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ABSTRACT 
The use in various projects of UML as the modeling 
notation for representing software systems, revealed the 
need for additional constructs and architectural views, 
especially in the field of distributed software architectures. 
This article identifies a list of requirements toward UML, 
which we find appropriate especially in its current 
standardization stage. 
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1 INTRODUCTION 
The intensive use of OMT and thereafter UML as the 
modeling notation for software development throughout 
various projects, led to the identification of a set of lacks in 
the UML notation, and to the definition of associated 
requirements for UML extensions. Experience, on which 
this article is based, has been acquired in both didactic 
small-scale projects (e.g. [3][2]), and large-scale projects, 
in which development was both centralized and distributed 
among multiple remote developers and development 
partners. Throughout the years, difficulties and limitations 
have been identified and associated extensions have been 
applied, especially because large-scale projects needed a 
consensual diagramming notation to model detailed 
software aspects. References to some of these projects 
results can be found in [6][5][1]. 

2 REQUIREMENTS 
Class Diagram 
#1. Different diagrams modeling Information and 
Computational classes 
Of particular relevance in a distributed system, is the 
twofold role of classes, which can model either information 
distributed over networked sites, or components (and 
computational objects) that manipulate that information.  

 

 

 

 

Accordingly, UML should support two views over a 
system, the information view and the computational view, 
as well as the relationships between the two views, which 
are not straightforward, depending on how information is 
distributed over computational elements [4]. 

The information class diagram should describe a system 
in terms of the managed information elements, their 
semantics, and their logical relationships. 

The computational class diagram should describe a 
system as a collection of interacting components that 
maintain a set of information elements, provide an interface 
for their manipulation, and interact with other components 
to achieve system functionality. To this aim, the following 
aspects are essential in the computational class diagram: 

• System components, i.e. the atomic modules 
aggregating a collection of computational classes. 
Component representation should identify both the 
internal and external structure, in a graphical 
compact notation. 

• Exported interfaces, i.e. the interfaces that a 
component offers to external distributed invocations. 

• Internal interfaces, i.e. the interfaces that are offered 
by the classes the component encapsulates, but that 
are not externally visible. 

• Component associations, i.e. relationships between 
different components, and (inside a component) 
between internal classes. 

The clear and immediate identification of distributed 
interfaces and interactions (also from a plain graphical 
representation) provides the starting point for stating the 
structure of each component, its usage, the number and 
type of interfaces it should export along with their usage 
from external clients. 

#2. Internal details of a component 
Each component should clearly identify: remote interfaces 
from local language-specific interfaces; which internal 
objects export which remote interfaces; interaction 
relationships between internal objects; which internal 
objects invoke external component interfaces. Also, and 
especially in distributed systems, it is important to 
differentiate static objects (instantiated during component 
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creation and active for the whole component lifecycle) 
from dynamic objects (whose number varies according to 
individual execution scenarios). 

As this requirement directly addresses the structure of a 
component, it could be considered in the extension of the 
component diagram too, by providing two abstraction 
views: the inter-component view and the intra-component 
one. 

For example, Figure 1 proposes a compact representation 
of the computational diagram, for a simple but still 
complete generic component named Server X. We can 
identify at once that the component exports four distributed 
interfaces (named with prefix ii_), and that it controls an 
external database. Concerning the internal structure, it is 
also clear that remote interfaces are all implemented by one 
internal object (X manager), which controls objects of 
both classes X_managed_object and db_proxy, by 
invoking their (local) interfaces. 

Further, internal objects are graphically represented in a 
different way: dark objects indicate the ones that exist in a 
single instance, and whose lifecycle corresponds to the 
lifecycle of the component itself, and white objects 
represent transient instances, whose number varies during 
the component lifecycle. 

At last, the name of factory objects (i.e. a special kind of 
static objects exporting the interface that implements 
component creation and deletion) is underlined. 

#3. Behavioral specification 
The loose matching between software specification and 
implementation is a problem, especially in distributed 
software architectures where multiple components are 
weakly specified, and multiple teams carry out their 
development. A key aspect to solve this problem is to 
provide behavioral specification. 

Behavioral specification can be defined as the formal 
description of what is supposed to happen when software 
executes. Object Constraint Language (OCL) included in 
UML specification is a complete formal language used to 
set invariants, pre- and post-conditions related to class 
attributes, methods, and associations. 

Current practice manages these data only as another form 
of documentation, often ignored for implementation 
purposes. Instead, OCL constraints could become a more 
powerful help if supplementary UML specifications would 
be introduced in order to translate these data into 
implementation constructs. Translation from UML notation 
to common programming languages is defined by UML 
mapping specifications; for example UML to IDL 
conversion could consider OCL conditions and copying 
them as comments in IDL code. Accordingly, a future 
special IDL compiler (e.g. for C++ or Java) could translate 
these data inside implementation classes. 

Alternatively, the mapping from UML to the preferred 
programming language could be extended in order to 
translate OCL conditions in related skeleton code of class 
implementation, e.g. containing methods that verify 
correctness of constraints, possibly raising exceptions when 
not valid. 

Component Diagram 
#4. External structure and interactions of components 
The component diagram, being the representation of a 
software system in terms of components, should model in a 
compact style the external (remote) interfaces offered by 
each component, the clients of each interface as well as the 
used external interfaces of other components.  

The overall objective of this diagram (providing what has 
been called in the previous section inter-component view) 
should be the identification of potentially distributed 
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Figure 1. Computational diagram 
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Figure 2. UML Component diagram 
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interactions, starting point for deployment analysis. 

