

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Mouratidis, Haralambos; Odell, James; Manson, Gordon.
Article title: Extending the Unified Modeling Language to Model Mobile Agents
Year of publication: 2002
Citation: Mouratidis, H. et al (2002) ‘Extending the Unified Modeling Language to
Model Mobile Agents’ Proceedings Agent Oriented Methodologies Workshop, Annual
ACM Conference on Object Oriented Programming, Systems, Languages
(OOPSLA), Seattle – USA.
Link to conference website: http://www.oopsla.org/2002/fp/index.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://www.oopsla.org/2002/fp/index.html

Extending the Unified Modeling Language to Model Mobile Agents

Haralambos Mouratidis1, James Odell2, Gordon Manson1
1Department of Computer Science, University of Sheffield, England

{h.mouratidis, g.manson}@dcs.shef.ac.uk
2James Odell Associates, Ann Arbor, MI USA

email@jamesodell.com

Abstract

Mobile Agents represent a crucial part in most
agent-based systems. However, very little work has
taken place in modelling such systems and, up to now,
none of the existing agent oriented methodologies
provide concepts and notations to fully capture mobile
agents. In this work we are presenting extensions to the
Unified Modeling Language (UML) to model mobile
agents. We use three different scenarios to illustrate the
proposed extensions.

1. Introduction

Analysing and designing complex computerised
systems has proved to be a difficult task. Actually, it has
been argued [1] that developing software for domains
like telecommunications represents one of the most
complex tasks humans undertake.

Agent Oriented Software Engineering (AOSE)
introduces an alternative approach in analysing and
designing complex computerised systems [1,2].
According to AOSE, a complex computerised system is
viewed as a multi-agent system in which autonomous
software agents (subsystem) interact with each other in
order to satisfy their design objectives. AOSE provides
designers with more flexibility in their analysis and
design. The actual design of the system takes place by
specifying a multi-agent system as a society, similar to a
human society, consisting of entities that possess
characteristics similar to humans such as mobility, and
intelligence with the capability of communicating.

However, the concept of a software agent is not
uniquely defined. Researchers have given definitions of
the concept according to some typical characteristics
[3], some operational characteristics [4] or some
cognitive functions that agents should implement [5].

One of the most promising features of software
agents is mobility. Mobile agents are software entit ies
that can migrate autonomously throughout a network
from host to host. This means they are not bounded to
the platform they begin execution. Mobile Agents are
emerging as an alternative programming-concept for the
development of distributed applications [3,6,7]. So far,
most of the work on the area of mobile agents has been

focusing on the technology itself, and the development
of agent frameworks to support mobility.

Many Agent Oriented Software Engineering
methodologies have been developed during the last few
years [8,9,10]. However, very little work has taken place
in defining concepts and notations to capture and model
mobile agents. Mobile agents are a crucial part in most
agent-based systems and the lack of models to capture
them restricts the usefulness of the existing
methodologies. Only recently (2001) work was initiated
trying to capture mobile agents during the analysis and
design stages of the development. Very preliminarily
work has been initiated by introducing some concepts to
capture mobility at the MaSE methodology [11]. In
addition, Klein et al have proposed some extensions to
UML for mobile agents [12]. Although, these two works
represent an initial approach on modelling mobile
agents, more work must take place towards this
direction. As proposed by Mouratidis et al [13] an
approach to capture the concept of mobile agents, is to
introduce concepts and notations (or use existing ones)
to give answers to questions that arise from the use of
mobile agents such as why a mobile agent moves from
one platform to another, where the agent moves to, when
the agent moves, and how it reaches the targeted
platform.

In this paper we indicate how UML can be used to
express agent mobility and we present extensions where
might be necessary. Section 2 gives an overview on
Mobile Agents, while Section 3 introduces the Unified
Modeling Language (UML). In Section 4 we are
describing the usage of UML to express mobile agents,
and we propose extensions to model characteristics of
mobile agents that are not adequately modelled using
standard UML. In Section 5 we illustrate the extensions
with the aid of 3 different scenarios, while in Section 6
we present related work and the differences of our
approach. Finally Section 7 presents directions for
future work and some concluding remarks.

