
 
 

University of East London Institutional Repository: http://roar.uel.ac.uk  
 
This paper is made available online in accordance with publisher policies. Please 
scroll down to view the document itself. Please refer to the repository record for this 
item and our policy information available from the repository home page for further 
information. 
 
Author(s): Broughton, T.; Tan, A.; Coates, Paul 
Title: The use of Genetic programing in Exploring 3D Design Worlds 
Year of publication: 1997 
Citation: Broughton, T., Tan, A., Coates, P. (1997) ‘The use of Genetic programing 
in Exploring 3D Design Worlds.’ In: Junge, R. (ed.) CAAD Futures 1997, Proceedings 
of the 7th International Conference on Computer Aided Architectural Design Futures 
4-6 August 1997, Kluwer Academic Publishers, Munchen, Germany. pp. 885-917. 
Link to published version: http://www.caadfutures.org/proceedings_97.htm  
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://www.caadfutures.org/proceedings_97.htm


THE USE OF GENETIC PROGRAMMING IN EXPLORING 3D 

DESIGN WORLDS

 A REPORT OF TWO PROJECTS BY MSC STUDENTS AT CECA UEL

  T.Broughton, A.Tan, P S Coates 
  Centre for Environment and Computing in Architecture,
   University of East London.

Abstract

Genetic algorithms are used to evolve rule systems for a generative process, in one case a shape 
grammar,which uses the "Dawkins Biomorph" paradigm of user driven choices to perform artificial 
selection, in the other a CA/Lindenmeyer system using the Hausdorff dimension of the resultant con-
figuration to drive natural selection.

1) Using Genetic Programming  in an interactive 3d shape grammar (AmyTan &P.S..Coates) A report of a gen-
erative system combining genetic programming(GP) and 3D shape grammars. The reasoning that backs 
up the basis for this work depends on the interpretation of design as search  In this system, a 3D form is 
a computer program made up of functions (transformations) & terminals (building blocks). Each program 
evaluates into a structure. Hence, in this instance a program is synonymous with form. Building blocks of 
form are platonic solids (box, cylinder....etc.). A Variety of combinations of the simple affine  transforma-
tions of translation, scaling, rotation together with Boolean  operations of union, subtraction and intersec-
tion performed on the building blocks generate different configurations of 3D forms. Using to the method-
ology of genetic programming, an initial population of such programs are randomly generated,subjected to 
a test for fitness (the eyeball test). Individual programs that have passed the test are selected to be parents 
for reproducing the next generation of programs via the process of recombination.

2) Using a GA to evolve rule sets to achieve a goal configuration( T.Broughton & P.Coates ) .  The aim of these 
experiments was to build a framework in which a structure’s form could be defined by a set of instructions 
encoded into its genetic make-up. This was achieved by combining a generative rule system commonly 
used to model biological growth with a genetic algorithm simulating the evolutionary process of selec-
tion to evolve an adaptive rule system capable of replicating any preselected 3-D shape. The generative 
modelling technique used is a string  rewriting Lindenmayer system the genes of  the emergent structures 
are the production rules of the L-system, and the spatial representation of the structures uses the geometry 
of iso-spatial dense-packed spheres



1)  Using Genet ic  Programming  in  an interact ive 3d shape grammar

This paper attempts to show how evolving creative forms can be cast as a problem of 
induction. And more importantly, that there is a way to solve the problem of induction 
-- by genetic programming. The genetic programming paradigm described in the fol-
lowing provides a way to do program induction. The basic idea of program induction 
is the inductive discovery of a computer program from a space of possible computer 
programs. In our case the computer program is a sequence of operations or a composi-
tion of functions that evaluates to a geometric output.

Given that the computers are more effective in generating proposals according to rules 
and control strategies, the human critic is used to inspect and test them. There is no 
question that there are many analysis programs that will do the task of evaluating the 
performance of each proposal. As the main purpose of this paper is to explore and cre-
ate imaginative and beautiful forms, the proposals must pass the ‘eye’ test. Criterion 
for high performance is that it must appeal to the critic enough for it to be selected to 
evolve further. The final structure is the form selected that will not be bred any further.

The structure of the program is equivalent to the form because it contains all the infor-
mation that will be manifested in the geometric properties of the form. When reference 
is made to the computer program, it implies the structure.

