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Further calculations for the McKean stochastic game for a

spectrally negative Lévy process: from a point to an interval

E.J. Baurdoux∗, K. van Schaik†

Abstract

Following Baurdoux and Kyprianou [2] we consider the McKean stochastic game, a
game version of the McKean optimal stopping problem (American put), driven by a
spectrally negative Lévy process. We improve their characterisation of a saddle point for
this game when the driving process has a Gaussian component and negative jumps. In
particular we show that the exercise region of the minimiser consists of a singleton when
the penalty parameter is larger than some threshold and ’thickens’ to a full interval when
the penalty parameter drops below this threshold. Expressions in terms of scale functions
for the general case and in terms of polynomials for a specific jump-diffusion case are
provided.

Keywords: Stochastic games, optimal stopping, Levy processes, fluctuation theory

Mathematics Subject Classification (2000): 60G40, 91A15

1 Introduction

This paper is a follow-up to the paper [2] by Baurdoux and Kyprianou (henceforth BK),
in which the solution to the McKean stochastic game driven by a spectrally negative Lévy
process is studied. Let us introduce the setting in BK (and in this paper). Let X be a Lévy
process defined on a filtered probability space (Ω,F ,F,P), where F = (Ft)t≥0 is the filtration
generated by X which is naturally enlarged (cf. Definition 1.3.38 in Bichteler [6]). For x ∈ R
we denote by Px the law of X when it is started at x and we abbreviate P = P0. Accordingly
we shall write Ex and E for the associated expectation operators. We assume throughout
that X is spectrally negative, meaning that it has no positive jumps and that it is not the
negative of a subordinator.

The McKean stochastic game is an example of a type of stochastic games introduced by
Dynkin [8]. It is a two-player zero sum game, consisting of a maximiser aiming at maximizing
over F-stopping times τ the expected payoff according to the (discounted) lower payoff process
given by e−qt(K − exp(Xt))+ for all t ≥ 0 and a minimiser aiming at minimizing over F-
stopping times σ the expected payoff according to the (discounted) upper payoff process
given by e−qt((K − exp(Xt))+ + δ) for all t ≥ 0, where K, δ > 0. That is, for any pair of
stopping times (τ, σ) the payoff to the maximizer is
∗Department of Statistics, London School of Economics. Houghton street, London, WC2A 2AE, United

Kingdom. E-mail: e.j.baurdoux@lse.ac.uk
†Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, United

Kingdom. E-mail: k.van.schaik@bath.ac.uk. This author gratefully acknowledges being supported by a post-
doctoral grant from the AXA Research Fund

1

ar
X

iv
:0

91
0.

46
21

v1
  [

m
at

h.
PR

] 
 2

4 
O

ct
 2

00
9



Mx(τ, σ) := Ex[e−qτ (K − eXτ )+1{τ≤σ} + e−qσ((K − eXσ)+ + δ)1{σ<τ}].

We assume throughout this paper that the discount factor q satisfies

0 ≤ ψ(1) ≤ q and q > 0, (1)

where ψ denotes the Laplace exponent of X. (Note that since both payoff processes vanish a.s.
as t→∞, there is no ambiguity in allowing for τ and σ to be inifinitely valued as we will in
this paper). For any x, this game has a value if the upper and lower value, infσ supτ Mx(τ, σ)
and supτ infσMx(τ, σ) respectively, coincide. Even more, if a pair (τ∗, σ∗) exists such that

Mx(τ, σ∗) ≤Mx(τ∗, σ∗) ≤Mx(τ∗, σ) for all (τ, σ),

the value exists and equals Mx(τ∗, σ∗). In this case (τ∗, σ∗) is called a saddle point (or Nash
equilibrium). For an account of these concepts in a general Markovian setting, see Ekström
and Peskir [9] and the references therein. For other examples of stochastic games, see e.g.
Kifer [12], Kyprianou [14], Baurdoux and Kyprianou [3], Gapeev and Kühn [10], Baurdoux
et al [4].

Note that the McKean game can be seen as an extension of the classic McKean optimal
stopping problem (cf. [16] and Theorem 1 below). In a financial interpretation, this optimal
stopping problem is usually referred to as American put option, with K the strike price. The
McKean game then extends the American put option by introducing the possibility for the
writer of the option to cancel the contract, at the expense of paying the intrinsic value plus
an extra constant penalty given by the penalty parameter δ. Cf. e.g. Kifer [12] and Kallsen
and Kühn [11] for a general account on the interpretation of stochastic games as financial
contracts.

In BK it was shown that a saddle point (τ∗, σ∗) indeed exists for the McKean game, so
in particular the value function V is well defined by

V (x) = sup
τ

inf
σ

Ex
[
e−qτ (K − eXτ )+1{τ≤σ} + e−qσ((K − eXσ)+ + δ)1{σ<τ}

]
= inf

σ
sup
τ

Ex
[
e−qτ (K − eXτ )+1{τ≤σ} + e−qσ((K − eXσ)+ + δ)1{σ<τ}

]
= Ex

[
e−qτ

∗
(K − eXτ∗ )+1{τ∗≤σ∗} + e−qσ

∗
((K − eXσ∗ )+ + δ)1{σ∗<τ∗}

]
.

