/Parlay APIs are provided as distributed APIs, through distributed processing mechanisms.
Mapping on CORBA/IDL is already available, while mapping on Web Services technology (e.g.,
WSDL, SOAP) is under definition in Parlay-X initiative.

4.2 Web Services
The main goal of Web Services architecture is the realization of an interoperable network of
services focused on service reuse and it is suitable both to interact with 3rd party applications and
to export services by a network operator or a service provider.
The Web Services can be used to export network services by exposing its WSDL (Web Services
Definition Language) [16] interfaces; these services communicate using SOAP [17] (Simple
Object Access Protocol), a protocol used to transport data between web services; service discovery

8

and service registration are implemented accessing to the UDDI (Universal Discovery, Description
and Integration) registry [15]; XML is used as data format for SOAP messages that rely on
existing internet protocols like HTTP. Web Services implementations need that the language-
dependent API must be translated in WSDL and the application server where web-services are
deployed must translate incoming SOAP messages to the underlying interfaces (Java [13],
CORBA...).
Different Web Services toolkits are available and some Application Creation Environments
include them or offers a plug-in to handle Web Services. Toolkits can be used to translate in
WSDL the existing applications’ interfaces made with different languages. These toolkits also
generates SOAP proxies used within the application server in order to translate SOAP messages in
the underlying application language.
Network capabili ties, as defined in OSA, are not present, because Web Services are a new
middleware aiming to achieve real interoperabil ity using SOAP as an application-level
communication protocol, used to transport data between two web services, coding message
parameters with XML. This message could be rely on existing Internet protocols but current
toolkits implement SOAP mainly over HTTP, in order to bass through firewalls. XML encoding of
big messages can obviously affect performances and introduce additional overhead.
With regards to P1109 reference architecture, services running on different Application servers
could communicate using SOAP messages; another scenario can be made by a call server (e.g. a
Parlay-X gateway) exposing WSDL interfaces (depicted with red boxes in Figure 4), that offers
network connectivity to a 3rd party service running in an application server external to the call
server domain; intra-domain connectivity among different components can be obtained migrating
to Web Services, when different technologies must communicate.
A Web Services toolkit can then be seen as a plug-in of the service creation environment that can
be used on code made with other IDE or it can be integrated within an IDE

����� ������	�
��	
��� �	�� �������������������

� ���� �
� ���������Packet

Network

Access
Network
2NGN

� ��� � � !������ "#$�%	������� "#'&�#(
� 	�"#�)*��#��

� ���%� �
� ����������

Access
Network
2NGN

+-,�,�. / 0�1%2%/ 3�465*7�8�9�7�8

27�8�:;/ 41�.

+<,�,�. / 0�1�2%/ 3%465*7�8�9�7�8��= � �

��= � �
��= � �

Web Services
Toolkit

Figure 4: Web Services & P1109 reference architecture

Most important companies are investing a lot in Web-Services; in fact most used toolkits are
provided by IBM, Microsoft (included in .NET framework), Sun (included in Sun One framework
for J2EE) and also Apache is providing one. Web services are currently a good solution to
integrate existing heterogeneous applications and a new way to access to the Web, but they are not
mature yet for a widespread deployment because they still have some open problems l ike:

• The lack of a standard for transactions definition with XML, even if WSFL, XLANG and
XAML are new specifications trying to cope these issues;

• The lack of a common standard framework for security, beyond reusing HTTPS;
• Absence of warranties about the contents of UDDI service repositories;

9

• Slow performances with current synchronous SOAP invocations provided by toolkits.
• No way to set up QoS parameters and to handle fault-tolerance and high-availability

4.3 SIP servlets

SIP servlets are a set of libraries that are used to create services on a SIP based network. The SIP
Servlet API [8] is a Java API based on the previously existing Servlet API. SIP Servlets are also a
programming model where the Servlets (the applications) are hosted by an infrastructure known as
a Servlet container (see figure 5). The SIP Servlet specification has also the objective of
standardizing the following aspects of a Servlet container: the rule based mapping between
Servlets and SIP requests, the security model, the servlet deployment descriptor (as an XML
DTD), a jar-based file format (similar to the WAR file format used by HTTP Servlets) for servlet
deployment.
The SIP Servlet API allows application to initiate and to answer SIP requests. Therefore it simply
exposes SIP capabil ities (both User Agent and Proxy capabil ities) to the application while hiding a
few protocol details handled transparently by the SIP Servlet container.
SIP Servlet API is suitable for third party service development. It could be noted that third party
service development is rather simple since they are seen as Java l ibraries.

