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Neural Computation in Medicine:
Perspectives and Prospects∗

Richard Dybowski
Medical Informatics Laboratory, Division of Medicine,

King’s College London (St Thomas’ Campus), London, UK

Abstract

In 1998, over 400 papers on artificial neural networks (ANNs) were pub-
lished in the context of medicine, but why is there this interest in ANNs?
And how do ANNs compare with traditional statistical methods? We pro-
pose some answers to these questions, and go on to consider the ‘black
box’ issue. Finally, we briefly look at two directions in which ANNs are
likely to develop, namely the use of Bayesian statistics and knowledge-
data fusion.

1 Cognitive and data modelling

In the wake of publication of the back-propagation algorithm in 1986, the num-
ber of ANN-oriented articles featured in the Medline database has grown from 2
in 1990 to 473 in 1998. But why is there this interest in ANNs within medicine?

The design of ANNs was originally motivated by the phenomena of learn-
ing and recognition, and the desire to model these cognitive processes. The
cognitive-modelling branch of ANN research is still active, and it is relevant to
medicine in providing models of psychological and cerebral dysfunction [1, 2, 3].
However, in the late 1980s, a more pragmatic stance emerged, and ANNs be-
came to be seen also as tools for data modelling, primarily for classification.

Medicine involves decision making, and classification is an integral part of
that process, but medical classification tasks, such as diagnosis, can be far from
straightforward. At least two sources of difficulty can be identified.

• Clinical laboratories are being subjected to an ever-increasing workload.
Much of the data received by these laboratories consists of complex fig-
ures, such as cytological specimens – objects traditionally interpreted by
experts – but experts are a limited resource.

• The complexity of patient-related data can be such that even an expert
can overlook important details. With the production of high volumes of
possibly high-dimensional data from instruments such as flow-cytographs,
and the integration of disparate data sources through data fusion, this is
becoming an increasing problem.
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Presented with such problems, it is natural that the medical fraternity should
turn to ANNs in the hope that these adaptable models could alleviate at least
some of the problems; however, the use of ANNs in medicine has raised a
number of issues. One of these is the relationship between ANNs and statistics;
another is the use of ‘black box’ systems in medicine. We look at both these
issues and then consider two directions in which ANNs are likely to develop.

2 A statistical perspective

2.1 Multilayer perceptrons

Multilayer perceptrons (MLPs) with sigmoidal hidden-node functions are the
ANNs most commonly used in medicine. Medical data are diverse and, at times,
highly complex [4], but MLPs are universal approximators. The flexibility of
MLPs has enabled them to be applied to a wide variety of medical fields [5,
6, 7, 8, 9, 10, 11], including oncology [12], dentistry [13], bacteriology [14],
and sleep research [15]. For example, Tarrasenko [16] describes how an MLP
was used to associate an electroencaphalograph (EEG) with deep sleep, REM
sleep or wakefulness. EEGs from nine patients were digitized and, in order to
reduce the dimensionality of feature space, the EEGs were characterized by
the ten coefficients of an autoregressive time-series model. These coefficients
were used as the input vectors for an MLP with three outputs. The number of
hidden units was varied from 4 to 20, and five initially random weight vectors
were used. The best-performing MLP had a misclassification rate of 10.6%.
In comparison, nearest-neighbour classification gave a misclassification rate of
18.3%.

The genesis and renaissance of ANNs took place within various commu-
nities, and papers published during these periods reflected the disciplines in-
volved: biology and cognition; statistical physics; and computer science. But it
was not until the early 1990s that a probability-theoretic perspective emerged,
which regarded ANNs as being within the framework of statistics [17, 18, 19, 20].

A recurring theme of this literature is that many ANNs are analogous, or
identical to, existing statistical techniques. For example, a popular statistical
method for modelling the relationship between a binary response variable and
a vector of covariates is logistic regression, but a single-layer perceptron with
a logistic output function and trained by a cross-entropy error function will be
functionally identical to a main-effects logistic regression model. Furthermore,
an MLP can be regarded as a both a non-linear extension of logistic regression
and as a particular type of projection pursuit regression model. However, Rip-
ley & Ripley [21] point out that the statistical algorithms for fitting projection
pursuit regression are not as effective as those for fitting MLPs.

