

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Lago, Patricia; Falcarin, Paolo.
Article title: UML requirements for Distributed Software Architectures
Year of publication: 2001
Citation: Lago, P. and Falcarin, P. (2001) ‘UML Requirements for Distributed
Software Architectures’, in Proceedings of the 1st International Workshop on
Describing Software Architecture with UML, Toronto, Canada, May 2001, pp. 27-30.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/

UML requirements for Distributed Software Architectures

 Patricia Lago Paolo Falcarin
 Dipartimento di Automatica e Informatica Dipartimento di Automatica e Informatica
 Politecnico di Torino Politecnico di Torino
 Corso Duca degli Abruzzi 24 Corso Duca degli Abruzzi 24
 I-10129 Torino, Italy I-10129 Torino, Italy
 +39 011564.7008 +39 011564.7091
 Patricia.Lago@polito.it Paolo.Falcarin@polito.it

ABSTRACT
The use in various projects of UML as the modeling
notation for representing software systems, revealed the
need for additional constructs and architectural views,
especially in the field of distributed software architectures.
This article identifies a list of requirements toward UML,
which we find appropriate especially in its current
standardization stage.

Keywords
Unified Modeling Language, Object Management Group.

1 INTRODUCTION
The intensive use of OMT and thereafter UML as the
modeling notation for software development throughout
various projects, led to the identification of a set of lacks in
the UML notation, and to the definition of associated
requirements for UML extensions. Experience, on which
this article is based, has been acquired in both didactic
small-scale projects (e.g. [3][2]), and large-scale projects,
in which development was both centralized and distributed
among multiple remote developers and development
partners. Throughout the years, difficulties and limitations
have been identified and associated extensions have been
applied, especially because large-scale projects needed a
consensual diagramming notation to model detailed
software aspects. References to some of these projects
results can be found in [6][5][1].

2 REQUIREMENTS
Class Diagram
#1. Different diagrams modeling Information and
Computational classes
Of particular relevance in a distributed system, is the
twofold role of classes, which can model either information
distributed over networked sites, or components (and
computational objects) that manipulate that information.

Accordingly, UML should support two views over a
system, the information view and the computational view,
as well as the relationships between the two views, which
are not straightforward, depending on how information is
distributed over computational elements [4].

The information class diagram should describe a system
in terms of the managed information elements, their
semantics, and their logical relationships.

The computational class diagram should describe a
system as a collection of interacting components that
maintain a set of information elements, provide an interface
for their manipulation, and interact with other components
to achieve system functionality. To this aim, the following
aspects are essential in the computational class diagram:

• System components, i.e. the atomic modules
aggregating a collection of computational classes.
Component representation should identify both the
internal and external structure, in a graphical
compact notation.

• Exported interfaces, i.e. the interfaces that a
component offers to external distributed invocations.

• Internal interfaces, i.e. the interfaces that are offered
by the classes the component encapsulates, but that
are not externally visible.

• Component associations, i.e. relationships between
different components, and (inside a component)
between internal classes.

The clear and immediate identification of distributed
interfaces and interactions (also from a plain graphical
representation) provides the starting point for stating the
structure of each component, its usage, the number and
type of interfaces it should export along with their usage
from external clients.

#2. Internal details of a component
Each component should clearly identify: remote interfaces
from local language-specific interfaces; which internal
objects export which remote interfaces; interaction
relationships between internal objects; which internal
objects invoke external component interfaces. Also, and
especially in distributed systems, it is important to
differentiate static objects (instantiated during component

 2

creation and active for the whole component lifecycle)
from dynamic objects (whose number varies according to
individual execution scenarios).

As this requirement directly addresses the structure of a
component, it could be considered in the extension of the
component diagram too, by providing two abstraction
views: the inter-component view and the intra-component
one.

For example, Figure 1 proposes a compact representation
of the computational diagram, for a simple but still
complete generic component named Server X. We can
identify at once that the component exports four distributed
interfaces (named with prefix ii_), and that it controls an
external database. Concerning the internal structure, it is
also clear that remote interfaces are all implemented by one
internal object (X manager), which controls objects of
both classes X_managed_object and db_proxy, by
invoking their (local) interfaces.

Further, internal objects are graphically represented in a
different way: dark objects indicate the ones that exist in a
single instance, and whose lifecycle corresponds to the
lifecycle of the component itself, and white objects
represent transient instances, whose number varies during
the component lifecycle.