Mapping of the code to a virtual model is simple and direct. Three dimensional geo-
metrical shapes pose no problem to programs that use the constructive solid geometry 
paradigm, such as AUTOCAD and a host of others too numerous to mention. What 
better way is there to represent properties of geometrical objects than to use the in-
built functions of  CAD software.  Because AUTOLISP, a version of LISP unique 
to AutoCad, has been employed to implement the genetic programming paradigm, 
the result or emergent computer program that has evolved can be easily translated 
into its visual geometric form using the EVAL function in AutoLISP. The process of 
genetic programming takes on a search for highly fit individual computer program 
in a space of computer programs. In particular, the search space is the space of all 
possible computer programs composed of functions and terminals appropriate to the 
problem domain. Breeding using reproduction of the fittest along with genetic recom-
bination (crossover) operation appropriate for mating computer program applies. A 
computer program that solves, or approximately solves a given problem (or meets a 
target) may emerge from this combination of Darwinian natural selection and genetic 
operations.(Koza, Genetic programming - on the programming of computers by natural 
selection, MIT, 1992)



The set of possible structures in genetic programming is the set of all possible compo-
sitions of functions that can be composed recursively from the set of Nfunc functions 
from F = { f1, f2, ......, ffunc} and the set of Nterm terminals from T = { a1, a2, ........., 
afunc }. Each particular function fi in the function set F takes a specified number of 
z(fi) of arguments z(f1), z(f2), ......., z(fNfunc).

The function in the function set may include

* arithmetic operations (+, -, *, etc.),

* mathematical functions (such as cos, cos, exp, and log),

* Boolean operations (such as AND, OR, NOT),

* conditional operators (such as IF-THEN-ELSE),

* functions causing iteration (such as DO-UNTIL),

* function causing recursion, and

* any other domain-specific functions that may be defined.

We are interested in the last category of functions because the functions applicable to 
this paper are uniquely defined so as to give desirable results - generating interesting 
forms. Bearing in mind that genetic programming was developed to solve a wide range 
of problems, it is probably more widespread and easier to cast problems of a math-
ematical nature as a computer program. However, this important aspect of  the versatil-
ity of genetic programming has been harnessed to bridge the gap between creativity in 
design on the one hand and the mathematical nature of geometrical forms on the other.

Consider the function set

F = { UNION, INTERSECT, SUBTRACT }

and the terminal set

T = { S0, S1}

where S0 and S1 are Boolean variable sets that serve as arguments for the functions.

A combined set of functions and terminals is as follows:

C = F U T = { UNION, INTERSECT, SUBTRACT, S0, S1 }

The terminals in the combined set C can be considered as functions that does not 



require any arguments.

Take for example the INTERSECT 
function with two arguments. A set 
that occurs both in the two arguments 
is returned if there is an overlap in 
arguments sets (i.e., S0 and S1) and a 
NIL if there is none. A typical Boolean 
function can be expressed in disjunctive 
normal form (DNF) by the following 
LISP S-expression;

( UNION ( INTERSECT  ( 
SUBTRACT  S0 S1) ( SUBTRACT  S0 
S1) ) (INTERSECT S0 S1) )

The above LISP S-expressions can be 
graphically shown as a rooted, point 
labelled tree with branches. The leaves (external points) of the trees are labelled with 
terminals S0, S1, S0, S1, S0 and S1 respectively. The internal points are labelled with 
functions UNION, INTERSECT, SUBTRACT, SUBTRACT and INTERSECT. The 
root of the tree (the UNION) is the first function just inside the outermost left paren-
thesis of the LISP S-expression. This tree is equivalent to the parse tree which most 
compilers construct internally to represent a given computer program.

All possible trees of this description that can be generated from any possible recursive 
combinations of the available functions and terminals appropriate to the problem at 
hand is the search space to be explored by genetic programming. This is equivalent 
to searching through all LISP S-expressions consisting of the available functions and 
terminals.

This is the distinction between the conventional genetic algorithm and genetic pro-
gramming. While one-dimensional strings, be they finite or variable length, are the 
structures that undergo adaptation in genetic algorithms, the structures that undergo 
adaptation in genetic programming are hierarchical structures (rooted point labelled 
trees with ordered branches).

Closure of  the Funct ion set  and Terminal  Set

Due to the hierarchical nature of the trees, one has to take care that the functions in the 
function set should be well defined and closed such that each function is able to accept 
any value or data type that may be returned by any function in the function set and 
any value and data type that may possibly be assumed by any terminals in the terminal 

Fig. 1: S-expression depicted as a rooted, point-
labeled tree with ordered branches



set. This is especially relevant where ordinary computer programs contain arithmetic 
operations, conditional comparative operators, and conditional branching operators. 
Computation breaks down when the operators are given an undefined variable (eg. 
division by zero, logarithm of zero) or unacceptable data (e.g. NIL, square-root of a 
negative number).

Closure of the function set in such cases can be dealt with by defining a protected 
function that does not evaluate division by zero or returning an absolute value when a 
nonpositive argument is encountered or avoiding non-numerical logic operators.

Suff ic iency of  the Funct ion Set  and Terminal  Set

In order to use genetic programming effectively, the set of terminals and the set of 
primitive functions selected should be capable of expressing a solution to the problem. 
It is up to the designer to identify the set of function and terminals that has sufficient 
explanatory power for the problem at hand. Depending on the problem, this may be 
obvious or may require considerable insight. No doubt, design knowledge and experi-
ence comes into play where a good choice is concerned. This step of identifying the 
right variable to solve a particular problem is common to virtually every problem 
in science. In the sphere of design, personal sets of strategies which designers adapt 
to particular design circumstances can be expressed in the set of functions and ter-
minals. It is not unknown that many architects already have strategies that are often 
pronounced and consistent to the point where their individual projects are instantly 
recognisable.