2. Mobile Agents

Software Agents can be static or mobile. A static
agent executes only in the system where it starts
execution. If it needs information from another system
or needs to interact with agents in another system, it

uses a communication mechanism such as messaging or
remote procedure calling (RPC). A mobile agent, on the
other hand, is not bound to the system where it starts
execution [14] but it is able to transport itself from one
machine to another amongst the hosts of the network.
Thus, a mobile agent can move to a system that has the
information that the agent wants to obtain. A mobile
agent when it transports itself it transports its state and
code [15]. The code of a mobile agent is the class code
that the agent needs in order to execute, while the state
of a mobile agent is the values that determine what the
agent will do after it transport itself.

Mobile Agents have been promising in many
application domains such as mobile computing, health
care, military applications and information retrieval. It
has been widely argued [6] that Mobile Agent
technology provides many advantages, over traditional
techniques, such as reduction of network load, better
support of synchronous and asynchronous interactions
and reduction of concurrency. For example, a mobile
agent can move to a particular location on the Internet to
obtain information on behalf of its user. Thus, it
accesses the resources locally than sending multiple
requests across the network. However, according to [15]
the real advantage of mobile agents is the fact that there
is no other alternative to all of the functionality
supported by a mobile agent framework.

The last few years many researchers are focusing on
mobile agents. Research topics on mobile agents
include, amongst other, security [16] and
communication [6,7]. Another major area of research on
mobile agents involves the development of mobile agent
platforms [17]. Many different mobile agent platforms
have been developed, most of them based on Java. The
choice of all those platforms has focused the
development of a mobile agent-based system to the
implementation stage. The usual approach towards the
development of a mobile agent system is to define a
mobile agent platform and start implementing the
system. Very little or no design of the system takes
place. The need to analyse and design a system before
its implementation has been identified by many
researchers [18,19].

3. Unified Modeling Language (UML)

During the seventies, structured programming was
the dominant approach to software development. Along
with it, software engineering technologies were
developed in order to ease and formalize the system
development lifecycle: from planning, through analysis
and design, and finally to system construction,
transition, and maintenance. In the eighties, object-
oriented (OO) languages experienced a rise in
popularity, bringing with it new concepts such as data
encapsulation, inheritance, messaging, and

polymorphism. By the end of the eighties and beginning
of the nineties, a jungle of modelling approaches grew
to support the OO marketplace. To make sense of and
unify these various approaches, an Analysis and Design
Task Force was established on 29 June 1995 within the
OMG. By November 1997, a de jure standard was
adopted by the OMG members called the Unified
Modeling Language (UML).

The UML unifies and formalizes the methods of
many approaches to the object-oriented software
lifecycle, including Booch, Rumbaugh (OMT),
Jacobson, and Odell [20]. It supports the following
kinds of models:
• static models- such as class and package diagrams

describe the static semantics of data and messages.
Within system development, class diagrams are
used in two different ways, for two different
purposes. First, they can model a problem domain
conceptually. Since they are conceptual in nature,
they can be presented to the customers. Second,
class diagrams can model the implementation of
classes—guiding the developers. At a general level,
the term class refers to the encapsulated unit. The
conceptual level models types and their
associations; the implementation level models
implementation classes. While both can be more
generally thought of as classes, their usage as
concepts and implementation notions is important
both in purpose and semantics. Package diagrams
group classes in conceptual packages for
presentation and consideration. (Physical
aggregations of classes are called components,
which are in the implementation model family,
mentioned below.)

• dynamic models- including interaction diagrams
(i.e., sequence and collaboration diagrams), state
charts, and activity diagrams.

• use cases- the specification of actions that a system
or class can perform by interacting with outside
actors.

• implementation models- such as component
models and deployment diagrams describing the
component distribution on different platforms.

• object constraint language (OCL)- is a simple
formal language to express more semantics within
an UML specification. It can be used to define
constraints on the model, invariant, pre- and post-
conditions of operations and navigation paths
within an object net.

 4. Extending UML to Capture Mobile
Agents

Compared to the traditional approach to objects,
agents are autonomous and interactive. Based on
internal states, their activities include goals and
conditions that guide the execution of defined tasks.
While objects need outside control to execute their
methods, agents know the conditions and intended
effects of their actions and hence take responsibility for
their needs. Furthermore, agents act both alone and with
other agents. Multiagent systems can often resemble a
social community of interdependent members that act
individually.

