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Summary
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A complication in the visualization of biomedical datasets is that they are
often incomplete. A response to this is to multiply impute each missing
datum prior to visualization in order to convey the uncertainty of the impu-
tations. In our approach, the initially complete cases in a real-valued dataset
are represented as points in a principal components plot and, for each ini-
tially incomplete case in the dataset, we use an associated prediction region
or interval displayed on the same plot to indicate the probable location of
the case. When a case has only one missing datum, a prediction interval
is used in place of a region. The prediction region or interval associated
with an incomplete case is determined from the dispersion of the multiple
imputations of the case mapped onto the plot. We illustrate this approach
with two incomplete datasets: the first is based on two multivariate normal
distributions; the second on a published, simulated health survey.

Keywords: Visualization, Multiple imputation, Prediction regions,
MANET, XGobi

1 Introduction

Many techniques are available for approximating the distribution of multivari-
ate data by a distribution in two-dimensional space. Principal components
analysis (PCA) (Hotteling 1933) is the most commonly used visualization
technique for real-valued samples, whereas multiple correspondence analy-
sis (e.g., Gower & Hand 1996) is the most popular method when variables
are categorical. Other techniques in use include canonical variates analy-
sis (Seal 1964), which attempts to maximize between-class differences rela-
tive to within-class differences, and Sammon mapping (Sammon 1969), which
attempts to preserve the Euclidean distances between the cases present in
feature space. A common requirement of these visualization methods is that
the dataset to be visualized must have no missing values, but biomedical
databases are prone to a variety of errors (Heitjan 1993, Albert & Horwitz
1995), including absent values.

A response to the problem of missing data is to replace each missing datum
with an estimated value (imputation). Various imputation methods have
been used. These include (a) the use of unconditional means; (b) the use of
domain heuristics (cold-deck imputation), such as the assumption of clinical
normality (Knaus, Zimmerman, Wagner, Draper & Lawrence 1981); (c) the
use of those attribute values contained in the nearest complete case (nearest-
neighbour hot-deck imputation) (e.g., Little & Rubin 1987); and (d) the use
of conditional expectations based on population parameters estimated by the
expectation-maximization (EM) algorithm (Dempster, Laird & Rubin 1977).
Once an initially incomplete dataset has been imputed, one can proceed by
using a standard visualization method, such as PCA, to view the data. But
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a problem with replacing a missing datum with a single value is that this
process does not indicate how close an imputed value is to the true value.
In other words, one is not informed about the associated uncertainty in the
estimated value. Multiple imputation (Rubin 1987) is a means of conveying
this uncertainty. In this approach, a number of possible imputations are
assigned to each missing datum instead of just a single value, and the spread
of these possible values indicates the extent of the uncertainty.

Multiple imputation is facilitated by several software packages, for exam-
ple, Shafer’s suite of S-PLUS functions (Schafer 1998) and SOLAS (Statistical
Solutions 1998). But how do we visualize a multiply imputed dataset by, say,
PCA? If we display all the complete and imputed cases together, the result-
ing scatterplot could easily be swamped by a mass of multiple imputations.
On the other hand, if the set of imputations associated with an incomplete
case is replaced by their centroid, we are then faced with the problem of
displaying the uncertainty of the imputations on the principal components
plot. The answer we propose in this paper is to replace each set of imputa-
tions with a prediction region (or interval) centred on the centroid of the set.
The prediction region associated with an incomplete case is calculated from
the dispersion of the imputations of the case, and it defines an area of the
scatterplot within which there is a given probability that the image of the
case under the PCA will be present.

The XGobi and MANET software packages have been developed to provide
a graphical examination of incomplete datasets. XGobi (Swayne & Buja
1998) uses scatterplots to visualise pairs of selected variables from a multi-
dimensional dataset. Two linked windows are used to present the main data
and the missing value information. A linked brushing method is employed to
present missing information as a shadow dataset. The main window is used
to present the data with missing values replaced by some fixed or imputed
values. The shadow window displays four square clusters of binary indicators
corresponding to the presence and “missingness” of the data. The pairs of
variables of interest are selected from a menu system on the side of the display.
The comparison between several schemes can be accomplished by using more
windows.

