

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Broughton, T.; Tan, A.; Coates, Paul
Title: The use of Genetic programing in Exploring 3D Design Worlds
Year of publication: 1997
Citation: Broughton, T., Tan, A., Coates, P. (1997) ‘The use of Genetic programing
in Exploring 3D Design Worlds.’ In: Junge, R. (ed.) CAAD Futures 1997, Proceedings
of the 7th International Conference on Computer Aided Architectural Design Futures
4-6 August 1997, Kluwer Academic Publishers, Munchen, Germany. pp. 885-917.
Link to published version: http://www.caadfutures.org/proceedings_97.htm

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://www.caadfutures.org/proceedings_97.htm

THE USE OF GENETIC PROGRAMMING IN EXPLORING 3D

DESIGN WORLDS

 A REPORT OF TWO PROJECTS BY MSC STUDENTS AT CECA UEL

 T.Broughton, A.Tan, P S Coates
 Centre for Environment and Computing in Architecture,
 University of East London.

Abstract

Genetic algorithms are used to evolve rule systems for a generative process, in one case a shape
grammar,which uses the "Dawkins Biomorph" paradigm of user driven choices to perform artificial
selection, in the other a CA/Lindenmeyer system using the Hausdorff dimension of the resultant con-
figuration to drive natural selection.

1) Using Genetic Programming in an interactive 3d shape grammar (AmyTan &P.S..Coates) A report of a gen-
erative system combining genetic programming(GP) and 3D shape grammars. The reasoning that backs
up the basis for this work depends on the interpretation of design as search In this system, a 3D form is
a computer program made up of functions (transformations) & terminals (building blocks). Each program
evaluates into a structure. Hence, in this instance a program is synonymous with form. Building blocks of
form are platonic solids (box, cylinder....etc.). A Variety of combinations of the simple affine transforma-
tions of translation, scaling, rotation together with Boolean operations of union, subtraction and intersec-
tion performed on the building blocks generate different configurations of 3D forms. Using to the method-
ology of genetic programming, an initial population of such programs are randomly generated,subjected to
a test for fitness (the eyeball test). Individual programs that have passed the test are selected to be parents
for reproducing the next generation of programs via the process of recombination.

2) Using a GA to evolve rule sets to achieve a goal configuration(T.Broughton & P.Coates) . The aim of these
experiments was to build a framework in which a structure’s form could be defined by a set of instructions
encoded into its genetic make-up. This was achieved by combining a generative rule system commonly
used to model biological growth with a genetic algorithm simulating the evolutionary process of selec-
tion to evolve an adaptive rule system capable of replicating any preselected 3-D shape. The generative
modelling technique used is a string rewriting Lindenmayer system the genes of the emergent structures
are the production rules of the L-system, and the spatial representation of the structures uses the geometry
of iso-spatial dense-packed spheres

1) Using Genet ic Programming in an interact ive 3d shape grammar

This paper attempts to show how evolving creative forms can be cast as a problem of
induction. And more importantly, that there is a way to solve the problem of induction
-- by genetic programming. The genetic programming paradigm described in the fol-
lowing provides a way to do program induction. The basic idea of program induction
is the inductive discovery of a computer program from a space of possible computer
programs. In our case the computer program is a sequence of operations or a composi-
tion of functions that evaluates to a geometric output.

Given that the computers are more effective in generating proposals according to rules
and control strategies, the human critic is used to inspect and test them. There is no
question that there are many analysis programs that will do the task of evaluating the
performance of each proposal. As the main purpose of this paper is to explore and cre-
ate imaginative and beautiful forms, the proposals must pass the ‘eye’ test. Criterion
for high performance is that it must appeal to the critic enough for it to be selected to
evolve further. The final structure is the form selected that will not be bred any further.

The structure of the program is equivalent to the form because it contains all the infor-
mation that will be manifested in the geometric properties of the form. When reference
is made to the computer program, it implies the structure.

Mapping of the code to a virtual model is simple and direct. Three dimensional geo-
metrical shapes pose no problem to programs that use the constructive solid geometry
paradigm, such as AUTOCAD and a host of others too numerous to mention. What
better way is there to represent properties of geometrical objects than to use the in-
built functions of CAD software. Because AUTOLISP, a version of LISP unique
to AutoCad, has been employed to implement the genetic programming paradigm,
the result or emergent computer program that has evolved can be easily translated
into its visual geometric form using the EVAL function in AutoLISP. The process of
genetic programming takes on a search for highly fit individual computer program
in a space of computer programs. In particular, the search space is the space of all
possible computer programs composed of functions and terminals appropriate to the
problem domain. Breeding using reproduction of the fittest along with genetic recom-
bination (crossover) operation appropriate for mating computer program applies. A
computer program that solves, or approximately solves a given problem (or meets a
target) may emerge from this combination of Darwinian natural selection and genetic
operations.(Koza, Genetic programming - on the programming of computers by natural
selection, MIT, 1992)

The set of possible structures in genetic programming is the set of all possible compo-
sitions of functions that can be composed recursively from the set of Nfunc functions
from F = { f1, f2,, ffunc} and the set of Nterm terminals from T = { a1, a2,,
afunc }. Each particular function fi in the function set F takes a specified number of
z(fi) of arguments z(f1), z(f2),, z(fNfunc).