The optimal stopping time for the maximiser, τ∗, is the first hitting time of an interval
of the form (−∞, x∗] for some x∗ < logK. For the minimiser the optimal stopping time
σ∗ is as follows. When the penalty parameter δ exceeds δ̄ := U(logK), where U denotes
the value function of the McKean optimal stopping problem, the minimiser never stops (i.e.
σ∗ =∞). When δ ≤ δ̄, the optimal stopping region for the minimizer is an interval of the form
[logK, y∗]. If the Gaussian component σX of X is equal to zero (note that this corresponds to
the situation that X does not creep downwards), we have y∗ > logK. Furthermore formulae
in terms of scale functions for x∗ and V on (−∞, logK] were provided.

However, two issues were left open in BK. Firstly, when X has a Gaussian component it
was not clear when the optimal stopping region for the minimiser consists of a point and when
of an interval, i.e. when y∗ = logK and when y∗ > logK holds. Secondly, no characterisation
was given of y∗. In this paper we give an answer to both these issues. In particular, we show
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that when σX > 0 there exists a critical value δ0 ∈ (0, δ̄) such that the stopping region for the
minimiser is a single point when δ ∈ [δ0, δ̄) and a full interval when δ ∈ (0, δ0), cf. Theorem
6 (see also Remark 4). Furthermore we show that y∗ and δ0 can be characterised as unique
solutions to functional equations using scale functions, cf. Theorem 8.

The rest of this paper is organised as follows. In the remainder of this introduction we
introduce scale functions and some notation (Subsection 1.1), and review the results from BK
in more detail (Subsection 1.2). In Section 2 we present our new results. Finally, in Section
3 we translate these results to a specific jump-diffusion setting, accompanied by some plots.

1.1 Scale functions

First we introduce some notation for first entry times. For a ≤ b we write

τ+
a := inf{t > 0 |Xt > a}, τ−a := inf{t > 0 |Xt < a} and T[a,b] := inf{t > 0 |Xt ∈ [a, b]}.

Furthermore we denote the often used first hitting time of logK for simplicity by TK , that is
TK := inf{t > 0 |Xt = logK}.

A useful class of functions when studying first exit problems driven by spectrally negative
Lévy processes are so-called scale functions. We shortly review some of their properties as
they play an important role in this paper, for a more complete overview the reader is e.g.
referred to Chapter VII in Bertoin [5] or Chapter 8 in Kyprianou [15]. For each q ≥ 0 the
scale functions W (q) : R→ [0,∞) are known to satisfy for all x ∈ R and a ≥ 0

Ex[e−qτ
+
a 1{τ+

a <τ
−
0 }

] =
W (q)(x ∧ a)
W (q)(a)

. (2)

In particular it is evident that W (q)(x) = 0 for all x < 0. Furthermore it is known that W (q)

is almost everywhere differentiable on (0,∞), it is right continuous at zero and∫ ∞
0

e−βxW (q)(x) dx =
1

ψ(β)− q
(3)

for all β > Φ(q), where Φ(q) is the largest root of the equation ψ(θ) = q (of which there are
at most two, recall that ψ is the Laplace exponent of X). If X has a Gaussian component
σX > 0 it is known that W (q) ∈ C2(0,∞) with W (q)(0) = 0 and W (q)′(0) = 2/σ2

X . We usually
write W = W (0).

Associated to the functions W (q) are the functions Z(q) : R→ [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0
W (q)(y) dy (4)

for q ≥ 0. Together the functions W (q) and Z(q) are collectively known as scale functions
and predominantly appear in almost all fluctuation identities for spectrally negative Lévy
processes. For example, it is also known that for all x ∈ R and a, q ≥ 0

Ex[e−qτ
−
0 1{τ+

a >τ
−
0 }

] = Z(q)(x ∧ a)− Z(q)(a)
W (q)(a)

W (q)(x ∧ a)

and
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Ex[e−qτ
−
0 1{τ−0 <∞}] = Z(q)(x)− q

Φ(q)
W (q)(x), (5)

where q/Φ(q) is to be understood in the limiting sense ψ′(0) ∧ 0 when q = 0.
For c > 0, consider the change of measure

dPc

dP

∣∣∣∣
Ft

= ecXt−ψ(c)t. (6)

Under Pc, the process X is still a spectrally negative Lévy process and we mark its Laplace
exponent and scale functions with the subscript c. From ψc(λ) = ψ(λ) − ψ(c) for λ ≥ 0 we
get by taking Laplace transforms

W q
c (x) = e−xW (q+ψ(1))(x)

for all q ≥ 0.

1.2 Reviewing the McKean stochastic game

First consider the McKean optimal stopping problem (or American put option) with value
function U , i.e.

U(x) = sup
τ

Ex[e−qτ (K − eXτ )+].

We recall the solution to this problem as it appears in [7] (see also [17]):

Theorem 1. For the McKean optimal stopping problem under (1) we have

U(x) = KZ(q)(x− k∗)− exZ(q−ψ(1))
1 (x− k∗),

where
ek
∗

= K
q

Φ(q)
Φ(q)− 1
q − ψ(1)

,

which is to be understood in the limiting sense when q = ψ(1), in other words, ek
∗

=
Kψ(1)/ψ′(1). An optimal stopping time is given by τ∗ = inf{t > 0 : Xt < k∗}.