However, no formalism yet exists to sufficiently
specify agent-based system development. To employ
agent-based programming, a specification technique
must support the whole software engineering process—
from planning, through analysis and design, and finally
to system construction, transition, and maintenance.

A proposal for a full life-cycle specification of
agent-based system development is beyond the scope of
this paper. Both FIPA [21] and the Agent UML
(AUML) Working Group [www.auml.org] are exploring
uses of and recommending extensions to UML. In this
paper, we indicate how UML can be used to express
agent mobility, as well as express where extensions to
the standard UML (AUML) might be appropriate. It
must be noticed that the proposed extensions are based
on proposed UML 2 meta-structures.

4.1. AUML Deployment Diagram

As it was mentioned, mobile agents have the ability
to migrate to different platforms within the network. We
define the platform they begin execution as their origin,
and the platform they stop execution, after finish their
task, as their destination. We define the intermediate
path between the origin and the destination as mobility
path. To capture mobility paths, origin and destination
we are extending UML deployment diagram and we call
this extended diagram, an AUML deployment diagram.

In an AUML deployment diagram we capture the
mobile agents of the system in a static nature (that
means these diagrams do not capture dynamics (such as
sequence) of the movement). Such a diagram provides
notations to capture the mobile agents of the system,
along with their origin, the destination, the platforms
they might visit, and the mobile agent’s mobility paths.
An AUML deployment diagram provides answers to the
why and the where of the before-mentioned questions.

Definition: An AUML deployment diagram captures
mobility if for any link that is tagged «moves» the
following holds:

??There is a corresponding Mobile Agent (MA)

??The origin, destination and mobility path of the
mobile agent are specified.

The tag «moves» specifies the movement of the
mobile agent from one platform to another, and it
accepts a parameter that indicates the purpose (the why)
of the movement. To indicate the origin of the mobile
agent we introduce the stereotype «home». The
stereotype «destination» is introduced to specify the
destination of the mobile agent. It must be noticed that
destination of a mobile agent can be its origin. For
example when a mobile agent is sent somewhere, obtain
some information and returns back to its origin to report
the results. Finally we introduce the stereotype
«visitor>> to indicate that the mobile agent visits a
platform.

As in the deployment diagrams, nodes can represent
types as well as instances of platforms. The mobile
agents in each platform are represented as rectangles
that include the name of the agent, and a stereotype that
indicates the status of the mobile agent (home, visitor,
destination). The paths are represented as dashed lines,
with the arrows pointing towards the platform that the
mobile agent moves to. A double arrow (both sides of
the path) indicates the mobile agent moves both
directions. When a «destination» tag is not used, it is
assumed by default that the MA returns to its home
(origin). In addition, in some cases, the mobile agent
needs to send some messages to another platform. This
is represented with the aid of dotted lines. A message
accepts two arguments, the first argument being the
platform in which the message has to be delivered and
the second being the identification of the MA that sends
the message.

For example, let us assume that a professional
dispatches a mobile agent to book a ticket for her as
shown in Figure 1(a). The Professional Agent might
move from the Professionals Laptop to the Reservation
System, but also it might move back from the
Reservation System to the Professionals Laptop (to get
maybe more information about the Professional, which
it was not obtained before) so a double arrow represents
this path. Another path could be for the Professional
Agent to move to and from the Ticket System. However
in this example we assume (for the purpose of
illustration) that the MA only moves from the Ticket
System to the Professional’s laptop and not vice versa,
so this path is indicated with an arrow pointing towards
the professional’s laptop.

4.2. UML Activity Diagrams

The extended deployment diagram helps to capture
the why an agent moves to a different platform, and the
where it moves. However it is not very helpful in
capturing the when a mobile agent leaves a platform to
move to another. This can be captured with the aid of

activity diagrams. The activity nodes model plans, while
the transitions model events. The starting point is the
moment the agent migrates to the platform and the end
point is the moment the mobile agent leaves the
platform. The when the mobile agent moves from the
platform is indicated as a parameter (When: reason) on
the transition that leads to the end point (figure 1 (b)).