The function in the function set may include

* arithmetic operations (+, -, *, etc.),

* mathematical functions (such as cos, cos, exp, and log),

* Boolean operations (such as AND, OR, NOT),

* conditional operators (such as IF-THEN-ELSE),

* functions causing iteration (such as DO-UNTIL),

* function causing recursion, and

* any other domain-specific functions that may be defined.

We are interested in the last category of functions because the functions applicable to
this paper are uniquely defined so as to give desirable results - generating interesting
forms. Bearing in mind that genetic programming was developed to solve a wide range
of problems, it is probably more widespread and easier to cast problems of a math-
ematical nature as a computer program. However, this important aspect of the versatil-
ity of genetic programming has been harnessed to bridge the gap between creativity in
design on the one hand and the mathematical nature of geometrical forms on the other.

Consider the function set

F = { UNION, INTERSECT, SUBTRACT }

and the terminal set

T = { S0, S1}

where S0 and S1 are Boolean variable sets that serve as arguments for the functions.

A combined set of functions and terminals is as follows:

C = F U T = { UNION, INTERSECT, SUBTRACT, S0, S1 }

The terminals in the combined set C can be considered as functions that does not

require any arguments.

Take for example the INTERSECT
function with two arguments. A set
that occurs both in the two arguments
is returned if there is an overlap in
arguments sets (i.e., S0 and S1) and a
NIL if there is none. A typical Boolean
function can be expressed in disjunctive
normal form (DNF) by the following
LISP S-expression;

(UNION (INTERSECT (
SUBTRACT S0 S1) (SUBTRACT S0
S1)) (INTERSECT S0 S1))

The above LISP S-expressions can be
graphically shown as a rooted, point
labelled tree with branches. The leaves (external points) of the trees are labelled with
terminals S0, S1, S0, S1, S0 and S1 respectively. The internal points are labelled with
functions UNION, INTERSECT, SUBTRACT, SUBTRACT and INTERSECT. The
root of the tree (the UNION) is the first function just inside the outermost left paren-
thesis of the LISP S-expression. This tree is equivalent to the parse tree which most
compilers construct internally to represent a given computer program.

All possible trees of this description that can be generated from any possible recursive
combinations of the available functions and terminals appropriate to the problem at
hand is the search space to be explored by genetic programming. This is equivalent
to searching through all LISP S-expressions consisting of the available functions and
terminals.

This is the distinction between the conventional genetic algorithm and genetic pro-
gramming. While one-dimensional strings, be they finite or variable length, are the
structures that undergo adaptation in genetic algorithms, the structures that undergo
adaptation in genetic programming are hierarchical structures (rooted point labelled
trees with ordered branches).

Closure of the Funct ion set and Terminal Set

Due to the hierarchical nature of the trees, one has to take care that the functions in the
function set should be well defined and closed such that each function is able to accept
any value or data type that may be returned by any function in the function set and
any value and data type that may possibly be assumed by any terminals in the terminal

Fig. 1: S-expression depicted as a rooted, point-
labeled tree with ordered branches

set. This is especially relevant where ordinary computer programs contain arithmetic
operations, conditional comparative operators, and conditional branching operators.
Computation breaks down when the operators are given an undefined variable (eg.
division by zero, logarithm of zero) or unacceptable data (e.g. NIL, square-root of a
negative number).

Closure of the function set in such cases can be dealt with by defining a protected
function that does not evaluate division by zero or returning an absolute value when a
nonpositive argument is encountered or avoiding non-numerical logic operators.

Suff ic iency of the Funct ion Set and Terminal Set

In order to use genetic programming effectively, the set of terminals and the set of
primitive functions selected should be capable of expressing a solution to the problem.
It is up to the designer to identify the set of function and terminals that has sufficient
explanatory power for the problem at hand. Depending on the problem, this may be
obvious or may require considerable insight. No doubt, design knowledge and experi-
ence comes into play where a good choice is concerned. This step of identifying the
right variable to solve a particular problem is common to virtually every problem
in science. In the sphere of design, personal sets of strategies which designers adapt
to particular design circumstances can be expressed in the set of functions and ter-
minals. It is not unknown that many architects already have strategies that are often
pronounced and consistent to the point where their individual projects are instantly
recognisable.

This project also attempts to show that the designer has complete control over how
he/she would like to express his/her design concepts. Designers are free to define
their own functions set and terminal set. The results of the experiments that I have
performed are solely based on the operations implied in the functions that I had writ-
ten and the operations are performed on the terminals which I have selected from the
domain of all possible terminals. Terminals can be any 3 dimensional shape. They can
be simple primitive geometrical objects (eg. cube, wedge, etc.) or a composite of them
or even any 3 dimensional form that can be mathematically generated by the computer.

The Ini t ia l Structures

The initial structures are made up of individual S-expressions that form the initial
population in the first instant. This first population is completely generated at random.
For each individual S-expression, the root of the tree is labelled by randomly selecting
one function from the set of functions F . Selection of the root function is confined to
functions in the function set. The purpose is to generate a program tree with branches
extending profusely to form a hierarchical structure rather than creating a depraved
tree with a single terminal.