This project also attempts to show that the designer has complete control over how 
he/she would like to express his/her design concepts. Designers are free to define 
their own functions set and terminal set. The results of the experiments that I have 
performed are solely based on the operations implied in the functions that I had writ-
ten and the operations are performed on the terminals which I have selected from the 
domain of all possible terminals. Terminals can be any 3 dimensional shape. They can 
be simple primitive geometrical objects (eg. cube, wedge, etc.) or a composite of them 
or even any 3 dimensional form that can be mathematically generated by the computer.

The Ini t ia l  Structures

The initial structures are made up of  individual S-expressions that form the initial 
population in the first instant. This first population is completely generated at random. 
For each individual S-expression, the root of the tree is labelled by randomly selecting 
one function from the set of functions F . Selection of the root function is confined to 
functions in the function set. The purpose is to generate a program tree with branches 
extending profusely to form a hierarchical structure rather than creating a depraved 
tree with a single terminal.



Fig 2 shows the first node of the random program tree. As the root of the tree, the 
function chosen ( + ) has two arguments. Two lines where two is the number of argu-
ments of the function radiate out from the node. For each function, F with z(f ) argu-
ments, there are z(f) number of radiating lines. Then, for each such radiating line, an 
element from the combined set C = F U T of the functions and terminals is randomly 
selected to be the label for the endpoint of that radiating line. In the case where a func-
tion happens to be selected for the endpoint of a radiating line, then the process is 
repeated as described above. A recursive generative process continues if functions are 
repeatedly selected In Fig 2, the function * was selected for the second point (internal 
node) from the combined set C = F U T. The function * has two arguments which is 
represented by two lines radiating from node 2. Suppose then, that a terminal, A was 
chosen to be the label of an endpoint, for example at node 3. At this point, the gener-
ating process will terminate. Similarly, if terminals B and C were selected to be the 
labels of the other two radiating lines, the generating process is  complete and a fully 
labelled tree is created, as shown in Fig 4.

Although the example shown has a tree of depth of 3, due to the random nature of 
selecting functions and terminals, resulting trees may be of variable shapes and sizes. 
The depth of the tree is defined as the length of the longest non backtracking path from 
the root to an endpoint. There are several ways to achieve some control over the size 
of a tree.

One method of generating the initial random population is to define a fixed maximum 
depth. The length of every non backtracking path between the root and endpoint is 
restricted to a specified maximum length. This requires that for points at less than the 
maximum depth, the random selection of labels is taken from the combined set C = F 
U T. However, once the depth has reached the maximum specified, selection of labels 

Fig. 2 Beginning 
of the creation of a 

random program tree, 
with the function + 
with two arguments 

chosen for the root of 
the tree

Fig. 3: Continuation of  the crea-
tion of a random program tree 
with the function * with two 

arguments  chosen for point 2.

Fig. 4: Completion of the creation of a 
random program tree, with terminals A, 

B & C chosen



is restricted to the terminal set T. The number of functions in the function set F and the 
number of terminals in the terminal set T influence the expected size of the tree some-
what. This method of generating initial trees has been termed as the "grow" method by 
Koza(1994).

Other methods of generating initial trees are the "full" method and "ramped half-and-
half" method described by Koza (1994). In the "full" method, selection of labels for 
all internal nodes at less than specified maximum depth are taken from the function set 
and only from the terminal set T at maximum depth. The resulting trees tend to have 
the same size. The "ramped half-and-half" method is a combination of the "grow" and 
"full" methods. For example if the maximum specified depth is 6, 20% of the trees will 
have depth 2, 20% of the trees will have depth 3 and so forth up to depth 6. Then for 
each value of each depth, 50% of the trees are created via the full method and 50% of 
the trees are produced via the grow method. The "ramped half-and-half" method pro-
duces a wide variety of trees of various shapes and sizes, but for simplicity sake, the 
"grow" method was chosen for this experiment.

For reasons of creating genetic diversity and to avoid wasting computational resources, 
I have taken steps to eliminate duplicate trees in the initial population of generated 
trees, although this is not necessary. Each newly created S-expression was subject to 
a check for uniqueness before it is inserted into the initial population, otherwise it is 
discarded and the process is repeated until a unique S-expression has been created. 
Variety of the population is maintained at 100% for the initial population. This may be 
not be the case in later generations but should be expected as an inherent part of the 
genetic processes.

