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THE TIGHT GROUPOID OF THE INVERSE SEMIGROUPS OF
LEFT CANCELLATIVE SMALL CATEGORIES.

EDUARD ORTEGA AND ENRIQUE PARDO

ABSTRACT. We fix a path model for the space of filters of the inverse semigroup Sy
associated to a left cancellative small category A. Then, we compute its tight groupoid,
thus giving a representation of its C*-algebra as a (full) groupoid algebra. Using it,
we characterize when these algebras are simple. Also, we determine amenability of the
tight groupoid under mild, reasonable hypotheses.

INTRODUCTION

In [15], Spielberg described a new method of defining C*-algebras from oriented combi-
natorial data, generalizing the construction of algebras from directed graphs, higher-rank
graphs, and (quasi-)ordered groups. To this end, he introduced categories of paths —i.e.
cancellative small categories with no (nontrivial) inverses— as a generalization of higher
rank graphs, as well as ordered groups.The idea is to start with a suitable combinato-
rial object and define a C*-algebra directly from what might be termed the generalized
symbolic dynamics that it induces. Associated to the underlying symbolic dynamics, he
present a natural groupoid derived from this structure. The construction also gives rise
to a presentation by generators and relations, tightly related to the groupoid presenta-
tion. In [I6] he showed that most of the results hold when relaxing the conditions, so
that right cancellation or having no (nontrivial) inverses are taken out of the picture.

In [2], Bédos, Kaliszewski, Quigg and Spielberg use Spielberg’s construction to ex-
tend the notion of self-similar graph introduced in [I0] —they termed it as “Exel-Pardo
systems”— to the context of actions of group (potentially, of groupoids) on left cancella-
tive small categories. To this end, they use a Zappa-Szép product construction, and
studied the representation theory for the Spielberg algebras of the new left cancellative
small category associated to this Zappa-Szép product.

In the present paper, we study Spielberg construction, using a groupoid approach
based in the Exel’s tight groupoid construction [7]. To this end, we study various inverse
semigroups associated to a left cancellative small category (see e.g. [6]), we compute a
“path-like” model for their tight groupoids, and we study the basic properties of its tight
groupoid. Also, we show that the tight groupoid for these inverse semigroups coincide
with Spielberg’s groupoid [14]. With this tools at hand, we are able to characterize
simplicity for the algebras associated to finitely aligned left cancellative small categories,
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and in particular in the case of Exel-Pardo systems. Finally, we give, under mild and
necessary hypotheses, a characterization of amenability for such groupoid.

The contents of this paper can be summarized as follows: In Section 1 we recall some
known facts about small categories and inverse semigroups. In Section 2 we study basic
properties of the inverse semigroups Sy and Ty associated to a left cancellative small
category A. Section 3 is devoted to study filters on a left cancellative small category
and their path models. Section 4 deals with defining actions of Sy on filter spaces,
and we picture their tight groupoids. In Section 5 we show that the tight groupoid of
S, is isomorphic (as topological groupoid) to the Spielberg’s groupoid on A. Groupoid
properties characterizing simplicity on the associated algebras are stated in Section 6.
Section 7 is centered in analyzing Zappa-Szép products, introduced in [2] to generalize
self-similar graphs of [10], from our particular perspective. We close the paper studying,
in Section 8, the amenability of the tight groupoid of Zappa-Szép products.

1. BASIC FACTS.
In this section we collect all the background we need for the rest of the paper.

1.1. Small categories. Given a small category A, we will denote by A° the class of its
objects, and we will identify A° with the identity morphisms, so that A° C A. Given
a € A, we will denote by s(a) := dom(«a) € A° and r(«) := ran(a) € A°. The invertible
elements of A are

At :={a € A:3B € A such that a3 = s(3)}.

Definition 1.1. Given a small category A, and let «, 5, € A:
(1) A is left cancellative if af = ary then 8 = v,
(2) A is right cancellative if fa = ya then = 7,
(3) A has no inverses if a8 = s(f) then a = 5 = s().
A category of paths is a small category that is right and left cancellative and has no
inverses.

Notice that if A is either left or right cancellative, then the only idempotents in A are
A°. Indeed, if aa = «, since a = r(a)a = as(a) we have that a = s(«) or a = r(a).

Definition 1.2. Let A be a small category. Given a, 3 € A, we say that 8 extends «
(equivalently « is an initial segments of B) if there exists v € A such that 8 = ay. We
denote by [B] = {a € A : « is an initial segment of G}. We write v < 5 if o € [B].

Lemma 1.3. Let A be a small category. Then

(1) the relation < is reflexive and transitive,

(2) if A is left cancellative with no inverses, then < is a partial order.
Proof. (1) Clearly a = as(a), so a extends itself. If § = ad’ (o < ) and v = 5’
(8 <), then v = aad’f’ (a < 7).

(2) Suppose that a« = 85’ (8 < «) and = ad’ (o < ). Then,
as(a) =a=pp =adf.

Thus, by left cancellation we have that s(«a) = o/, whence since A has no inverses it
follows that o/, 5" € A°. O
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Lemma 1.4 ([I6, Lemma 2.3]). Let A be a LCSC (Left cancellative small category),
and let o, € A. Then, a < B and B < a if and only if B € aA™! = {ay : v €
A=Y with r(y) = s(a)}.

We denote by a ~ 3 if 3 € aA~!. This is an equivalence relation.

Lemma 1.5 ([I6, Lemma 2.5(ii)]). Let A be a LCSC, and let o, € A. Then the
following are equivalent:

(1) a~5,
(2) ah = BA,
(3) [o] = [8).

Notation 1.6. Let A be a LCSC. Given «, 5 € A, we say :
(1) am B if and only if aA N BA # 0,
(2) a L B if and only if aA N BA = 0.

Definition 1.7. Let A be a LCSC, and let F' C A. The elements of ﬂ,yep YA are the
common extensions of F. A common extension e of F' is minimal if for any common
extension v with £ € YA we have that v =~ ¢.

When A has no inverses, given F' C A and given any minimal common extension & of
F if ~v is common extension of F' with € € yA then v = . We will denote by

a V = {the minimal extensions of o and 5} .

Notice that if oV 3 # () then am 3, but the converse fails in general.

Definition 1.8. A LCSC A is finitely aligned if for every «, 8 € A there exists a finite
subset I' C A such that aA N SA =, - 7A.

When A is a finitely aligned LCSC, we can always assume that oV g =I" where I is
a finite set of minimal common extensions of a and (.

1.2. Inverse semigroups.

Definition 1.9. A semigroup S is an inverse semigroup if for every s € S there exists
a unique s* € § such that s = ss*s and s* = s*ss*.

Equivalently, § is an inverse semigroup if and only if the subsemigroup £(S) := {e €
S : e? = e} of idempotents of S is commutative [12, Theorem 1.1.3].

A monoid is a semigroup with unit. We say that a semigroup S has zero if there
exists 0 € § such that 0s = s0 = 0 for every s € S.

Definition 1.10. Given a set X, we define the (symmetric) inverse semigroup on X as
I(X)={f:Y = Z:Y,ZC X and f is a bijection },

endowed with operation
go f: f~ (ran(f) Ndom(g)) — g(ran(f) N dom(g)),

and involution

f* = f":ran(f) — dom(f).
Notice that Z(X) has unit Idy : X — X and zero being the empty map 0 : ) — 0.
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The Wagner-Preston Theorem [12, Theorem 1.5.1] guarantees that every inverse semi-
group is a *-subsemigroup of Z(X) for some suitable set X.

Definition 1.11. Let S be an inverse semigroup, and let £(S) be its subsemigroup of
idempotents. Given e, f € £(S), we say that e < f if and only if e = ef. We extend
this relation to a partial order as follows: given s,t € S, we say that s <t if and only if
s = §s*t = ts*s.

Definition 1.12. We say that s,t € § are compatible, denoted by s ~ t, if both s*t
and st* belong to &£(S).

This concept will be essential to understand various properties.

Lemma 1.13 ([12, Lemma 1.4.16]). Let X C S. If\/ cx @ € S, then the elements of ¥
are pairwise compatible.

We say that S is (finitely) distributive if whenever ¥ is a (finite) subset of & and
s €S, if \ exa €S then \/ ysa €S and s (V, o5 @) = Vs se.

We will say that S is (finitely) complete if for every (finite) subset ¥ C S of pairwise
compatible elements we have that \/ ., o € S.

The symmetric inverse monoid Z(X) is complete and distributive [12 Proposition
1.2.1(i-ii)]. But this property is not necessarily inherited by its inverse subsemigroups.
Indeed, the point is that given X C S a set of pairwise compatible elements, and s € S:

(1) Not necessarily \/ .y a € S,
(2) even if \/ .5,a € S, it can happen that \/ . sa ¢ S.

To understand when f, g € Z(X) are compatible elements, and describe who is fV g €
Z(X), we address the reader to Lawson’s monograph [12, Proposition 1.2.1].
2. THE SEMIGROUPS Sy AND Ty
Given a LCSC A, we will define some inverse semigroups associated to A.

Definition 2.1. Let A be a LCSC. For any o € A, we define two elements of Z(A):

(1) 0% : aA — s(a)A given by aff — 3,

(2) 7 : s(a)A — aA given by f — af.

Clearly o“ is injective, and since A is left cancellative so is 7¢. Moreover,
o =o% %" and T = 1%“T*
for every a € A.
Definition 2.2. Given a LCSC A, we define the semigroup
Sy = (0", 1% €N) .

Lemma 2.3. Let A be a LCSC. Then Sy is an inverse semigroup.

Proof. 1t is clear, since Z(A) is an inverse semigroup, and Sy € Z(A) is closed under
composition and inverses. U

In order to better understand its structure, we will need to consider finite aligned
LCSC. First, we introduce a definition.
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Definition 2.4. Let A be a finitely aligned LCSC, and let s € Sy. We say that a
presentation s = \/7_, 7% d% is irredundant if for all 1 < i # j < n we have a; € []

A

Remark 2.5. Let s = \/7_, 7%¢% € S, and suppose that for all 1 < i # j < n we have

Bi ¢ [B;]. Now suppose that there exists 1 < i # j < n with a; < aj, so there exists
v € A such that oy = «j. Then we have that

s(Biv) = aiy = a; = s(B;) -
But since s : |J;_, dom(c”) — [J;_, ran(7%) is a bijection, we have that 8y = 3, so
Bi < B;, a contradiction. Thus, s is irredundant. Similarly it can be proved that s is
irredundant if and only if for all 1 < # j < n we have o; & [o].

Lemma 2.6 ([I5, Lemma 3.3 & Theorem 6.3]). If A is a finite aligned LCSC, then every
f € Sa is the supremum of a finite family of elements of the form 7¢c® with o, 3 € A
and s(a) = s(B). Moreover, if such a decomposition is irredundant, then is unique (up
to permutation).

Notice that, given any finite family {ay,...,a,} C A, the elements {7%c®}? | C Sa
are pairwise compatible, so that \/_ 7*¢® € Z(A), but not necessarily to Sy. Thus,
in order to do some essential arguments we need to consider a new object.

Definition 2.7. Let A be a finitely aligned LCSC. We define
Th = {\/ T%gP: {7% YL C Sy are pairwise compatible} .
i=1

Clearly, by Lemma Sy € Ta C Z(A). Moreover, by [12, Proposition 1.4.20 &
Proposition 1.4.17], Ty is closed by composition and inverses, and moreover, is finitely
distributive. Thus,

Lemma 2.8. Let A be a finitely aligned LCSC. Then, Ty is an inverse semigroup con-
taining Sy. Moreover, Ty is the smallest finitely complete, finitely distributive, inverse
semigroup containing Sy.

Now, we will proceed to understand who are the elements in £(74) and the order
relation.