Fig 2 shows the first node of the random program tree. As the root of the tree, the
function chosen (+) has two arguments. Two lines where two is the number of argu-
ments of the function radiate out from the node. For each function, F with z(f) argu-
ments, there are z(f) number of radiating lines. Then, for each such radiating line, an
element from the combined set C = F U T of the functions and terminals is randomly
selected to be the label for the endpoint of that radiating line. In the case where a func-
tion happens to be selected for the endpoint of a radiating line, then the process is
repeated as described above. A recursive generative process continues if functions are
repeatedly selected In Fig 2, the function * was selected for the second point (internal
node) from the combined set C = F U T. The function * has two arguments which is
represented by two lines radiating from node 2. Suppose then, that a terminal, A was
chosen to be the label of an endpoint, for example at node 3. At this point, the gener-
ating process will terminate. Similarly, if terminals B and C were selected to be the
labels of the other two radiating lines, the generating process is complete and a fully
labelled tree is created, as shown in Fig 4.

Although the example shown has a tree of depth of 3, due to the random nature of
selecting functions and terminals, resulting trees may be of variable shapes and sizes.
The depth of the tree is defined as the length of the longest non backtracking path from
the root to an endpoint. There are several ways to achieve some control over the size
of a tree.

One method of generating the initial random population is to define a fixed maximum
depth. The length of every non backtracking path between the root and endpoint is
restricted to a specified maximum length. This requires that for points at less than the
maximum depth, the random selection of labels is taken from the combined set C = F
U T. However, once the depth has reached the maximum specified, selection of labels

Fig. 2 Beginning
of the creation of a

random program tree,
with the function +
with two arguments

chosen for the root of
the tree

Fig. 3: Continuation of the crea-
tion of a random program tree
with the function * with two

arguments chosen for point 2.

Fig. 4: Completion of the creation of a
random program tree, with terminals A,

B & C chosen

is restricted to the terminal set T. The number of functions in the function set F and the
number of terminals in the terminal set T influence the expected size of the tree some-
what. This method of generating initial trees has been termed as the "grow" method by
Koza(1994).

Other methods of generating initial trees are the "full" method and "ramped half-and-
half" method described by Koza (1994). In the "full" method, selection of labels for
all internal nodes at less than specified maximum depth are taken from the function set
and only from the terminal set T at maximum depth. The resulting trees tend to have
the same size. The "ramped half-and-half" method is a combination of the "grow" and
"full" methods. For example if the maximum specified depth is 6, 20% of the trees will
have depth 2, 20% of the trees will have depth 3 and so forth up to depth 6. Then for
each value of each depth, 50% of the trees are created via the full method and 50% of
the trees are produced via the grow method. The "ramped half-and-half" method pro-
duces a wide variety of trees of various shapes and sizes, but for simplicity sake, the
"grow" method was chosen for this experiment.

For reasons of creating genetic diversity and to avoid wasting computational resources,
I have taken steps to eliminate duplicate trees in the initial population of generated
trees, although this is not necessary. Each newly created S-expression was subject to
a check for uniqueness before it is inserted into the initial population, otherwise it is
discarded and the process is repeated until a unique S-expression has been created.
Variety of the population is maintained at 100% for the initial population. This may be
not be the case in later generations but should be expected as an inherent part of the
genetic processes.

Fi tness

The rule of Darwininan natural selection
pivots about a measure of fitness. In nature,
fitness is the measure of a living thing to sur-
vive an propagate itself . This is adapted to
the sphere of computer algorithms in genetic
algorithms and genetic programming, where
it takes on the form of some control over the
process of when and how artificial reproduc-
tion is determined. In other words, the indi-
viduals in a population is evaluated by some
procedure and rank in order of performance
according to the procedure. This procedure
can be made explicit, as in many applications
of a mathematical nature, or it may be implic-
it. In my case, the fitness can be called the

Fig. 5 : Interaction between man and
machine, the ‘see and decide’ relationship

‘eye test’. Individuals in a population will be scrutinised for its aesthetic appeal and
the best looking one(s) selected to live on. The user is given the opportunity to make
subjective judgements before moving on. The selected individual(s) are the chosen
parents of the next generation.

Fitness can also, in this context, be understood as a steering mechanism. The act of
choosing parents with desirable characteristics is to lead to a preferred direction in the
evolutionary path. Since we do not have a million years to spare, an evolutionary proc-
ess is accelerated by purely manoeuvring through the shortest path to arrive at a pos-
sible solution. Anything else not in favour is omitted.

Reproduct ion.

The individuals in each generation of the genetic programming undergo adaptation via
the choice of three operations

° crossover (sexual recombination)
° asexual reproduction
° mutation

CROSSOVER

New offspring are produced from the parent(s) that has been selected from the popula-
tion according to the ‘eye test’. In the case where crossover (sexual recombination) is
chosen to be the breeding process, two parents are selected. The crossover operations
begins by randomly selecting a point or node in each parent. The nodes serve as cross-
over points for the parents. Offspring are produced like this: The fragment of one tree
lying below the crossover point in one tree will be exchanged for the sub-tree fragment
of the second tree. Offspring 1 keeps everything else above the crossover point of the
parent 1 but will have the sub-tree fragments of parent 2 attached to it at the crossover
point. Similarly for offspring 2, parts of parent 2 is combined with the subtree frag-
ment of parent 1. From the point of LISP S-expressions, crossover swaps the sublists
starting at the crossover point. This will always produces legal LISP S-expressions as
offspring irrespective of parents or crossover points.

There are several cases of crossover worth discussing here due to the random nature of
selecting crossover points.