4.3. AUML Activity Diagram

The previous mentioned diagrams do not capture
the dynamics of the mobility and thus fails to provide
answers to the how an agent reaches the targeted
platform. To give answers to this question we extend
Activity Diagrams by using deployment nodes and we
call the extended diagram AUML Activity diagram. This
diagram helps to capture the dynamics of the mobile
agents such as sequence, concurrency, and iteration. For
example, from the AUML deployment diagram we can
see that the mobile agent Professional Agent might
move from the Professionals Laptop to the Reservation
System and vice versa, but the AUML deployment
diagram does not capture the sequence of the
movement, the path that the MA follows, and the
decisions that the MA takes in order to follow a specific
path.

An extended Activity Diagram provides concepts to
capture the sequence of the movement, the detailed
mobility path (including the intermediate nodes between
the home and the destination), and the decisions that
drive the choice of particular intermediate nodes. The
starting point of such a diagram is the despatch of the
Mobile Agent from its home platform, and the
destination point is either the return to its home platform
or a platform in which the mobile agent finishes a
particular task. In the case in which the agent returns

back to its home, the starting and the destination points
of the diagram are the same. The path of the mobile
agent from the starting point to the destination is
decomposed in different nodes that this agent might visit
while trying to reach the requested platform (the
platform that has the requested information). UML
diamond notation is used to capture cases where the
agent has to decide from a different number of nodes to
visit (basically this is the case in which the designer is
not sure about the path that the MA will follow in order
to reach the requested platform). A simple diamond
means there are only two possible nodes that the agent
can move to, while a diamond with … (3 dots) means
there are n possible nodes that the MA might choose
from. Every time a diamond is indicated the designer
must provide the agent with knowledge to decide which
node it will move to. This knowledge is defined in terms
of statements, such as use the node with less traffic.
During the implementation stage these statements will
be converted to code and they will be added to the
knowledge database of the mobile agent (its beliefs).

Figure 2 illustrates the concept of such a diagram. A
MA is dispatched from the professional’s laptop. It
moves from «home» to node 1. Then it has the option to
move either to node 2 or to node 3. Let us assume it
moves to node 2. There it has to decide from a different
number of nodes (the number is not known to the
designer). As it was mentioned above, this decision will
be based on the knowledge of the agent, which has been
indicated by the designer in terms of statements. After
choosing a node, it finally reaches its destination. It
must be noticed that throughout the path, the agent
might find it useful to return to a previous node, in other
words the mobile agent is moving to a node that has
previously visited. We define this as the return path of

Fig. 1: (a) AUML Deployment Diagram, (b) Act ivi ty Diagram

«moves»

«moves»

«moves» (reason of
movement)

Professionals Laptop

Professional
Agent

«home»

Reservation
System

Professional
Agent

«visitor»

Ticket System

Professional
Agent

«visitor»

Locate information

Obtain information

(Starts Execution in visiting platform)

(Leaves platform)

{When: obtain information
plan is complete}

(a) (b)

the mobile agent. This can happen in cases in which the
agent needs to get more information from the previous
node, the judgment about choosing a particular node
was not correct, or in case of Bounce Failure (the case
where a MA tries to move to a particular platform but it
is bounced off1 (by the platform)). This is illustrated in
the diagram with the aid of dashed arrow lines. In
addition, in some cases a MA goes to a destination
platform, it obtains some information, but instead of
returning with the information on its home platform, it
sends a message with the results (either in its home
platform or another platform). This can be illustrated in
this diagram with the aid of a dotted line and a statement
that has two arguments, the first argument being the
platform in which the message has to be delivered and
the second being the identification of the MA that sends
the message.

5. Scenarios
The following section illustrates with the aid of different
scenarios the extensions introduced on the previous
section.

1 Reasons for Bounce Failure include (amongst others):
(1) the Mobile Agent platform on the destination
address is not operational; (2) the machine that the agent
is moving from is isolated from the rest of the network;
(3) The Mobile Agent Platform denies the move because
of security or operational reasons

5.1. Scenario 1
A Mobile Agent (MA) moves (without moving to

any intermediate node) to a platform (location depended
information – location depended information means the
agent will move to a particular instance) to retrieve
some information and it returns to its original platform.

Real life application related to this scenario: A
salesman despatches a Mobile Agent (MA) from his
laptop to his Company Server to get information about
his diary. The MA returns back with results.

We are using the extended deployment diagram
proposed in the previous section to capture the mobility
paths, origin and destination of the MA (figure 3). The
same notation (underline) used in UML for capturing
instances is employed here.