Fi tness

The rule of Darwininan natural selection 
pivots about a measure of fitness. In nature, 
fitness is the measure of a living thing to sur-
vive an propagate itself . This is adapted to 
the sphere of computer algorithms in genetic 
algorithms and genetic programming, where 
it takes on the form of some control over the 
process of  when and how artificial reproduc-
tion is determined. In other words, the indi-
viduals in a population is evaluated by some 
procedure and rank in order of performance 
according to the procedure. This procedure 
can be made explicit, as in many applications 
of a mathematical nature, or it may be implic-
it. In my case, the fitness can be called the 

Fig. 5 : Interaction between man and 
machine, the ‘see and decide’ relationship 



‘eye test’. Individuals in a population will be scrutinised for its aesthetic appeal and 
the best looking one(s) selected to live on. The user is given the opportunity to make 
subjective judgements before moving on. The selected individual(s) are the chosen 
parents of the next generation.

Fitness can also, in this context, be understood as a steering mechanism. The act of 
choosing parents with desirable characteristics is to lead to a preferred direction in the 
evolutionary path. Since we do not have a million years to spare, an evolutionary proc-
ess is accelerated by purely manoeuvring through the shortest path to arrive at a pos-
sible solution. Anything else not in favour is omitted. 

Reproduct ion.

The individuals in each generation of the genetic programming undergo adaptation via 
the choice of three operations 

° crossover (sexual recombination)
° asexual reproduction
° mutation

CROSSOVER

New offspring are produced from the parent(s) that has been selected  from the popula-
tion according to the ‘eye test’. In the case where crossover (sexual recombination) is 
chosen to be the breeding process, two parents are selected. The crossover operations 
begins by randomly selecting a point or node in each parent. The nodes serve as cross-
over points for the parents. Offspring are produced like this: The fragment of one tree 
lying below the crossover point in one tree will be exchanged for the sub-tree fragment 
of the second tree. Offspring 1 keeps everything else above the crossover point of the 
parent 1 but will have the sub-tree fragments of parent 2 attached to it at the crossover 
point. Similarly for offspring 2, parts of  parent 2 is combined with the subtree frag-
ment of parent 1. From the point of  LISP S-expressions, crossover swaps the sublists 
starting at the crossover point. This will always produces legal LISP S-expressions as 
offspring irrespective of  parents or crossover points.

There are several cases of crossover worth discussing here due to the random nature of 
selecting crossover points.

If the crossover point of a parental tree is chosen to be the root, the crossover opera-
tion produces an offspring 1 by replacing the entire tree of the first parent with the 
sub-tree fragment of the second parent while offspring 2 will include parent 2 and the 
whole tree of parent 1 at the point of crossover point. In the case where the roots of 



both parents are chosen to be crossover points, the resulting offspring are repeats of 
their parents.

Crossover produces trees of  considerable variety. Shapes and sizes of trees tend to be 
influenced by whether a function or a terminal occupies the node chosen as crossover 
point. In the event where the node of parent 1 selected is a terminal, then the terminal 
will be be inserted at the location of the subtree of the second parent while this subtree 

Fig.s 6 & 7: Two parental computer programs. (S-expression shown below each parse 



now occupies the position of the terminal. The first offspring has ‘grown’ and the sec-
ond offspring is a shorter tree. If  the crossover points are both terminals, the crossover 
operation has the effect of just swapping terminal from tree to tree.

ASEXUAL RECOMBINATION

This is the situation where one individual mates with itself. Practically, only one par-

Fig. 9 : The crossover fragments 
resulting from the selection of crosso-

Fig. 8: The crossover fragments resulting from the selec-
tion of crossover point of point 6 of the first parent .

Fig. 10: The two offspring produced by the crossover



ent is chosen and the other is a copy. The operations are the same as for crossover 
except that now the two parents are identical. The two resulting offspring are likely 
to be different because the crossover points selected are going to be different anyhow. 
However, I am not ruling out that the choosing the same crossover points will not hap-
pen.

This is not the case with genetic algorithms. What  is different between genetic algo-
rithm and genetic programming is that in conventional genetic algorithms, only one 
crossover point is selected and applied to both parents. Two similar fixed length strings 
crossing over at the same point cannot produce dissimilar offspring. The implication of 
this is that premature convergence occurs in conventional genetic algorithms and the 
population is directed towards over production of similar offspring.

In ‘The Selfish Gene’ (Richard Dawkins, 1974) writes; “ ...Darwinian adaptation pre-
cludes that selection cannot produce adaptations unless there is a hereditary difference 
among which to select.” Darwinian selection has to have gene variation to work on.

MUTATION

The third method of reproduction, mutation introduces variation in the gene pool. The 
aim is to cause random changes in the structures in the population. The use of muta-
tion most useful on two aspects in this project. The first is to do a quick random walk 
(which in principle is what mutation alone achieves) to search for a suitable form (or 
forms) and thereafter to perform crossover or asexual reproduction on the selected 
forms to hone in on desirable characteristics and features. Secondly, mutation brings 
about leaps from hill to hill. Occasionally, this might be beneficial when the need to 
add diversity to the population arises.