MANET (Unwin, Hawkins, Hofmann & Siegl 1996) was developed to implement
interactive graphics tools for data sets with missing values and to provide a
platform for investigating new interactive ideas. The package has a large
number of methods for presenting data, each of which has been adapted to
include missing data. A missing value chart gives an indication of the pro-
portion of data present for each variable. Missing values can be represented
in histograms and barcharts by an additional column, the size of which corre-
sponds to the amount of data missing. Data can be also visualized in scatter-
plots with missing data represented by the classical method of plotting these
points on the appropriate axis. Three additional boxes are included below
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the plot for data where each or both axis information is missing, again the
size of each box gives an indication of the proportion of data missing. The
package offers an extensive set of visualization tools with a consistent method
of indicating the proportion of missing data. However, as with XGobi, there
is no feature for imputing estimates for these values within the package or
for identifying them in the main plots. In addition, neither XGobi nor MANET
provides prediction regions to graphically indicate the possible imputations
for the incomplete cases, and it is this omission that we address in this paper.

In the next section we give a brief description of Markov chain Monte Carlo
for multiple imputation. We then consider visualization of multiply imputed
datasets by using a principal components plot to display the distribution of
the complete cases, and a representation of the uncertainty of the incomplete
cases on the same plot by prediction regions and intervals.

2 Multiple Imputation

Let a dataset X associated with class C consist of observed values Xobs and
unobserved (missing) valuesXmis. Let θ be the set of parameters defining the
population from which X has been sampled, for example, if the population is
multivariate normal then θ consists of the mean vector µ and covariance ma-
trix Σ. Since θ is expected to be different for different classes, the remainder
of this section applies to each subset X resulting from a class-wise partition
of a multi-class dataset.

A maximum-likelihood approach to multiple imputation is to first estimate
the population parameters θ fromXobs via the EM algorithm (giving θMLE),
and then obtain M independent random samples X<1>

mis , . . . ,X
<M>
mis from the

probability distribution p(Xmis|Xobs,θMLE). However, these imputations
are obtained under the assumption that θMLE are the true population pa-
rameters.

The Bayesian approach to multiple imputation overcomes the uncertainty in
θ by integrating over all possible θ:

p(Xmis|Xobs) =
∫
p(Xmis,θ|Xobs)dθ

=
∫
p(Xmis|Xobs,θ)p(θ|Xobs)dθ (1)

Imputations X<1>
mis , . . . ,X

<M>
mis are then sampled independently and ran-

domly from p(Xmis|Xobs). From (1), the sampling process is equivalent to
randomly selecting θ from p(θ|Xobs) and then selectingXmis from p(Xmis|Xobs,θ),
a new selection from p(θ|Xobs) being made before each single selection from
p(Xmis|Xobs,θ).
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Pseudo-random draws of θ from p(θ|Xobs) can be simulated by Markov chain
Monte Carlo (MCMC). In the context of p(θ|Xobs), MCMC generates a
Markov chain θ(1), . . . ,θ(t) such that θ(t) has the distribution p(θ|Xobs) as
t → ∞. A number of MCMC techniques are in existence (Roberts 1996),
and the data-augmentation MCMC method for the multiple imputation of
dataset X is as follows:

Algorithm 1. (Data augmentation (Tanner & Wong 1987))
begin

θ(0,1) ← θMLE |Xobs;
for m = 1 to M {i.e., M Markov chains} do
for t = 0 to T − 1 {i.e., T iterations within each Markov chain} do

randomly select X(t+1,m)
mis from p(Xmis|Xobs,θ

(t,m));
randomly select θ(t+1,m) from p(θ|Xobs,X

(t+1,m)
mis );

endfor
randomly select X<m>

mis from p(Xmis|Xobs,θ
(T,m));

endfor
end

By separating successiveX<m>
mis in Algorithm 1 with sufficiently long Markov

chains (e.g. T = 50), imputations X<1>
mis , . . . ,X

<M>
mis can be regarded as

independent draws from p(Xmis|Xobs).