One may ask whether the apparent similarity between ANNs and existing
statistical methods means that ANNs are redundant. One answer to this is
given by Ripley [22]:

The traditional methods of statistics and pattern recognition are ei-



ther parametric based on a family of models with a small number of
parameters, or non-parametric in which the models used are totally
flexible. One of the impacts of neural network methods on pattern
recognition has been to emphasize the need in large-scale practical
problems for something in between, families of models with large
but not unlimited flexibility given by a large number of parameters.

Another response is to point out that the widespread fascination for ANNs
has attracted many talented researchers and potential users into the realm of
data modelling. It is true that the neural-computing community re-discovered
some statistical concepts already in existence, but this influx of participants has
created new ideas and refined existing ones. These benefits include the learn-
ing of sequences by time delay and partial recurrence [23], and the creation of
powerful visualization techniques, such as generative topographic mapping [24].
Thus the ANN movement has resulted in statisticians having available to them
a collection of techniques to add to their repertoire. Furthermore, the place-
ment of ANNs within a statistical framework has provided a firmer theoretical
foundation for neural computation. This has led to new developments such as
the Bayesian approach to ANNs [25], and to improvements to existing neural
methods [26].

ANNs can be used jointly with conventional statistical methods. In the
scheme suggested by Goodman & Harrell [27], the performance metrics of a
generalized linear model are compared with those from an MLP. If the two
approaches are not found to differ with statistical significance, the linear model
is chosen since it simpler with respect to computation and interpretation. The
authors demonstrate this approach in the context of a coronary artery bypass
dataset.

MLPs are trained using exemplars from each class of interest, but many
pathologies are uncommon. In such situations a balanced training set should be
used for the under-represented classes [28]. However, this may not be feasible
when abnormalities are very rare, in which case novelty detection should be
considered [29].

It should be emphasized that, even with correct training, an ANN will not
necessarily be the best choice for a classification task in terms of accuracy. This
has been highlighted by Wyatt [30], who wrote:

Neural net advocates claim accuracy as the major advantage. How-
ever, when a large European research project, StatLog, examined
the accuracy of five ANN and 19 traditional statistical or decision-
tree methods for classifying 22 sets of data, including three medical
datasets [31], a neural technique was the most accurate in only one
dataset, on DNA sequences. For 15 (68%) of the 22 sets, traditional
statistical methods were the most accurate, and those 15 included
all three medical datasets.

But one should add the comment made by Michie et al [31] on the results of
the StatLog project:



With care, neural networks perform very well as measured by error
rate. They seem to provide either the best or near best predictive
performance in nearly all cases ...

Nevertheless, in order to justify the implementation of an ANN, its ease of im-
plementation and performance should be compared with that obtained from one
or more appropriate standard statistical techniques. Furthermore, one should
also be aware of emerging non-neural alternatives, such as support vector ma-
chines for classification and independent component analysis for visualization,
and also make comparisons with these, if appropriate.

2.2 Self-organizing feature maps

The most common neural system for unsupervised training is Kohonen’s self-
organizing feature maps (SOFMs) [32]. The aim of SOFMs is to map an input
vector to one of a set of neurons arranged in a lattice, and to do so in such
a way that positions in input space are topologically ordered with locations
on the lattice. Hertz et al [33] liken this process to an elastic net, existing in
input space, which wants to come as close as possible to the input vectors of a
training set.

Amongst the interesting medical applications of SOFMs are their use for
classification of craniofacial growth patterns [34], the extraction of information
from electromyographic signals with regard to motor unit action potentials [35],
and magnetic-resonance image segmentation [36]. With regard to the first
example, an SOFM was used to extract the most relevant information from
mandibular growth data. The position of a patient on the resulting map could
be used to aid orthodontic diagnosis and treatment.

The example by Glass & Reddick [36] demonstrates how an SOFM can be
used for image segmentation. An SOFM was trained with pixels from viable
tumors and necrotic tissue, as visualized by magnetic resonance images. An
MLP was then trained to distinguish between these two types of tissue on the
basis of the SOFMs final input-node weights. Consequently, the SOFM-MLP
combination characterized the type of tissue represented by a new pixel. This
provided a non-invasive technique to assess an osteosarcoma patient’s response
to chemotherapy.