The operation of mutation is asexual and only one parental S-expression is involved. 
One offspring S-expression is produced in a mutation. Once again, a node is selected 
at random. The subtree below this point is discarded and a new randomly generated 
subtree is inserted in its place. A high rate of mutation is said to have taken place if the 
node is chosen is higher up the tree nearer the root and a low degree if chosen node is 
near the bottom of the tree. Obviously an offspring produced at a lower rate of muta-
tion has near all the characteristics of the parent and more besides. But the degree of 
similarity depends very much on the new subtree. It may be possible that an offspring 
with a low rate of mutation resembles its parents in very few places, especially if the 
subtree is of huge size or contain features that overshadows the original.



The mutation operation in genetic programming is quite different from that of genetic 
algorithms. In conventional genetic algorithms, mutation helps to prevent against pre-
mature loss of potentially useful genetic material. 1’s and 0’s at particular locations 
may be lost occasionally. Mutation is the random alteration of the value of a string 
position, i.e. flipping a 1 to a 0 or vice versa. Mutation is generally considered a minor 
operation in genetic algorithms.

RESULT DESIGNATION AND THE TERMINATION

The genetic program paradigm adopted in this project aims to imitate nature and that 
foreordains a never-ending process. In principle, the evolutionary process continues on 
and on. Practically, it is usually terminated by either one of the following whichever 
comes first; a desirable structure(s) has been discovered and designated as the result of 
the experiment, or the processing power of the computer does not permit any further 
processing.

Using Genet ic  Programming

There are five major steps in preparing to use the genetic programming paradigm to 
solve a problem:

• determining the set of terminals

• determining the set of functions

• determining the fitness measure

Fig. 11: A computer program before and after the mutation operation



• determining the parameters and variables for controlling the run, and

• determining the method of designating the result and the criterion for terminating a 
run.

Note that for each problem, solutions can be found on numerous runs. However, since 
the genetic programming paradigm is a probabilistic method, different runs almost 
never yield precisely the same S-expression. No one particular run and no one particu-
lar result is typical or representative of all the others.

The terminals can be viewed as the input to the computer program being sought by 
genetic programming. In turn, the output of the computer program consists of the 
value(s) returned by the program.

FORM GENERATION AND SEARCH

In my problem of form search, the information we want to process is the transforma-
tions that can be applied to solids and shapes to generate interesting forms. Thus the 
functions set for the problem consists of three dimensional transformation operators. 
They can be pure affine transformations or composites of them. The terminal set for 
this problem should then contain the objects or shapes on which the transformations 
are to be acted upon. Thus, the terminal set selected is :

T = { box, cone, cylinder, sphere, torus, wedge }

primitives of solid shapes available in AutoCad.

The function set F selected is:

F = { (grow_x), (grow_y), (grow_z), (move), (stack), (rotate_x), (rotate_y) (rotate_z), 
(climb), (add), (subtract), (intersect) }

Each of these two functions has an two arguments. For reasons of computer processing 
power, the function arguments have been limited to two. Theoretically, it can be any 
number of arguments. However, the resulting LISP tree would be too complicated for 
more than 3 arguments.

The function (grow_x) grows the second argument by a random factor and  attaches 
itself to the first argument along the x-axis. (grow_y) and (grow_z) is similar to 
(grow_x) except that the attachments are along the y and z- axis receptively. Functions 
(move), (stack) and (climb) translates the second argument along the x, y, and z-axis 
by the extents of the first. Functions (rotate_x) (rotate_y), (rotate_z) rotates the second 
argument with respect to the first.  Functions (add), (intersect), (subtract) are standard 



Boolean operations performed on both arguments simultaneously. 

The third major step in preparing to use genetic programming is to identify the fitness 
measure. This may be considered as the test mechanism at the local level, i.e., at the 
solution generating level. On a global level, the form will be subject to more formal 
analysis often associated with the function of the structure.

Visual feedback and interaction are an important part of this experiment. The key to 
whether an individual form survives depends on its appeal to the eye. The fitness can 
be known as aesthetic fitness. No number crunching is involved in the fitness meas-
ure.  The best-of-run individual(s) in the population is the individual(s)  chosen as the 
parent(s) of the next generation.

Breeding can take place using 3 methods, by crossover reproduction, by asexual repro-
duction, or by mutation. In crossover reproduction, two individual of the population 
are selected from whom 16 other offspring are bred. One parent is chosen for both 
asexual reproduction and mutation. The parents are not copied to the next generation. 
Every new generation consists of 16 new re-combinations of the chosen parent(s). This 
cuts down on having to re-evaluate the same parent(s) twice and since I am interested 
in exploring a wider expanse of search space, no effort should be spared to produce as 
many possible forms as possible in each generation. 16 forms per generation has been 
tested to be generally suitable.