Lemma 2.9. Let A be a finitely aligned LCSC. Then e € E(Ty) if and only if e =
Vi, T for some aq,...,a, € A.

Proof. Let e € E(Ta), then e = \/_, 70", By [12, Proposition 1.4.17], e* = e =
Vi, o and

n n
e=c¢c'e= \/7‘5"00"'7'0”05" = \/ Pighi
i=1 =1

Thus, Vi, TPicf = \/7

B, = <\/ Tﬁiaﬁz) (B;) = <\/ Tcwaﬁi> (Bi) = ai

as desired. O

1 7% g% But then given 1 < i < n, we have that
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Proposition 2.10. Let A be a finitely aligned LCSC, and let e = \/;_, %0, [ =
Vis, TPighPi be idempotents of either Sy or Ta (written in irredundant form). Then, the
following are equivalent:

(1) e<f,

(2) for each 1 < k <mn, there exists 1 <1 < m such that f; < ay.
Proof. For (1) implies (2), let e, f € E(Ty) with e < f. Then, e = \/;_, 7%0% and
f= \/;ﬂ:1 g% . Fix any 1 < k < n. Then, 70 < e < f if and only if

m
Tako_ak — Tako_ak (\/ 7-5]'0-5]'> X

j=1
Since Ty is finitely distributive, we have that

m m
7Ok O \/ 7 g B 5P — \/ \/ FokTk () Jﬁjaﬁj (e)
j=1 Jj=1 \e€arVp;
Without loss of generality, we can assume that the decomposition is irredundant (by
using the reduction argument in the proof of [I5] Theorem 6.3]. By Lemma [2.0] there
exist 1 <1 < m and & € ay V B such that 7% g% = 7oxo* @A™ whence oy =
o (&) = BoPi(€). Thus, f; is an initial segment of «y, if and only if 3 < «y if and
only if ﬁl € [Ozk]
For (2) implies (1), if 3, < ag, then 7@ g% < 7Pigh < f. Since this is true for all
1 <k <n, we have that e < f, as desired.
Notice that, even we need T, to argue, the conclusion works for Sy too. U

By an analog argument, we have the following result, extending Proposition 2.10 to
any couple of elements of Sy.

Proposition 2.11. Let A be a finitely aligned LCSC, and let s = \/]_, Yol t =
\/;.”ZITWU‘SJ be elements of either Sn or Ta (written in irredundant form). Then, the
following are equivalent:
(1) s<t,
(2) for each 1 < k < n, there exists 1 < 1 < m such that ay = y,€ and By, = o€ for
some € € s(y)A.

Now, we will connect Sy with the semigroups appearing in [6] [15] [16].

Definition 2.12. Let A be a small category. A zigzag is an even tuple of the form
§ = (Oél, 517 0527627 vy Oérwﬁn)

with oy, 8; € A, r(ay) = r(5;) for every 1 < i < n and s(a;11) = s(5;) of every 1 < i < n.
We will denote by Z, the set of zigzags of A. Given § € Zj, we define s(§) = s(8,),
r(§) = s(aq) and &€ = (B, an, - - -, P1,0q).

Every £ € Z, defines a zigzag map ¢, € Z(A) by

SO& — O-alTﬁ . O.C‘lnTﬁn .

We will denote Z(A) = {pe : £ € 2,5}
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Remark 2.13.
(1) For every @ € A we can define &, := (r(a),a). Notice that ¢, = 7% and
(,Oga = o%.
(2) Z(A) is closed by concatenation, and ¢g, © Yg, = Vg, -
(3) For every & € Zy, then ¢z = gogl.
Thus,

Lemma 2.14 ([2, Section 7.2]). If A is a LCSC, then Z(A) is an inverse semigroup.
Moreover, Z(A) = Sj.

Proof. First part is a consequence of Remark 2.13(2-3). For the second part, Remark
2.13(1-3) implies that Sy € Z(A). On the other side, for every £ € Z, we have that
e € Sy, so that Z(A) C S,. O

Hence, when working with Z(A), we benefit of results in previous sections.

3. FiLTERS oN LCSC

Let A be a LCSC. We denote by £ := £(Sa) the semilattice of idempotents of the
inverse semigroup Sj.

Definition 3.1. A nonempty subset 7 of £ is a filter if:

(1) een, fe&and e < f, then f € n,
(2) e, f € nthen ef €n.

The set of filters of £ is denoted by . We can endow & with a topology, as follows.
Definition 3.2. For any X,Y C & finite subsets, define
UXY)={ne& X CnandY Nn=0}.

Then

Te ={U(X,Y): X,Y C & finite},
is a basis for a topology of E:’O, under which & is Hausdorff and locally compact space
(See e.g.[9]).

Definition 3.3. A filter n € & is an ultrafilter if it is not properly contained in another
filter. Equivalently, n is maximal among the filters, partially ordered by inclusion.

A useful characterization is the following.

Lemma 3.4 ([7, Lemma 12.3)). A filter n € &, is an ultrafilter if and only if e € € and
ef # 0 for every f € n implies e € .

We denote by & the subspace of ultrafilters of &. Usually, £ is not closed in &,.

Definition 3.5. We define gtight as the closure of éfoo in éfo. A filter in éfm-ght is called
tight filter.

In order to characterize tight filters,we need to introduce some known concepts.
Definition 3.6. Given X,Y C & finite sets, we define

EXY ={ec & :e<xforevery r € X and ey = 0 for every y € Y} .
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Definition 3.7. Given a subset F' of £, a outer cover for F is a subset Z C & such that
for every f € F there exists z € Z such that zf # 0. Moreover, Z is a cover for F if Z
is an outer cover for I with Z C F.

Given an idempotent e € £, we say that Z C £ is a cover for e if Z is a cover for the

set {fe&: f<e}

Lemma 3.8 ([7, Theorem 12.9]). A filtern € &o is tight if and only if for every X, Y C &
finite sets and for every finite cover Z of EXY, n e U(X,Y) implies ZNn # 0.

3.1. Path models. Viewing some examples of LCSC, as graphs and k-graphs, we are
interested in obtain practical models of ultrafilters and tight filters. These models should
behave, somehow, as paths in a graph.

To guarantee that every filter has a such a path model, we introduce a restriction on
A.

Definition 3.9. Let A be a finitely aligned LCSC. We say that a filter n € éA'O enjoys
condition (x) if given \/;_, 7%c® € 1, then there exists 1 < j < n such that 7% 0% € 1.

Notice that, if A is singly aligned, then every filter enjoy condition (x) (see e.g. [,
Proposition 3.5]).

Before showing how to construct the path model of 7, let us show that there exist
filters where this property always holds.

Lemma 3.10. Let A be a finitely aligned LCSC. Then, any n & é:’tight satisfies condition
().
Proof. Let e € n. By Lemmas 2.6 and 2.9, e = /], 7*0®. Define X = {e}, Y = 0 and
Z = {r%0%} |. Since e = \/;_, 70 > 7% g% for every 1 < j < n, it is clear that
Z CEXY. Also, if 0 # f <e=\_, 7%0%, then fr%¢% = 0 for every 1 < j < n will
imply that
i=1 i=1

a contradiction. Hence, Z is a finite cover of £XY. Clearly, n € U(X,Y).

Thus, 1 € Eign: implies nNZ # () by Lemma 3.8 i.e. there exists 1 < j < n such that
TN oY €. U

Corollary 3.11. If A is a finitely aligned LCSC, then every n € Eno satisfies condition
(%)
Now, we proceed to introduce a set of paths.

Definition 3.12. Let A be a finitely aligned LCSC. A nonempty subset F' of A is:

(1) Hereditary, if « € A, f € F and a < ( implies a € F,
(2) (upwards) directed, cv, 5 € F implies that there exists v € F' with «, 5 < 7.

We denote A* the set of nonempty, hereditary, directed subsets of A.
Notice that, if ' € A*, there exists a unique v € A° such that F' C vA. Indeed, given

any «, 3 € F, there exists v € F with v > «, 3, i.e., v = ad = BB for some &,B e A.
Thus, v = r(a) for any o € F' is the desired element.
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Definition 3.13. Given n € &o, we define

A, ={aeA: %" en}.
Lemma 3.14. Let A be a finitely aligned LCSC. For every n € & satisfying condition
(%) we have that A, € A*.

Proof. By condition (x), A, # 0. Set a € A, 8 € A, such that & < 3. Then 7%0° <
@0®. Since T%0” € 1 and 7 is a filter, we have that 70 € 5, whence o € A,.

Finally, suppose o, 8 € A,. Then 0%, 7967 € 1, so that 7¢0*7P0" = \/Eeavﬁ T°0® €
n. By condition () there exists § € (a VvV 8) N A,, and since 7°0° < 7%0°, 777 we have
that o, 3 < 0 € A, as desired. O

Definition 3.15. If A is a finitely aligned LCSC, we define
E, = {n € & : n satisfies condition (x)}.

Thus,
Corollary 3.16. If A is a finitely aligned LCSC, then
d:E — A
n — A,

1 a well-defined map.
Now, we will construct an inverse for this map.

Definition 3.17. Given F' € A*, we define
np={f€&: f>1%" for some o € F}.

Lemma 3.18. If A is a finitely aligned LCSC, then for every F € A* we have that
ne € Ex.

Proof. Since F # (), the set {7%¢® : a € F} C np, whence np # 0. Set e € np, f € €
such that e < f. By hypothesis there exists o € F such that 7%¢* < e < f then f € np.

Now set e, f € np. Then, there exists a, 8 € F such that 790 < e, 7°0° < f. Since
F is directed, there exists v € F with o, 8 < 7. Thus, 7707 < 7%0%7%0# < ef, whence
€f € NF.

Finally, if f € ng, then there exists o € F' such that f > 7%*. If f = \/;”:1 7P B
(written in irredundant form), by Proposition there exists 1 < ¢ < m such that
Pighi > 125%  Since N € é’o, we have that 7%igP € nr. Hence, np satisfies condition

(%), so we are done. O
Corollary 3.19. If A is a finitely aligned LCSC, then
U A — &,
F +— nr, ’

1 a well-defined map.

Lemma 3.20. If A is a finitely aligned LCSC, then ® and ¥ are naturally inverse
bijections.
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Proof. Let n € &, and compute
Vo ®(n) = W(P(n)) = ¥(A,) =
={eec&:e>7%" for some o € A}
={ecf:e>1%"cn}.

Thus, ¥ o ®(n) C 7. On the reverse sense, if e € n and e = \/I_, 7*c*, by condition
(%) there exists 1 < j < n such that 7%0% € 7. Thus, a; € A, and e > 7% 0%, whence
e€ Vod(n), and so Vo d(n) Dn.

Conversely, given ' € A*, compute

o U(F) = &(V(F)) = ¥(nr) = Ay
= {a e A:7%0% > P07 for some g € F}
={a e A:a < for some € F}.
Clearly, ® o U(F') C F. On the reverse sense, if « € F' then 7%¢® € np, and thus o € A

and 7%0® > 7957 for some 8 € F, whence o € ® o U(F). Thus, F' = ® o U(F).
u

3.2. Topology of A*. Before tracking & and étight through ¥, we need to consider a
suitable topology defined on A*.

Definition 3.21. Let A be a finitely aligned LCSC. Then given X,Y C A finite sets,
we define

MY —{FecAN:XCFandYNF=0}.
We will endow a topology on A*, with a basis of open sets

{MXY . XY C A finite sets} .