There are two points to note about Algorithm 1. First, it assumes that data
are missing at random (as defined by Rubin (1976)). If any missing-data
mechanisms are known, a sensitivity analysis of the effect of the mechanisms
on the prediction regions should be conducted. Rubin (1987) describes some
imputation techniques to use when the mechanism is not ignorable. Second,
the following visualization procedure is not restricted to the use of Algorithm
1: other types of multiple imputation could be used. This algorithm is used
simply to provide an example of how multiple imputation could be achieved.

3 Visualization

The imputations X<1>
mis , . . . ,X

<M>
mis resulting from Algorithm 1 give rise to

a collection of completed datasets Xobs ∪X<1>
mis , . . . ,Xobs ∪X<M>

mis . In this
section we will describe a method for visualizing these datasets when the
attributes are real-valued.
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3.1 Principal components plots

Given a sample of d-dimensional feature vectors x1, . . . ,xN , principal com-
ponents analysis determines the eigenvalues λ1, . . . , λd and the associated
eigenvectors a1, . . . ,ad that satisfy the equation

Sai = λiai ,

where S is the sample covariance matrix, and the eigenvectors are of unit
length and orthogonal. The j-th principal component is the linear combination
aTj x for which λj (the sample variance of aTj x) is the j-th largest eigenvalue.
In this paper, the scatter plot of the first and second principal components
of a dataset will be referred to as the principal components (PC) plot of the
dataset.

The M imputations of the incomplete dataset have produced M possible im-
putations for each of the incomplete cases. The aim is to show, on a PC plot,
how the imputations obtained for each incomplete case are distributed about
their centroid in feature space. This will be done by performing a single PCA
on both the complete cases and on the centroids of the incomplete cases. The
imputed cases are then mapped onto the PC plot obtained from the PCA.

Let X<m> denote the d × N imputed dataset Xobs ∪ X<m>
mis composed of

N d-dimensional feature vectors (cases). Let V denote the columns (feature
vectors) of X<m> that were complete in Xobs and letW<m> be the columns
of X<m> that were incomplete in Xobs. Clearly, V will be the same for all
X<m>. If

W =
1
M

M∑
m=1

W<m>,

the j-th column ofW is the centroid of the j-th columns ofW<1>, . . . ,W<M>.

LetVC andWC be those datasetsV andW that are linked with class C. The
first two principle components bT

1 x and bT
2 x resulting from the PCA of data

array [V1,W1, . . . ,VK ,WK ] enable the data to be projected onto the two-
dimensional plane defined by eigenvectors b1 and b2. The PC plot will consist
of points corresponding to the initially complete feature vectors [V1, . . . ,VK ]
together with points corresponding to the centroids [W1, . . . ,WK ] of the
imputed feature vectors. If PCA is performed on data array

[V1, [W<1>
1 , . . . ,W<M>

1 ], . . . ,VK , [W<1>
K , . . . ,W<M>

K ]]

in place of [V1,W1, . . . ,VK ,WK ], the distribution of points in the resultant
PC plot would be biased by the distribution of the imputed feature vectors

[[W<1>
1 , . . . ,W<M>

1 ], . . . , [W<1>
K , . . . ,W<M>

K ]].
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3.2 Prediction regions

Given the principal components bT
1 x and b

T
2 x obtained from the above PCA,

the imputed feature vectors [W<1>, . . . ,W<M>] for each class C can be
projected onto the PC plot via the function (bT

1 x,bT
2 x)T. This enables the

spread of the different imputations of an initially incomplete feature vector
xobs,j (the j-th columns of W<1>, . . . ,W<M>) to be examined. From the
dispersion of these M points in the PC plot, a prediction region for the true
but unobserved feature vector (the one for which xobs,j is a subset) can be
established as follows.

Suppose that y is the mean vector ofM q-dimensional observations y1, . . . ,yM ,
and y0 is unobserved but sampled from the same multivariate normal dis-
tribution N(θy,Σy) as y1, . . . ,yM . If S is the sample covariance matrix of
y1, . . . ,yM then (M − 1)S has a Wishart distribution with M − 1 degrees of
freedom and parameter Σy, from which it follows that (y − y)TS−1(y − y)
has q(M2 − 1)/(M(M − q)) times the F distribution with q and (M − q)
degrees of freedom (e.g., Krzanowski 1988). If Fα(q,M − q) is the quantile
for this F distribution such that

p

[
M(M − q)
q(M2 − 1)

(y − y)TS−1(y − y) < Fα(q,M − q)
]
= 1− α (2)

then the set of x satisfying the inequality

(y − y)TS−1(y − y) < q(M2 − 1)
M(M − q)Fα(q,M − q) (3)

is a 100(1− α) percent prediction region for y0.