If the crossover point of a parental tree is chosen to be the root, the crossover opera-
tion produces an offspring 1 by replacing the entire tree of the first parent with the
sub-tree fragment of the second parent while offspring 2 will include parent 2 and the
whole tree of parent 1 at the point of crossover point. In the case where the roots of

both parents are chosen to be crossover points, the resulting offspring are repeats of
their parents.

Crossover produces trees of considerable variety. Shapes and sizes of trees tend to be
influenced by whether a function or a terminal occupies the node chosen as crossover
point. In the event where the node of parent 1 selected is a terminal, then the terminal
will be be inserted at the location of the subtree of the second parent while this subtree

Fig.s 6 & 7: Two parental computer programs. (S-expression shown below each parse

now occupies the position of the terminal. The first offspring has ‘grown’ and the sec-
ond offspring is a shorter tree. If the crossover points are both terminals, the crossover
operation has the effect of just swapping terminal from tree to tree.

ASEXUAL RECOMBINATION

This is the situation where one individual mates with itself. Practically, only one par-

Fig. 9 : The crossover fragments
resulting from the selection of crosso-

Fig. 8: The crossover fragments resulting from the selec-
tion of crossover point of point 6 of the first parent .

Fig. 10: The two offspring produced by the crossover

ent is chosen and the other is a copy. The operations are the same as for crossover
except that now the two parents are identical. The two resulting offspring are likely
to be different because the crossover points selected are going to be different anyhow.
However, I am not ruling out that the choosing the same crossover points will not hap-
pen.

This is not the case with genetic algorithms. What is different between genetic algo-
rithm and genetic programming is that in conventional genetic algorithms, only one
crossover point is selected and applied to both parents. Two similar fixed length strings
crossing over at the same point cannot produce dissimilar offspring. The implication of
this is that premature convergence occurs in conventional genetic algorithms and the
population is directed towards over production of similar offspring.

In ‘The Selfish Gene’ (Richard Dawkins, 1974) writes; “ ...Darwinian adaptation pre-
cludes that selection cannot produce adaptations unless there is a hereditary difference
among which to select.” Darwinian selection has to have gene variation to work on.

MUTATION

The third method of reproduction, mutation introduces variation in the gene pool. The
aim is to cause random changes in the structures in the population. The use of muta-
tion most useful on two aspects in this project. The first is to do a quick random walk
(which in principle is what mutation alone achieves) to search for a suitable form (or
forms) and thereafter to perform crossover or asexual reproduction on the selected
forms to hone in on desirable characteristics and features. Secondly, mutation brings
about leaps from hill to hill. Occasionally, this might be beneficial when the need to
add diversity to the population arises.

The operation of mutation is asexual and only one parental S-expression is involved.
One offspring S-expression is produced in a mutation. Once again, a node is selected
at random. The subtree below this point is discarded and a new randomly generated
subtree is inserted in its place. A high rate of mutation is said to have taken place if the
node is chosen is higher up the tree nearer the root and a low degree if chosen node is
near the bottom of the tree. Obviously an offspring produced at a lower rate of muta-
tion has near all the characteristics of the parent and more besides. But the degree of
similarity depends very much on the new subtree. It may be possible that an offspring
with a low rate of mutation resembles its parents in very few places, especially if the
subtree is of huge size or contain features that overshadows the original.

The mutation operation in genetic programming is quite different from that of genetic
algorithms. In conventional genetic algorithms, mutation helps to prevent against pre-
mature loss of potentially useful genetic material. 1’s and 0’s at particular locations
may be lost occasionally. Mutation is the random alteration of the value of a string
position, i.e. flipping a 1 to a 0 or vice versa. Mutation is generally considered a minor
operation in genetic algorithms.

RESULT DESIGNATION AND THE TERMINATION

The genetic program paradigm adopted in this project aims to imitate nature and that
foreordains a never-ending process. In principle, the evolutionary process continues on
and on. Practically, it is usually terminated by either one of the following whichever
comes first; a desirable structure(s) has been discovered and designated as the result of
the experiment, or the processing power of the computer does not permit any further
processing.

Using Genet ic Programming

There are five major steps in preparing to use the genetic programming paradigm to
solve a problem:

• determining the set of terminals

• determining the set of functions

• determining the fitness measure

Fig. 11: A computer program before and after the mutation operation

• determining the parameters and variables for controlling the run, and

• determining the method of designating the result and the criterion for terminating a
run.

Note that for each problem, solutions can be found on numerous runs. However, since
the genetic programming paradigm is a probabilistic method, different runs almost
never yield precisely the same S-expression. No one particular run and no one particu-
lar result is typical or representative of all the others.

The terminals can be viewed as the input to the computer program being sought by
genetic programming. In turn, the output of the computer program consists of the
value(s) returned by the program.

FORM GENERATION AND SEARCH

In my problem of form search, the information we want to process is the transforma-
tions that can be applied to solids and shapes to generate interesting forms. Thus the
functions set for the problem consists of three dimensional transformation operators.
They can be pure affine transformations or composites of them. The terminal set for
this problem should then contain the objects or shapes on which the transformations
are to be acted upon. Thus, the terminal set selected is :

T = { box, cone, cylinder, sphere, torus, wedge }

primitives of solid shapes available in AutoCad.

The function set F selected is:

F = { (grow_x), (grow_y), (grow_z), (move), (stack), (rotate_x), (rotate_y) (rotate_z),
(climb), (add), (subtract), (intersect) }

Each of these two functions has an two arguments. For reasons of computer processing
power, the function arguments have been limited to two. Theoretically, it can be any
number of arguments. However, the resulting LISP tree would be too complicated for
more than 3 arguments.