On the other side, since g - c‘fo, we can equip é’\ with the induced topology. To
simplify, we also use U(X,Y’) (see Definition B.2) to denote the basic open sets of the

topology for &,. Since both 5 and 5ught are subspaoes of 5*, in particular the closure

of 500 in 50 coincides with the closure of 500 in 5
We will show that ® and ¥ are continuous (and thus homeomorphism) with these

topologies on é?* and A*.
Lemma 3.22. Let A be a finitely aligned LCSC. Then,
{UX,Y): X ={r%"},Y = {7z} 1,
s a basis for the topology ofé/f\*.
Proof. Let e, f1,..., f, € &, and consider the basic open set U(X,Y) where X = {e}
and Y = {fi}jy. Set e = Vi, 7%0%, f; = \/[2 7%ig%i for 1 < i < m. Define
= {rPiighii}i_y  iz1..m;- Now, given n € U(X,Y), we have that e € n and

n ﬂ Y 0.

Since 7 enjoys condition (x), there exists 1 < j < n such that 7% ¢% € 7. If nNX # 0,
then there exists 7%g%i € n, whence f; > 793P € n, and thus nNY # 0, a
contradiction. Hence, there exists 1 < j < n such that n € U({r% o },¥).

Conversely, if there exists 1 < j < n such that n € U({T% 0%}, ¥), then 7%0% < e,
and since 7%0% € 1 we have that e € 1. Also, if n NY # (), then there exists

.....
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1 < k < m such that f; € n. By condition (%), there exists 1 < [ < my such that

rPrighei € . whence n 'Y # 0, a contradiction. Thus, n € U(X,Y), and then

UX,Y)=UL U({r* 0%}, %), so we are done. O
As a consequence, we have

Lemma 3.23. Let A be a finitely aligned LCSC. Then ® and ¥ are homeomorphisms.

Proof. By Lemmal[3.20, both are injections. Since they are mutually inverses, it is enough
to show that they are open maps. We will show that for ® (the proof for ¥ is analog).
We denote by By = {7%0c® : « € A} C €. By LemmaB22, T = {U(X,Y) : X, Y C
By finite sets} is a basis for the topology of E.. Now, given a finite set F C B,, we
define £ = {a € A:70% € E} C A. Fix U(X,Y) € Tz for some finite sets X,Y C By,
and compute
PUX,Y)=d({ne& : X Cnand Y Ny =0}).

Since @ is a bijection, n MY = ( if and only if A, N Y =0, and 7°0® € p if and only if
a € A, whence

PUX,Y))={A, e A: X CA and Y NA, = 0}.
Since ¢ is a bijection
PUX,Y)={CeAN:XCCand VY NC =0} = MY
Thus, ® is open, as desired. O

Now, we will identify both @(goo) and (P(étight) in an intrinsic way. To this end, we
will use a key result from [15].

Lemma 3.24 ([15, Lemma 7.3]). Let A be a countable finitely aligned LCSC. If C' C A
is a directed subset and 3 € A is such that B M« for every a € C, then there exists
C C A directed subset such that {BUC C C. Moreover, if C' is hereditary, then so is
C.

Definition 3.25. Given A a LCSC, we say that C' € A* is maximal if whenever C' C D
with D € A* we have that D = A. We will denote A** := {C € A*: C is maximal}.

Lemma 3.26. Let A be a countable, finitely aligned LCSC. Then given n € & the
following statements are equivalent:

(1) n € éx,
(2) A, € A™.

Proof. (1) = (2). First, if 5 € A and S M « for every a € A, we will see that § € A,.
Notice that 8@ « for every a € A, if and only if %0790 #£ 0 for every a € A,. Now,
let e =\/]_, 7*0® € n. By Corollary B} there exists 1 < j < n such that 7% 0% € n,
whence a; € A,. Thus, P0Pe > 7P0P7r% % +# 0. Since n € .+, Lemma B4 implies
that 7%0? € 1, and thus 5 € A,

Now, suppose C' € A* and A, C C. If B € C'\ A,, since C is directed we have that
B ma for every o € A,, whence by Lemma 3.4 8 € A,. Thus, A, is maximal.

(2) = (1). Set F € A*, and take np € &,. First, pick 8 € A such that %¢%¢ # 0
for every e € np. In particular, %0870 #£ 0 for every o € F', whence 3 m a for every
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o € F. By Lemma B2 there exists F' € A* such that FU{8} C F. Since F is maximal,
B € F, and thus 7°0”? € np. Now, let f € £ with fe # 0 for every e € np. By Lemmas
and 29 we have f = \/7_, 7%0P whence for every o € F

n n n
0# fro® = <\/ Tﬁiaﬁ') T = \/Tﬁ"aﬁiro‘a“ = \/ \/ T°0° .
i=1 i=1 i=1e€f;Va

Suppose that for each 1 < ¢ < n there exists o; € F such that a; vV 3; = (). Define g :=
T g ... 7% g% € nr. Since F' is directed, there exists v € F with {ay,...,a,} <7,
whence 77¢7 < g. Thus,

04707 f<gf = (TalO'al .. ~Ta’no_a’n) <\/ Tﬁiaﬁz)
=1

n
_ \/(7_0410.041 TGO Tano-an)TOCzo-azTﬁzoﬂz =0 ,
=1

a contradiction. Thus, there exists 1 < j < n such that a VvV §; # () for every o € F.
Thus, 8; € F by the previous argument, and hence nr > 7% 0% < f, so that f € np.
Then, nr € £, as desired. O

R A — Iz,
Notice that this means that ®(E.) = A**. Since @ is continuous and Egnt = Ex ‘

we have that
. = I-llg, e | P —
d (&fight) =d | &, =d(E) = A** =

= {C € A : for every finite X,Y C A with C € M™Y | there exists D € A*™ N M}

Now, we will introduce a couple of definitions for tight hereditary directed subsets of A,
and we will show that they are equivalent.

First definition is just the translation of Lemma to the context of A*, we need to
recover, and extend, the concept from [15].

Definition 3.27. Let A be a LCSC and a € A. A subset F' C r(«a)A is ezhaustive with
respect to « if for every v € aA there exists a f € F with fm~. We denote FE(«) the
collection of finite sets of r(«)A that are exhaustive with respect to a.

Notice that exhaustive sets corresponds to covers.

Definition 3.28. Let A be a LCSC and v € A°. Then, C € vA* is tight if for every
a € C, every {f1,...,0,} NC = 0 and any finite exhaustive set Z of aA\ J_, BiA we
have that C'N Z # (). We denote by Aygn: the set of tight hereditary directed sets.

Now we introduce the new definition.

Definition 3.29. Let A be a LCSC and v € A°. We say that C € vA* is E-tight if for
every a € C and every finite set F' of A with C' N F = (), there exists D € A** with
a€ D and DNF = (). We denote by Ap_; the set of E-tight hereditary directed sets.

We have that Ag_; = (I)(étight)- Now,
Lemma 3.30. Let A be a LCSC. Then Ap_t = Ayighe-
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Proof. First we prove Ap_y C Aygne. Let C € Ag_y and let Y = {y1,...,y,} C A
be a finite set with CNY = (. Let a € C and take any finite exhaustive set Z =
{z1,. ., 2m} C oA\ U, wiA. Suppose that Z N C = . By assumption there exists
D e A* witha€ Dand DN{YUZ} =0. SinceYND =0, ZND = and D is
maximal, by Lemma there exist x,,,...,x,, € D with z,, Ly; for every 1 <i <n,
and z.,,...,2,, €D with z_, 1 z; for every 1 < j < m. Therefore, since D is a directed
set, there exists w € D with z,, < w for 1 < ¢ < n, T, < w for 1 < 7 < m and
a < w. Observe that w ¢ y;A, because otherwise y;A Nx,, A # () for every 1 <i < n, a
contradiction. Thus, w € aA\|J_, v;A, and since Z is an exhaustive set of aA\J]_, A,
there exists 2z, € Z such that w M 2. But then x,, M 2, a contradiction.

Now we will prove Agp_; O Aygne. Let C € vA* be tight, o € C, and let F' =
{B1,..., 8.} C Asuch that FNC' = 0. Let ¥(C) =nc ={e € £ : 7707 < e for some v €
C}. Then, 7%0% € nc and 7Pi0% ¢ ne for every 1 < i < n, so ne € U(X,Y) where
X = {0} and Y = {7PicP} . Let Z = {7790%}"" be any finite cover of £,
whence {7;}72, € oA\ UL, BiA is a finite exhaustive set. Therefore, by hypothesis,
there exists 1 < k < m such that 7 € C, and hence 7 ¢ € g, so Z Nnc # (. But
then, by Lemma [3.§], it follows that n¢ is a tight filter. Since gn‘ght is the closure of é'oo,
there exists £ € £, such that & € U(X,Y). But then ®(¢) = A¢ € A** by Lemma [3.26,
with @ € A¢ and A¢ N F = (), as desired. O

Example 3.31. Let E = (E°, E',r, s) be a directed graph. A finite path « of E of length
n > 11is a sequence - --a, where o; € E' for 1 < i < n such that s(a;) = (1)
for 1 <7 <n—1. Given a path of length n we define s(a) = s(a,,) and r(a) = r(ay).
We denote by E™ be the sets of paths of length n. If we define the paths of length 0 by
E° and we denote by E* = [J;=, E' the set of all finite paths of £. An infinite path
a = ajay - -+ of E is an infinite sequence of edges o; € E' such that r(a;; 1) = s(;) for
every ¢ > 1. We denote by E* the set of infinite paths. A singular vertex of E is a vertex
v € E%such that |r~"(v)| € {0,00}. We denote by EY,,, the set of singular vertices of £,

sin,

we denote by ESource —{ve EO . ,rfl(,U) = ()} and by E?nf ={v e E° |r*1(v)| = 00}.
ThUS, Egmg = Egource U E?nf

Then we define A to be the singly aligned LCSC given by the set of finite paths E*.
Given a path o € E* of length n we define E, = {a; -+ -« : 1 <i < n}, where E, = {v}
for v € E°. Moreover given an infinite path a € E* we define E, = {ay---a; 17 > 1}.
It is straightforward to prove that

A=) EB.ulJE,, ad A= ] E.U U E,.

aEE™>® a€EE* acE> acE*, r(a)eE°

sink

Now, given a € E* of length n with r(a) € EJ,,, , let k <nand fi,..., Bn C E*\ E,.
If s(a) € Eg,ypee, then E, trivially belongs to Ap_;. Suppose that s(a) € E}, . Since
s(a) is an infinite emitter, we have that there exists e € r~!(s(a)) such that e is not
contained in any path of fi,...,5,,. Now, let v be a path containing ae that is either
infinite or s(y) € E? ... Then, ay---ap € E, and E, N {pB1,...,0Bm,} = 0. Thus,
E, € Ap_;. Conversely, given a € E* of length n with s(a) € E°\ EY,,,, then Y = {ae :
e € r~!(s(a))} is a finite set, and given any E. containing o must contain ae for some

e € r~(s()). Thus, E, ¢ Ag_¢, and consequently A** C Agigns.
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4. ACTIONS OF Sy

4.1. Basic definitions. We first recall the basic elements about partial actions of in-
verse semigroups on & and some subspaces of it. For further references see [9].

Definition 4.1. Let S be an inverse semigroup, let £ := £(S) be its semilattice of
idempotents and let & be the locally compact Hausdorff space of filters on £. Given
any s € S and any n € & with s*s € n, we define

s-n:={f €& :ses* < f for some e € n},

which is a filter containing ss*. This defines a partial action of S on &. For each s € S,
the domain of s- is

Dyy:={ne&:s'sent =U{s"s},0),

and the range of s- is Dge := U({ss*},0). Thus, s- acts by local homeomorphisms. In
particular s- is continuous.

Since s -1 € &, for every 1 € Ex [9, Proposition 3.5], we have that s-n € étz'ght for
every 1 € c‘:’tight [7, Proposition 12.11].

Now, we specialize to the case of Sy, when A is a finite aligned LCSC and 7 € 6/'\*,
the reason being that we are interested in define an action of Sy, on A*, using the
homeomorphisms defined in the previous section. The essential step to be covered is to
show that the action defined on éo restricts to é'\*

First, we need to prove a couple of results.