Note that a prediction region is not the same as a confidence region. Suppose
we have a population with parameter Φ from which a set of observations D
has been drawn randomly. A confidence region ∆c is an estimate of Φ, based
on sample D, which has the form p(Φ ∈ ∆c|D) = 1 − α. In contrast, a
prediction region ∆p is an estimate, based on D, of a possible observation x
drawn from the same population as D, the estimate having the form p(x ∈
∆p|D) = 1− α.
The predictive distribution p(y0|y,S) can be expressed as

p(y0|y,S) =
∫∫

p(y0|µy,Σ
−1
y )p(µ,Σ−1

y |y,S)dµ, dΣ−1
y , (4)

and Geisser (1993) has shown that this Bayesian approach provides an alter-
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native derivation of (2) via the distribution

p(y0|y,S) =
(

M

(M + 1)π

)q/2 Γ(M/2) |(M − 1)S|(M−1)/2

Γ((M − q)/2)

×
∣∣∣∣(M − 1)S+

(
M

M + 1

)
(y − y0)(y − y0)T

∣∣∣∣
−M/2

.

(5)

From (3), the boundary of a 100(1− α) percent region for y0 is the set of y
satisfying

(y − y)TS−1(y − y) = q(M2 − 1)
M(M − q)Fα(q,M − q). (6)

When q = 2, the left-hand side of (6) becomes a non-homogeneous polynomial
of degree 2 with respect to both components of y. If the equation is expressed
as a quadratic in y2, with y = (y1, y2)T, the two roots of the quadratic are
functions of y1. If we write these roots as y2 = r1(y1) and y2 = r2(y1),
the solution set for (6), which is an ellipse, is the set of real-valued vectors
(y1, r1(y1))T and (y1, r2(y1))T.

A problem with plotting r1(y1) and r2(y1) over finite increments of y1 is that
gaps will appear at the right- and left-hand ends of the ellipse unless the
increments are sufficiently small. This is due to r1(y1) and r2(y1) taking
complex values whenever y1 is not a component of the vectors of the solution
set. Replacing the quadratic equation with a pair of parametric equations
for y1 and y2 circumvents the problem, and we derived parametric equations
for this purpose, as follows.

If y = (y1, y2)T, y = (φ1, φ2)T and S−1 =
(
a b
b c

)
then (6) becomes a 2nd-

order non-homogeneous polynomial in y1 and y2. Suppose that φ1 = φ2 = 0
and let the rectangular coordinate system for the PC plot be denoted by
Oy1y2. If Oy1y2 is rotated anticlockwise about the origin O by ψ radians,
we obtain a new coordinate system Oy′1y

′
2 related to Oy1y2 by

y1 = cos(ψ)y′1 − sin(ψ)y′2
y2 = sin(ψ)y′1 + cos(ψ)y′2

}
. (7)

On replacing y1 and y2 in the above polynomial with (7), the substitution

ψ =

{
1
2 tan

−1
(

2b
a−c

)
if a �= c

π/4 otherwise,

simplifies the polynomial to

g · (y′1)2 + h · (y′2)2 = J (8)
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(e.g., Salas & Hille 1982), where

g = a cos(ψ)2 + 2b cos(ψ) sin(ψ) + c sin(ψ)2,

h = a sin(ψ)2 − 2b cos(ψ) sin(ψ) + c cos(ψ)2,

and

J =
2(M2 − 1)
M(M − 2)

Fα(2,M − 2).

Equation (8) can be parametrized with respect to parameter τ (∈ [0, 2π])

by setting y′1(τ) and y′2(τ) equal to
√

J
g sin(τ) and

√
J
h cos(τ), respectively,

whereupon, from (7), we obtain the required parametric equations:

y1(τ) = φ1 + cos(ψ)
√

J
g sin(τ) − sin(ψ)

√
J
h cos(τ)

y2(τ) = φ2 + sin(ψ)
√

J
g sin(τ) + cos(ψ)

√
J
h cos(τ)


 , (9)

where φ1 and φ2 provide the necessary translation of the ellipse.