The function (grow_x) grows the second argument by a random factor and attaches
itself to the first argument along the x-axis. (grow_y) and (grow_z) is similar to
(grow_x) except that the attachments are along the y and z- axis receptively. Functions
(move), (stack) and (climb) translates the second argument along the x, y, and z-axis
by the extents of the first. Functions (rotate_x) (rotate_y), (rotate_z) rotates the second
argument with respect to the first. Functions (add), (intersect), (subtract) are standard

Boolean operations performed on both arguments simultaneously.

The third major step in preparing to use genetic programming is to identify the fitness
measure. This may be considered as the test mechanism at the local level, i.e., at the
solution generating level. On a global level, the form will be subject to more formal
analysis often associated with the function of the structure.

Visual feedback and interaction are an important part of this experiment. The key to
whether an individual form survives depends on its appeal to the eye. The fitness can
be known as aesthetic fitness. No number crunching is involved in the fitness meas-
ure. The best-of-run individual(s) in the population is the individual(s) chosen as the
parent(s) of the next generation.

Breeding can take place using 3 methods, by crossover reproduction, by asexual repro-
duction, or by mutation. In crossover reproduction, two individual of the population
are selected from whom 16 other offspring are bred. One parent is chosen for both
asexual reproduction and mutation. The parents are not copied to the next generation.
Every new generation consists of 16 new re-combinations of the chosen parent(s). This
cuts down on having to re-evaluate the same parent(s) twice and since I am interested
in exploring a wider expanse of search space, no effort should be spared to produce as
many possible forms as possible in each generation. 16 forms per generation has been
tested to be generally suitable.

At every generation, the 16 S-expressions for each individual is evaluated and its form
presented to be tested for aesthetic fitness.

Any number of generations can be tested, there is no limit to the number of genera-
tions. Once a form has been identified as the final one with no further transformations
required, the run can be terminated. The resultant satisfactory structure would be
deemed as having emerged from the search of possible forms defined by the functions
and terminals.

As the populations are bred from generation to generation, a history of the evolution is
created. This is duly recorded and they form a gene bank. Each structure is a potential
choice as a new form to be adapted. An interesting forms from the gene bank can be
added to the set of terminals. The starting point of the evolution process using a termi-
nal set consisting of forms taken from the gene bank has a head start many generations
from the primitive shapes from which they were made up.

Results of the experiments illustrated in Appendix A. based on representation set, R1
where the set of objects is the set of nine possible pattern of wedges, terminal set T
= {wedge1 wedge2 wedge3 wedge9} and the operators, function set F = {grow_x
grow_y grow_z rotate_x rotate_y rotate_z climb move stack add intersect subtract}.

Thus by varying the sets F and T, a different search space is created every time. It is
up to the user to discover what to define in representation set in order to create his/her
modelling world.

A constant seed was chosen while the reproduction methods were varied. Two differ-
ent evolutionary paths taken for each type of reproduction demonstrates the power of
selection in steering the evolution of form. Each different type of reproduction chosen
produces it own family of structures.

Asexual and crossover reproduction breed trees that bears resemblance to each other
only to the extent that no extra information is added to the first population that is ini-
tially generated. Outcomes are a recombination of information amongst the individuals
of each population. For each generation, information is limited to that contained in
one tree selected for asexual reproduction while crossover reproduction has twice the
number.

Clearly by changing the seed, the consequence is a new set of initial representations, I.
Starting from a different point in the search space and choosing different paths allows
one to visit virtually every state in the search space. Due to the randomness of travers-
ing paths one cannot rule out the chance of a fortuitous occurrence of the same struc-
ture and should therefore not be piqued by it. In most cases, similar looking structures
can have entirely different S-expressions (hierarchical trees), one may be of a depth of
8 and the other a considerable depth of 17. It goes to prove that there are more ways
than one to achieve a ‘solution’, but the paradigm does not take into account the ‘eco-
nomical efficiency’ of arriving at it. This is also found in nature. Up till today, no one
has been able to completely explain the extraneous human genetic material that appar-
ently cannot be accrued to any feature . (Dawkins)

As the populations are bred from generation to generation, a history of the evolution is
created. This is duly recorded and they form a gene bank. Each structure is a potential
choice as a new form to be adapted. An interesting forms from the gene bank can be
added to the set of terminals. The starting point of the evolution process using a termi-
nal set consisting of forms taken from the gene bank has a head start many generations
from the primitive shapes from which they were made up.

Fig. 12 traces the genealogy of an emergent form. .History of evolution of the emerg-
ing structures can be referred to in Appendix A.

31_a_7ii

31_a_6ii

31_a_5ii

31_a_4ii

31_a_3ii

31_a_2ii 31_a_1ii

Seed

Reproduction type

Generation

Path

Fig. 12 : Evolving tree of forms, parent forms only

Conclusion

A device to execute design as search necessitates three subclasses of jobs. The first, the
representation of the problem through structuring and restructuring the problem space,
also known as the design representation. The control strategy (design concepts) that
the architect chooses to produce a final solution has to be translated into the descrip-
tion of a three-dimensional space. The second, a solution generation mechanism apply-
ing the evolutionary concepts of Darwinian principle of natural selection and repro-
duction is set up. Structure is defined by its ‘genetic’ code scripted as S-expressions
(hierarchical trees). Structure undergoes adaptation via the process of reproduction and
crossover of individual structures, the vehicle for creation of new population structure.
A test mechanism that evaluates the ‘aesthetic fitness’ of a structure is put to use. This
drives the evolutionary path to generate interesting and appealing structure. Third, the
designation of a candidate solution (or solutions).