Lemma 4.2. Let A be a finitely aligned LCSC. Let s = \/T_, 7%d% € S, be irredundant.

Then, for any 1 < i # j < n such that ;A N B;A # 0 clmd for any n € B;AN B;A we
have that 7% a5 (n) = 7% 0P (n).

Proof. Since s € Sy, 70" and 7% 0% are compatible. Thus,
70 o BiBj 0 \/ raioli(e) jajo’i @)
5661'\/61'

is an idempotent, whence by Lemma 29 we have that «;0% (¢) = a;0%(g) for every
e € B; V B;. Since n € 5;,A N B;A, there exists € € 3; V 3; such that

n=en=Bifin = @‘Bjﬁ'
Hence,
40P (n) = a;0% () = a,;0%i (€)= T 6Pi () .
O

Lemma 4.3. Let A be a finitely aligned LCSC. Let s = \/]_, 7%c% € S, be irredundant.

=

Ife = \/'f:1 highi € Sy for any 1 < k < n, then se = \/'f:1 gl in Sy.

Proof. By hypothesis, 8; £ 8; whenever i # j. Fix 1 < k < n, and set ¢ = \//f:1 Tighi ¢
Ta. Now, se € Sy, and we have that

k
dom(se) = dom(t) = UB,A
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Let us prove that se = ¢ as function in Z(A); if so, then we conclude se =t € Sy. We
will compute the image of any element in dom(se). Pick any 1 <i <k, 1 < j < n.
Then, we have two options:
(1) BANB;A = 0: in this case, TPi0P = 0, and thus 7% cPirPighi = r2ig%(B;) = 0.
(2) BiA N BiA = U.cp,vg, €A in this case

Taio-ﬁiTﬁjoﬂj — \/ 7_041'0'61'(8)0_6'
eEBVB;

Thus, given any € € f; V ; and any § € s(g)A, we have that T%gPi7% g5 (e6) =
a; 51( 5)
TYgPi(ed).

Applying Lemma [£.2], we conclude that se = ¢, as desired. O
Lemma 4.4. Let A be a finite aligned LCSC, let n € E, and s € Sy. Then, s-n € E..

Proof. As noticed before, s -1 € &. Since s acts on 7, we have s*s € n and ss* € s - 7.
If e € n, then s*se € n. Hence, without lost c/>\f generality, we can assume that e = s*se,
whence s*(ses*)s = e. Moreover, since n € &,, we can assume that e = 77¢7 for some
v € A.

Now, take s = \/T_, 7*¢%. By [12, Proposition 1.4.17(1)],

1
n
s*s = \/ Pighi.
i=1

Since e < s*s, by Proposition 2. 1Tl there exists 1 < j < n such that 5; <, ie. v = ﬁjﬁAj.
By Lemma [4.3] se = 7938107, whence ses* = se(se)* = 79383 5By

Now, given any idempotent f = \/], 7%0%, by Proposition 211l we have that
stVo7s* < f if and only if there exists 1 < k < m such that 6 < Osz\j € Age. Then,
Ok € Ay, and thus 7%0% € s - £. Hence, s - ¢ satisfies condition (x), as desired. O

By restricting our attention to g*, we will use the notation D¢ and D, to refer to
the domain and range of the action of an element s € Sy on E.. Then, given s € Sy,
we can write (in a unique way up to irredundacy) s = \/?:1 7% g% by Lemma 2.6, so
that s*s = \/i_, 770" by Lemma 29, and thus Dgs C Ui, D.s;ps;. On the other
side, if 7% 0P € 7 for some 1 < i < n, then 7%0% < s*s implies that s*s € 7, whence
U?:l DT,Bmgai g DS*S. Thus, U?:l DT,eio;ai = DS*S. Analogously, U?:l D»ramai = DSS*.

4.2. The partial action on A*. Since we have an homeomorphism WV : £, — A* with
inverse U (Lemma B.23]) we can transfer the action of Sy on &, to A*. First we will fix
the domain and range.

Definition 4.5. Let s = 7%0° € Sy. Then, we define
E, = Ege = ®(Dygss) = 2U{a},0)) ={C e AN :aeC}

and

By = Ep = 0(D,.,) = ®U{B},0)) = {C € A" : B € C}.
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Given s = \/7_, 7%¢% we can define
ES*S - U Eﬁz = U (I)(DT'BiUBi) = (I)(DS*S) .
i=1 i=1

The sets FE, s and FE,« are the natural candidates for being the domain and range of
the partial action of Sy on A*.

Next step is to define the action. We will start by defining the action in the particular
case of s = 790", In this case, F' € Ej if and only if 8 € F. Then we define

o p= | [ao®(y)].
By, yeF
where [0] is the set of initial segments of § € A, who clearly belong to A*. Indeed:

(1) 7%0%(B) = a, thus, 7%" - F # ().

(2) Set ny,my € 0P - F, this means that there exist v;,7, extensions of 3 with
1,72 € F such that n; < ac?(v;) for i = 1,2. Since F is directed, 8 < 1,72 < 9§
for some 6 € F. Thus,

70%(31),7°0% (1) < 70°().

(3) If 6 € 707 - F and < 4, then there exists ¥ > f and v € F such that
n <6 < ac’(y), so that n € 7907 - F.

Moreover, 7%0? - F € E,. Thus, in this case we have that
TO‘05~:E5—>EQ, F s %" . F,

is a well-defined map.
Now, set s = \/i_, 70" € Sy, with

Ey, = CJIE[;Z. and E, = QEQZ. )

By Lemmal[[. 13, 7®¢% and 7% ¢ are compatible for 1 < i, j < n, and then 7% g% 75 g%
and 780 7% % are idempotents in S,.
For every 1 <i <n and every F' € Ez,, we can define
s-F=1%"%.F.

The only point to be checked is that, if F' € Eg N Eg, for 1 < ¢ # j < n, then
T%gPi . F = 1%¢gPi . F. To check this observe that, if F € Egs, N Eg,, then we have that
Bi, Bj € F' € A*. Thus, there exists v € F with 3;, 8; <. Without lost of generality we
can assume that v = 3; V ;. Then, v = B;0% () = ;0% (7). But

rYigPirPigei = \/ 7oi0%(9) oo (€) ¢ E(Sa),
66[32'\/5j

so that for every e € 8; V 3; we have that ;0% (¢) = a;0% (). In particular, for the v
above, we have that o;0% (v) = a;0% (7). Hence,

U lwe®i= U lae”()],
Bi,Bi <, vEF BiBi<y, vEF

that is 7% - F = 1%0% . F, as desired.
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Because of this fact, we can define the map
S- ES*S — Ess* s

as follows: given F' € By = |J;_, E, we can assume, after re-indexing, that gy, ..., B €
F and Byi1,...,0, ¢ F. Thus,

s F= | lao®().

Visy Bi<v,v€F
4.3. The Key Lemma. Now, we will prove a result, essential to fix the dictionary.

Lemma 4.6. Let A be a finitely aligned LCSC. Then, for every s € Sy and any n €
Dgs N E, we have that s - A, = Ag.,.

Proof. Given any s € Sy, we have that s = \/_, g% 5o that s*s = AV rPigPi and
Ds*s = U?:l DTBioﬁi .

By the previous arguments, we can restrict the action of s on D« to an action of
§; == 1%gP on D _s, .5, for each particular filter n € D_s,,5,. Hence, we can reduce the
question to the case s = 7907, s*s = 7705 and n € D_s,5.

First observe that

s-n={f €&(S\): f>7"Per’c” for some e € n}.

n

., 7707, then there exists 1 < j < n such that

Since 7 satisfies condition (x), if e = \/;

707 € n, whence
s-n={f€&ES\): f>71""T70"7P0" for some v € A,}.

Now, 1?7078 0% = veeﬁvv 700’ (©gac?(€)  Since 80P € n, we have that 8 € A,.
Hence, there exists € € (8 V y) N A,. Thus,

gl regerPo = 1o’ (e) gt (@) < 15P 07 P 5
for some € € (BV y) N A, and thus
s-n={f€&Sr):f> 7977 52" () for some v € A, with g <~}.

Given f =\, 7%0%, since s-n € &. by Lemma 4] then by Proposition 210 we have
that f > 790”1 zao’(9) if and only if there exists 1 < k < n such that &, < ac”(y) for
some v € A, with 8 < v. Hence, we have that

s = {\/T(Si(féi € £(Sa) : there is 1 < i < n such that §; < ao”(7) for some 7 € An} :

i=1

Thus,

Aypy={6€AN:5<ac’(y) for some y € A, with 8 <7} = U [ac? ()] = s+ A,,
B<y,v€EA,

as desired. U

Corollary 4.7. Let A be a countable, finite aligned LCSC. Then given s € Sy:

(1) s- restricts to an action on A**,
(2) s- restricts to an action on Aygn.
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Proof. Lemma shows that for every s € Sy and for every n € Dy, we have that
s+ ®(n) = 0(s-n). )
For (1) since ®(€y) = A**, for any F' € A** we have that np = U(F) € £, so that

A

s-F=s-0A,=5-Onp)=2(s-np) € P(Ex) =A™
For (2) since s- is continuous and Aygn = A= " the result derives from (1). O

4.4. The tight groupoid. Given an action of an inverse semigroup S on a locally
compact Hausdorff space X, we can associate to it a groupoid as follows: Consider
Sx X :={(s,2) : x € Dgs} with
(1) d(s,z) =z and r(s,z) = s - x,
(2) (s,z)- (t,y) is defined if t - y = z, and then (s, ) - (¢t,y) = (st,y),
(3) (s,z)" = (s*s-1).
We say that (s,z) ~ (¢,y) if and only if x = y and there exists e € £(S) with z € D, and
se = te. This is an equivalence relation, compatible with the groupoid structure. Thus,
we define § x X := § x X/ ~, with the induced operations defined above. Moreover,
(S x X))@ = X. Now to define the topology on S x X, given s € S and U C D+, an
open set, the subset
O(s,U) ={[s,z] :x € U},
gives us a basis for § ¥ Xunder which it is a locally compact étale groupoid.
When X = étight, S x X is the tight groupoid of the inverse semigroup, denote by
Gright(S). For extra information see for example [9].
We will show a nice description of Gyignt(Sa)-

Lemma 4.8. Let A be a finitely aligned LCSC. Let s = \[;_, 7P € Sy and let € €
Dges. Suppose that By, € A¢ for some 1 < k < n. Then [t 0P &] = [s,£] € Grignt(Sa).
In particular
Grignt(Sa) = {7707, €] : s(a) = B, B € A}

Proof. Let s = \/I_, 7%c% € Sy and let [s,€] € Guigne(Sa). Then by definition [s,&] =
[se,&] for any e € €. Let 1 < k < n such that 8 € A¢, whence e = 7% € ¢. Then by
Lemma B3 we have that se = 7%¢%. Thus, [s,&] = [t 0P*].

Finally, given any [s,£] € Gugni(Sa) with s = \/I_, %% and £ € gn‘ght, there exists

1=

Br € Ag, since ¢ satisfies condition (*). So by the above [s, ] = [T oP*, ]. O
Now we are ready to prove the following result.

Lemma 4.9. Let A be a finite aligned LCSC. Then, Gygni(Sa) is topologically isomorphic
to SA Dall Atight'

Proof. Since @ : c‘ftight — Atignt is @ homeomorphism and for every s € Sy and 1 € c‘ftight,
we have that s - ®(n) = ®(s - n), we conclude that the map

p Sy X c‘fm-ght — Sp X Ngight given by (s,m) — (s,P(n)),

is a groupoid isomorphism.
Now set s,t € Sy, 1 € Dgs N Dy and e € E(Sy) with n € D, and se = te. Then,
®(n) € Egys N By and A, € E,, so that

(s,m) ~ (t,n) if and only if (s,4,) ~ (t,A,).
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Consequently, the isomorphism p induces an isomorphism

p: Sy X éftight — Sa X Agignt given by [s,n] = [s,®(n)] .
Finally, given any s € Sy and U C D, open subset, we have that ®(U) C Fg is an
open set and p(O(s,U)) = O(s, ®(U)). Thus, p is a homeomorphism. O

We are ready to show when this groupoid is Hausdorff. First, we need to recall some
known facts.