SIP stack

SIP Servlet API

Servlet
SIP

Servlet
SIP

Servlet
SIP

UA

function

Proxy

functionProtocol unrelated
container function

SIP Servlet container

SIP stack

SIP Servlet API

Servlet
SIP

Servlet
SIP

Servlet
SIP

UA

function

Proxy

functionProtocol unrelated
container function

SIP Servlet container

Figure 5 – SI P servlet and SIP servlet container

The SIP Servlet API allows application to initiate and to answer SIP requests. Therefore it simply
exposes SIP capabil ities (both User Agent and Proxy capabil ities) to the application while hiding a
few protocol details that are not considered useful to most of the applications. Protocol details
handled transparently by the SIP Servlet container are: message retransmission, best response
selection (e.g. when multiple responses are received when forking occurred), CSeq generation,
Call-ID generation, Via header handling.
With regards to P1109 reference architecture the SIP Servlet container resides in the application
server level, and as an emerging standard API, the SIP Servlet API is suitable for third party
service development.
Looking at the JCP web site, the SIP Servlet API first specification version is sti ll at community
review stage (i.e. it is not yet publicly released). A second version is already foreseen and it should
standardised non-API aspects of the SIP Servlet container.

4.4 JAIN SIP Lite

The JAIN SIP Lite API [12] is a Java API and it is only aimed at SIP User Agent type
applications, which clearly define the kind of network capability exposed. Its methods expose SIP
User Agent capabilities while hiding a few protocol details. The goal of the JAIN SIP Lite API is
to enhance efforts made by JAIN-SIP and SIP servlets API: these ones can be seen as a wrapper on
protocol stack and they requires an expert developer to be rightly programmed. JAIN-SIP Lite
offers a higher-level API than is able to handle some SIP technical aspects, transparently to
developer. The main differences compared to SIP servlets are that JAIN SIP Lite doesn’ t
necessarily address application development within an application server and it doesn’ t mandate a
SIP proxy function within its supporting platform.
With regards to P1109 reference architecture the JAIN SIP Lite API could resides in the
application server or in desktop applications. As a standard API, the JAIN SIP Lite API is suitable

10

for third party service development. The JAIN SIP Lite API specification is currently standardised
within the JCP. At the time this section is written the specification is sti ll at community review
stage, and then not publicly available.

4.5 VoiceXML (Voice Extensible Markup Language)

VoiceXML [14] has been defined as a technology that allows a user to interact with a web server
through voice-recognition technology, which exploits Media Server capabili ties. Using
VoiceXML, the user interacts with voice browser by l istening to audio output that is either pre-
recorded or computer-synthesized and submitting audio input through the user's natural speaking
voice or through a keypad, such as a telephone. VoiceXML can also be described as a phone
markup language that can be used for voice applications that provide phone access to content and
information, so it supports the network capability previously defined as GUI (Generic User
Interaction).
However it should be noted that while there are many technologies concerned with speech
recognition as a means of automated dictation, translation, and so on, VoiceXML is not one of
them. Some elements of these technologies are present, but VoiceXML limits dialogs to enable
voice interaction with arbitrary members of the public. Generic voice to text conversion, such as
dictation or translation, requires some degree of training of the speech recognition engine in order
to reliably recognise the speech pattern of a given user and is not a task suited to VoiceXML.
Other features are:

• XML Content can be accessed from any web server, providing a powerful solution for
distributed content management;

• High Security: SSL can be used between voice browser and the web server thus making
VoiceXML transactions highly secure, and not requiring human intervention;

• The code is processed in the “client side” on the voice browser, so any user can dial in the
application;

• Each page acts as a standalone module that can be tested and debugged easily;
• Total abstraction of resource management.

Following the P1109 Reference Architecture, a VoiceXML interpreter can be seen as an enhanced
feature of a media server, but its internal architecture (depicted in figure 7) is made of different
parts:

• The voice browser : this is the software that renders the VoiceXML as a sequence of two
dialogs between the system and the user. It is made of a core VoiceXML interpreter,
integrated with software components for Text to Speech and audio file output and for
speech recording and recognition (Automatic Speech Recognition). It is here that that the
code is interpreted and “displayed”, and all the phones can be used to dialup the voice
browser.

• Web server : where the application pages reside. The application pages can be
VoiceXML files, ASP, JSP, or PHP to dynamically create VoiceXML pages.

Figure 6. Basic Architecture for a Voice XML Service

The user dials in to a particular phone number or SIP URI corresponding to the voice browser.
The voice browser sends an HTTP request for the VoiceXML document to a server determined
from the dialled number.