The search paradigm stands in harmony with, and perhaps partially motivates, the
present recurrence of compositional ideas in architecture. At its core, the model views
search as the action of a set of operators on a representation all being guided by a
search strategy. When compared to a current understanding of human problem solving,
the model suggests that a complementary relationship exists between human design-
ers and computer-based search systems.

The search paradigm owes intellectual debts to many sources outside architecture.
These include formal language theory and computational linguistics for grammatical
concepts, set theory for representations and proof procedures, cognitive psychology
for models of human problem solving, and artificial intelligence for representation and
search. However, the paradigm is more than an amalgam of these gleanings, it is enli-
vened by its own logic and firmly anchored in the field of design.

Design exploration through search will improve the ability to create in fundamental
ways, the generation of visual alternatives in a short period of time allows for making
selections and new associations possible. A fast feedback of results and the immediate
visual control enhances imagination. For intelligent users, the proposed model provides
more opportunities for creativity.

Design intelligence located in the generation mechanism assumes that an acceptable
solution based on the control strategy will be quickly produced; the evaluation has
nothing to do. This simulates the existence of God, a smart designer with no need for

a critic. Designer intelligence located in the test mechanism indiscriminately produces
alternatives and it is up to the evaluation mechanism to sort out the acceptable ones by
bringing a knowledge to bear, drawing inferences and exploring entailments of alterna-
tives. This is evolution; indiscrimate generation but deadly effective criticism.

2) Using a GA to evolve rule sets to achieve a goal configurat ion

PRIOR WORK

Prior work involving the use of the essential techniques for form generation and analy-
sis in the experiments - L-systems, genetic algorithms and the Hausdorff distance
equation.

Various computer-generated models of morphogenesis have been used to help under-
stand the emergence of complex forms in living organisms since Turing proposed the
reaction-diffusion process in 1952. Diffusion limited aggregation models have been
used to simulate crystal formation in super-saturated solutions and J. Kaandorp in
"Fractal Modeling:Growth and form in Biology uses an aggregation model to investi-
gate the growth of corals. L-systems were developed by Astrid Lindenmayer in 1968
to model the morphology of organisms using string re-writing techniques. These tech-
niques have been applied in a variety of studies to the production of abstract models
of biological forms as an aid to interspecial comparison and classification see (deBoer,
Fracchia and Prusinkiewicz 1992) . An L-system form generation engine is the main
ingredient in the following experiments.

L-SYSTEMS

An L-system model starts with an initial axiom and one or more production rules.
Axioms and production rules consist of symbol strings whereby individual symbols in
the axiom are replaced by a string of symbols designated by the production rule. This
process of character recognition and string substitution is carried out iteratively with
each successive iteration producing a symbol string of greater complexity.

The resultant symbol string is interpreted as a series of drawing instructions which pro-
duce an abstract representation of the desired organism. The success of the L-system
model lies in the self similarity of cell structure that many biological systems exhibit
which is mirrored in the grammar based string re-writing process.

The L-system method of modeling developmental processes has been the subject of
considerable research. Our approach is to use the L-system biological model in con-
junction with an evolutionary algorithm and is an area which has seen relatively little
investigation, recent work is reported in (Jacob 96)

 these are given in the symbology as POS1 .. POS12 for each of the 12 possi-
ble orientations from any sphere
°A bracket
 an open one (indicates a branching point,
 a closed one) is an instruction to return to a position on a lower 'limb' where
it last branched.

These symbol strings which make up the gene pool are the production rules of the L-
system.

Fig 13 : the 12 spheres of the Iso-spatial dodecahedral array

Due to the constraints imposed by using Autocad we kept to the tri-axial Cartesian co-ordinate system rather
than the alternative , more ‘elegant’ four axial system preferred by Frazer. The twelve neighbours of any given
point-’apoint’- are given by the autolisp function ‘getneighbours’:

(defun getneighbours (apoint / neighbours offsets p np)
 (setq neighbours ‘()
 offsets(list ‘(1 1 0)
 ‘(1 -1 0)
 ‘(-1 1 0)
 ‘(-1 -1 0)
 ‘(1 0 1)
 ‘(0 1 1)
 ‘(-1 0 1)
 ‘(0 -1 1)
 ‘(1 0 -1)
 ‘(0 1 -1)
 ‘(-1 0
-1)
 ‘(0 -1
-1)))
 (foreach p offsets
 (setq np (mapcar ‘+ a point p)

Fig 14: the offset list for con-
structing the 12 neighbours of

a point

PRODUCTION RULE

The next stage of the program is to iteratively apply a production rule to the initial
axiom - in this experiment a simple 'f symbol. It only requires 3 or 4 iterations to gen-
erate a symbol string of considerable length as every instance of 'f is substituted by the
production rule which itself is made up largely of 'f's.