Definition 4.10. A poset is a weak semilattice if the intersection of principal downsets
is finitely generated as a downset.

In the case of A being right cancellative, A can be seen as a subsemigroup of Sy via
the natural map a +— 7% Hence, when A is a left and right cancellative small
category, we have the following result.

Proposition 4.11 ([0, Proposition 3.6]). Let A be a left and right cancellative small
category. Then the following are equivalent:

(1) A is finitely aligned,

(2) Z(A) is a weak semilattice.

An important point is that, when A fails to be right cancellative, then Donsig & Millan
argument, fails.

Remark 4.12. Steinberg [18, page 1037] says that an inverse semigroup S is Hausdorff
if it is a weak semilattice

The following follows from [I8, Section 5].

Corollary 4.13. Let S be a countable inverse semigroup. If S is Hausdorff, then so is
gtight(S)'

Thus,

Corollary 4.14. If A is a countable, finite aligned left and right cancellative small
category, then Grignt(Sa) = Sa X Nyigne is Hausdorff.

Proof. The conclusion follows by Lemma and Corollary 213l O
If A fails to be right cancellative, Corollary [4.14] would fail in general.

4.5. Universal tight representations. In this subsection we quickly revisit the results
proved in [6], just fixing the essential hypotheses required to guarantee that these results
hold.

First, notice that the results of [0, Sections 1.1 and 2] do not require A to be other
than LCSC. In particular, the key result is [0, Proposition 3.4], that works correctly for
Sa.

Second, to apply the results of [6 Section 3], we only need to fix the following facts:

(1) As noticed in [I6l Remark before Theorem 10.10], the result required to prove
[6, Theorem 3.7] (namely, [15, Theorem 8.2]) do not depend on the amenability
of Spielberg’s groupoid Gga. Thus,

(2) Given A a (countable) finitely aligned LCSC, we define:



TIGHT GROUPOIDS OF LCSC 20

(a) C*(A) is the universal C*-algebra generated by a family {7, : a € A}
satisfying:
(i) ToT. = Ts(a)
(i) TuTs = Top if s(a) = r(5).
(iil) ToToT5T; =V eavs TH T3 )
(iv) T, = Ve T T} for every v € A” and for all ' C vA finite exhaustive
set.
(b) Given any unital commutative ring R, we define RA the R-algebra generated
by a family {7}, : « € A} satisfying:
) T:T, = Ts(a)
(ii) ToTp = Top if s(a) = r(3).
(i) TuT2T5TS = \euns T 17 0
(iv) T, = Ve T T} for every v € A” and for all F* C vA finite exhaustive
set.

In order to relate these algebras with the associated tight groupoid, we need to show
that the natural representations 7 : Sy — C*(A) and 7w : Sy — RA are universal tight.
With respect to its tighness, Donsig and Millan [6, Theorem 3.7] showed that these
representations are cover-to-joint, and the concluded that they are tight. As recently
observed by Exel [§], that could fail, so that there is an slight imprecision in the proof of
[6, Theorem 2.2]. Fortunately, Exel solved this problem [8, Corollary 5.2, Theorem 6.1],
so that the conclusion remains true. Hence, by [16, Theorem 10.15] and [6], Theorem
3.7], we have the following result.

Proposition 4.15. Let A be a (countable) finitely aligned LCSC. Then:
(1) The natural semigroup homomorphism
m: Sa — C*(A)
08 T.T5

15 a universal tight representation of Sy in the category of C*-algebras.
2) For any unital commutative ring R, the natural semigroup homomorphism
Y g group 4

m: Sy — RA
%8 TaTék

15 a unwversal tight representation of Sy in the category of R-algebras.
Hence, because of [7, Theorem 13.3], Proposition 411l and [18, Corollary 5.3], we have

Theorem 4.16. Let A be a (countable) finitely aligned LCSC. Then:

(1) C*(A) = C*(Grigni(S))-
(2) For any unital commutative ring R, RA = Ar(Grignht(Sa)).

5. SPIELBERG’S GROUPOID

In [14] Spielberg defines a groupoid Gjga for a category of paths A. We will show that
this groupoid is topologically isomorphic to Gyign(Sa).

First, Spielberg defines a topology in A* that coincides with the topology we introduce
in the definition B.2Il Indeed, for « € A and fi,...,5, € oA\ {a}, and setting
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E =aA\ U, B;A we have that

Therefore, we have that OA = A** = Atight -
Next result is a refined version of [I5, Lemma 4.12].

Lemma 5.1. Let A be a finitely aligned LCSC. Let F,G € A* and o, 8 € A such that
7. F =78 .G. Then there exists 6 € F and v € G such that ad = Bry.

Proof. Let &' € F, then ad’ € 7% - G. By definition, there exists v/ € G such that
ad’ < [v'. Then, there is n € A such that ad’n = Bv'. Now, there exists ¢ € F such
that 59" < a&, and hence there is ' € A such that gv'n’ = a&, whence ad'ny’ = af.
Now, by left cancellation, we have that d'nn’ = &, so d'n < £ € F. Then, since F is
hereditary, it follows that d'n € F too. If we define § := §'n and vy := 7/, we are done. [J

Now, we recall the definition of Spielberg’s groupoid associated to a small category
(see e.g. [14], pp. 729-730]). We start defining an equivalence relation on A x A x A* by
saying that («a, 5, F') ~ (o/, ', F") if there exist G € A*, v, € A such that F =717 -G,
F'=717".G, ay =o'y and By = '+ Denote G = A x A x A*/ ~. Now, we define a
partial operation on G. To this end, fix the set of composable pairs

G = {([o, 8. F,[7,0,G]) : 77 - F =77 - G)}
and define [, 8, F]™' = [B,7, F]. Given a pair (o, 8, F], [7,6,G]) € G*® we define the
multiplication by
o, B8, Fll, 6, G] = |ag, on, H],
where £ € ' and 1 € G are the elements given in Lemma [5.] such that ¢ = ~n, and
H = 0% - F = ¢"-@G. Finally, the sets o, 3,U] := {[a,3,F] : F € U} for U an open
subset of A* forms a basis for the topology of G, under which G is an étale groupoid. By
Corollary .7, we have that Ggn = {[a, B3, F] € G : F € Ayigns}-
Proposition 5.2. Let A be a countable, finitely aligned LCSC. Then the map
(I):G|8A_>SA>4Atight7 [Oz,ﬁ,F]l—)[TQOﬁ,Tﬁ-F]’

s an isomorphism of topological groupoids.
Proof. First, let (a, B, F') ~ (o/, 5, F'), that this, there exist G € A*, v, € A such that
F=71.G, F =7 .G, ay=da"7 and By = 7. Then

P F= (.G =m".g=7"". =7 . (".¢q)=1" . F.
Now, fy e r? - F =77 . F' and

(7'0‘05)(75705“’) — 7P = Y B = (T“laﬁ/)(rﬁl'ylaﬁ/”/) — (7.0/06/)(7.67057).

Hence, (197,78 - F) ~ (196”77 . F'), and thus, ® is a well-defined map.

Suppose that ([a, 8, X], [7,8,Y]) is a composable pair in Gjgs. Since 77 - X =77V,
by [15, Lemma 4.12] there exist £, € A, and Z € Ay such that X =782, Y =77-Z
and 65 = . Then7 (I)([&7ﬁ7X]) = [TOCO-B7TB ! X]7 (I)<h/757 Y]) = [T,yo-évTé ’ Y]7 and
([, B, X][7,6,Y]) = ®([ag, on, Z]) = [1%¢c", 797. Z]. Notice that, since 77¢°-(7°-Y) =
Y =77 =7%.7=75. X, we can compute

(70 P X][T0?, 70 - Y] = [P 0%, 0 - Y.



TIGHT GROUPOIDS OF LCSC 22

On one side, 7°-Y = 797 . Z. On the other side, since B¢ = 1, we have [7%0”, 77 - X| =
[To€o P 158 7], [r70%, 70 - Y] = [7710% 797 . Z], and thus

[7‘0‘05,7'5 . X][T’Yo.ts’T(S . Y] _ [7‘“50657‘7"05”,75” . Z] =)
Since 7o Mg = LGN = 7€M we have
1) = [7‘0‘505", 7o . Z].

So, ® is a groupoid homomorphism.
Suppose that [, 8, X], [7,9,Y] in Gpp such that

O([a, 5, X]) = [TQO'B,TB - X] = [7‘705,7'5 Y] =®([y,6,Y]).

Then, 7°- X = 79.Y. By Lemmal[5.0], there exist £ € X,n € Y such that 3¢ = §n. Then,
the idempotent e = 77¢55¢ = 7957 lies in the right domain, and since [t%0”, 77 - X| =
[770%, 7% - Y], left cancellation give us 760 = 7907 . ¢ = 770 - ¢ = 75", Thus,
7% = 77 whence a& = n, and hence [a, 8, X] = [7,d,Y]. So, ® is injective.

Finally, let [7%6”, F] € Sy ¥ Agigne. Then ®([a, 3,07 - F]) = [7%0°, 77 - (67 - F)] =
[, B, 7%07 - F]. But since 3 € F it follows that 770” - F = F, so ® is exhaustive, and
hence @ is a topological groupoid isomorphism.

U

6. SIMPLICITY

In [I5, Section 10] are given conditions in a category of paths A for Gjga being topolog-
ically free, minimal and locally contractive, but right-cancellation of A is crucial in the
proofs therein. We are going to use the isomorphism in Proposition and the charac-
terization of these properties given in [9], to extend Spielberg results in [I5], Section 10]
to finitely aligned LCSC.

Definition 6.1. Let S be an inverse semigroup, and let s € §. Given an idempotent
e € £ such that e < s*s, we will say that:

(1) e is fized under s, if se = e,

(2) e is weakly-fired under s, if (sfs*)f # 0, for every non-zero idempotent f < e.

Definition 6.2. Given an action oo : S ~ X, let s € S, and let x € D,

(1) as(x) = x, we will say that = is a fized point for s. We denote by Fy the set of
fix points for s.

(2) If there exists e € &, such that e < s, and = € D,, we will say that x is a trivially
fixed point for s.

(3) We say that « is a topologically free action, if for every s in S, the interior of the
set of fixed points for s consists of trivial fixed points.

Given an action o : § ~ X, the groupoid S x X is effective if and only if the action
« is topologically free [9, Theorem 4.7].

Remark 6.3. Let A be a finitely aligned LCSC, and let Sy ~ éfm-ght be the associated
action. Let s € Sy, and & € D mgtight- If s =\ 70" then s*s = \/I_ Pic% € ¢.
Since ¢ satisfy condition (x), there exists 1 < j < n such that 7%0% € €. Let C' € Aygn
such that & = n¢. Then we have that 5; € C'. By the definition of the action S ™ Agigns
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we have that s-C' = 7% ¢%-.C, and hence s-& = 7% g% .¢. Thus, without lost of generality,
we can assume that s = 7% 0%,

Theorem 6.4. Let A be a countable, finitely aligned LCSC. If either Giigni(Sa) is Haus-
dorff or f:'oo = f:'tight, then the following are equivalent:
(1) Grignt(Sa) s effective.
(2) For every s € Sa, and for every e € Ex which is weakly-fixved under s, there ezists
a finite cover for e consisting of fixed idempotents.
(3) Given a, € A with r(a) =r(5) and s(a) = s(B), if «dMB6 for every 6 € s(a)A
then there ezists F' € FE(s(«)) such that ary = By for every v € F.