3.3 Prediction intervals

It is possible for a case in a dataset to have only one missing datum. Multiple
imputation of this case will result in a set of vectors lying along a line in fea-
ture space, parallel to one of the coordinate axes. Consequently, the mapping
of these points onto the PC plot will result in a line of points on the PC plot.
In this situation, a prediction interval is used in place of a prediction region.

Let y1, . . . ,yM be a linear arrangement of points in a PC plot arising from
a multiple imputation of an incomplete case, and let y(i)

1 be the first element
of yi(i = 1, . . . ,M). If y(1)

1 , . . . , y
(M)
1 are assumed to be sampled from a

normal distribution, a 100(1−α) percent prediction interval for y0 is the line
between the vectors

 y ± tα(M − 1)s
√

M−1
M

k1

[
y ± tα(M − 1)s

√
M−1

M

]
+ k2


 , (10)

where y and s are the sample mean and standard deviation of {y(1)
1 , . . . , y

(M)
1 },

tα(M − 1) is the 100(1−α) percentile of Student’s t-distribution with M − 1
degrees of freedom, k1 is the slope of {y1, . . . ,yM} in the PC plot relative
to the first principal component, and k2 is the attendant intercept. Geisser
(1993) provides a derivation of y ± tα(M − 1)s

√
(M − 1)/M .



10

4 Examples

Two examples are given to illustrate the foregoing proposal of prediction
regions and intervals. The first is based on a pair of multivariate normal
distributions, and the second is taken from a previously published simulation
of a health survey.

4.1 Example 1

The first example is based on the artificial dataset shown in Table 1. This
consists of 40 vectors drawn randomly from two 4-variate normal distribu-
tions. The population mean vectors for the two classes are (2, 2, 2, 2)T and
(5, 5, 5, 5)T, respectively. Both populations have a covariance matrix equal
to the 4× 4 identity matrix. Each class has five incomplete cases.

The dataset was imputed using the NORM multiple imputation package pro-
vided by Schafer (1998) as freeware for use within the S-PLUS statistical
environment (Venables & Ripley 1997). This package implements the data-
augmentation procedure shown in Algorithm 1, and it assumes that data
originate from a multivariate normal distribution. The number of imputa-
tions by data augmentation was set to 10, with 50 iterations within each
Markov chain.

Figure 1 shows a visualization resulting from this dataset using equations (9)
for the regions and vectors (10) for the intervals. Each class has three cases
with only one missing value; therefore, three prediction intervals per class
are displayed. In addition, there are two prediction regions for each class.
This figure is based on 75% prediction regions and intervals; however, a
better approach is to depict the prediction distributions as contour diagrams
consisting of nested prediction regions, as this avoids an arbitrary choice of
100(1− α). Figure 2 shows only two such contour diagrams for clarity.

The multiple imputations for an incomplete case will lie on the line or (hy-
per)plane Ξ defined by the variables associated with the missing values. The
distribution of the multiple imputations on Ξ is determined by the uncer-
tainty of the imputed values. It is the combination of the orientation of Ξ in
feature space, the distribution of the points on Ξ, and the orientation of the
PC plane in feature space that defines the direction and shape of the line or
ellipsoid resulting from the projected points.

4.2 Example 2

The second example is a previously published dataset (Table 6.14. in Schafer
(1997)), namely, a simulation based on a health survey provided by the Na-
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Table 1: Artificial incomplete dataset from two 4-variate normal distribu-
tions.