Voice Browser

11

The voice browser renders the VoiceXML as a sequential dialog, consisting of prompts using
either text to speech or pre-recorded audio. The input could be available through speech or touch
tone key presses.
VoiceXML is a wide accepted standard with which voice applications are developed on the
Internet. VoiceXML represents media server level in P1109 reference architecture and it should be
noted that the interface from the application server to the media server has not been fully defined.
It is possible that SIP and VoiceXML will be the interface between next generation application
servers and media servers. SIP and VoiceXML can be used together for initiating and terminating
sessions of all types, not just signalling and control sessions but also content sessions. These
sessions could convey simple presence information such as, “ I am in my office”, meaning that my
presence is in the office or “ I am at home” meaning don’ t send me any documents or other media.
The ability to establish these sessions means that a wide range of innovative services become
possible.
VoiceXML is a high-level abstraction language and this means that developers with little training
can use it. VoiceXML makes it easy to rapidly create new applications and shields developers
from low level programming issues. VoiceXML also executes logic: main components of a
VoiceXML-based speech service include tags, forms and rules that define the content and a speech
browser for interpreting and presenting audio content. VoiceXML platforms are widely available
and vendors are collected by the consortium VoiceXML Forum.

4.6 CCXML (Call-Control extensible Markup Language)

Call Control eXtensible Mark-up Language (CCXML) [11] is a call control language that aims to
offer sophisticated call-handling capabili ties, integration with call centre technology and multi-
party conferencing (in particular to interact with media server). CCXML has been designed to
complement and integrate with a VoiceXML system, because it cannot support some needed
features. For example, support for multi-party conferencing, plus more advanced conference and
audio control, the abil ity to give each active call leg its own dedicated VoiceXML interpreter.
VoiceXML needs a more effective way of handling telephony resources and for richer and more
asynchronous events. For example CCXML could be integrated with a more traditional IVR
system and VoiceXML could be integrated with some other call control system.
Currently CCXML Specification is at a draft stage, publicly available on W3C in January 2002.
CCXML is designed to work with VoiceXML to provide voice dialog interaction with the user.
However, a CCXML Interpreter can exist without a VoiceXML Interpreter.
Concerning the network capability exposed, CCXML aims to provide multimedia multiparty call
control features, including:
• Outbound calling: Make and control an outbound call.
• Control of multiple calls: Independently control multiple outbound calls and optionally

provide voice dialog interaction on each one of them.
• Whisper transfer: Provide a message to the recipient before connecting the call to the caller.
• Conferencing: Enable more than two people to converse with each other at the same time.
• Coaching: a supervisor whose purpose is to eavesdrop on a conversation between the user and

the support agent in order to allow to coach to 'whisper' advice to the agent.
• Event handling: Handle asynchronous events that come from telephony infrastructure and the

VoiceXML Interpreter.
• VoiceXML Interpreter session initiation and termination - Initiate a dialog session that is

executed in a VoiceXML Interpreter and have the abil ity to start and stop a VoiceXML
session at any time.

• CCXML Interpreter session initiation: During an application transaction, a new application
can be launched (for example, a platinum card holder could be transferred to a different
application after his PIN is entered, while a non-platinum card holder would continue through
the original application).

• Conditional logic: Add conditional logic to your applications with elements such as <if>,
<else>, and <elseif>.

• Post data to a web server: Interact with a web server using elements such as <goto> and
<submit>.

The set of telephony-related events is derived from the JTAPI/JCP/JCC event.
The CCXML aims to reach mass deployments with programming switch from APIs to scripting
language that could provide all the features needed by more than 90% of applications. The
remaining applications would be programmed by traditional APIs technologies.

12

As depicted in figure 7, there are several identifiable objects in the CCXML universe: CCXML
programs, Call legs, Conference objects, and Audio connections. These are media streams between
two legs and/or conferences. Moreover voice dialogs objects representing voiceXML programs
must interact with a two-way audio stream, and CCXML can send and/or receive the asynchronous
events with these objects.