The so-called Growing Cell Structure [37] is related to SOFMs, and Walker
et al [38] used this technique for the cytodiagnosis of breast carcinoma. In
addition to performing classification, the method also enabled them to visualize
how the input variables were involved in the classification.

Although the SOFM algorithm provides a means of visualizing the distri-
bution of data points in input space, Bishop [39] points out that this can be
weak if the data do not lie within a two-dimensional subspace of the higher-
dimensional space containing the data. Another observation, made by Balakr-
ishnan et al [40] is that Kohonen feature maps are similar to the statistical
technique of k-means clustering, yet it has been our observation that many
papers describing an SOFM do not compare the efficacy of it with another
visualization technique applied to the same dataset.



2.3 Radial-basis function networks

The second most commonly used ANNs in medicine are the radial-basis func-
tion networks (RBFNs). An RBFN can be regarded as a type of generalized
linear discriminant function, a linear function of functions that permits the
construction of non-linear decision surfaces. The basis functions of an RBFN
define local responses (receptive fields). Typically, only some of the hidden units
(basis functions) produce significant values for the final layers. This is why RB-
NFs are sometimes referred to as localized receptive field networks. In contrast,
all the hidden units of an MLP are involved in determining the output from the
network (they are said to form a distributed representation). The receptive-field
approach can be advantageous when the distribution of the data in the space of
input values is multimodal. Furthermore, RBFNs can be trained more quickly
than MLPs [41], but the number of basis functions required grows exponen-
tially with the number of input nodes, and an increase in the number of basis
functions increases the time taken, and amount of data required, to train an
RBFN adequately.

Construction of an RBFN is a two-step process. The first step is typically
performed using an unsupervised method, such as k-means clustering or an
SOFM, to define the basis functions. This exploits the distribution of the classes
in feature space. The second step uses supervised learning for the output-
layer weights via linear optimization, which is faster than the typical training
algorithms used for MLPs. The potential advantages of these two steps have
been investigated for a number of medical applications. For example, an RBFN
approximated well the nonlinearity of heart dynamics [42]. Each basis function
provided a local reconstruction of the dynamics in the space spanned by the
basis functions. Other examples include the classification of cervical-tissue
fluorescent spectra [43], the identification of bacteria (clustering with respect
to mass spectra) [44] and spinal disorders (clustering with respect to motion
data) [45]. However, even when an SOFM suggests good discrimination between
the classes of interest, an RBFN may not perform as well as an MLP. For
example, when the EEG classification mentioned in Section 2.1 was repeated
using an RBFN in place of the MLP, the misclassification rate increased slightly
to 11.6% [16].

When conditions are such that an RBFN can act as a classifier [46, 47], an
advantage of the local nature of RBFNs compared with MLP classifiers is that
a new set of input values that falls outside all the localized receptor fields could
be flagged as not belonging to any of the classes represented. In other words,
the set of input values is novel. This is a more cautious approach than the
resolute classification that can occur with MLPs, in which a set of input values
is always assigned to a class, irrespective of the values.

2.4 Adaptive Resonance Theory Networks

Although not a common ANN, an adaptive resonance theory (ART) network
is noteworthy. The ART process [48] can be regarded as a type of hypothesis



test [49]. A pattern presented at an input layer is passed to a second layer, which
is interconnected to the first. The second layer makes a guess about the category
to which the original pattern belongs, and this hypothetical identity is passed
back to the first layer. The hypothesis is compared with the original pattern
and, if found to be a close match, the hypothesis and original pattern reinforce
each other (resonance is said to take place). But if the hypothesis is incorrect,
the second layer produces another guess. If the second layer cannot eventually
provide a good match with the pattern, the original pattern is learned as the
first example of a new category. Spencer et al [50] incorporated ART into a
system capable of discovering temporal patterns in ICU data and predicting
the onset of haemodynamic disorders.

Although ART provides unsupervised learning, an extension called
ARTMAP [51] combines two ART modules to enable supervised learning to
take place. Harrison et al [52] describe how ARTMAP can be used to update
a knowledge base. They do so in the context of ECG diagnosis of myocardial
infarction and the cytopathological diagnosis of breast lesions.

In spite of resolving the stability/plasticity dilemma [53], the ART algo-
rithms can be sensitive to noise [54]. Furthermore, Ripley [22] questions the
virtue of the ART algorithms over adaptive k-means clustering [55].