Class 1 Class 2
U1 U2 U3 U4 U1 U2 U3 U4

2.88 2.73 2.85 1.70 3.21 4.32 4.66 5.80
? ? 3.53 3.34 4.83 5.72 4.73 4.35

1.77 3.27 1.98 -0.03 6.35 ? 3.28 5.22
0.60 3.03 2.80 1.20 5.02 5.63 7.00 4.55
? 4.43 0.89 1.51 5.03 4.38 5.66 4.07

2.77 1.54 2.22 3.88 4.41 4.57 ? 4.40
3.16 ? ? ? 5.31 4.90 4.85 6.30
1.86 2.52 1.03 2.25 6.19 3.94 4.74 4.19
0.93 0.61 2.87 2.58 ? 5.48 5.55 4.80
2.64 2.35 2.56 4.44 4.81 6.36 5.07 6.78
3.05 2.16 3.59 0.74 7.62 3.57 5.02 4.04
0.80 0.73 ? 1.46 5.16 4.97 5.84 6.46
-1.08 1.59 3.34 1.87 4.75 ? ? ?
3.67 1.42 2.64 2.31 4.98 5.86 4.64 4.00
1.97 2.68 1.56 1.93 5.55 4.52 5.79 6.20
3.01 2.83 2.74 0.97 6.03 5.24 6.30 4.95
1.91 2.45 3.27 1.69 3.75 4.90 6.05 6.01
2.83 2.39 1.18 0.56 ? ? 7.02 4.97
1.70 ? 2.36 0.22 5.90 6.20 5.85 5.64
3.47 1.54 3.12 2.26 3.42 3.66 5.17 4.44



12

5 4 3 2 1 0 1 2 3 4 5 64

3

2

1

0

1

2

3

4

First Principal Component

S
ec

on
d 

P
ri

nc
ip

al
 C

om
po

ne
nt

Figure 1: Visualization of the dataset given in Table 1. The PC plot is
based on both the complete cases present in the dataset (dots) and on the
centroids (not shown) of the imputed cases (not shown). 75% prediction
regions (ellipses) and intervals (lines) for the incomplete cases are displayed.

5 4 3 2 1 0 1 2 3 4 5 6 74

2

0

2

4

6

First Principal Component

Se
co

nd
 P

ri
nc

ip
al

 C
om

po
ne

nt

Figure 2: The 50%, 75% and 95% prediction regions (inner ellipses, middle
ellipses and outer ellipses, respectively) for two of the incomplete cases present
in Table 1 (Compare with Figure 1).
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tional Center for Health Statistics (1994). The dataset consists of 25 cases
with four attributes: (i) age group (ordinal; 100% complete); (ii) hypertension
(binary; 68% complete); (iii) body mass index (continuous; 64% complete);
(iii) cholesterol level (continuous; 60% complete). Twelve of the cases are
incomplete.

Given the presence of a binary attribute (hypertension), the joint probabil-
ity distribution for the dataset is clearly not multivariate normal; neverthe-
less, Schafer (1997) found that he could successfully apply data augmentation
for the normal model to it. Therefore, we first imputed the entire dataset
by this method 10 times using the NORM package (Schafer 1998). We then
rounded the continuous imputes for hypertension to the nearest category,
and each missing hypertension value was imputed with the mode of the 10
rounded estimates obtained for it. This resulted in the dataset having 20
cases with hypertension = 0 and five cases with hypertension = 1.

With these imputed values of hypertension held fixed and regarded as true,
the dataset was again imputed 10 times so that 10 new imputations could
be obtained for the continuous-valued attributes body mass index and choles-
terol level. The resulting prediction regions and intervals arising from this
second set of 10 imputations are shown in Figure 3. The three complete cases,
the prediction region and the prediction interval associated with hypertension
= 1 are seen to be clustered in the top, right quadrant of the PC plot, indi-
cating that probabilistic classification between the two levels of hypertension
may be possible.

5 Problems and tentative solutions

The conceptual simplicity of the centroid-based approach was our motivation
for investigating it, but there are drawbacks to it.

One problem with the method is that, in using centroids for the sample
covariance matrix Sx, some of true variation of X<1>, ...,X<M> is missed.
This can be overcome by basing the PCA on the mean sample covariance
matrix Sx in place of Sx. The mean sample covariance matrix for multiple
imputations, which was proposed by Rubin (1987, pp. 75-76), is defined by

Sx =
1
M

M∑
m=1

S<m>
x ,

where S<m>
x is the sample covariance matrix obtained from X<m>.