Figure 7 – CCXML information model

The CCXML aims to offer abstract interfaces and to be network agnostic and to be independent of
the Call Control signalling but the specification draft seems to favour SIP network
implementations.
In the P1109 reference architecture, the CCXML scripting interpreter fits well in the Call Server
network element while the CCXML script may be hosted or dynamically generated by the
Application Server. The CCXML Call Server would interface the Application Server via HTTP.
As mentioned above CCXML Call Server aims to be Call Control signalling independent meaning
that it should be able to interface Media Gateways, Terminals and other non-CCXML Call Server
by using any valid Call Control Signall ing.
The interface between CCXML Call Servers for passing events between related Call Control
threads is currently undetermined. HTTP and SIP are mentioned as two options as well as SOAP.
This is a major drawback from current draft that should be fixed in future releases to guarantee
interoperability between different CCXML Call Servers.
The same observation applies for the interface between CCXML Call Servers and voiceXML
Media Servers.
Regarding third party programmability, CCXML follows very much the approach proposed by
voiceXML, which is quite successful in terms of business models based on third party service
providers and developers. CCXML third party provisioning may be achieved by solving issues,
regarding trust relationship, and authentication.
The CCXML language was just proposed in the W3C as a draft in 2002. Its l ink to voiceXML
success promises a bright future. There are still several issues to be resolved, l ike:

• Communication between CCXML instances on the same or different hosts;

13

• Communication between CCXML instances and VoiceXML instances on the same or
different hosts

• Asynchronous communication of events from external entities to existing running
CCXML instances

• Outbound Notification – CCXML script triggered by the application

4.7 JCC (Java Call Control)

JCC is a Java API that provides abstraction of call control capabilities, and it is standardized
within the scope of JAIN. JCC allows applications to be invoked or triggered during session set-up
in a manner similar in spirit to the way in which Intell igent Network (IN) or Advanced Intell igent
Network (AIN) services can be invoked. JCC thus allows programmers to develop applications
that can execute on any platform that supports the API. It also allows service providers to rapidly
and efficiently offer services to end users by developing the services themselves, by outsourcing
development, purchasing services developed by third parties, or a combination thereof. It has to be
noted that a specific call model (including specific state machines) is defined within the API.
Regarding Network capabili ty exposed, JCC includes the facilities required for observing,
initiating, answering, processing and manipulating calls, as well as to invoke applications and
return results during call processing. Here a call is understood to include (but is not necessarily
limited to) a multimedia, multiparty session over the underlying integrated (PSTN, packet and/or
wireless) network. It is l ikely that the facil ities offered by this package will suffice for
implementing most, but not all, of the basic and added-value services offered by carriers. In order
to have the entire network capabilities, the programmer should refer to the JCAT (Java
Coordination and Transaction) API.
The API can be used to implement a wide variety of other integrated voice and data applications
like: First and Third-party originated and terminated calls, Voice virtual private network (VPN),
Toll-free number translation, Voice-activated dialling, Click-to-dial, Meet-me conference.
JCC is explicitly aimed at converged network and is foreseen to be implemented using soft-
switches/call agents/… thus it is assumed to provide an abstract interface to the application. Thus
the network may consist of the PSTN, a packet (IP or ATM) network, a wireless network, or a
combination of these, without affecting the development of services using the API.
With regards to P1109 reference architecture the JCC API could be implemented in two different
ways: JCC implementation can be included as a library in applications in order to give network
connectivity with the Call Server or directly with the Media Gateway level.
The API is not intended to open up telecommunications networks’ signaling infrastructure for
public usage. Rather, network capabil ities are intended to give an approach that allows
independent service developers to develop applications supported by the network without
compromising network security and reliabili ty. With regards to this third-party use case it is also
worth mentioning the existence of a reference implementation and a compatibil ity test suite. A
draft of the final version is publicly available since January 2002. JCC is the Java version of the
Parlay call control API but, unfortunately, not functionally identical to the UML version of the
Parlay call control API; it is hoped that future revisions to the JCC and Parlay call control APIs
will close this gap.

4.8 CPL (Call Processing L anguage)

CPL is a scripting language defining how to handle outgoing and incoming calls in NGN
networks. CPL was developed as an XML-based scripting language to be run on a SIP proxy
server to implement services.
CPL is mainly intended for non-trusted end users to upload their services on SIP servers. CPL
scripts created by end users can be uploaded to SIP servers for call set-up in a secure environment.
CPL is lightweight, efficient, easy to implement, extensible because it is possible to add
customized features in a way that existing scripts continue to work. CPL exposes a main network
capabil ity: the call control feature, then in the reference architecture CPL interpreter can be hosted
by the Call Server and the CPL scripts could be retrieved from the Application Server via HTTP
GET/POST (even, dynamically generated from Server Side components) following the
mechanisms used by VoiceXML architecture.
CPL is a high-level abstraction language because also users can easily write and edit their
applications. As CPL is XML-based, the kind of interface offered to the application level is the