At every generation, the 16 S-expressions for each individual is evaluated and its form 
presented to be tested for aesthetic fitness.

Any number of generations can be tested, there is no limit to the number of genera-
tions. Once a form has been identified as the final one with no further transformations 
required, the run can be terminated. The resultant satisfactory structure would be 
deemed as having emerged from the search of possible forms defined by the functions 
and terminals.

As the populations are bred from generation to generation, a history of the evolution is 
created. This is duly recorded and they form a gene bank. Each structure is a potential 
choice as a new form to be adapted. An interesting forms from the gene bank can be 
added to the set of terminals. The starting point of the evolution process using a termi-
nal set consisting of forms taken from the gene bank has a head start many generations 
from the primitive shapes from which they were made up.

Results of the experiments illustrated in Appendix A. based on representation set, R1 
where the set of objects is the set of nine possible pattern of wedges, terminal set T 
= {wedge1 wedge2 wedge3 .... wedge9} and the operators, function set F = {grow_x  
grow_y grow_z rotate_x rotate_y rotate_z climb move stack add intersect subtract}. 



Thus by varying the sets F and T, a different search space is created every time. It is 
up to the user to discover what to define in representation set in order to create his/her 
modelling world.

A constant seed was chosen while the reproduction methods were varied. Two differ-
ent evolutionary paths taken for each type of reproduction demonstrates the power of 
selection in steering the evolution of form. Each different type of reproduction chosen 
produces it own family of structures. 

Asexual and crossover reproduction breed trees that bears resemblance to each other 
only to the extent that no extra information is added to the first population that is ini-
tially generated. Outcomes are a recombination of information amongst the individuals 
of each population. For each generation, information is limited to that contained in 
one tree selected for asexual reproduction while crossover reproduction has twice the 
number.
 
Clearly by changing the seed, the consequence is a new set of initial representations, I. 
Starting from a different point in the search space and choosing different paths allows 
one to visit virtually every state in the search space. Due to the randomness of travers-
ing paths one cannot rule out the chance of a fortuitous occurrence of the same struc-
ture and should therefore not be piqued by it. In most cases, similar looking structures 
can have entirely different S-expressions (hierarchical trees), one may be of a depth of  
8 and the other a considerable depth of 17. It goes to prove that there are more ways 
than one to achieve a ‘solution’, but the paradigm does not take into account the ‘eco-
nomical efficiency’ of arriving at it. This is also found in nature. Up till today, no one 
has been able to completely explain the extraneous human genetic material that appar-
ently cannot be accrued to any feature . (Dawkins)

As the populations are bred from generation to generation, a history of the evolution is 
created. This is duly recorded and they form a gene bank. Each structure is a potential 
choice as a new form to be adapted. An interesting forms from the gene bank can be 
added to the set of terminals. The starting point of the evolution process using a termi-
nal set consisting of forms taken from the gene bank has a head start many generations 
from the primitive shapes from which they were made up.

Fig. 12 traces the genealogy of an emergent form.  .History of evolution of the emerg-
ing structures can be referred to in Appendix A.
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Conclusion

A device to execute design as search necessitates three subclasses of jobs. The first, the 
representation of the problem through structuring and restructuring the problem space, 
also known as the design representation. The control strategy (design concepts) that  
the architect chooses to produce a final solution has to be translated into the descrip-
tion of a three-dimensional space. The second, a solution generation mechanism apply-
ing the evolutionary concepts of Darwinian principle of natural selection and repro-
duction is set up. Structure is defined by its ‘genetic’ code scripted as S-expressions 
(hierarchical trees). Structure undergoes adaptation via the process of reproduction and 
crossover of individual structures, the vehicle for creation of new population structure. 
A test mechanism that evaluates the ‘aesthetic fitness’ of a structure is put to use. This 
drives the evolutionary path to generate interesting and appealing structure. Third, the 
designation of a candidate solution (or solutions). 

The search paradigm stands in harmony with, and perhaps partially motivates, the 
present recurrence of compositional ideas in architecture. At its core, the model views 
search as  the action of a set of operators on a representation all being guided by a 
search strategy. When compared to a current understanding of human problem solving, 
the  model suggests that  a complementary relationship exists between human design-
ers and computer-based search systems.

The search paradigm owes  intellectual debts to many sources outside architecture. 
These include formal language theory and computational linguistics for grammatical 
concepts, set theory for representations and proof procedures, cognitive psychology 
for models of human problem solving, and artificial intelligence for representation and 
search. However, the paradigm is more than an amalgam of  these gleanings, it is enli-
vened by its own logic and firmly anchored in the field of design.

Design exploration through search will improve the ability to create in fundamental 
ways, the generation of visual alternatives in a short period of time allows for making 
selections and new associations possible. A fast feedback of results and the immediate 
visual control enhances imagination. For intelligent users, the proposed model provides 
more opportunities for creativity.