Next we recall the main result from BK on a saddle point and the value function for the
McKean game:

Theorem 2. Consider the McKean stochastic game under the assumption (1).

(i) If δ ≥ U(logK), then a stochastic saddle point is given by τ∗ from Theorem 1 and
σ∗ =∞, in which case V = U.

(ii) If δ < U(logK), a stochastic saddle point is given by the pair

τ∗ = inf{t > 0 : Xt < x∗} and σ∗ = inf{t > 0 : Xt ∈ [logK, y∗]},

where x∗ uniquely solves

Z(q)(logK − x)− Z(q−ψ(1))
1 (logK − x) =

δ

K
, (7)
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x∗ > k∗ (the optimal level of the corresponding McKean optimal stopping problem in
Theorem 1) and y∗ ≥ logK.

Furthermore,
V (x) = KZ(q)(x− x∗)− exZ(q−ψ(1))

1 (x− x∗)

for x ≤ logK and if y∗ = logK then for any x ∈ R

V (x) = KZ(q)(x− x∗)− exZ(q−ψ(1))
1 (x− x∗) + αeΦ(q)(logK−x∗)W (q)(x− logK),

where
α = ex

∗ q − ψ(1)
Φ(q)− 1

− qK

Φ(q)
,

which is to be understood in the limiting sense when q = ψ(1), i.e. α = ex
∗
ψ′(1)−Kψ(1).

Hence a saddle point exists, and consists of the first hitting time of (−∞, x∗] for the
maximizer and of the first hitting time of [logK, y∗] for the minimizer. Furthermore equation
(7) gives us a characterisation of x∗, but we know only little about y∗.

The issue of when y∗ = logK and when y∗ > logK holds was in BK only answered when
X has no Gaussian component:

Theorem 3. Suppose in Theorem 2 that δ < U(logK). If X has no Gaussian component,
then y∗ > logK and necessarily Π(−∞, logK − y∗) > 0.

Remark 4. These results have a clear interpretation. Starting from any X0 > logK, the
minimizer could either stop right away and pay δ to the maximizer, or wait a short ∆t. The
latter decision has the advantage of profiting from the discounting, but the disadvantage of
the risk that a (large) negative jump could bring X (far) below logK, where a higher payoff
than (discounted) δ can be claimed by the maximizer. The closer X0 is chosen to logK, the
more dominant the disadvantage becomes, hence the exercise region for the minimiser takes
the form of an interval [logK, y∗].

When X is a Brownian motion it is obvious that we have y∗ = logK for any δ ∈ (0, δ̄]
(see also [14]). The above Theorem 3 tells us that the other extreme case, namely y∗ > logK
for any δ ∈ (0, δ̄], i.e. the disadvantage of waiting being dominant for the minimizer, occurs
whenever X has no Gaussian component. The interesting question is what happens when
X has a Gaussian component and negative jumps. It turns out that for δ large enough,
when stopping immediately is relatively expensive, the Gaussian part ’wins’ in the sense that
y∗ = logK, while for δ small enough, when stopping immediately has become cheaper, the
negative jumps ’win’ in the sense that y∗ > logK, see Theorem 6 below.

2 Single point or interval when X has a Gaussian part σX > 0

Throughout this section we assume that condition (1) holds. Recall that TK := inf{t >
0 |Xt = logK}. Consider the following function

fδ(x) = sup
τ

Ex[e−qτ (K − eXτ )1{τ≤TK} + δe−qTK1{TK<τ}], (8)

i.e. the optimal value for the maximizer provided the minimiser only exercises when X hits
logK.

We first prove the following technical result.
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Lemma 5. Suppose σX > 0 and δ ∈ (0, δ̄]. The function fδ is differentiable on R\{logK}.
Furthermore, fδ = V on (−∞, logK], fδ ≥ V on R and f ′δ(logK+) is a strictly decreasing
continuous function of δ.

Proof. Let δ ∈ (0, δ̄]. Due to Theorem 2 and the absence of positive jumps we have for
x ≤ logK

V (x) = Ex[e−qτ
−
x∗(δ)(K − e

X
τ−
x∗(δ) )1{τ−

x∗(δ)<TK}
+ δe−qTK1{TK<τ−x∗(δ)}

]

= sup
τ

Ex[e−qτ (K − eXτ )1{τ<TK} + δe−qTK1{TK<τ}]

= fδ(x).

Also, for any x ∈ R

fδ(x) = sup
τ

Ex[e−qτ (K − eXτ )1{τ≤TK} + δe−qTK1{TK<τ}]

≥ inf
σ

sup
τ

Ex[e−qτ (K − eXτ )1{τ≤σ} + δe−qσ1{σ<τ}]

= V (x).