14

scripting language itself. There is a range of commercially available CPL products and it should be
noted that probably all Application servers deployed in SIP/H323 network have support for CPL.
CPL could be used for implementing services in a number of different scenarios: using scripts
created by the end users and uploaded to a server, or using scripts created by the server
administrators on behalf of the users, or using scripts created by web applications that translate it
in CPL. Because CPL is a standardized language, it can be used to allow third parties to create or
customize services for cl ients. These services can then be run on servers owned by the end user or
the user’s service provider. CPL is a quite mature language and it is almost fully specified.
However, CPL cannot originate calls towards two or more users because it is activated only
through call related events, and cannot be used to create complex scripts. This is because CPL
structure is defined on DTD (Document Type Declaration) [23], that is one of the language used to
define and validate XML files structure, but it is not so flexible like XML-Schema [24] that is
more extensible and it is easier to learn because is similar to XML.

4.9 SCML (Service Creation Mar k-up language)
SCML [7] is an XML-based scripting language useful to define services in NGNs and defined
within the JAIN Initiative. The figure 8 describes the relationship between SCML language and
JAIN/Parlay reference architecture.

Figure 8: SCML approach in a Parlay/JAIN environment scenario

The Service Creation Mark-up Language (SCML) Service Creation environment assumes (but is
not limited to) a JCC 1.0a API implementation.

SCML is supposed to handle multiple capabil ities (from Terminal Capabilities to User Interaction,
Multiparty, Multimedia, and Generic Call control), which could be exposed by Service Provider
and used by Application developers. Currently the work has focused merely to Call Control
Capabilities. In addition to that the scripting language allow through the register message to
register event, which the application is interested to be notified to. The register element enables a
script to register for a particular set of events. A registration remains valid unti l the script is
deactivated. A script is activated upon execution and if the script registered for events, it is
deactivated through de-registering the scripts registrations.
With respect to the reference architecture depicted in Figure 10, SCML scripts can run on a call
server, on application server or on intell igent endpoint (not depicted here). A script can control the
service logic and consequently the call depending on the information which is provided by other
functional interfaces (i.e. JCC) and/or on settings controlled by the user. In the Service Creation
Phase and in the application creation environment the script is created by using XML tools (e.g.
XML or XSL editors, XSLT), text editors or by converting JAVA/C++ programs. The Application
Creation environment takes also care of deployment phase, where the SCML script is validated,
and upon syntax validation is stored in a repository. The script will then be activated by
downloading it to the Application Server for execution.

15

An XML processing engine is supposed to run in the application server (SCML processor). The
SCML processor acts as an interpreter to convert SCML instructions to the Call Server language
(SIP Protocol, JCC API…)
In Figure 9 CASE a, alternatively the Application Server could send XML messages (i.e. via
SOAP) to another XML processor, collocated in the Call Server making the interaction
Application Server – Call Server language independent.
In Figure 9 CASE b, the former approach has better performance and it could be more suitable for
inter-domain interactions, the latter would be more appropriate when Application Server and Call
Server belong to two different domains (3rd Party Service Providers).

����� �
���	��
	�	� ����� � ������
���

� ����� �
� �	� �	� �	�Packet

Network

Access
Network
2NGN

���	� � � � ��� � ��� � ��� ��� � ��������
	� ���	������ �

� ����� �
� �	� ��� ��

Access
Network
2NGN

 "!�!$# % &�'�(�%)�*,+�-$.�/�-$.

0 ��1�2"34 � � � �	� ��41�576 � � �78
��9����: � ��
0 ��1�2<;��1�4

� � �78
��9����: � ��
0 ��1�2<;	�$1�4

� � �78 3 ��� �=8 Deploy

Activate

>?�=8 ����� � ��3 0 ��@��

� � �78
�	9��	�: � �	�
0 ��1�2<; ���

A�BDC�E�F G HJIJK LJK IMHJIJKA�BDC�E�F GMHMIJK LJK IJHMIJK
CASE a) SIP/INAP

Protocol
XML/SOAP - CASE b)