Design intelligence located in the generation mechanism assumes that an acceptable 
solution based on the control strategy will be quickly produced; the evaluation has 
nothing to do. This simulates the existence of God, a smart designer with no need for 



a critic. Designer intelligence located in the test mechanism indiscriminately produces 
alternatives and it is up to the evaluation mechanism to sort out the acceptable ones by 
bringing a knowledge to bear, drawing inferences and exploring entailments of alterna-
tives. This is evolution; indiscrimate generation but deadly effective criticism.



2)  Using a  GA to evolve rule  sets  to  achieve a  goal  configurat ion

PRIOR WORK

Prior work involving the use of the essential techniques for form generation and analy-
sis in the experiments - L-systems, genetic algorithms and the Hausdorff distance 
equation.

Various computer-generated models of morphogenesis have been used to help under-
stand the emergence of complex forms in living organisms since Turing proposed the 
reaction-diffusion process in 1952. Diffusion limited aggregation models have been 
used to simulate crystal formation in super-saturated solutions and J. Kaandorp in 
"Fractal Modeling:Growth and form in Biology uses an aggregation model to investi-
gate the growth of corals. L-systems were developed by Astrid Lindenmayer in 1968 
to model the morphology of organisms using string re-writing techniques. These tech-
niques have been applied in a  variety of studies to the production of abstract models 
of biological forms as an aid to interspecial comparison and classification see (deBoer, 
Fracchia and Prusinkiewicz 1992) . An L-system form generation engine is the main 
ingredient in the following experiments.

L-SYSTEMS

An L-system model starts with an initial axiom and one or more production rules. 
Axioms and production rules consist of symbol strings whereby individual symbols in 
the axiom are replaced by a string of symbols designated by the production rule. This 
process of character recognition and string substitution is carried out iteratively with 
each successive iteration producing a symbol string of greater complexity. 

The resultant symbol string is interpreted as a series of drawing instructions which pro-
duce an abstract representation of the desired organism. The success of the L-system 
model lies in the self similarity of cell structure that many biological systems exhibit 
which is mirrored in the grammar based string re-writing process.    

The L-system method of modeling developmental processes has been the subject of 
considerable research.  Our approach is to use the L-system biological model in con-
junction with an evolutionary algorithm and is an area which has seen relatively little 
investigation, recent work is reported in (Jacob 96)



 these are given in the symbology as POS1 .. POS12 for each of the 12 possi-
ble   orientations from any sphere
°A bracket 
  an open one  ( indicates a branching point, 
 a closed one ) is an instruction to return to a position on a lower 'limb' where 
it   last branched. 

These symbol strings which make up the gene pool are the production rules of the L-
system. 

Fig 13 : the 12 spheres of the Iso-spatial dodecahedral array

Due to the constraints imposed by using Autocad we kept to the tri-axial Cartesian co-ordinate system rather 
than the alternative , more ‘elegant’ four axial system preferred by Frazer. The twelve neighbours  of any given 
point-’apoint’- are given by the autolisp function ‘getneighbours’:

(defun getneighbours ( apoint / neighbours offsets p np )
      (setq neighbours ‘()
   offsets(list ‘(1 1 0) 
      ‘( 1 -1 0)
      ‘( -1 1 0)
      ‘(-1 -1 0)
      ‘(1 0 1)
      ‘(0 1 1)
      ‘(-1 0 1)
      ‘(0 -1 1)
      ‘(1 0 -1)
      ‘(0 1 -1)
      ‘(-1 0 
-1)
      ‘(0 -1 
-1)))
 (foreach p offsets
 (setq np (mapcar ‘+ a point p)

Fig 14: the  offset list for con-
structing the 12 neighbours of 

a point



PRODUCTION RULE

The next stage of the program is to iteratively apply a production rule to the initial 
axiom - in this experiment a simple 'f symbol. It only requires 3 or 4 iterations to gen-
erate a symbol string of considerable length as every instance of 'f is substituted by the 
production rule which itself is made up largely of 'f's.

   F   -> 
   
   
         (F(F POS12(F F POS10)F)F) ->
           
    
                   (F(F POS12(F F POS10)F)F)((F(F POS12(F F POS10)F)F) POS12
                   (F(F POS12(F F POS10)F)F)(F(F POS12(F F POS10)F)F)POS10)
                   (F(F POS12(F F POS10)F)F)(F(F POS12(F F POS10)F)F))

fig 15 : example of a 3D branching morphology using the Iso-spatial array & L system



The re-written symbol string is passed to a function for interpretation of the symbols, 
ie its genetic code, and the realisation of the artificial organism in the drawing data-
base. Every symbol in the string is evaluated and the corresponding function is called 
which carries the instruction for either;

 (1) changing the positional variable or 
 (2) inserting a sphere at a point on the grid.
 