 F ->

 (F(F POS12(F F POS10)F)F) ->

 (F(F POS12(F F POS10)F)F)((F(F POS12(F F POS10)F)F) POS12
 (F(F POS12(F F POS10)F)F)(F(F POS12(F F POS10)F)F)POS10)
 (F(F POS12(F F POS10)F)F)(F(F POS12(F F POS10)F)F))

fig 15 : example of a 3D branching morphology using the Iso-spatial array & L system

The re-written symbol string is passed to a function for interpretation of the symbols,
ie its genetic code, and the realisation of the artificial organism in the drawing data-
base. Every symbol in the string is evaluated and the corresponding function is called
which carries the instruction for either;

 (1) changing the positional variable or
 (2) inserting a sphere at a point on the grid.

Before a sphere is inserted clash detection is carried out and if a collision is imminent
the insertion command is ignored and the next symbol evaluated.

MUTATION

The mutation genetic operator works by counting the levels of recursion or nested
brackets in an individual’s genetic code and selects, at random, a self-contained bal-
anced chunk of code to be replaced by a similar, randomly generated, chunk. The
chunk of code selected always starts with a branching bracket symbol and ends with
closed bracket. The symbol string is not of fixed length so mutated organisms can have
varying lengths of genetic material.

CROSSOVER

Crossover works by choosing two organisms, selecting suitably balanced sections of
code and swapping them. As in mutation the amount of genetic material an individual
has can change, producing differences in generations ranging from slight to radical.

OBJECTIVE FUNCTION

After choosing a datastructure and method of representation and defining the type of
genetic operators to be used, the third element of the algorithm is defining the objec-
tive function or 'fitness' function. This was carried out by designing a series of struc-
tured experiments which build on the results of each experiments precursor.
Initial experiments were carried out to test the crossover function. In the figures below,
the left hand and centre configurations are two objects generated from a random pro-
duction rule, the right hand object is generated from the resulting rule after crossover
of the other two rule sets.

Our immediate goal was to develop a model which would respond to the user's selec-
tion of the characteristics of two individuals which would survive and combine and
become accentuated over successive generations - the 'eyeball' test as used in Dawkins'

Biomorph program. Figs 18 -21 show screen shots of two experiments.
This was completed successfully. The mechanism used here is similar to that employed
in section one of this paper, except that whereas there a range of breeding options were
allowed (mutation, crossover and asexual reproduction) here the operation is restricted
to crossover. At each generation 9 phenotypes are displayed and the user chooses two
parents from which to breed the next generation. These two candidates’ production
rules (genetic material) are them crossed over, 9 times to ,create the 9 genotypes for
the next generation, which are then developed into the 9 phenotypes for display.

The next stage was to define an ideal form in terms of a desirable length over width
ratio and run the algorithm until it produced forms matching the target within a given
tolerance Figures 22 and 23 illustrate a typical run, showing convergence to the target
(ie the initial random morphologies slowly adapt to assume more and more etiolated
forms).

More complex forms can now be defined as a target. By using the Hausdorff distance
equation we can analyse how close an individual has come to matching the pre-defined
shape. Successful individuals are used to breed the next generation. These experiments
are still continuing, and will be reported to the conference.

FUTURE WORK

The work reported here is at an early stage, and there are two main areas which will be
developed next. Firstly the basic function set of F and P can be enriched to provide a
wider range of behaviours; secondly the problem of adopting arbitrary fitness functions
can be addressed by using the “arms race” paradigm where a competitive scenario can
be introduced by growing two forms simultaneously where each form is its opponent's
environment and the fitness function becomes pure survival.

fig 16: Crossover test 1

fig 17 Crossover test 2

Fig 18 : Artificial selection trial 1- Starting random field of 9 objects

Fig 19 : Artificial selection trial 1-After 6 generations of artificially selecting for “spi-
deryness” the field consists of predominantly spidery objects

References
Bays C.(1988): Classification of semi-totalistic cellular automata in 3-D, Complex Systems 2

Bays C (1987).Patterns for Simple Cellular Automata in a Universe of Dense-Packed Spheres, Complex
Systems 2

DeBoer,Fracchia,Prusinkiewicz (1992), "Analysis and Simulation of the Development of
Cellular Layers" Artificial Life II ed. C Langton

Fig 20 Artificial selection trial 2, the initial field of 9 random genotypes

Fig 21 Artificial selection trial 2, after selecting for long thin genotypes

Das, S., Franguiadakis, T., Papka, M., DeFanti, T. A., Sandin, D. J.(1994):A genetic programming applica-
tion in virtual reality. IEEE Computational Intelligence Evolutionary Computation Conference Proceedings,
June .

D’arcy Wentworth, Thomson. (1917/61). On growth and form. Abridged ed. (Tyler Bonner, John ed.)
Cambridge University Press.

Dawkins, Richard (1991). The Blind Watchmaker. London: Penguin.

Dawkins, Richard (1972). The Selfish Gene. OxfordUniversity Press.

Fraser, John (1995). An evolutionary architecture. London: Architectectural Association.

Fig 22 : starting phenotypes for the aspect ratio natural selection experiment

Fig 23 : result of setting a 1:10 X-Y aspect ratio after 20 generations

Frazer J Datastructures for rule-based & Genetic Design

Graves, Michael (1977). “The Necessity of Drawing: Tangible Speculation.” Architectural Design, 47, no 6,
pp. 384 - 394.

Gero, John S. & Schnier, Thorsten. Evolving representations of designcases and their use in creative design.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley.