Thus we can see from the diagram that the agent’s
origin is the Salesman’s laptop and it moves to the
Company Server in order to obtain the salesman’s diary
information. However, the above diagram is only a
static representation. We also need to show the
dynamics of the agent. Thus, we are using the proposed
diagrammatic solution of the extended activity diagram
with deployment nodes (figure 4). This diagram shows
the detailed path that the mobile agent follows in order
to reach the targeted platform (Company Server)

In addition, we need to show the when the MA will
leave the Company Server and return to the Salesman’s
laptop, in other words we need to show the activity of
the MA on the company server. From the moment it
starts execution, until the moment it migrates back to the
Salesman’s laptop. This can be captured using activity
diagrams (Figure 5). The following diagram (figure 5)

Fig. 2: Example of AUML Act iv i ty Diagram

Home

Node 2

…

Destination

(Home,
agent_id)

Node 1

Node 3

Node 4 Node n

Fig. 3: AUML deployment diagram for
scenario 1

<<moves>>
(Obtain diary information)

Salesman’s Laptop

Salesman Agent
«home»

Company Server

Salesman Agent
«visitor»

shows that the mobile agent, when in the company
server, first tries to locate the diary information. When it
obtains the diary information, it migrates back to the
salesman’s laptop.

5.2. Scenario 2

A MA moves to a platform (non location depended
information) to retrieve some information and returns to
its origin.

Real Life Application: A traveller despatches a
mobile agent to retrieve information about the weather.

In trying to capture the mobility path of the MA,
differently than the previous scenario, in this scenario
the MA is not looking for a specific instance of a
platform but for a type of a platform as shown in figure
6.

Although, the AUML deployment diagrams of this
and the previous scenarios seem similar, many
differences become obvious when trying to model the
detail mobility path (sequence of the movement) of the
MA using an AUML activity diagram (Figure 7). In

Fig. 4: Extended activity diagram with
deployment notes for scenario 1

Company Server

Home (Salesman’s Laptop)

Destination (Salesman’s Laptop)

Fig. 6: AUML Deployment Diagram
for scenario 2

«moves»
(Obtain weather information)

Traveller’s Laptop

Traveller Agent
«Home»

Weather Server

Traveller Agent
«visitor»

Fig. 7: Extended activity diagram with
deployment for scenario 2

Node 1

Home (Traveller’s Laptop)

…

Node 2 Node n

Weather Server

Fig. 5: Activi ty diagram for scenario 1

{When: MA has diary information}

Locate diary information

Obtain diary information

(Starts Execution in
Company Server)

(Migrates back to
Salesman’s laptop)

trying to move from the traveller’s laptop to the Weather
Server, the traveller agent might have to go via other
nodes of the network. At the design stage we might not
know how many nodes or what kind of nodes the
traveller agent might visit but we know the reasons why
the traveller agent will choose to visit a particular node
over another.
In this scenario we have assumed that the traveller agent
moves to node 1 from the traveller’s laptop. In trying to
move further to the network it has to choose from a
range of nodes (2…n). The diamond with … (3 dots) in
the middle means there are options from node [node the
agent currently is +1] to node n. Thus, in our example
there are options from node (1+1=2) to node n. The
statements that make the agent choose a particular node
over another must be indicated. In our scenario could be
statements such as choose node with less traffic. It is
important to note here that for each diamond appeared in
the diagram, rules must be stated that affect the agent’s
decision. After moving through these nodes, the
traveller agent reaches its destination node Weather
Server. When it gets the information it returns to its
origin. The dashed arrow lines used in the figure
indicate the return path of the mobile agent.

The next step is to capture the activity of the MA in
the Weather Server (figure 8). The MA starts execution
in the Weather Server. First it tries to locate the
requested information, and then to obtain it. When the
MA has the requested weather information, it migrates
back to the traveller’s laptop.

5.3. Scenario 3
A MA moves to a platform and retrieves some

information. Then it visits another platform and
retrieves different information. Finally it moves to a
third platform negotiates with agents on the platform
and sends the results of the negotiation back to its user
using a message.