In fact, since stopping is not optimal on (logK,∞) as the lower pay-off function is zero there,
we deduce that we have for all x ∈ R

fδ(x) = Ex[e−qτ
−
x∗(δ)(K − e

X
τ−
x∗(δ) )1{τ−

x∗(δ)≤TK}
+ δe−qTK1{TK<τ−x∗(δ)}

]. (9)

Now, let δ2 > δ1 > c for some c > 0. From the defintion of fδ in (8) we find

fδ2(x)− fδ1(x) = sup
τ

Ex[e−qτ (K − eXτ )1{τ≤TK} + δ2e
−qTK1{TK<τ}]

− sup
τ

Ex[e−qτ (K − eXτ )1{τ≤TK} + δ1e
−qTK1{TK<τ}]

≤ (δ2 − δ1) sup
τ

Ex[e−qTK1{TK<τ}]

≤ (δ2 − δ1)Ex[e−qτ
−
logK ],

from which it follows that (the equality by (5))

fδ2(logK + ε)− δ2

ε
− fδ1(logK + ε)− δ1

ε
≤ (δ2 − δ1)

ElogK+ε[e
−qτ−logK ]− 1
ε

= (δ2 − δ1)

(
Z(q)(ε)− 1

ε
− q

Φ(q)
W (q)(ε)

ε

)
.

Since fδ is a differentiable function on [logK,∞) (see equation (27) in BK together with
(9)) and using Z(q)′(0) = W (q)(0) = 0, W (q)′(0+) = 2/σ2

X we deduce that

f ′δ2(logK+)− f ′δ1(logK+) ≤ − 2q
σ2
XΦ(q)

(δ2 − δ1), (10)
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showing that f ′δ(logK+) is strictly decreasing in δ. Also, using (8) and the fact that τ−x∗(δ1)
is a feasible strategy also when δ = δ2, it holds that

fδ2(x)− fδ1(x) ≥ Ex[e−qτ
−
x∗(δ1)(K − e

X
τ−
x∗(δ1) )1{τ−

x∗(δ1)
≤TK} + δ2e

−qTK1{TK<τ−x∗(δ1)
}]

−Ex[e−qτ
−
x∗(δ1)(K − e

X
τ−
x∗(δ1) )1{τ−

x∗(δ1)
≤TK} + δ1e

−qTK1{TK<τ−x∗(δ1)
}]

= (δ2 − δ1)Ex[e−qTK1{TK<τ−x∗(δ1)
}]

≥ (δ2 − δ1)Ex[e−qTK1{TK<τ−x∗(c)}
],

where the final inequality follows from the observation that x∗(δ) is decreasing in δ and that
δ1 > c. Note that x∗(c) < log(K − c) since V (x) is strictly decreasing in x ∈ (−∞, logK] for
any δ > 0 and thus

fδ2(logK + ε)− δ2

ε
− fδ1(logK + ε)− δ1

ε

≥ (δ2 − δ1)
ElogK+ε[e−qTK1{TK<τ−x∗(c)}

]− 1

ε

= (δ2 − δ1)
W (q)(logK + ε− x∗(c))−W (q)(logK − x∗(c))

εW (q)(logK − x∗(c))

−(δ2 − δ1)eΦ(q)(logK−x∗(c)) W (q)(ε)
εW (q)(logK − x∗(c))

.

because of Lemma 12 in BK. It follows that

f ′δ1(logK+)− f ′δ1(logK+) ≥ (δ2 − δ1)
σ2
XW

(q)′(logK − x∗(c))− 2eΦ(q)(logK−x∗(c))

σ2
XW

(q)(logK − x∗(c))
.

Since c is arbitrary, we conclude from this inequality together with (10) that f ′δ(logK+) is
indeed continuous in δ for any δ > 0.

Now we are ready to prove our main result, extending Theorem 2:

Theorem 6. Suppose σX > 0. When Π 6= 0, then there exists a unique δ0 ∈ (0, δ̄) such
that an optimal stopping time for the minimiser is given by TK (i.e. y∗(δ) = logK) when
δ ∈ [δ0, δ̄] and by T[logK,y∗(δ)] for some y∗(δ) > logK when δ ∈ (0, δ0).

Proof. Let σX > 0 and suppose Π 6= 0. We know from Theorem 2 that the stopping region
for the minimiser is of the form [logK, y∗] for some y∗ ≥ logK. We claim that setting δ0

equal to the unique zero of f ′δ(logK+) on (0, δ̄) yields the result.
First let us show that this unique zero indeed exists. For δ = δ̄ it holds that f ′δ(logK+) =

U ′(logK) < 0 (cf. Theorem 1). Using Lemma 5, it suffices to show that there exists some
δ > 0 such that f ′δ(logK+) > 0. We argue by contradiction, so, again using Lemma 5,
suppose that f ′δ(logK+) < 0 for all δ > 0. This implies that for each δ > 0 there exists some
ε > 0 such that fδ(x) < fδ(logK) = δ for all x ∈ (logK, logK + ε]. Since V ≤ fδ (Lemma 5)
we deduce that V (x) < δ = (K − ex)+ + δ for all x ∈ (logK, logK + ε), hence y∗ = logK
and in fact V = fδ (by (8)).
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But plugging τ−logK/2 in the rhs of (8) yields

fδ(x) ≥ K/2Ex[e−qτ
−
logK/21{τ−

logK/2
<TK}].