As an example, we modeled in Figure 2 the component 
diagram for Server X, already represented in Figure 1. We 
can observe that (although representing internal details too) 
our computational diagram results more compact and 
readable. 

The example is simple and represents a single component, 
but if we think of a computational model representing 
multiple components as well as their inter-relationships, we 
can easily imagine how complexity explodes with a 
consequent loss in readability. Instead, the component 
diagram with mixed notation could just focus on these 
inter-component interactions, whereas the computational 
class diagram could detail intra-component decomposition 
and internal endpoints of inter-relationships. 

Sequence diagram 
#5. Representation of composite objects and multiple 
interfaces 
In a complex system, the invocation toward a component 
cannot be simply represented as an arrow toward a 
component instance represented as an atomic object. It 
should be clearly represented which interface of that 
component is invoked (whenever components offer 
multiple interfaces), and which component object exports 
that interface (whenever the component has a composite 
structure). This representation should be compact, to easily 
identify the component structure. 

Also, it should be possible to hide/show this component 
structure, to build diagrams at different abstraction levels 
(see requirement below). 

#6. Vertical modularization 
As a system becomes complex, there is the need to model 
interactions on two abstraction levels, that is outside 
components (inter-component) and inside a component 
(intra-component). This allows to have first an overview 
about the complete set of interactions needed to complete 
collaborative system functionality, and then to detail how 
each invocation toward each involved component is 
actually implemented internally. 

Intra-component sequence diagrams should model external 
(invoking and invoked) components as atomic objects, 
whereas it should decomposed intra-component 
interactions for the analyzed component only. This 
refinement permits to identify which internal objects 
invoke external interfaces, and how the functionality is 
internally served. 

#7. Horizontal modularization 
When a diagram has to represent a complex execution 
scenario made up of a large number of interactions, it is 
convenient to split the diagram into multiple diagrams, 
each representing a group of invocations. To maintain 
readability, invocations can come from “nowhere” and go 

“outside” the diagram, to mean that these invocations 
belong to a previous/successive sub-diagram. 

Also, it is often the case that a group of invocations are 
common to multiple scenarios (e.g. an authentication 
procedure common to multiple service scenarios). Instead 
of repeating the same invocation in all diagrams, these 
could be represented in a separated general sub-diagram, 
and then referred into the diagrams that include it. 

#8. Return parameters on return interaction arrows 
Return arrows are very important to model the complete 
cycle of an invoked operation. Even more important is the 
explicit representation of the list of parameters that are 
returned to the client component. In particular, these define 
both the output parameters of remote interface methods, 
and the exceptions raised during supported failure scenarios 
(as to be specified in OMG/IDL [7]). 

#9. Recurring interaction patterns should be modeled at 
class level 
Each medium-to-large-size software system includes a set 
of management scenarios that require careful specification, 
especially if invocations cross network lines. Examples are 
system boot with component creation, registration and 
reference exchange, component deletion or partial failure 
recovery. To this aim, common management scenarios 
should be represented by class-level sequence diagrams, to 
make up a recurring pattern. 

Deployment diagram 
Deployment diagrams show the run-time configuration of 
software systems. To this aim, they should fulfill the 
following requirements: 

#10. It should map the computational class diagrams onto 
a modeled execution environment 
This aspect is crucial for successful deployment and on-
field test, as it permits to decide which components can be 
deployed on remote nodes or local machines, which 
interactions take place on networked lines, which interfaces 
are to be registered on a middleware platform, which 
components are duplicated for failure resiliency. 

Furthermore, the deployment of remote interfaces over 
distributed nodes highlights which system components 
need extensions to implement security mechanisms. 

#11. Verification support for standardization and business 
issues 
The deployment model should be customizable according 
to a defined business model, i.e. the identification of 
boundaries between business administrative domains. This 
extension would give large support in the identification of 
cross-domain interactions, to check compliance to business 
model reference points [8], and to inter-domain standards at 
interface level. 

In summary, fulfillment of this requirement would give 
support to: (1) directly elicit distributed communication 
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implementing cross-domain reference points; (2) check 
compliance to standards (whenever applicable); (3) carry 
out system component analysis. 

3 CONCLUSIONS AND FURTHER WORK 
This article identifies a list of requirements that should be 
considered in the definition of the UML for the 
representation of software systems. In particular, the work 
here presented is the result of more than five years working 
in research projects developing complex object-oriented 
software architectures, as described in [4]. The work just 
focuses on the main UML diagrams that are of particular 
relevance for the representation of a complex system, and 
that represent the minimal set of diagrams, common to any 
type of software. Of course, additional requirements could 
be identified for domain specific systems. For instance, 
distributed systems export a set of remote/distributed 
interfaces that are usually defined in OMG/IDL (Interface 
Definition Language) and then mapped on the particular 
implementation language and distribution mechanisms. 
IDL specification that are usually considered in the starting 
stage of implementation, are instead a powerful mean 
during specification and early design, especially in this 
technological era in which compliance to standards is often 
specified by means of IDL interfaces that could directly be 
adopted to guide the design process. In this respect, IDL 
specifications (or more in general interface specification) 
could be included as new diagramming constructs. 

Further, for systems with relevant dynamic complexity, the 
use of Statechart diagrams should be extended for dynamic 
verification purposes, and diagram elements should be 
considered in the mapping toward programming languages, 
for the generation of source code skeletons (e.g. like 
suggested in requirement #3). 
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