Real Life Application: A traveller despatches a
mobile agent to book her flight tickets. The agent first
contacts the air-company reservation system to enquire
about ticket prices, then it visits the traveller’s bank
server to get authorisation to pay for the ticket, and then

Fig. 8: Activity Diagram for scenario 2

Locate Weather Information

Obtain Weather Information

(Starts Execution in Weather Server)

(Migrates back to Traveller’s laptop)

{When: MA has weather information}

Fig. 9: AUML Deployment Diagram for scenario 3

 <<moves>> (Obtain ticket information)

«moves» (Obtain payment authorisation)

<<Moves>> (Book ticket)

(Home, agent_id)

Traveller’s Laptop

Traveller Agent
«home»

Reservation Server

Traveller Agent
«visitor»

Booking Server

Traveller Agent
«destination»

Bank Server

Traveller Agent
«visitor»

visits the air-company’s booking system to book the
ticket and pay for it. It then sends a message to the
traveller with the flight details.

An AUML deployment diagram is employed to
capture the origin, the mobility path and the destination
of the Traveller Agent (TA). The TA first visits the
Reservation Server, to obtain ticket information. Then it
moves to the Bank Server to obtain payment
authorisation and then it moves to the Booking Server to
book the ticket. The booking server is the destination of
the TA. In addition, the TA sends a message to the
traveller to inform her about the booking details. The
AUML deployment diagram of the system is shown in
figure 9. Double arrow paths are indicated since we
assume that the agent might need to move between the
servers backwards in order to obtain some information

that it is missing. For example, while in the Reservation
Server, the TA might not be able to find an available
flight within the traveller’s proposed dates. Thus the TA
will move back to its home and obtain a new set of
proposed dates. It is worth mentioning that the Booking
Server is considered to be the destination of the TA, so
the tag destination has replaced the tag visitor in this
platform.

When the designer knows the origin, mobility path
and destination of the Traveller Agent, the next step is to
indicate the dynamics such as the sequence of the
movement, details of the path that the TA will follow,
and the decisions that the TA will take in order to reach
its destination (Figure 10).

Trying to move from the traveller’s laptop to the
Reservation Server, the Traveller Agent has to decide
which path it will follow. Although at this stage the
designer might not know if the agent will go to node 1
or node n, knowledge can be given to the agent to help
in the decision. This knowledge, as previously
mentioned, it comes in the form of statements. These
statements will be implemented during the
implementation stage to the agent’s knowledge database
(its beliefs). As an example the following statements can
be used to determine the node selection in our example.

1. Use node with less traffic
2. Use node with less round trip
3. Use node of a particular type

It must be noticed that the rules in a decision

statement must be outlined in terms of importance. Thus
in our example, the agent first will check for the node
with the less traffic. If it finds for example two nodes
with exactly the same traffic, it will proceed to the next
rule and so on.

When the agent will try to move from the
Reservation Server to the Bank Server, it has again to
decide which node to follow. This decision, might be
taken by considering the rules that already have been
defined, or the designer might add some rules according
to the type of information and knowledge the TA will
have gained from the Reservation Server. When the TA
arrives at the Booking Server, it sends a message to its
home. This message takes two parameters. The platform
that the message will be delievered and the name of the
agent. The message is illustrated in figure 10 as a dotted
line.

So far we have captured the origin of the TA, why
the TA moves from one platform to another, the
platforms it will visit, its mobility path, indicating rules
for helping TA to choose a node over another, and also
its destination. However, we have not capture when TA
moves from a platform to another, and the activities on
each platform.

Fig. 10: Extended activity diagram with
deployment for scenario 3

…

Node 1 Node n

Reservation Server

…

Node 1 Node n

Bank Server

Node n
Booking
Server

(Traveller laptop, TA)

Home (Traveller’s
Laptop)

TA visits three platforms, the Reservation Server,
the Bank Server, and the Booking Server. Thus three
activity diagrams are employed to capture the activities
of the TA in each of the platforms.

When the TA starts execution in the Reservation
Server, it tries to identify tickets according to the
proposed dates specified by the traveller. When such a
ticket is found, it obtains more information about it,
such as airline, price and so on. When it has obtained all
the necessary information, it migrates to the Bank
Server. Figure 11 shows the activities of the TA in the

Reservation Server. It must be noticed that we have
assumed (for reasons of simplicity) the TA finds a ticket
available for the proposed dates.