Horling B Implementation of a context-sensitive Lindenmayer-system modeler Dept Engineering and
Computer Science Trinity College Hartford USA

D.P.Huttenlocher, G A Klanderman, W J Rucklidge. (1992): "Comparing images using the Hausdorff dis-
tance under translation" Computer Vision and Pattern Recognition, pages 654-656 Champaign-Urbana
Ilinois,

Holland, John (1975). Adaptation in Natural and Artificial Systems. Cambridge, Massachusetts: MIT Press.

Jacob, C.,(1996) "Evolving Evolution Programs:Genetic Programs and L-Systems". Proceedings of first
annual conference on genetic programming, Stanford USA MIT Press pp 107-115.

Jo, H. Jo & Gero, John (1995) Representation and use of Design Knowledge in evolutionary design. CAAD
Futures ‘95. Singapore.

Kaandorp J.(1994)Fractal Modeling: Growth and Form in Biology, Springer Verlag,

Langton C. G. (ed.) (1990).Artificial Life II. Proceedings of the workshop on Artificial Life. Santa Fe. Feb
Addison-Wesley.

Koza, John R. (1992). Genetic Programming, on the programming of computers by means of natural selec-
tion. Cambridge, Massachusetts: MIT Press.

Langton C. G. (Ed)Artificial Life I II & III Addison-Wesley Publishing Company

Lawson, Bryan (1990). How designers think? 2nd ed. Butterworth Architecture.

Lawson, Bryan (1994). Design in mind. Butterworth-Heinemann.

Lindenmayer A. and Prusinkiewicz P.The Algorithmic Beauty of Plants, Springer Verlag, 1988

Lionel March (ed.) (1976). The Architecture of Form. Cambridge: Cambridge University Press.

March, Lionel & Steadman, Philip (1971). The Geometry of Environment. London : RIBA
Mitchell, William J. (1990). The Logic of Architecture, design, computation & cognition. Cambridge,
Massachusetts: MIT Press.

Neutra, Richard (1969). Survival Through Design. London : Oxford University Press.

Pearce, Peter (1978). Structure in Nature as a Design Strategy. Cambridge, Massachusetts: MIT Press.

Pask, Gordon (1972). An approach to cybernetics. London : Hutchinson & Co Ltd

Rowe, Peter G. (1987). Design Thinking. Cambridge, Massachusetts: MIT Press.

Schimitt, Gerhad (1988). Microcomputer aided design for architects and designers. New York : John Wiley
& Sons, Inc.

Schnier, Thorston & Gero, John. “Learning genetic representations as alternative to hand-coded shape
grammars.”Artificial Intelligence in Design ‘96. pp. 35-57.

Schnier, Thorston & Gero, John.(1995) “Learning representations for evolutionary computation.” 8th
Australian Joint Conferenc on Artificial Intelligence. AI ‘95. pp387-394.

Steadman, Philip (1979). The Evolution of Designs. London: Cambridge University Press.

Stiny, G(1980). Introduction to shape and shape grammars. Environmental and Planning B 16, pp 253-287.

Todd, Stephen & Latham, William (1992). Evolutionary Art and Computers. London : Academic Press Ltd.

Tschumi, Bernard (1987). Cinegram Folie Le Parc De La Villette.Butterworth Architecture.

Walker, Miles (1993). Digital evolutions. Dissertation for MSc Computing and Design, University of East
London.

Watt, Alan (1993). 3D Computer graphics. Addison-Wesley. pp 1-13

Appendix A

Fig 24 Asexual reproduction only

A standard Genetic algorithm and the associated Genetic Programming strategy are

models which utilise the processes involved in the evolution of biological organisms

The Hausdorff distance measures how close each point comprising a given shape is to
a point in a second shape and vice versa and is used photographic image recognition .

Visualisation of the growth model was carried out in Autocad, a 3-D modelling appli-
cation using the Autolisp programming language.
The method of representing form will be through the insertion of spheres drawn and
saved in separate drawing files. Different coloured spheres represent different levels of

Fig 25Crossover only

recursive
branch-
ing. The
geom-
etry of
the 3-D
space into
which the
spheres
are insert-
ed is an
iso-spa-
tial grid
where
the co-
ordinates
of the
grid are
the ver-
tices of

close packed cuboctahedrons as used by J. Frazer in "Data Structures for Rule-based
and Genetic Design" . Spheres can only be inserted at these vertices and each sphere

has 12 equally spaced neighbours. A variation on this geometry is the one used by
Carter Bays' in "Patterns for Simple Cellular Automata in a Universe of Dense-Packed
Spheres" which has a four axial system where 12 neighbouring points are the vertices
of a dodecahedron.

There are three primary genetic operators used in this experiment, initialisation, cross-
over and mutation. The first stage of the program is initialisation where a function is
called to produce an initial gene pool. The genes are a randomly generated series of
nested brackets containing three types of symbols;

INITIALISATION

°An instruction to insert a sphere;
 this is represented by the symbol F (for “forward”)
°A positional variable which refers to which of the 12 neighbouring positions the next
 sphere inserted will occupy;

Fig 26 Mutation only

Address for inclusion in directory

P.S.Coates
CECA
University of East London
Holbrook Centre
Stratford
London E15 3EA
UK
Web page:
www.uel.ac.uk/faculties/arch/info.html
Email:
P.S.Coates@uel.ac.uk

	CAAD 97 cs
	caad futures 97