3 The “black-box” issue

A criticism leveled against neural networks is that they are ‘black-box’ sys-
tems [30, 56] (although this can be less of a problem for the mathematically
minded [57]). By this it is meant that the manner in which a neural network
derives an output value from a given feature vector is not comprehensible to
the non-specialist, and that this lack of comprehension makes the output from
neural networks unacceptable.

There are a number of properties that we desire in a model, two of which
are accuracy (the ‘closeness’ of a model’s estimated value to the true value)
and interpretability. By interpretability, we mean the type of input-output
relationships that can be extracted from a model and which are comprehensible
to the intended users of the model.

An interpretable model is advantageous for several reasons. Firstly, It could
be educational by supplying a previously unknown but useful input-output
summary. This, in turn, can lead to new areas of research. Secondly, it could
disclose an error in the model when an input-output summary or explanation
contradicts known facts.

Does the lack of interpretability, as defined above, make a model unaccept-
able? That depends on the purpose of the model. Suppose that the choice of a
statistical model for a given problem is reasonable (on theoretical or heuristical
grounds), and an extensive empirical assessment of the model (for example,
by cross-validation and prospective evaluation) shows that its parameters pro-
vide an acceptable degree of accuracy over a wide range of input vectors. The
use of such a model for prediction would generally be approved, subject to a



performance-monitoring policy. Why not apply the same reasoning to neural
networks, which are, after all, non-standard statistical models?

But suppose that we are interested in knowledge discovery; by this we mean
the extraction of previously unknown but useful information from data. With
a trained MLP, it is difficult to interpret the mass of weights and connections
within the network, and the interactions implied by these. However, the goal of
rule extraction [58] is to map the (possibly complex) associations encoded by the
functions and parameters of a trained ANN to a set of comprehensible if-then
rules. If successful, such a mapping would lead to an interpretable collection of
statements describing the associations discovered by the ANN, which, in turn,
may lead to clinical insight.

Another approach to providing interpretability is to use a hybrid neuro-
fuzzy system [59]. These are feed-forward networks built from if-then rules
containing linguistic terms based on domain knowledge, and the membership
functions associated with the fuzzy rules can be tuned to data by means of
a training algorithm. Both rule extraction and hybrid neuro-fuzzy systems
are responses to those clinicians unwilling to use a predictive model lacking
interpretability, even when the model is highly accurate.

4 Future directions

4.1 Bayesian neural computation

Whereas classical statistics attempts to draw inferences from data alone, Bayes-
ian statistics goes further by allowing data to update prior beliefs via Bayes’
theorem. Advantages to neural computation provided by the Bayesian frame-
work include

• a principled approach to fitting an ANN to data via regularization,

• allowance for more than one possible MLP architecture by model averag-
ing, and for multiple solutions to the training of a single MLP architecture
by using a committee of networks,

• automatic selection of features to be used as input to an MLP from a set
of candidate features (automatic relevance determination).

However, there are disadvantages to the Bayesian approach, namely that it
tends to require more computation than the maximum likelihood approach,
and it requires explicit descriptions of the prior probability distributions, which
are often subjective.

Bayesian ANNs have not yet found their way into general use, but, given
their capabilities, we expect them to take a prominent role in medical neural
computation.



4.2 Knowledge-data fusion

If both data and domain knowledge are available, how can these two resources
be used together? This is the focus of knowledge-data fusion. One approach
is use networks in which nodes and their connections have an interpretation
in the domain of interest. An example of this is seen with hybrid fuzzy-neuro
systems. Another example is the concept of probabilistic networks; however,
unlike an MLP, the nodes of a probabilistic network are related stochastically,
and inference can take place in different directions along the network.

The stochastic relationships of a probabilistic network are defined by condi-
tional probabilities at the non-terminal nodes, and for a conditional probability
with a complex likelihood, an MLP may be an effective model. This idea of
using MLPs at the nodes of a probabilistic networks is one approach to imple-
menting data fusion, such as the integration of electrophysiology signals with
both radiological images and patient records for decision support. By using
knowledge-data fusion to integrate data from disparate sources, with ANNs
acting as modules for the framework, virtual patient records within a hospital-
wide intranet could be updated in a principled manner.
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