When the TA leaves the reservation server, it will
migrate to the Bank Server. In the Bank Server the TA
requests an authorisation to pay the available ticket.
When it gets the authorisation, it migrates to the
Booking Server. We have assumed (for reasons of
simplicity) that the authorisation is given to the TA. The
activities of the TA in the Bank Server is shown in figure
12.

Finally the TA reaches its destination. It checks if
the ticket is still available, and it starts the booking and
payment procedures. When the ticket has been booked
the TA sends a message to the traveller to inform her
that the ticket has been booked and also it provides the
details of the ticket. This is shown in Figure 13.

6. Related Work

Research on providing concepts and notations in
order to model mobile agents is very limited. As a
matter of fact, the authors are aware of only two
attempts.

In the first work [22], the MaSE [11] methodology
was modified to allow for the analysis and design of
multiagent systems using mobile agents. Different
options for integrating mobility into the analysis and
design phases of the methodology were examined and
transformations were defined both for the analysis and
design phases. The extensions were justified with the
aid of an example scenario.

Fig. 11: Activity Diagram for scenario 3
(Reservat ion Server)

Check for flights on the proposed dates

Check for ticket availability

(Starts Execution in
Reservation Server)

Obtain Ticket information

{When: TA has ticket
information}

(Migrates to Bank Server)

Fig. 12: Activity Diagram for scenario 3
(Bank Server)

Request authorisation to pay the ticket

Get payment authorisation

(Starts Execution in
Bank Server)

(Migrates to Booking Server)

{When: TA has payment
authorisation}

Fig. 13: Activity Diagram for scenario 3
(Booking Server)

Confirm Ticket Availability

Book Ticket

(Starts Execution in
Booking Server)

Send Ticket Booking Information

{When: TA has sent
booking information}

Destination

In addition Klein et al have proposed some
extensions to UML for mobile agents [12]. In this work,
they are extending the Unified Modeling language by
providing some language concepts to model mobility
during the analysis and design stages. Klein et al have
partially extended the UML notation by introducing a
number of different stereotypes that can be used on
modelling mobile agents. The proposed extensions have
been demonstrated using a prototype implementation of
an advanced telecommunication system. It must be
noticed, that the proposed concepts are mainly based on
notation specific to the Grasshopper
[www.grasshopper.de] mobile agents platform.

Differently than the above two approaches, in our
work we have decided to provide more generic
extensions that can be applied to many different cases
and are not specific either to a methodology or a mobile
platform.

7. Conclusions and Future Work

In this paper, we have indicated how UML can be
used to express agent mobility, and we have also
introduced extensions to the standard UML where
appropriate. Our work involves extensions at the
Deployment and Activity diagrams of UML to model
issues related to mobile agents such as why a mobile
agent moves from one platform to another, where the
agent moves to, when the agent moves and how it
reaches the targeted platform. The proposed extensions
have been demonstrated with the aid of three different
scenarios.

However, this work is by no means complete. More
work is required in order to further justify the concepts
and notations we are using in our extensions. In doing
so, the proposed extensions must be employed in
modelling different kind of systems and applications.

In addition, the need for a systematic approach
towards the choice or not of mobile agents on a
particular system have been recognized [12]. We are
working towards this direction in order to provide a
complete systematic process that will help developers to
justify the reasons behind the choice or not of mobile
agents at the development of a specific agent based
system. The choice or not of mobile agents should be
based not only on general advantages or disadvantages
of the mobile agent technology but also on rules that
will determine whether mobile agents should be used
and with what functionality.

Also, concerns related to security are increased
when using mobile agents. Thus, another important
direction for future work is the definition of security on
the analysis and design of mobile agent systems.

Taking into consideration the above-mentioned
issues for future work, we believe it will advance
current agent oriented methodologies and will provide

designers with mo re functionality in developing agent-
based systems.

8. Acknowledgements

The first Author would like to thank the RANK
Foundation for the funding of his research project
during which this work was carried out.