This lower bound is strictly positive for x > logK since Π 6= 0 and does not depend on δ.
Hence for δ small enough we deduce the existence of some x > logK such that fδ(x) > δ,
which contradicts with fδ(x) = V (x) ≤ δ on [logK,∞).

Next for the optimal stopping time of the minimiser. For δ > δ0 the same reasoning as
above yields y∗ = logK. For the case δ = δ0 we note that for any fixed x the function fδ(x)
is continuous in δ, as is easily seen from (8). Hence

fδ0(x) = lim
δ↓δ0

fδ(x) ≤ (K − ex)+ + δ0,

from which we can deduce that we still have y∗ = logK. Finally, let δ < δ0. Again much
as above, we then have that f ′δ(logK+) > 0 and thus there exist x > logK for which
fδ(x) > δ = (K − ex)+ + δ. Since trivially V is bounded above by this upper payoff function,
it cannot be true that fδ = V and thus it can also not be true that y∗ = logK, so we indeed
arrive at y∗ > logK.

Remark 7. It should be clear from the proof of the above Theorem 6 that this result is
essentially due to the upper payoff function (K−ex)++δ having a kink at the point where it first
touches the value function as δ decreases (namely logK). That is, if we would only slightly
alter the upper payoff function on an environment of logK so it would have a continuous
derivative, we should expect the optimal stopping time for the minimiser to be T[y∗1 ,y

∗
2 ] with

y∗1 < logK < y∗2 for all δ ∈ (0, δ̄) and any spectrally negative Lévy process X.

Next we provide expressions that complement those from Theorem 2. Recall that Theorem
2 in particular already provides us with a formula for V on (−∞, logK], so we can make use
of the following function:

wδ(x) =
{
V (x) for x < logK
δ for x ≥ logK.

(11)

Theorem 8. Suppose Π 6= 0. We have the following.

(i) Suppose σX > 0. Then δ0 is the unique solution on (0, δ̄) to the equation in δ:∫
t<0

∫
u<t

(wδ(t+ logK)− δ)e−Φ(q)(t−u)Π(du)dt =
δq

Φ(q)
.

(ii) Suppose y∗ > logK (i.e. σX > 0 and δ < δ0, or σX = 0 and δ < δ̄). Then y∗ is the
unique solution on (logK,∞) to the equation in y:∫

t<0

∫
u<t

(wδ(t+ y)− δ)e−Φ(q)(t−u)Π(du)dt =
δq

Φ(q)
. (12)

Furthermore, V (x) = δ for x ∈ [logK, y∗] and for x ∈ (y∗,∞):

V (x) = δZ(q)(x− y∗)−
∫
t<0

∫
u<t

(wδ(t+ y∗)− δ)W (q)(x− y∗− t+u)e−Φ(q)(t−u)Π(du)dt.

(13)
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Proof. First we introduce the function

h(x, y) := Ex[e−qτ
−
y wδ(Xτ−y

)] (14)

for x > y ≥ logK. Observe that by the lack of positive jumps, h(., y) is the optimal value
the maximizer can obtain when the minimiser chooses as stopping region [logK, y]. Hence in
particular V (x) = h(x, y∗).

Denote by u(q)(s, t) the resolvent density of X started at s > 0 and killed at first passage
below 0. Invoking the compensation formula (see e.g. Theorem 4.4 in [15]) leads to

h(x, y) = δEx[e−qτ
−
y ] + Ex[e−qτ

−
y (wδ(Xτ−y

)− δ)1{X
τ−y
<logK}]

= δEx[e−qτ
−
y ] +

∫
t<logK−y

∫
u<t

(wδ(t+ y)− δ)u(q)(x− y, t− u)Π(du)dt

= δEx[e−qτ
−
y ] +

∫
t<0

∫
u<t

(wδ(t+ y)− δ)u(q)(x− y, t− u)Π(du)dt,

where the final equality is due to the fact that wδ = δ on [logK, y]. We know that (see e.g.
Theorem 8.1 and Corollary 8.8 in [15] respectively)

Ex[e−qτ
−
y ] = Z(q)(x− y)− q

Φ(q)
W (q)(x− y)

and
u(q)(s, t) = e−Φ(q)tW (q)(s)−W (q)(s− t),

hence

h(x, y) =
∫
t<0

∫
u<t

(wδ(t+ y)− δ)(e−Φ(q)(t−u)W (q)(x− y)−W (q)(x− y − t+ u))Π(du)dt

+δ(Z(q)(x− y)− q

Φ(q)
W (q)(x− y)). (15)

Furthermore, when X is of unbounded variation we can compute for x > y

∂

∂x
h(x, y) = δ(qW (q)(x− y)− q

Φ(q)
W (q)′(x− y))

+
∫
t<0

∫
u<t

(wδ(t+ y)− δ)(e−Φ(q)(t−u)W (q)′(x− y)−W (q)′(x− y − t+ u))Π(du)dt.

and we can let x ↓ y to arrive at

∂

∂x
h(y+, y) =

(∫
t<0

∫
u<t

(wδ(t+ y)− δ)e−Φ(q)(t−u)Π(du)dt− qδ

Φ(q)

)
W (q)′(0+). (16)