Proof. The equivalence of (1) and (2) follows from Lemma [£.9 and Corollary .14 and
[9, Theorem 4.10, Theorem 3.16 and Theorem 4.7].

We assume (3), and we will prove that condition (ii7) of [9 Theorem 4.10] holds.
Let s = \/I_ 7%0P € Sy, and let £ € Eso N Doy with s-& = ¢ and € € (Fy)°. Let
s*s = \/i_, 7PioP. From Remark [6.3 there exist C' € A** such that £ = ne, and
1 < j < nsuch that £ € D s; 5 and s-§ = Pighi . €. Now, by [0, Proposition
2.5 there exists e = \/", 7%c™ € & with e < s*s such that £ € D, N &, C (F.)°.
Since ¢ satisfies condition (x) there exists 1 < k < m such that 77%%¢"% € &, whence
£ € Do F‘Iffoo C (Fy)°. Then, without lost of generality, we can assume that s = 0P,
s*s = 1968, € = ne with C € A*™, B € O, and there exists v € C with 707 < 7755
such that £ € Dyvpv C (Fy)°. Then v = B4 for some 4 € A, and since by hypothesis
7207 . C' = C, we have that 7%0°(3%) = oy € C . Now, by [9, Lemma 4.9], D+ C F,
is equivalent to 7707 being weakly fixed under 7%¢”. But this means for every § € s(9)A
we have that

adyé m pBAo .
By hypothesis, there exists F' € FE(s(%)) such that ayd = S50 for every 6 € F. We
claim that there exists 6 € F such that ofyé = 6&5 € C. Indeed, since ay € C, we have
that £ := 07 - C € A C Aygne, 7w € U(T*Po*) () and {r%¢° : § € F} is a cover of
U(T*D D) (). Since np is a tight filter (because £, C c‘ftight) there exists § € F with
0% € ng. Then, 6 € E=0°Y.C and hence ofyé € C, as desired.

Now, we define g := re¥getd ¢ g, Then, 0 # TV gadd < raghB and § =nc €
D Therefore, ¢ is trivially fixed by s. Thus, condition (¢ii) of [9, Theorem 4.10]

is satisfied, and since either Gi;gn(Sa) is Hausdorff or &y = é’tight, then condition (2) is
satisfied by [9, Theorem 4.10], as desired.

Finally, let us assume (2). Let a,8 € A with r(a) = r(8) and s(a) = s(f) and
satisfying that ad M 36 for every & € s(a), then the idempotent e = 7707 is weakly fixed
under s := 707, so by hypothesis there exists a finite cover Z of e consisting of fixed
idempotents under s. Then there exists a finite set F' C s(3)A such that Z = {7%7¢%7}.
Since the idempotents of Z are fixed under s, we have that

Ta‘ygaa‘yg .

7ogB . BV GBY — v BT — BV 5B ’

for every v € F. Thus, ary = 3y for every v € F. But Z is a cover of 7°¢”, and hence
for every 6 € s(B)A there exists v € F such that 7767 . 787657 #£ 0, but this means
that 50 m 57, and hence § M~ by left-cancellation. Thus, F' € FE(s(5)), as desired. [



TIGHT GROUPOIDS OF LCSC 24

Remark 6.5. Observe that if A has right cancellation, condition (3) in Theorem
reduces to aperiodicity as defined in [I5, Definition 10.8]

Theorem 6.6 ([I5, Theorem 10.14] & [9, Theorem 5.5]). If A is a countable, finitely
aligned LCSC, then the following statements are equivalent:
(1) Grignt(Sa) is minimal.
(2) For every nonzero e, f € Ez, there are sq,...,8, € Sa, such that {s;fsi}r is
an outer cover for e.
(3) For every a, 8 € A there exists F' € FE(«) such that for eachy € F, s(8)As(y) #
0.

Proof. By [9, Theorem 5.5] it is enough to prove the equivalence of conditions (2) and
(3). First, we will prove (3) = (2). Without lost of generality, we can assume that
e = 7% and f = 7°0”. By hypothesis there exists F = {v1,...,7,} € FE(a) such that
for each i there exists §; € s(8)As(7;). If we define s; := 770%% for every 1 <i < n, we
have that {s;fs;}, = {770}, that is a cover for e.

(2) = (3). Let e = 7%0® and f = 770”. By assumption there exist sy, ...,s, such
that {s;fs/}7_, is an outer cover of e. Without lost of generality we can assume that
n=1s0s:=s =\, 7% g% and hence sfs* is an outer cover of e. But

sfs* = \m/ \/ P CH

i=1¢e;€BVH;

Since A is finitely aligned 3V d; is finite for every 1 <4 < m, and so the set {v;0%(g;) :
1<i<m,eg € fV} € FE(a). Finally, observe that since ¢; € 8V §; it follows that
s(B)As(e:) # 0, but s(e;) = s(7:0” (:))- 0

Then, we have the following result

Theorem 6.7. Let A be a countable, finitely aligned LCSC. If either Grgni(Sa) is Haus-
dorff or £ = étight, then the following statements are equivalent:
(1) C*(A) is simple.
(2) For any field K, KA is simple.
(3) The following properties hold:
(a) Given a,f € A with r(a) = r(B) and s(a) = s(fB), if ad M B for every
0 € s(a)A then there exists F' € FE(s(a)) such that ay = By for every
vyeF.
(b) For every a,3 € A there exists F' € FE(«) such that for each v € F,

s(B)As(y) # 0.

Proof. By Theorem .16, C*(A) = C*(Giight (Sa)), and for any field K, KA = A (Giight(Sa))-
By Theorem [6.4] condition (2(a)) is equivalent to Giignt(Sa) being effective, and by The-
orem [6.6], condition (2(b)) is equivalent to Gijgni(Sa) being minimal. Then, (1) < (3) by
[3, Theorem 5.1], while (2) < (3) by [18, Theorem 3.5]. O

7. ZAPPA-SZEP PRODUCTS OF LCSC CATEGORIES

In this section we will analyze the notion of Zappa-Szép products of LCSC categories,
introduced in [2], inspired in the construction of self-similar graphs defined in [9].
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Let A be a finitely aligned LCSC and let G be a discrete group (with unit 15). We
will use multiplicative notation for the group operation.
We say that the group G acts on A by permutations when
r(g-a)=g- r(a) and s(g-a)=g-s(a) for every a € A, g € G .

For the rest of the section we will assume that G acts by permutations on A.
A cocyle for the action of G on A is a function ¢ : G x A — G satisfying the cocyle
identity
o(gh,a) = (g, h - a)p(h, a) forall g,h € G, a € A.
In particular the cocycle identity says that ¢(1g, @) = 1¢ for every a € A.

Definition 7.1. A map ¢ : G x A — A is a category cocycle if for all ¢ € G, v € A°,
and «, 5 € A with s(a) = r(3) we have

(1) ¢(g.v) =g,

(2) (g, a) - r(a) =g-r(a),

(3) g+ (af) = (g-a)(p(g, ) - B),
(4) ©(g, ab) = p(elg, @), B).

We call (A, G, p) a category system.

Definition 7.2. Let (A, G, ) be a category system. We will denote by A x¥ G the
small category with

Ax?G=AxG and (Ax?G)"=Ax{e},
and 7,5 : A x¥ G — (A x% G)° defined by
Hang) = (r(0),1a)  and  s(arg) = (g s(a), 1)
Moreover for («, g), (3, h) with s(«, g) = r(8, h) we have that

(o, 9)(B,h) = (alg - B), (g, B)h) .
We will call A x¥ G the Zappa-Szép product of (A, G, p).

It was proved that A x¥ G is left cancellative whenever A is left cancellative [2,
Proposition 3.5], and as observe in [2, Remnark 3.9] the elements of the form (v,g)
where v € A and g € G are units of A x¥ G. Then given (o, g) € A x¥ G and h € G we
have that

(a,9)(g7" - s(a),g7'h) = (a, h),

so (a,g) = (a, h). Moreover, A x? G is finitely aligned (singly aligned) whenever A is
finitely aligned (singly aligned) [2, Proposition 3.12]. In particular,

(O‘ag)v(ﬁah) = (Oé\/ﬁ) X {1G’}

Definition 7.3. A category system (A, G, ¢) is called pseudo free if, whenever g- o = «
and ¢(g,a) = 1g, then g = 1¢.

Proposition 7.4 ([10, Proposition 5.6]). Let (A, G, ) be a pseudo free category system.
Then, for all g1,g9, € G, and o € A, one has that

gr-a=gs-aand p(gr, ) = (g2, ) = g1 =92
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Remark 7.5. Given a (A, G, ¢) where A is a right cancellative category, it may happen
that A x? G fails to satisfy right cancellation. Given («, a), (8,b) and (v, g) in A x? G we

have that (a,a)(v, 9) = (8,0)(7,9) if and only if a(a-v) = B(b-7) and ¢(a,7) = (b, 7).
In particular, the system is pseudo free if and only if A ¥ G is right cancellative.

Remark 7.6. Let (A, G, ), and let F = {(y1,h1),.., (Yn, hn)} € A x¥ G. Then given
(a,g) € Ax¥G. we have that F' € FE(a, g) of Ax¥ G if and only if {~q,...,7,} € FE(«)
of A.

By the above remark the following results are a direct translation of Theorem and
0.6l

Proposition 7.7. Let (A, G, p) be a category system. If either Grigni(Saxec) is Hausdorff

or 5 = 5tzght; then the following is equivalent:
(1) Guign(Snneq) is effective,
(2) Given (a,a),(B,b) € A x¥ G with r(a,a) = r(B,b) and s(a,a) = s(B,b), if
(o, a)(6,d) m (B,0)(5,d) for every (§,d) € s((a,a))(A x¥ G) then there exists
F e FE( (v, a)) such that (o, a)(y,d) = (5,0)(v,d) for every( ,d) €
(3) Given o, € A, a,b € Gwzthr(a) = r(b) and a ! - s(a) —bl- (B), if
afa-d)mpB(b-0) for every d € (a=" - s(a))A then there exists F € FE(a™" - s(«))
such that a(a -v) = B(b-~) and p(a,y) = @(b,7y) for every v € F.

Proposition 7.8. If (A, G, p) is a category system, then the following statements are
equivalent:

(1) Gright(Saxec) is minimal.

(2) For every (a,a),(8,b) € A x¥ G there exists F' € FE((a,a)) such that for each

(7,9) € F, s(B,0)(A %% G)s(v,9) # 0.
(3) For every o, B € A there exists F' € FE(«) such that for each v € F, there exist

g9 € G with s(B)A(g - s(v)) # 0.
Then, by an analog argument to that of Theorem [6.7], we have the following result

Theorem 7.9. Let (A,G,p) be a category system such that A and G are countable.
If either Guigni(Saxec) is Hausdorff or é'oo = étight, then the following statements are
equivalent:
(1) C*(Saxec) is simple.
(2) For any field K, KSyxeq is simple.
(3) The following properties hold:
(a) Given a, 8 € A, abEGwzth'r’(a) r(b) and a™! - s(a) = b1 - (6), if
a(a-0)mB(b-0) for every § € (a='-s(a))A then there exists F € FE(a™-s(a))
such that a(a-v) = B(b-v) and p(a,y) = @(b,7y) for every v € F.
(b) For every o, 8 € A there exists ' € FE(«) such that for each v € F, there
exist g € G with s(B)A(g- s(7)) # 0.

To end this section, we will have a look on the case of A = E*, where E is a countable
graph. When G is a countable discrete group and E is a countable graph, there is a
definition of self-similar graph extending that of [I0] (see [I1), Definition 2.2]). In fact,
as shown in [I1, Theorem 3.2], the case of arbitrary graphs can be reduced to the case
of row-finite graphs with no sources or sinks up to Morita equivalence (of both algebras
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and groupoids); in this case, most of the properties enjoyed by the system are analog to
these found in the finite case.