Another problem with our approach is that the graphical representation de-
picts only the marginal distributions of the possible imputations. In other
words, the displayed prediction regions refer to the possible imputation of
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Figure 3: PC plot of the simulated health survey data showing the 75%
prediction regions and intervals associated with hypertension = 0 (light
grey ellipses and lines) and hypertension = 1 (black ellipse and line). The
points from the complete cases with hypertension = 0 (light grey dots) and
hypertension = 1 (black triangles) are also shown.
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one case at a time, with joint behaviour between cases being disregarded.
However, it could be that whenever point y<m>

i projected from X<m> is
in the upper half of its ellipsoid, another point y<m>

j from X<m> tends to
be in the lower half of its ellipsoid. A solution to depicting this type of in-
dependence is to use a brushing technique. For example, if Y is a set of
projected multiple-imputation points, this could be done by displaying the
elements of Y1, . . . ,Ym and, if a user touches an element of, say, Y1, the
points in Y2, . . . ,Ym originating from the same imputation as that in Y1

are highlighted.

The use of (2), and thus (6), for constructing prediction regions is based
on the assumption that imputations x<1>, . . . ,x<M> for an incomplete row
xobs are randomly drawn from a multivariate normal distribution. This as-
sumption has enabled us to explore the idea of using prediction regions and
intervals for incomplete datasets; however, a counterexample to the normal-
ity assumption can be provided as follows. Consider a hypothetical dataset
sampled from a multivariate normal distribution. The dataset consists of
complete cases x1, . . . ,xM and an incomplete case x0 in which all values
are missing. Note that, here, M refers to the number of complete cases,
not the number of imputations. If x and S are the mean vector and co-
variance matrix for x1, . . . ,xM , comparison of (4) with (1) implies that im-
putation of the incomplete case by data augmentation with respect to the
complete cases will have distribution (5). But this distribution is not a nor-
mal distribution, and its tails are broader than those of the multivariate
t-distribution with parameters x, S and M degrees of freedom; therefore, if
the cases of a dataset are drawn randomly from a multivariate normal dis-
tribution, the prediction regions constructed by (9) underestimate the size
of the regions. Thus, an extension of this work is to base prediction regions
on broad-tailed distributions, such as those within the family of elliptical
distributions (Kelker 1970, Muirhead 1982).

An alternative to assuming a particular statistical distribution for a set Y
of projected multiple-imputation points is to use a model-free method. One
such alternative is to define a ‘prediction region’ by the convex hull for Y. If
the elements of Y are regarded as pins partially stuck into the PCA plane,
the convex hull is the boundary defined by placing an elastic band tightly
around all the pins. The convex hull forY can be determined in O(|Y| ln |Y|)
time using Graham’s (1972) scan algorithm.

6 Discussion

In spite of the deficiencies stated in Section 5, our interim approach has en-
abled us to demonstrate the efficacy of using prediction regions and intervals
to visualize incomplete datasets. In the above examples, our method suc-
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cessfully conveyed the presence of clusters consisting of points, ellipses and
lines.

We have concentrated on visualization through the use of PC plots but,
as mentioned in the introduction, other visualization methods are avail-
able. In the case of canonical variates analysis (CVA), imputed cases can
be mapped to the scatter plot of the first and second canonical variates ob-
tained from the complete cases and centroids. This is done via the function
(cT1 x,c

T
2 x)

T, where c1 and c2 are the CVA eigenvectors associated with the
two largest eigenvalues. An analogous approach can be used with orthogonal
CVA (Krzanowski 1995).

As regards Sammon mappings, a Sammon plot can be obtained first with
respect to the complete cases and centroids. Whilst the final positions of
these on the Sammon plot are fixed, the positions of the imputed cases on
the same plot can be determined iteratively with respect to each other and
to the locations of the complete cases and centroids.

The categorical and continuous attributes of Example 2 were imputed under
the normal model, but a more appropriate scheme is to perform multiple
imputation under the Olkin-Tate location model for mixed data (Olkin &
Tate 1961). This approach has been discussed by Schafer (1997) and applied
by Raghunathan & Grizzle (1995) and Raghunathan & Siscovick (1996), but
there remains the challenge of deriving and displaying the associated predic-
tion regions.
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