Ad (i). Recall the function fδ as defined in (8), and recall in particular from the proof of
Lemma 5 that δ0 is the unique δ ∈ (0, δ̄) for which f ′δ(logK+) = 0. Furthermore, note that
fδ(x) = h(x, logK) for x > logK, since both sides equal the optimal value the maximizer
can obtain when the minimiser only stops when X hits logK. Combining these observations
with (16) and W (q)′(0+) = 2/σ2

X 6= 0 yields the result.
Ad (ii). We first consider the case when X is of bounded variation. We know from

Theorem 4 in BK that we have continuous fit, i.e. V (y∗+) = δ. Since the integrand in (15)
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is bounded and equal to zero for t < logK − y we can take the limit inside the integrals to
deduce that

h(y+, y) = δ − qδ

dΦ(q)
+

1
d

∫
t<0

∫
u<t

(wδ(t+ y)− δ)e−Φ(q)(t−u)Π(du)dt,

so using V (y∗+) = h(y∗+, y∗) it follows that y∗ indeed solves (12). For uniqueness, the
function wδ = V is strictly decreasing on (−∞, logK] and δ = V (y∗) = h(y∗+, y∗). Since
q > 0, the minimiser would not stop at points in [logK,∞] from which the process cannot
jump into (−∞, logK) and thus logK − y∗ > l := sup{x : Π(−∞, x) = 0}. Combining these
observations imply that h(y+, y) is a strictly decreasing function on [logK, logK − l].

Next consider the case that X is of unbounded variation. Now Theorem 4 in BK tells us
that we have smooth fit, i.e. V ′(y∗+) = 0. Using V (x) = h(x, y∗) together with (16) yields
again that y∗ solves (12), uniqueness follows in the same way as in the previous paragraph.

Finally, (13) is readily seen from V (x) = h(x, y∗), (15) and the fact that y∗ satisfies (12).

We conclude this section with some properties of y∗ as a function of δ. Note that by
spectral negativity, Π 6= 0 implies sup{x : Π(−∞, x) = 0} < 0.

Theorem 9. Suppose Π 6= 0. Then y∗(δ) is continuous and decreasing as a function of δ, with
y∗(δ̄−) = logK if σX = 0 (resp. y∗(δ0−) = logK if σX > 0) and y∗(0+) = logK − sup{x :
Π(−∞, x) = 0}.

Proof. We write Vδ to stress the dependence of the value function on δ. Continuity of y∗(δ)
is clear as the above Theorem 8 (ii) and the fact that wδ is continuous in δ (see the argument
for continuity of δ 7→ Vδ below) allow to apply the implicit function theorem.

To see that it is decreasing it suffices to show that δ 7→ Vδ(x)− δ is decreasing. For this,
take δ1 < δ2 and let (τ∗1 , σ

∗
1) denote the saddle point when δ = δ1. Then Vδ1 is the value when

the supremum over all pairs (τ, σ∗1) is taken. As σ∗1 is also feasible for the minimiser when
δ = δ2 we have that Vδ2 is bounded above by the value when the supremum over the same
pairs (τ, σ∗1) is taken. This yields

Vδ2(x)− Vδ1(x) ≤ sup
τ

Ex[e−qσ
∗
1 ((K − eXσ∗1 )+ + δ2)1{σ∗1<τ}

−e−qσ∗1 ((K − eXσ∗1 )+ + δ1)1{σ∗1<τ}]
≤ δ2 − δ1, (17)

as required.
Next, by the monotonicity the limits mentioned in the theorem exist. First we show

y∗(0+) = logK − l, where l := sup{x : Π(−∞, x) = 0}. Suppose we had y∗(0+) < logK − l,
then for some x1 ∈ (y∗(0+), logK − l) and any δ > 0 we have Px1(τ−logK/2 < T[logK,y∗(δ)]) ≥
Px1(τ−logK/2 < T[logK,y∗(0+)]) > 0. So, starting from x1, if the maximizer chooses τ−logK/2
he ensures a strictly positive value, independent of δ. But this of course contradicts with
Vδ(x1) ≤ δ ↓ 0 as δ ↓ 0. If we had y∗(0+) > logK − l, then for some x2 ∈ (logK − l, y∗(0+))
we have for δ small enough x2 ≤ y∗(δ) and consequently Vδ(x2) = δ. But the minimiser
can do better, that is in fact we have Vδ(x2) < δ, as is easily seen. Namely, the minimiser
can choose T[logK,logK−l], so that starting from x2 > logK − l the maximiser can at most
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get discounted δ, the discount factor being strictly less than 1 since q > 0 and X is right
continuous.