9. References

[1] N. R. Jennings, “An agent-based approach for
building complex software systems”, Communications
of the ACM, Vol. 44, No 4, April 2001

[2] M. Wooldridge, P.Ciancarini, “Agent-Oriented Software
Engineering: The State of the Art” In P. Ciancarini and M.
Wooldridge, editors, Agent-Oriented Software Engineering.
Springer-Verlag Lecture Notes in AI Volume 1957, January
2001

[3] A. Caglayan, C. G. Harrison, Agent Sourcebook: A
Complete Guide to Desktop, Internet, and Intranet Agents ,
John Wiley, 1997

[4] M. Wooldridge, N. Jennings, “Intelligent agents: theory
and practice”, The knowledge Engineering Review, 10, (2), pp
115-152, 1995

[5] J. Fox, “Understanding intelligent agents: analysis and
synthesis”, Proceedings of the Agents Applied in Health Care
workshop, 15th European Conference on Artificial
Intelligence, Lyon-France, July 2002

[6] W. Brenner, Z. Rüdiger, W. Hartmut, Intelligent Software
Agents: Foundations and Applications, Springer-Verlag, pp.
55-67, Berlin, 1998

[7] J. E. White, “Mobile Agents”, Software Agents, Jeffrey
Bradshaw ed., MIT Press, Cambridge, MA, 1997, pp. 437-472.

[8] M. Wooldridge, N. R. Jennings, D. Kinny, “The GAIA
methodology for agent-oriented analysis and design”, Journal
of Autonomous Agents and Multi-Agent Systems, Vol. 3, No 3,
pp 285-312, 2000

[9] J. Castro, M. Kolp and J. Mylopoulos. “A Requirements-
Driven Development Methodology,” In Proc. of the 13th Int.
Conf. On Advanced Information Systems Engineering
(CAiSE’01), Interlaken, Switzerland, June 2001.

[10] C. Iglesias, M. Garijo, J. Gonzales, “A survey of agent-
oriented methodologies”, Intelligent Agents IV, A. S. Rao, J. P.
Muller, M. P. Singh (eds), Lecture Notes in Computer Science,
Springer-Verlag, 1999

[11] M. F. Wood, S. A. DeLoach, “An Overview of the
Multiagent Systems Engineering Methodology (MaSE)”, The
First International Workshop on Agent-Oriented Software
Engineering, 2000

[12] C. Klein, A. Rausch, M. Sihling, Z. Wen, “Extension of
the Unified Modeling Language for Mobile Agents”,In Unified
Modeling Language: Systems Analysis, Design and
Development Issues , edited by Keng Siau and Terry Halpin;
Idea Group Publishing Book, 2001

[13] H. Mouratidis, P. Giorgini, G. Manson, I.Philp, “Using
Tropos Methodology to Model an Integrated Health
Assessment System”, Proceedings of the 4th International Bi-
Conference Workshop on Agent-Oriented Information
Systems (AOIS-2002), Toronto-Ontario, May 2002

[14] R. Gray, D. Kotz, S. Nog, D. Rus, G. Cybenko, “Mobile
agents for mobile computing”, Technical Report PCS-TR96-
285, Department of Computer Science, Dartmouth College,
1996

[15] D. Chess, C. Harrison, A. Kershenbaum, “Mobile Agents:
Are They a Good Idea?”, IBM Research Report (RC 19887),
1995

[16] G. Vigna, Mobile Agents and Security, Lecture Notes in
Computer Science 1419, Springer-Verlag, 1998

[17] J. Altmann, F. Gruber, L. Klug, W. Stockner, E. Weippl,
“Using Mobile Agents in Real World: A Survey and
Evaluation of Agent Platforms”, Second Workshop on

Infrastructure for Agent, MAS and Scalable MAS,
Autonomous Agents 2001

[18] A. Macro, J. Buxton, The craft of software engineering,
International Computer Science Series, Addison-Wesley
Publishing Company, 1990

[19] Ian Sommerville, Software Engineering – Sixth Edition,
Addison-Wesley Publishing Company, 2001

[20] J. Martin, J. Odell, Object-Oriented Methods: A
Foundation, (UML edition), Prentice Hall, Englewood Cliffs,
NJ, 1998.

[21] B. Bauer, “Extending UML for the Specification of
Interaction Protocols”, submitted for the 6th Call for Proposal
of FIPA, 1999.

[22] A.L. Shelf, “Design and Specification of Dynamic,
Mobile and Reconfigurable Multiagent Systems”, Thesis,
Graduate School of Engineering and Management of the Air
Force Institute of Technology, AFIT/GCS/ENG/01M-11,
March 2001

	OOPsla 02 cover sheet
	OPSLA