Before a sphere is inserted clash detection is carried out and if a collision is imminent 
the insertion command is ignored and the next symbol evaluated.
  

MUTATION

The mutation genetic operator works by counting the levels of recursion or nested 
brackets in an individual’s genetic code and selects, at random, a self-contained bal-
anced chunk of code to be replaced by a similar, randomly generated, chunk. The 
chunk of code selected always starts with a branching bracket symbol and ends with 
closed bracket. The symbol string is not of fixed length so mutated organisms can have 
varying lengths of genetic material.

CROSSOVER

Crossover works by choosing two organisms, selecting suitably balanced sections of 
code and swapping them. As in mutation the amount of genetic material an individual 
has can change, producing differences in generations ranging from slight to radical.

OBJECTIVE FUNCTION

After choosing a datastructure and method of representation and defining the type of 
genetic operators to be used, the third element of the algorithm is defining the  objec-
tive function or 'fitness' function. This was carried out by designing a series of struc-
tured experiments which build on the results of each experiments precursor.
Initial experiments were carried out to test the crossover function. In the figures below, 
the left hand and centre configurations are two objects generated from a random pro-
duction rule, the right hand object is generated from the resulting rule after crossover 
of the other two rule sets.

Our immediate goal was to develop a model which would respond to the user's selec-
tion of the characteristics of two individuals which would survive and combine and 
become accentuated over successive generations - the 'eyeball' test as used in Dawkins' 



Biomorph program. Figs 18 -21 show screen shots of two experiments.  
This was completed successfully. The mechanism used here is similar to that employed 
in section one of this paper, except that whereas there a range of breeding options were 
allowed (mutation, crossover and asexual reproduction) here the operation is restricted 
to crossover. At each generation 9 phenotypes are displayed and the user chooses two 
parents from which to breed the next generation. These two candidates’ production 
rules (genetic material) are them crossed over, 9 times to ,create the 9 genotypes for 
the next generation, which are then developed into the 9 phenotypes for display.

The next stage was to define an ideal form in terms of a desirable length over width 
ratio and run the algorithm until it produced forms matching the target within a given 
tolerance Figures 22 and 23 illustrate a typical run, showing convergence to the target 
(ie the initial random morphologies slowly adapt to assume more and more etiolated 
forms).

More complex forms can now be defined as a target. By using the Hausdorff distance 
equation we can analyse how close an individual has come to matching the pre-defined 
shape. Successful individuals are used to breed the next generation. These experiments 
are still continuing, and will be reported to the conference.

FUTURE WORK

The work reported here is at an early stage, and there are two main areas which will be 
developed next. Firstly the basic function set of F and P can be enriched to provide a 
wider range of behaviours; secondly the problem of adopting arbitrary fitness functions 
can be addressed by using the “arms race” paradigm where a competitive scenario can 
be introduced by growing two forms simultaneously where each form is its opponent's 
environment and the fitness function becomes pure survival.
    

fig 16: Crossover test 1



fig 17 Crossover test 2

Fig 18 : Artificial selection trial 1- Starting random field of 9 objects

Fig 19 : Artificial selection trial 1-After 6 generations of artificially selecting for “spi-
deryness” the field consists of predominantly spidery objects
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Appendix A

Fig  24 Asexual reproduction only



A standard Genetic algorithm and the associated Genetic Programming strategy are 

models which utilise the processes involved in the evolution of biological organisms 

The Hausdorff distance measures how close each point comprising a given shape is to 
a point in a second shape and vice versa and is used photographic image recognition . 

Visualisation of the growth model was carried out in Autocad, a 3-D modelling appli-
cation using the Autolisp programming language. 
The method of representing form will be through the insertion of spheres drawn and 
saved in separate drawing files. Different coloured spheres represent different levels of 

Fig  25Crossover only



recursive 
branch-
ing. The 
geom-
etry of 
the 3-D 
space into 
which the 
spheres 
are insert-
ed is an 
iso-spa-
tial grid 
where 
the co-
ordinates 
of the 
grid are 
the ver-
tices of 

close packed cuboctahedrons as used by J. Frazer in "Data Structures for Rule-based 
and Genetic Design" . Spheres can only be inserted at these vertices and each sphere 

has 12 equally spaced neighbours. A variation on this geometry is the one used by 
Carter Bays' in "Patterns for Simple Cellular Automata in a Universe of Dense-Packed 
Spheres" which has a four axial system where 12 neighbouring points are the vertices 
of a dodecahedron.

There are three primary genetic operators used in this experiment, initialisation, cross-
over and mutation. The first stage of the program is initialisation where a  function is 
called to produce an initial gene pool. The genes are a randomly generated series of 
nested brackets containing three types of symbols; 

INITIALISATION

°An instruction to insert a sphere;
 this is represented by the symbol F (for “forward”)
°A positional variable which refers to which of the 12 neighbouring positions the next  
 sphere inserted will occupy;

Fig 26 Mutation only
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