In order to fix the relation between Gygnt(Se k) and Guigni(Se+xec), we first need to
state the relation between S¢ g and Sg+xeq. On one side, we have

Sap={(a,9,8) o, f € E*, g € G,s(a) = g-5(8)}.
On the other side,
Spenec = (1090 1 a, f € B, g,h € G,g7" - s(a) = ™" - 5(5)).
Since (z,g9) € (E* x¥ G)~! for all z € E°, g € G, we have that
H0.0) (BR) _ () (b1 5(8) A7) _(s() ) 5 (B16) _ p(engh™) (A1)

Moreover, since E* is singly aligned, then so is E* x¢ G by [2, Proposition 3.12(ii)].
Thus, by [B, Theorem 3.2],

SE*X‘PG = {T(a,g)a(ﬂlc) : Oé,/B S E*ug € G7 S(Oé) =g 8<B>} .

Hence, the map
T Ser —  Spxec
(a,g,B8) = 79581

is a well-defined, onto *-semigroup homomorphism. Let us characterize when 7 is injec-
tive. To this end, take (a, g, ), (7, h,d) € Sg g such that

r(@9)g(016) = 1(a,g, B) = n(3, h,6) = TONGO1E),

q)(E* x?G) =
0. Moreover,
))E* and for

Being both equal functions, they must have the same domain, i.e. (§,1
(6,1¢)(E* x¥ G). Since (E* x? G)™! = E° x G, we conclude that ﬁ =
(@9 = 7" on their common domain, so that for every A € (¢7' - s(a
every ¢ € G we have

(alg - A), (g, M)O) = 7D (A 0) = 7OM (N 0) = (3(h - A), (B, A)E).

Since the self-similar action of G on E* preserves lengths of paths, we conclude that
a = v, and that for every A € (97! - s(a))E* we have g- A = h- X and ¢(g, \) = o(h, ).
Thus, the existence of nontrivial kernel for 7 is equivalent to the existence of g € G,
a € E* such that for all A € s(a)E* satisfies g - A = X and ¢(g,\) = 1g; in other
words, injectivity of 7 is equivalent to the fact that the self-similar action of G on E* is
faithful on vertex-based trees of E. Notice that if (E, G, ¢) is pseudo free, then the above
condition is trivially fulfilled, so that 7 will be an isomorphism in this case. Moreover,
being £* x¥ G singly aligned, we have that it is right cancellative exactly when (F, G, ¢)
is pseudo free. In this case, not only S¢ g = Sg-xeq, but also they are weak semilattices
by Proposition .11, so that their associated tight groupoids are Hausdorff by Corollary
414

Now, we proceed to look at the relation between the corresponding tight groupoids
Gright(Sc,p) and Giignt(Sprxeq). First, notice that the idempotent semilattices of Sg,
Se,p and Sg- e coincide, so that the spaces of filters, ultrafilters and tight filters are

the same (up to natural isomorphism). Additionally, the partial actions S¢ g ~ & and
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Spruec N &y are m-equivariant; also, the germ relation is compatible with 7. Thus, 7
induces a continuous, open, onto groupoid homomorphism

Q: Ggnt(Sar) = Gright(Seexec)
0,9, 8;m) = [Fe9)gB1e); )

Using the Morita equivalence reduction [I1, Theorem 3.2], we can assume that E is
row-finite with no sources or sinks, whence éfoo = éftight = E°°; let us reduce to this case,
in order to simplify the computations. We now will show that ® is injective. To this end,
let [, g, 8; 7] € ker ®. This means that 7(9)¢(%1¢) is an idempotent. According to the
computations done before, this happens exactly when a = § and for every \ € s(a)E*
we have that g - A = A and ¢(g,\) = 1. Pick A any initial segment in n € E*. Notice
that A € s(a)E*, and thus (a), 1g,al) € an (seen as a filter), while

<&7 g, Oé) ’ (Oé)\, 1g, Oé)\) = ((X(gA), 90(9, )‘)7 Oé)\) = (Oé)\a 1lc, Oé)\)
Hence, by the germ relation, if n = A7, then
[0, g, ;. am)] = [a, 1, a); adi)] € Grigni(Sc.p).

Thus, ¢ is a homeomorphism and an isomorphism of groupoids. This guarantees that,
independently of the choice for representing the self-similar graph system (G, E, ¢), their
associated tight groupoids -and hence their algebras- are the same.

8. AMENABILITY

Now we are going to study a case where we can deduce amenability of Gigni(Saxec)
assuming that Gygne(Sa) and G are amenable. Let A be a finitely aligned LCSC, and let
I' be a subsemigroup of a group Q.

Definition 8.1 ([I3| Definition 6.1]). Let I be a semigroup with unit element 1. A
['-graph is a LCSC A together with a map, called the degree map, d : A — TI', such that:

(1) d(af) = d(«)d(B) for every a, € A with s(a) = r(5),

(2) for every a € A and 71,72 € ' with d(a) = 7172, there are unique oy, ay € A with
s(a1) = r(az), d(a;) = ~; for i = 1,2, such that a = ajay (unique factorization
property).

Observe that if A is a ['-graph, the unique factorization property implies that A is
right and left cancellative category, and does not have inverses.
Given two elements vy, v, € T’

Y1 < Yo if and only if iy €eT.
Lemma 8.2. Let A be a I'-graph. Let o, € A with am 3. Then o < [ if and only if
d(a) < d(B). In particular o = 8 whenever d(a) = d(f).

Proof. Let a, 8 € A, and let ¢ € a V 3, so there are 6,7 € A such that ¢ = ad = (.
Assume that d(«) < d(f). So by the unique factorization property there exists v, € A
such that vy = f and d(y) = d(«). But then

d(a)d(d) = d(ad) = d(yy'n) = d(v)d(v'n).
Thus, by the unique factorization property a = =, and hence o < 3, as desired.
Finally, if d(o) = d(8) then a <  and < . But since A has no inverses, it follows
that a = . O
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Definition 8.3. Let (A, G, ¢) be a category system, where A is a I'-graph. We say that
[ is compatible with respect to (A, G, ), if d(g - a) = d(«) for every g € G and o € A
(G-invariant).

Let A be a I'-graph compatible with respect to (A, G, ¢). Observe that since 7(*9) (9 =
rleta)g(@1a) for every (a,g) € A x¥ G, the set of idempotents £y = Exweq coincide,

and hence so does their spaces of tight filters. We will denote by gtight the space of tight
filters of €5 and Epyeq. By Lemma [4.3]

Gright(Sa) = {[T%07,€] : € € Evigns, v, B € A, () = 5(B), B € A¢}

and

gtight (SAN‘PG)
= {[T(O"“)a(ﬁ’b),g] S c‘:’tight, a,BeEN abeG at s(a)=b" 5B), B¢ Ag}.
Then, we will think of Gz (Sa) as an open subgroupoid of Gy;gni(Saxec) via the map
(7908, €] v [1(@16)g(B1a) ¢,
The following remark is going to be used repeatedly during the rest of the paper
sometimes without mention it.

Remark 8.4. Let (a,a), (8,b) € A x¥ G, and suppose that (a,a) < (5,b), then there
exists (0,d) € A x¥ G with r(d,d) = s(a, a), that is, r(§) = a™! - s(«) such that

(8,b) = (a,a)(d,d) = (a(a-0),(a,0)d).
Whence «a(a - §) =  and b = ¢(a,d)d. Hence, a-§ = o“(f) by left cancellation, so
§=a'-0%p) and d = p(a,a™t - c*(B))" = p(a™t,o%(B))b because of the cocycle
identity. Therefore, (o, a) < (/3,b) if and only if & < 3, and then we have that

a9 (B,0) = (a~' - 0*(B),p(a”", a%(B))D) .
Lemma 8.5. Let A be a I'-graph compatible with respect to (A, G, ), then the map
d: gtight(SAx‘PG) —Q, [T(a’a)a(ﬁ’b)a £l — d(‘)‘)d(ﬁ)il )
is a well defined continuous groupoid homomorphism. In particular, d restricts to
Gright(Sa)-

Proof. First we will prove that d is well defined. Let [s,&] = [t, €] in Gugnt(Saxec), that
is, there exists f € & such that sf = tf. Without lost of generality we can assume
that s = 7(@9gBb ¢t = 7000 and f = r(01e)g(1e) with a, 8,7 € A¢ such that
a, f <. Then, by Remark R.4 we have that

sf = 7@ g6 . r(r1e) z(r1c)

_ e o ()b~ 0P (1) 5 (1 1a)

— rlefa™ (M) p(ab™ 0" () 5 (11e)

and

tf — T((Svd)o-(nvc) . T(’leG)O-(’lec)
_ ) (e on (1) (e Lo () (7 16)

g T(é(d671 'Un(')/))74p(d071 70'7](7))) 0-(771G) ,
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But sf =tf, so then

(1) a(a™-0’(v)) =d8(dc™"-0"(7))  and  p(ab~t 07 (v)) = @(de o"(7))
Therefore, by the G-invariance of d we have that

d(a(ab™ - o?(v))d(7) ™" = d(a)d(ab™" - o(7))d (7)™

= d(ac’(7))d(~) ™"

= d(a)d(8)"'d(7)d(7)~"

= d(a)d(8)™"

is equal to
d(3(de™" - 0"(<")))d(v07(€1)0) ™" = d(6)(dc™" - o™ (7)0)d(7) ™

= d(d)d (0" (y ))01(7)_1
= d(6)d(n)~'d(7)d(v)
=d(9)d(n)".

Hence, d([r%c?,€]) = d(a)d(B)~! = d(8)d(n)~! = d([r%07,€]), so d is well-defined.

Now, let [s,€],[t,€] € Grignt(Sanwc) such that & = ¢ - ¢ If s = 7@ and
t = 70D then [s,&] - [t,&'] = [st,&']. Observe that, since 3,5 € A¢, by Lemma B2
there exists only one element ¢ € (8V §) N Ag. We define f = 7(516)g(E16) We have
that £ =t - &, that means

Ac={yeA:y<tv),veAe}={yeN:y <) v € Ay}
={yeAN:y<ddc " v), e A}.
But ¢ € A, that is e < d(dc™! - v) for some nv € A, and hence
d(e) <d(6(dct-v)) =d(6)d(dec ™ - v) = d(6)d(v) .

As d(0) < d(e), we have d(0) < d(e) < d(d)d(v). Therefore, there exists g, h € I' such
that d(¢) = d(d)g and gh = d(v). Now, by the unique factorization, there exist unique
elements vy, 5 € A such that 1115 = v and d(v;) = ¢g and d(v») = h. But niy € Ay, so
t(nvy) = 6(de™ - 11), and d(6(dc™! - 1)) = d(d)g = d(e). Hence by Lemma B2 we have
that e = §(de™t - vy).

Then ft = t-rta)gmile) so [s,€] = [sf, €] and [t, &) = [ft,€]. So, we can assume
that 3 = 6, and hence d([s,&]) = d(a)d(8)~! and d([t,¢']) = d(B)d(n)~*. Thus,

T(a7a)o-(ﬁ7b) . T(Bvd)o-(nvc) e T(ava)(b71'5(6)71771‘1)0-(7776)

_ b d) ()

Therefore,

Thus, d is a morphism of groupoids.
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Finally, given g € I', we have that

(d)'(9) = O(r*a\" D s.s),
o,BEN, d(a)d(8) 1 =g

that is an open. Thus, d is continuous. O

Let d : Grignt(Saxec) — T be the cocycle defined in Lemma B.5, and let us define

Hawe = (@) (16) = ([P0 €] € Guigra(Sauea) : d(@)d(8) " = 16}
It is an open subgroupoid of Gygnt(Saxec).
Now in order to be able to decompose the groupoid H .« as a union of more treatable
groupoids, we need to impose some conditions on the semigroup I'.