At last, the name of factory objects (i.e. a special kind of
static objects exporting the interface that implements
component creation and deletion) is underlined.

#3. Behavioral specification
The loose matching between software specification and
implementation is a problem, especially in distributed
software architectures where multiple components are
weakly specified, and multiple teams carry out their
development. A key aspect to solve this problem is to
provide behavioral specification.

Behavioral specification can be defined as the formal
description of what is supposed to happen when software
executes. Object Constraint Language (OCL) included in
UML specification is a complete formal language used to
set invariants, pre- and post-conditions related to class
attributes, methods, and associations.

Current practice manages these data only as another form
of documentation, often ignored for implementation
purposes. Instead, OCL constraints could become a more
powerful help if supplementary UML specifications would
be introduced in order to translate these data into
implementation constructs. Translation from UML notation
to common programming languages is defined by UML
mapping specifications; for example UML to IDL
conversion could consider OCL conditions and copying
them as comments in IDL code. Accordingly, a future
special IDL compiler (e.g. for C++ or Java) could translate
these data inside implementation classes.

Alternatively, the mapping from UML to the preferred
programming language could be extended in order to
translate OCL conditions in related skeleton code of class
implementation, e.g. containing methods that verify
correctness of constraints, possibly raising exceptions when
not valid.

Component Diagram
#4. External structure and interactions of components
The component diagram, being the representation of a
software system in terms of components, should model in a
compact style the external (remote) interfaces offered by
each component, the clients of each interface as well as the
used external interfaces of other components.

The overall objective of this diagram (providing what has
been called in the previous section inter-component view)
should be the identification of potentially distributed

Server X

db_proxy

X
managerii_restrictedDBAccess

ii_Management
ii_Communication

: distributed interface
: local interface

X_managed
_object

ii_publicDBAccess

DB

Figure 1. Computational diagram

Server X

ii_
Communication

ii_
Management

ii_restricted
DBAccess

ii_public
DBAccess

DB

DB interaction

Figure 2. UML Component diagram

 3

interactions, starting point for deployment analysis.

As an example, we modeled in Figure 2 the component
diagram for Server X, already represented in Figure 1. We
can observe that (although representing internal details too)
our computational diagram results more compact and
readable.

The example is simple and represents a single component,
but if we think of a computational model representing
multiple components as well as their inter-relationships, we
can easily imagine how complexity explodes with a
consequent loss in readability. Instead, the component
diagram with mixed notation could just focus on these
inter-component interactions, whereas the computational
class diagram could detail intra-component decomposition
and internal endpoints of inter-relationships.

Sequence diagram
#5. Representation of composite objects and multiple
interfaces
In a complex system, the invocation toward a component
cannot be simply represented as an arrow toward a
component instance represented as an atomic object. It
should be clearly represented which interface of that
component is invoked (whenever components offer
multiple interfaces), and which component object exports
that interface (whenever the component has a composite
structure). This representation should be compact, to easily
identify the component structure.

Also, it should be possible to hide/show this component
structure, to build diagrams at different abstraction levels
(see requirement below).

#6. Vertical modularization
As a system becomes complex, there is the need to model
interactions on two abstraction levels, that is outside
components (inter-component) and inside a component
(intra-component). This allows to have first an overview
about the complete set of interactions needed to complete
collaborative system functionality, and then to detail how
each invocation toward each involved component is
actually implemented internally.

Intra-component sequence diagrams should model external
(invoking and invoked) components as atomic objects,
whereas it should decomposed intra-component
interactions for the analyzed component only. This
refinement permits to identify which internal objects
invoke external interfaces, and how the functionality is
internally served.

#7. Horizontal modularization
When a diagram has to represent a complex execution
scenario made up of a large number of interactions, it is
convenient to split the diagram into multiple diagrams,
each representing a group of invocations. To maintain
readability, invocations can come from “nowhere” and go

“outside” the diagram, to mean that these invocations
belong to a previous/successive sub-diagram.

Also, it is often the case that a group of invocations are
common to multiple scenarios (e.g. an authentication
procedure common to multiple service scenarios). Instead
of repeating the same invocation in all diagrams, these
could be represented in a separated general sub-diagram,
and then referred into the diagrams that include it.

#8. Return parameters on return interaction arrows
Return arrows are very important to model the complete
cycle of an invoked operation. Even more important is the
explicit representation of the list of parameters that are
returned to the client component. In particular, these define
both the output parameters of remote interface methods,
and the exceptions raised during supported failure scenarios
(as to be specified in OMG/IDL [7]).