Figure 9: SCML in an NGN scenario

The interface abstraction can be considered high level API. It is based on JCC API standardised by
JAIN and therefore it’s truly protocol independent. It hides network complexity and it allows
handling basic events to process a call. The element type can be easily mapped on any network
protocol primitives (SIP, ISUP, Q931, INAP).
The Service Creation Mark-up Language has been designed to make li fe easier to application
developers, in particular to the ones who are familiar with XML and web programming. While is
using DTD (Data Type Definitions), SCML is using XML schema. The advantage of the latter
approach is that the programmer does not have to learn a new notation. The application developers
should be able to start developing services after a very short training period.
Regarding suitability to 3rd party service provider, SCML does not support explicitly mechanisms
to support not-trusted relationships. However it could rely for that on the security mechanisms,
which are provided by Parlay/OSA (Framework interfaces). In addition SCML scripts could be
easily hosted on network provider domain and executed in a trusted environment.
The SCML looks quite easy to use (almost the same complexity of CPL). However with respect to
CPL it is more powerful and flexible.
OSA/Parlay APIS are being specified by JAIN SCE Expert Group. The specification is also
available at XML.org and they have been submitted as Internet Draft to IETF PINT Working
Group (November 2001). Current version under Expert Group review is 0.5.1. The specification is
in early stage and there is currently no product supporting it yet. The work is promising and inputs
to Parlay web services and Parlay-X are likely to be done.

4.10 XTML (eXtensible Telephony M arkup Language)

16

XTML [26] is an XML-based scripting language, which has been designed to provide a
framework for telephony or multimedia application development without relying on a specific
signaling protocol. It doesn’ t mean however that the application is independent of the signaling
protocol, but merely that this technology is. In particular, an application can be very protocol-
dependent if the support of the signaling protocol is offered at a low level. XTML is event-based:
A XTML application is composed of a set of event handler, which responds to some given events.
Events can be either protocol-independent (a timer expires, a session is started) or protocol-
dependent (a SIP message have been received). An event-handler is made of a set of actions,
which are l inked together to reflect the application call-flow, as depicted in figure 11.

Figure 11. The Service Creation Environment for XTML

In addition, XTML introduces the notion of variables, which can be either local to a function
(event handler), global or shared (i.e. shared among all the instances of an application). Scripts in
JavaScript can be attached to any action to be executed to either before the action is executed, after
the action is executed (but before the result is evaluated) or after the action is executed (and after
the result is evaluated). Scripts could be used to do computation tasks or to update the value of
variables.
The support for protocol-dependent aspects is introduced using a plug-in mechanism to define
protocol-dependent actions. Each protocol-related action (e.g. the sending of a SIP message) is
developed as a plug-in (with a specific name, specific parameters, and of course, a specific
behavior). XTML is used by a proprietary technology, and it was proposed as a W3C standard.
XTML specifications are public and open so that any vendor could build their own XTML-aware
product. At the moment, only one vendor has developed products based on the XTML technology.
Since XTML in itself is protocol agnostic, there is no network capabil ity exposed.
The level of abstraction of the network level with regards to the application level depends on how
the protocol is made available to the application: the only implementation available allows
connecting with MGCP and SIP network elements. An XTML application is responsible for
handling all of the SIP messages received (which are related to the current session), and to fully
specify the SIP messages to send. However, it is the responsibility of the SIP stack to handle
retransmissions and to check the validity of both the received and sent messages.
An XTML application is supposed to be run on an Application Server that can support one or more
signaling protocols. So the exact position of XTML in the network depends on the signaling
protocols used.
Since an XTML application server can be run on a very limited infrastructure, third party
developers can develop services without making huge investments. However, since the protocol is
handled at a rather low level (at least, for the current implementation of the SIP protocol), some
specificities of the target network may need to be taken into account by the service developer.
Since XTML is not standardized, the roadmap for that technology is not known. The only thing
that can be noticed is that XTML seems to be in a pretty stable state.

17

5. Overall assessment of evaluated technologies

In the following table, we summarize different technologies, putting in evidence their evaluated
features: network capabili ties offered, kind of interface and supported languages, programmabil ity,
usabil ity.
 The following table is a summary of the evaluation of the technologies with respect to the selected
criteria. Acronyms in the table can be found and are extensively described in the first section,
while here is a brief resume of acronyms used: CC (Generic Call Control), UL (User Location),
MP (Multi party CC), US (User Status or presence), MM (Multimedia), DASC (Data Access
Session Control), TPCC (3rd Party CC), DTD (Document Type Definition), UI (User Interaction
Instant Messaging).

Table 11. Overall assessment of service creation technologies

Network Capabilities Usability Industry

Abstraction Kind Interface Applic. Service
Level of Of Description develop. prov.
Interface Interface Language

Framework, Wide
CC (also MP, MM) Standard based
UI
UL/US
DASC
Messaging, (others)
Good matching CAMEL/IN
N/A Wide
Application-to Application
middleware

Standard based

CC Significant
IM & Presence Standard based
Not matching IN
CC Significant
IM & Presence Standard based
Not matching IN
No network capabilities
(network capabilities are
PAC dependant)
Not matching IN

Wide
GUIN Standard based
CC Wide

Standard based
CC (MCC)
UI
TPCC
NO Camel/IN matching
CC Emerging
yes W3C Standard
CC Significant
UI Standard based
Partly matching IN (some
similarities in call model)

Yes No NoJAIN-CC Low level Java N.R.