Next suppose σX > 0 and let us show that y∗(δ0−) = logK. Suppose we had y∗(δ0−) >
logK. Note that for any x, δ 7→ Vδ(x) is continuous, since for δ1 < δ2 trivially Vδ2(x) ≥ Vδ1(x)
and (17). So for logK < x1 < x2 < y∗(δ0−) it would follow that Vδ(x1) − Vδ(x2) →
Vδ0(x1)− Vδ0(x2) = δ0 − δ0 = 0 as δ ↓ δ0. But the difference Vδ(x1)− Vδ(x2) does not vanish
as δ ↓ δ0, as follows easily from the homogeneity of X. More precisely, denoting by (τ∗1 , σ

∗
1)

resp. (τ∗2 , σ
∗
2) the saddle point when starting from x1 resp. x2, similar arguments as the ones

leading to (17) yield in this case

Vδ(x1) ≥ E[e−qτ
∗
2 (K − ex1+Xτ∗2 )+1{τ∗2≤σ∗1} + e−qσ

∗
1 ((K − ex1+Xσ∗1 )+ + δ)1{σ∗1<τ∗2 }]

and

Vδ(x2) ≤ E[e−qτ
∗
2 (K − ex2+Xτ∗2 )+1{τ∗2≤σ∗1} + e−qσ

∗
1 ((K − ex2+Xσ∗1 )+ + δ)1{σ∗1<τ∗2 }],

thus

Vδ(x1)− Vδ(x2) ≥ E[e−qκ((K − ex1+Xκ)+ − (K − ex2+Xκ)+)] (18)

where κ = σ∗1 ∧ τ∗2 = inf{t > 0 |Xt = logK−x1}∧ inf{t > 0 |Xt < x∗(δ)−x2}. Clearly, since
x∗(δ) ≤ logK and x1 < x2 the rhs of (18) is strictly positive iff P(τ∗2 < σ∗1) > 0. Obviously
also after taking the limit for δ ↓ δ0 this probability is positive on account of Π 6= 0.

Finally, y∗(δ̄−) = logK when σX = 0 can be shown by the same arguments, taking into
account here one has σ∗ =∞ for δ > δ̄.

3 Jump-diffusion case

In this section we translate the general results from the previous Section 2 to the particular
case of a jump-diffusion with downwards directed, exponentially distributed jumps. In this
case, which is quite popular in practical applications in finance e.g. due to its tractable nature,
the expressions become much more explicit. In particular a formula exists that expresses y∗

explicit in terms of x∗, cf. Proposition 12 (iv).
For the sequel we set

Xt = σXWt + µt−
Nt∑
i=1

ξi, t ≥ 0, (19)

where σX > 0, µ ∈ R, N is a Poisson process with intensity λ > 0 counting the jumps
and (ξi)i≥0 is an iid sequence of random variables following an exponential distribution with
parameter θ > 0.

The following Proposition 10 states formulas for the scale functions in this jump-diffusion
case (recall Pc as defined in (6)):

Proposition 10. Let c, r ≥ 0. We have the following for X given by (19) under Pc.
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(i) The Laplacian is given by

ψc(z) = ψ(z + c)− ψ(c) =
σ2
X

2
z2 + (σ2

Xc+ µ)z − λθz

(θ + z + c)(θ + c)
.

The function z 7→ ψc(z) − r has three zeros β1(c, r) < −θ − c < β2(c, r) ≤ β3(c, r),
with β2(c, r) < 0 < β3(c, r) if r > 0; β2(c, r) = 0 < β3(c, r) if r = 0 and ψ′c(0) ≤ 0;
β2(c, r) < 0 = β3(c, r) if r = 0 and ψ′c(0) ≥ 0.

(ii) In particular, if r = ψ(1) > 0 we have

β1,2(0, r) = −
(
θ

2
+

r

σ2
X

+
λ

σ2
X(θ + 1)

)
±

√(
θ

2
+

r

σ2
X

+
λ

σ2
X(θ + 1)

)2

− 2rθ
σ2
X

and β3(0, r) = 1.

Define for i = 1, 2, 3 the constants

Ci(c, r) =
2(θ + c+ βi(c, r))

σ2
X

∏
j 6=i(βj(c, r)− βi(c, r))

.

We have the following formulas for the scale functions W (r)
c and Z(r)

c on [0,∞).

(iii) If β2(c, r) 6= 0 or β3(c, r) 6= 0 we have

W (r)
c (x) =

3∑
i=1

Ci(c, r)eβi(c,r)x,

otherwise (necessarily r = 0) we have

W (0)
c (x) =

2
σ2
Xβ1(c, 0)

(
(1− c− θ)eβ1(c,0)x − (θ + c)x+ θ + c− 1

)
.

(iv) If r > 0 we have

Z(r)
c (x) = r

3∑
i=1

Ci(c, r)
βi(c, r)

eβi(c,r)x,

while Z(0)
c (x) = 1.

Proof. Follows from the definitions (3) and (4) by some elementary calculations. Also, see
e.g. [1].

In the sequel we assume for simplicity q > 0 and q = ψ(1), i.e. we set µ := q−σ2
X/2+λ/(θ+

1). (Note that condition (1) is met). This means that P is a so-called risk neutral measure
in the sense that the discounted price process (eXt−qt)t≥0 is a P-martingale, as required in a
financial modelling context. (However the reader should have no difficulties translating the
upcoming formulas to the situation for any q ∈ [0, ψ(1)] if required.) Note that the above
Proposition 10 (ii) gives explicit formulas for the roots βi(0, q) in this case.