Definition 8.6. Let I' C @ be a subsemigroup of a group @ with TNT~! =1,. We
say that I' is a join-semilattice if given g;,g2 € T’

inf{gel:g1,9 <g}
exists an it is unique. We will denote it by ¢; V gs.

We now assume that I" is a join-semilattice. Then, given g € I', we define
Hiog = {70V, €] - d(a) = d(8) < g} -

We claim that Hk’;m is an open subgroupoid of Ha weq. Let [r(@@gBb) €] [r@DgMe) ¢/ ¢
H%’im two composable elements with ¢g; := d(f) = d(«a) < gand ¢ :=d(0) =d(n) < g.
Since 3,9 € A¢ we have that there exists ¢ € (8V ) NAg, and g1, g2 < d(e). Since I' is a
join-semilattice we have that g; V go < d(g). Then by the unique factorization property
there exists €1,e9 € A with d(e;) = ¢1 V g2 and € = £165. Then &1 € A and hence by
Lemma[R.2] we have that 3,0 < e;. Then as shown in the proof of Lemma [R5 we can find
elements [7(@ @) gEY) €] [7ED G0 ¢ € Hp g with [ @D g0 €] = [7(@"a)gEY) ¢
and [rCDge) ¢ = [ED) G0 ¢/ and the product

[r@ g g] . [Ed) G ¢ = [ WD) ) g qq01v92)

Therefore, H1/%) € H?, ., as desired.

Moreover, as a consequence of the above computation, given g1, g < g we have that
H%;LG'HE\%LG - 7—[5\9;9,(;. Then, if T" is countable, there exists an ascending sequence
of elements g¢i, gs,... € I such that for every g € I' there exists n € N with g < g¢,.
Whence, Hanee = U2, H s

The next step will be to define a cocycle of the groupoids ’Hg\gin onto G. In order to
do that we will need to make the following assumption in the I'-graph A.

Definition 8.7. Let A be a I'-graph. Then A satisfies property (%) if given F' € Ayign
and g € I', then there exists a unique 5 € F with d(8) < g such that whenever o € F'
satisfies d(«) < g, we have that a < f.

We can give some condition on I' to guarantee that every I'-graph satisfies condition

().

Proposition 8.8. Let A be a I'-graph, and assume every bounded ascending sequence of
elements of ' stabilizes. Then A satisfies property ().
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Proof. We define F, := {f € F : d(f) < g}. Observe that given o, € F, with
d(p) < d(«), then d(a VvV ) = d(a) Vd(B) = d(a) < g, hence oV 5 € F,, and the
unique factorization property says that a = a VvV , and hence < a. So it is enough to
prove that there exists o € Fy, such that d(5) < d(«) for every 5 € F,.

Let ap € F, and let § € F, with d(8) £ d(ap). If such S does not exists, then we
are done. Otherwise, d(ag V ) = d(ap) V d(f) < g, and hence oy V € F,, with
d(ap) < d(ag V B), because if d(ag) = d(ag V ) then ag = o V 5 by Lemma Let
us define a; = ag V B, so d(ag) < d(ap). Now if in this way we could construct an
infinite sequence g, o, @z, ... € F, such that (o;) < d(a;41), then this will contradict
the hypothesis. Then will be n such that d(5) < d(a,) for every § € Fy, and so a 1= ay,,
and we are done.

O
Example 8.9. Every Nf-graph A satisfies property (¥).
Now we are ready to define the promised cocyle.

Proposition 8.10. Let A be a I'-graph compatible with respect to a pseudo free system
(A, G, ), and suppose that A satisfies property (). Then for every g € T' there exists
a continuous groupoid homomorphism

t@ 1Y, =G,

Proof. Let [s,&] € H&gim. By property (%) there exists § € A¢ such that § < § for
every § € A¢ with d(§) < g. If we define f = 75 5(5€) then we have that [s, £] = [sf, ¢]
whenever s = 7% g% with d(§) < g, and

sf = 700 g0 1(8.0) 5(Be) — r(a)b~ 02 (8) P00 (8) 5 (Bre)
_ (a(ab ot (8))p(ab 0" (8)) 5 (Bre)

Thus, without lost of generality, any element [s,£] € Hg\gi¢G has a representative of the
form [r(@9 (%Y €] where § is the unique maximal element in A¢ satisfying d(f8) < g
given by property ().
Under this choice of representative, we define t(9) : nggin — G by the rule
t(g)([T(a,a)g(ﬁvb)’g]) —ab

Let us check that t(9) is well defined. To this end, let [s,&] and [s',€] in H&gim
with [s,£] = [s/,€]. By the above argument, we can assume that s = 7(®9g(%b) and
s = 7@ gBY) | Let h = 7(88'16) 5(85'16) for some 3’ such that B3 € A¢ and sh = s'h.
Then,

sl — (@81 8) S (B516) and o' — F@@E18) b1 ) (88 16)

Therefore we have that
ol ) =a(@¥ ) and gl 8) = (¥ 8,
and by left cancellation we have that
ab ™t B =adb -8 and  p(ab ', B) = b, B).
Hence, by Proposition [[4], ab~! = a/b/~*. Thus, t9 is well-defined.
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Now, given a composable pair [s, £], [t, €], we can choose representatives s = [7(®®) g(%b) ¢]
and t = [70)gFY) ¢/ with B,  unique maximal elements in A¢, Ag (respectively) sat-
isfying d(8),d(5’) < ¢ given by property (¥). Since £ =t - &', we have that v € Ag,
whence 7 = 3V v by property (%). Thus, the computation performed in Lemma
do not require replace 3 by any element ¢ with d(d) > g, and thus this argument shows
that t(9 is a continuous groupoid homomorphism.

t

Proposition 8.11. Let A be a I'-graph compatible with respect to a pseudo free system
(A, G, ), and suppose that A satisfies property (%), with G and @ countable amenable
groups. Moreover, assume that T' is a join-semilattice. If the kernel of the map d :
Gright(Sa) — Q is amenable, then Giigni(Saxec) is amenable.

Proof. By [13], Corollary 4.5] it is enough to prove that H Axec 1s an amenable groupoid.
As observe above Hpyxeq = UZO:ng\g;Lz,G where ’HAWG are open subgroupoids with
HAWG - H(Ag;;g and (H(g” ) (Hff’gglc,)(o). Then by [T, Section 5.2(c)] it is enough

to prove that the groupoids Hon A><1<PG are amenable for every n. But now

(£ (1g) = {70 ] € H
rlele)gBle) ¢ ¢ HAWG
+lele) 5 (6,16) €] € Graweg - d(a) =d(B) < gn}

0”7, €] € Gaxe 1 d(a) =d(B) < g} € (d)'(1q).

is amenable by assumption, then (t9)~1(1¢) is amenable.

[
[
[
[

{
={
{
Q)

Therefore since (_)* (1

So using again [I3, Corollary 4.5] we have that Ho AWG is amenable, as desired. U

Next step will prove to prove that the kernel of the map d : Gugn(Sy) — Q is
amenable. In order to do that we will prove that the groupoid Gygn:(Sy) is isomorphic
to the semigroup action groupoid of the T'-graph A defined in [I3, Section 5]. This
semigroup action groupoid has also a canonical cocyle € onto () which kernel is amenable.
Now we will prove that the kernel of € is isomorphic to the kernel of d. First we introduce
the semigroup action groupoid.

Definition 8.12. Let X be a set and I' C ) be a semigroup of a group () containing
the identity 1g. A left action of I' on X consists of a subset I'x X of I' x X and a map
T:T%X — X sending (g, ) — ¢ - x, such that:

(1) forall z € X, (e,z) e '« X and e - = = x;
(2) for all (g,h,z) e ' xI' x X, (gh,z) € I' x X if and only if (h,z) € I'x X and
(g,h-x) € I'x X, if this holds, g - (h-z) = (gh) - x
For all g € I', we define U(g) :={z: (g9,2) e I'x X} and V(9) ={g-2: (g9,2) e T x X}

and T, : U(g) — V(g) the map such that T,(z) = g - z. The triple (X,I',T) is called a
semigroup action.

Definition 8.13. A semigroup action (X,I',T) is called directed if for all g, h € T such
that U(g) N U(h) # () there exists r € I" with g, h < r such that U(g) N U(h) = U(r).
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When (X, T",T') is a directed semigroup action it is defined the groupoid
GX,T,T) ={(z,9h"",y) e X xT x X : (g,2), (h,y) €T x X, g-x=h-y}.

Let X be a locally compact Hausdorff space such that U(g) and V(g) are open subsets
of X for every g € I', and T, : U(g) — V(g) is a local homeomorphism.
Given g,h € T', A, B subsets of X, we define

Z(A,g,h,B) == {(v,gh"',y) €GX,T,T):2 € A,yc Band g- 2 =h-y}.

The family B of subsets Z(A, g, h, B), with A C U(g) and B C U(h) open subsets, such
that (7)1 and (T})p are injective, and T,(A) = T},(B), forms a basis for the topology
of G(X,I',T). With this topology G(X,I',T) is a locally compact étale groupoid.

Now recall by Lemma B2, that given g € I' and F' € A*, FNd~!(g) is either empty
or contains just one element. Then we can define the following.
Definition 8.14. Let A be a I'-graph. Then

F*étight ={(g9,§) €T x éfm-ght : Ja € A¢ such that d(«) = g},

and given (g,€) € T Eignr, we define T,(€) = o - £, where a € A¢ with d(a) = g.

U(g) :== U Doy and Vig) = U U D._s,5

aced—1(g) aced~1(g) \BeAs(a)

Let A be a I'-graph with I' a join-semilattice, because of the factorization property we

have that d(a Vv ) = d(«) v d(f), and hence

U(g) NU(h) = U Dyege =U(gV h).
aed—1(g),Bed"1(h),ccaVp
Thus, the semigroup action (éftight, [, T) is directed.

Proposition 8.15. Let A be a I'-graph with T' being join-semilattice. Then the map
D gtight(SA) — G(étightu F7 T) 9 [Taoﬁu g] = (Taoﬁ ' 57 d(a)d(ﬁ)ilu g)

s an isomorphism of topological groupoids.

Proof. First observe that ® is well-defined because of Lemma [8.5] and it is then clearly a

groupoid homomorphism. That @ is a bijection follows from the definition of the inverse

(I)_l : g(gtight7F7T) — ¢ gtight<8A) by q)_1(€7gh_17€/) = [7-040-675]’ where 6 is the

unique element in Ag with d(f) = h and « is the unique element in Ay with d(a) =g

given by Lemma [R.2]
Now observe that the sets of the form Z(7%0%(D,s,s),9,h, D;s,8) for g,h € T, B €

d='(h) and o € d~'(g) N As(B) forms a basis for the topology of G(Eugn:, T, T). But
Y Z(1%0P(D,s48), g, hy Dyses)) = [1%0°, Dys,s], thus @ is continuous and also open.
U

Given a directed semigroup action (X, I",T'), there exists a natural groupoid homo-
morphism € : G(Eignt, T, T) — T defined by €(z, gh =", yu) = gh~" [I3, Proposition 5.12],
and it is clear that ® intertwines € and d, that is, €©o ® = d. Therefore € !(1p) and
a_l(lQ) are isomorphic as topological groupoids. But in the proof of [13, Theorem 5.13]

it is proved that € !(1g) is amenable, whence a_l(lQ) is amenable too.
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Theorem 8.16. Let A be a I'-graph compatible with respect to a pseudo free system
(A, G, ), and suppose that A satisfies property (%), with G and @ countable amenable
groups. Moreover, assume that I' is a join-semilattice. Then Gigni(Saxec) s amenable.
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