Proposed to
JAIN-SCE
standard &
IETF

CCXML High Level XML script DTD yes yes Yes

Yes Yes Yes

SCML High Level XML (Java) XML
Schema

Yes Yes Yes (if SCE
available)
otherwise no

CPL High Level XML DTD

Proprietary

VoiceXML High Level XML DTD Yes Yes Yes

yes no Yes (with
good SIP
knowledg)

XTML PAC
dependant

XTML N.R. Yes No Yeswith SCE
/ No without
SCE

JAIN-SIP
Lite

Low level Java N.R.

Yes Yes Yes (with
Toolkits)

SIP Servlet Low level Java N.R. yes no Yes (with
good SIP
knowledge)

Web-
Services

abstract XML
Distributed

WSDL

OSA/Parlay Low level C++ &
Java

IDL,
WSDL

yes yes No (unless a
SCE is
provided)

Interface & Language Programmability

18

The overall assessment highlighted some key aspects that have to be considered when deploying
NGN service platforms, which are summarised below.

SIP technology is the key

Product selection and evaluation has shown that SIP technology is key to the communications
needs of an NGN deployment. There are however, still several major issues that SIP products must
support before they may be considered mature enough for scalable, multi-service, managed
communications networks. Functions in support of service selection, QoS, billing and security are
four such areas of required attention.

Decreasing dependency on specialist Telco expertise

The dependency on specialist telecommunications expertise for service development is certainly
declining. The convergence between the communication and Internet domains is a reality and
brings with it the benefit of being able to apply more widely known IT technologies and
methodologies that appeal to a broader developer community.

Balancing intelligence: edge and core

The location of intelligence is no longer restricted to the core-operating network. When compared
to current PSTN networks, Next Generation Networks wil l be enriched by much more powerful
terminals enabling the provision of new and innovative services. This remark may mean that
massively used simple services with simple billing policies (e.g. flat rate) will demand much less
resources from the network / application providers than PSTN services. Intelligence may be
realised also at the edge of the network. Service providers should look to find their best synergy
between edge and core offerings and accepting edge solutions as an opportunity rather than a
threat. The terminals emerging support this edge model and will enable the provision of many new
and innovative services.

Specific SCE vs. general purposes IDE

It has been observed that most NGN products don’ t provide a specific SCE as their programming
interfaces (Java/C++ APIs, XML based scripts (e.g. voiceXML and CPL)) may be used with
standard IDEs. This is an important SCE evolution as it frees developers to choose the tools they
are familiar with, used to, better fit their needs and hence this enables faster service productivity
and a more attractive model to application developers.

Wide availability of APIs

A whole variety and type of APIs are emerging in NGN products providing different levels of
functional abstraction. Some are standards conformant (e.g. JAIN) and others are not. This can
present a very confusing story to the developer community when having to choose which API to
use for a particular service. However, at the same time it means that the same service may be
implemented in many different ways allowing service providers better chance to differentiate
themselves from each other.

Using open source software

Open source products have proved to at least generate the mindset that they could play an
important role in NGN system solutions. It remains to be seen how successful this approach will
be. However operators of NGN services wil l have to recognise this as a valid deployment model
especially given the effective extensibility and tailor made adaptations that this approach offers.
This could equate as another means for service provider differentiation.

Lightness vs. high availability and reliability

Network operators should become more and more aware that not all services need 5 nines
availability and/or high quality (Internet and mobile telephony teach). High availabil ity might not
be a must for certain services and operators should carefully evaluate the best trade-off between
quality, time and costs for providing it.

6. Conclusions

In conclusion the experiences of the project in service development phase has concluded that in
general most vendors are adopting industry standard tools such as Java, XML, CPL and SIP
servlets and in many cases in combination with SIP for their NGN products. SIP application

19

servers have matured as initial product offerings and are certainly capable of small-scale
deployment scenarios today. However product maturity, system stabil ity and generally all-around
management capabil ity might sti ll be an issue. Functions in support of service selection, QoS,
billing and security are four such important areas of required attention and further investigation.
An important step forward achieved with SIP application servers is the integration between
communication and Internet technologies. This has major implications for enabling the creation of
many new innovative services for NGN networks. This evaluation has shown that as well as
application servers, media servers are also a core component of NGN architecture XML
technologies, for example VoiceXML, are also contributing to the integration of communication
and Internet technologies. Concerning service creation, development of NGN services is made
accessible to a broad public of application developers and in many ways is very close to the web
and IT developer community approach, thus helping to enhance the productivity of application
development, reducing the time to market of new services and on average only a couple of weeks,
and even days, in some cases are required to develop new applications.