First we turn to formulas for the McKean optimal stopping problem (cf. Theorem 1).
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Proposition 11. The value function U of the McKean optimal stopping problem is given by

U(x) =
{
K − ex if x ≤ k∗
c1e

β1(0,q)(x−k∗) + c2e
β2(0,q)(x−k∗) if x > k∗,

where

c1 =
β2(0, q)K + (1− β2(0, q))ek

∗

β2(0, q)− β1(0, q)
, c2 =

β1(0, q)K + (1− β1(0, q))ek
∗

β1(0, q)− β2(0, q)

and ek
∗

=
Kq

σ2
X/2 + q + λ/(θ + 1)2

.

Proof. A direct derivation of these formulas can be found in [13] e.g. Alternatively, plugging
the formulas from Proposition 10 in the results from Theorem 1 we see that we can write

U(x) = Kq

3∑
i=1

Ci(0, q)
βi(0, q)

eβi(0,q)(x−k
∗) − ex and ek

∗
= K

ψ(1)
ψ′(1)

. (20)

Applying the identity

σ2
X

2

3∏
i=1

(z − βi(c, q)) = (θ + z + c)(ψc(z)− q) for z 6= −θ − c (21)

to this particular case (i.e. c = 0, q = ψ(1), β3(0, q) = 1), dividing both sides by z − 1 and
taking the limit for z → 1 we find

σ2
X(1− β1(0, q))(1− β2(0, q)) = 2(θ + 1)ψ′(1). (22)

Plugging this in the equation for ek
∗

we find ek
∗

= 2(θ+1)Kq/(σ2
X(β2(0, q)−1)(β1(0, q)−1)).

Using this expression in (20), together with β1(0, q)β2(0, q) = 2qθ/σ2
X (from (21) with z = 0),

the stated formula for U indeed follows.

Now we are ready to turn to formulas for the optimal exercise levels x∗, y∗ and the value
function V of the McKean game. Recall that for δ ≥ U(logK) the game degenerates to the
McKean optimal stopping problem.

Proposition 12. Consider the McKean game driven by (19). Recall δ̄ = U(logK). We
assume throughout that δ < δ̄.

(i) The optimal level x∗ = x∗(δ) is the unique solution to the equation in x:

q
3∑
i=1

Ci(0, q)
βi(0, q)

Kβi(0,q)e−βi(0,q)x − 1 =
δ

K
.

On (−∞, x∗] we have V (x) = K − ex and on (x∗, logK] we have

V (x) = Kq
3∑
i=1

Ci(0, q)
βi(0, q)

eβi(0,q)(x−x
∗) − ex.
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(ii) The threshold δ0 ∈ (0, δ̄) is the unique solution to the equation in z:

q
3∑
i=1

Ci(0, q)Kβi(0,q)

βi(0, q)(θ + βi(0, q))
e−βi(0,q)x

∗(z) − λ+ (θ + 1)q
λθK

z =
1

θ + 1
.

(iii) Suppose δ ∈ [δ0, δ̄). We have y∗ = logK and on [logK,∞)

V (x) = K
2∑
i=1

Ci(0, q)

(
qe−βi(0,q)x

∗

βi(0, q)
+K−βi(0,q)

(
ψ′(1)−Kqe−x∗

))
eβi(0,q)x.

(iv) Suppose δ ∈ (0, δ0). We have

eθy
∗

=
λθKθ+1

(θ + 1)qδ

(
q

3∑
i=1

Ci(0, q)Kβi(0,q)

βi(0, q)(θ + βi(0, q))
e−βi(0,q)x

∗ − 1
θ + 1

− δ

θK

)
.

On [logK, y∗] we have V (x) = δ and on (y∗,∞) we have

V (x) =
δ

β2(0, q)− β1(0, q)

(
β2(0, q)eβ1(0,q)(x−y∗) − β1(0, q)eβ2(0,q)(x−y∗)

)
.

Proof. Ad (i). Apply Proposition 10 to the formulas from Theorem 2 (ii).
Ad (ii). Apply Proposition 10 to Theorem 8 (i).
Ad (iii). Apply Proposition 10 to the formula from Theorem 2 (ii) to obtain

V (x) = K

3∑
i=1

Ci(0, q)

(
qe−βi(0,q)x

∗

βi(0, q)
+K−βi(0,q)

(
ψ′(1)−Kqe−x∗

))
eβi(0,q)x − ex

and use (22) to see that the terms involving the exponential of a positive factor times x vanish.
(Of course, one can also reason directly that they should cancel, since otherwise V would not
stay bounded for large x, which it should by definition).

Ad (iv). For y∗, apply Proposition 10 to Theorem 8 (ii) and simplify to arrive at the
stated formula. Note that

3∑
i=1

Ci(0, q)
βi(0, q)(θ + βi(0, q))

=
2

σ2
X

∏3
i=1 βi(0, q)

=
1
θq
,

the final equality by (21).
For V , apply Proposition 10 to Theorem 8 (ii) and simplify, making use of the formula

for y∗ and in particular Proposition 10 (ii).

We conclude with two plots in this jump-diffusion setting, produced using the above
Proposition 12, to illustrate the main result from this paper.
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Figure 1: δ ∈ [δ0, δ̄), so y∗ = logK. The black curves are the upper and lower payoff functions,
the red curve is the value function V
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Figure 2: δ ∈ (0, δ0), so y∗ > logK. The black curves are the upper and lower payoff
functions, the red curve is the value function V
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