#9. Recurring interaction patterns should be modeled at
class level
Each medium-to-large-size software system includes a set
of management scenarios that require careful specification,
especially if invocations cross network lines. Examples are
system boot with component creation, registration and
reference exchange, component deletion or partial failure
recovery. To this aim, common management scenarios
should be represented by class-level sequence diagrams, to
make up a recurring pattern.

Deployment diagram
Deployment diagrams show the run-time configuration of
software systems. To this aim, they should fulfill the
following requirements:

#10. It should map the computational class diagrams onto
a modeled execution environment
This aspect is crucial for successful deployment and on-
field test, as it permits to decide which components can be
deployed on remote nodes or local machines, which
interactions take place on networked lines, which interfaces
are to be registered on a middleware platform, which
components are duplicated for failure resiliency.

Furthermore, the deployment of remote interfaces over
distributed nodes highlights which system components
need extensions to implement security mechanisms.

#11. Verification support for standardization and business
issues
The deployment model should be customizable according
to a defined business model, i.e. the identification of
boundaries between business administrative domains. This
extension would give large support in the identification of
cross-domain interactions, to check compliance to business
model reference points [8], and to inter-domain standards at
interface level.

In summary, fulfillment of this requirement would give
support to: (1) directly elicit distributed communication

 4

implementing cross-domain reference points; (2) check
compliance to standards (whenever applicable); (3) carry
out system component analysis.

3 CONCLUSIONS AND FURTHER WORK
This article identifies a list of requirements that should be
considered in the definition of the UML for the
representation of software systems. In particular, the work
here presented is the result of more than five years working
in research projects developing complex object-oriented
software architectures, as described in [4]. The work just
focuses on the main UML diagrams that are of particular
relevance for the representation of a complex system, and
that represent the minimal set of diagrams, common to any
type of software. Of course, additional requirements could
be identified for domain specific systems. For instance,
distributed systems export a set of remote/distributed
interfaces that are usually defined in OMG/IDL (Interface
Definition Language) and then mapped on the particular
implementation language and distribution mechanisms.
IDL specification that are usually considered in the starting
stage of implementation, are instead a powerful mean
during specification and early design, especially in this
technological era in which compliance to standards is often
specified by means of IDL interfaces that could directly be
adopted to guide the design process. In this respect, IDL
specifications (or more in general interface specification)
could be included as new diagramming constructs.

Further, for systems with relevant dynamic complexity, the
use of Statechart diagrams should be extended for dynamic
verification purposes, and diagram elements should be
considered in the mapping toward programming languages,
for the generation of source code skeletons (e.g. like
suggested in requirement #3).

REFERENCES
[1] Canal, G., Lago, P., Integration of Commercial Internet

Applications in a TINA Environment. In Proc. TINA'99
(Oahu, HI, Apr. 1999), IEEE Computer Society Press,
2-13.

[2] Jaccheri, M.L., Lago, P., Applying software process
models and improvement in academic setting. In Proc.
CSEE&T’97 (Virginia Beach VA, Apr. 1997), IEEE
Computer Society Press, 13-27.

[3] Jaccheri, M.L., Lago, P., How Project-based Courses
face the Challenge of educating Software Engineers. In
Proc. SCI'98-ISAS'98, (Orlando FL, Jul. 1998), 377-
385.

[4] Lago, P. Rendering Distributed Systems in UML. In
Unified Modeling Language: Systems Analysis, Design,
and Development Issues, K. Siau and T. Halpin (Eds.),
Idea Group Publishing, ISBN 1-930708-05-X, 2001,
pages 350.

[5] Lago, P., et al., TINA Service Architecture: From

Specification to Implementation. In Proc. TINA'97
(Santiago Chile, Nov. 1997), IEEE Computer Society
Press, 174-183.

[6] Lago, P., Licciardi, C.A., Canal, G., Andreetto, A., An
architecture for IN-Internet hybrid services. In
Computer Networks Journal, Special Issue on
Intelligent Networks and Internet Convergence, T.
Magedanz, H. Rudin, I. Akyildiz (Eds.), Elsevier, Vol.
35(5), April 2001, 537-549.

[7] Object Management Group Web Site. On-line at
http://www.omg.org.

[8] TINA Consortium, TINA Business Model and
reference Points, TINA-C Baseline, v4.0, May 1997.
On-line at http://www.tinac.org.

	IWDSA 2001 cs
	icse01_lago