7. Acknowledgements

The information presented in this paper is based on the work done in the EURESCOM project
P1109 “Next Generation Networks: the service offering standpoint” [1]. The authors would like to
thank all EURESCOM P1109 participants, in particular Stephan Tuffin (France Télécom R&D),
Paulo Chainho (Portugal Telecom Inovaçao), and Musa Halil (British Telecom – BT Exact).

8. References

[1] Eurescom Project P1109 Next Generation Networks: The services offering standpoint. On-line at

http://www.eurescom.de/secure/projects/P1100-series/P1109/P1109.htm
[2] Lago, P., Licciardi, C.A., Canal, G., Andreetto, A., An architecture for IN-Internet hybrid

services. In Computer Networks Journal, Special Issue on Intel ligent Networks and Internet
Convergence, T. Magedanz, H. Rudin, I. Akyildiz (Eds.), Elsevier, Vol. 35(5), April 2001, pp.
537-549

[3] Licciardi, C.A., Falcarin, P., Next Generation Networks: The services offering standpoint. In
Comprehensive Report on IP services, Special Issue of the International Engineering
Consortium, October 2002.

[4] Handley, M., Schulzrinne, H., Schooler, E. and Rosenberg, J., SIP: Session Initiation Protocol,
RFC 2543, March 1999.

[5] Andreetto, A., Licciardi, C.A., Falcarin, P., Service opportunities for Next Generation Networks,
In Proceedings of the Eurescom Summit 2001, Heidelberg, Germany, November 2001.

[6] The 3rd Generation Partnership Project (3GPP) Open Services Architecture (OSA). On-l ine at
http://www.3gpp.org.

[7] Bakker, J.L., Jain, R., Next Generation Service Creation Using XML Scripting Languages, 2002.
On-line at www.argreenhouse.com/papers/jlbakker/bakker-icc2002.pdf

[8] SIP Servlets specif ication. On-l ine at http://www.ietf.org/internet-drafts/draft-peterbauer-sip-
servlet-ext-00.txt

[9] Lennox, J. and H. Schulzrinne, “CPL: A Language for User Control of Internet Telephony
Services”. On-line at http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-04.txt

[10] JAIN Java Call Control (JCC) API, Java Specification Request (JSR) 21", 2001. On-line at
http://jcp.org/jsr/detail/21.jsp.

[11] Voice Browser Call Control: CCXML Version 1.0. W3C Working Draft 21st February 2002:
http://www.w3.org/TR/2002/WD-ccxml-20020221/

[12] The JAIN APIs: Integrated Network APIs for the Java Platform. (White Paper), Jun. 2000. On-
line at http://java.sun.com/products/jain

[13] Java™ 2 Platform, Enterprise Edition Specification Version 1.3. On-line at
http://java.sun.com/j2ee/docs.html

[14] VoiceXML specification. On-l ine at http://www.voicexml.org
[15] UDDI Technical White Paper, http://www.uddi.org/
[16] Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/2001/NOTE-wsdl-

20010315
[17] Simple Object Access Protocol (SOAP) 1.2 specification. On-l ine at

http://www.w3.org/TR/SOAP
[18] Common Object Request Broker Architecture (CORBA) specification. On-line at

www.corba.org
[19] A Model for Presence and Instant Messaging. On-line at http://www.ietf.org/rfc/rfc2778.txt
[20] Jabber Software Foundation, On-l ine at www.jabber.org/

20

[21] The CAMEL (customizable applications for mobile enhanced logic) standard. On-line at
http://www.umtsworld.com/technology/camel.htm

[22] XML (eXtensible Mark-up Language) specification. On-line at http://www.w3.org/XML/
[23] DTD (document Type Description) language specification. On-line at

http://xml.coverpages.org/XMLSpecDTD.html
[24] XML-Schema specif ication. On-line at http://www.w3.org/XML/Schema/
[25] JAIN SIP Lite specif ication. On-line at http://jcp.org/jsr/detail/125.jsp
[26] XTML (extended Telephony Mark-up Language). On-line at www.pactolus.org

	IEC rev 2003 cs
	Annals03

