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Abstract: 

  

Isogeometric analysis (IGA) is based on a concept that uses the same base functions for 

representing both the model geometry and the solution space. The most common base functions 

used in the IGA are NURBS (Non-Uniform Rational B-Splines) functions for their capability to 

analytically represent various geometries. In this paper, the IGA is applied in the free vibration 

analysis of rotation-free plane curved Bernoulli-Euler beam. The stiffness and mass matrices have 

been developed using basic concepts of continuum mechanics and the principle of virtual work. 

Geometry of the undeformed and deformed beam is defined using convective coordinates and 

cross section basis vectors. Results of the free vibration analysis for beam with arbitrary curvature 

are compared with the results obtained from the conventional finite element method (FEM) 

software. The significant advantages of the IGA approach over the FEM are shown and 

discussed.  
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1. Introduction 

 
One of the first steps in structural analysis is to define a model geometry. Nowadays, 

structural geometry is modeled in the computer aided design (CAD) software, while the analysis 

is mostly conducted using the finite element method (FEM). The FEM based software uses the 

CAD models to subdivide the geometry model into smaller domains called finite elements (FE), 

whereby forming the finite element mesh. Generally, as the size of FE is decreased, the results 

obtained using the FEM software are more accurate. In order to carry out the FEM refinements, 

geometry of the analysis model has to be generated from the CAD geometry model. On the 

contrary, in the isogeometric analysis (IGA), the geometry of the analysis model has to be 

generated only once from the CAD geometry model, while the refinements of the IGA analysis 

model are carried out in the parametric domain. This property of the IGA is possible by using the 

same basis functions for the geometry description and the solution space. In recent years, the IGA 

has been center of research of many authors. Cottrell, Hughes and Bazilevs have defined basic 
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concepts of the IGA in their book [1]. Lately, more attention has been paid to the analysis of one-

dimensional elements (beams) using the IGA. Radenković [2] has defined one-dimensional 

element based on Bernoulli-Euler and Timoshenko theory for static load using the IGA. In his 

work the nonlinear analysis is has been taken into account. In addition, Bauer [3] has defined the 

spatial Bernoulli-Euler beam for static load, and Marino [4] has defined a spatial Timoshenko 

beam for nonlinear analysis using the IGA. Lee [5] studied free vibration analysis of straight 

Timoshenko beam using the IGA. 

In this paper free vibration analysis of rotation-free plane curved Bernoulli-Euler beam has 

been carried out using the IGA. The beam element has been derived using basic principles of the 

continuum mechanics and implemented in the program coded in MATLAB [6], which has been 

used to compute the free vibration characteristics of beams with arbitrary curvature. The obtained 

results are compared with the results from the conventional FEM software Abaqus [7] and 

SAP2000 [8]. 

 

 

2. NURBS basis functions 

 
The major property of the IGA is the usage of the same formulation for structural geometry 

description and for definition of the solution space. The geometry of the structure is defined by 

control points and NURBS basis functions. The control points represent the discrete parameters 

of the structural geometry given in the Cartesian coordinates. In general, the IGA uses NURBS 

basis functions for their capability to describe exactly the geometry of conic sections like 

parabola, hyperbola and elliptic configurations. NURBS basis functions are rational polynomial 

functions constructed of polynomial B-spline functions. Non-negativity, partition of unity, 

interpolatory property at boundary domain, recursive formulation are the key properties of the 

NURBS basis functions. Parameterized representation of the structural geometry C(ξ) using 

NURBS basis functions is given as: 
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where ξ represents the parametric coordinate, Pi is the vector of control points, Ri,p(ξ) is the 

NURBS basis function, Ni,p(ξ)  is the B-spline basis function, wi is the weight and p is the 

polynomial degree of the basis function. 

The B-spline basis functions are obtained using Cox de Boor algorithm, where for p=0 basis 

function is given as: 
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In equations (2) and (3) terms ξi, called knots, divide the parametric space into subspaces 

forming the knot spans. The nonzero knot span represents the isogeometric element i.e. the 

number of nonzero knot spans is equal to the number of the isogeometric elements. The 

refinement in the IGA can be accomplished by knot insertion in the parametric domain. 
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Fig. 1a presents a quadratic NURBS curve generated using four NUBRS basis functions (Fig. 

1b). More about the NURBS basis functions, B-spline basis functions, their properties and 

implementation can be found in [9]. 

 

Fig. 1. (a) NURBS curve, (b) NURBS basis functions 

 

 

3. Bernoulli-Euler isogeometric element 
 

The main goal of this paper is to define Bernoulli-Euler beam with arbitrary shape in plane 

using IGA. For this reason, the basic principles of the continuum mechanics are used. 

For a given undeformed beam in the x-y plane, Fig. 2, the position of the cross section is 

defined using the position vector: 

· , 1,2α
α α= =xr i  (4) 

where iα are the basis vectors of the Cartesian coordinate system, and xα are the coordinates of the 

position vector in the Cartesian coordinate system.  

 

Fig. 2. Geometry of undeformed beam 
 

The position of the undeformed beam is defined using the IGA approach as: 
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where 
i

x
α  represents the coordinates of the control points in the Cartesian coordinate system. 

When the position vector is defined, the basis vectors denoted g1 and g2 are given as: 
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where K represents the beam curvature. For a general case the beam curvature is a function of the 

parametric coordinate. 

The properties of the cross section basis vectors are: 

1 1 2 2 1 2· 1 · 1 · 0g ≠ = ==g g g g g g  (8) 

With this description it is relatively easy to define the beam curvature as: 
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where 1

11Γ  represents the Christoffel symbol. 

For a given geometric and material properties of the structure the goal of the analysis is to 

find the deformed geometry of the structure. The geometry of deformed beam in plane, presented 

in Fig. 3, is given via the position vector r* and the relation between the position vector of 

undeformed and deformed beam is: 

* = +r r u  (10) 

where u is the displacement vector and can be presented as: 
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Term 
i

u
α  represents the α-th displacement of the i-th control point. Displacements of the control 

points are basic unknowns in the IGA.  

 

Fig. 3. Geometry of deformed beam 

 

The representation of the undeformed position vector i.e. geometry of the undeformed beam 

and the representation of the displacement vector is given in the same form, equation (1). As 

mentioned before, this is the main property of the IGA analysis. 

Using convective coordinates, the basis vectors after deformation, denoted as g1
* and g2

*, are 

not the same basis vectors of the cross section for undeformed beam. The first basis vector of the 

deformed beam is given as: 
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With the defined basis vector g1
* normal strain of the beam centroidal axis is given as: 
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In order to define the change of the curvature κ of the deformed beam, the difference between 

the curvature of the deformed beam K* and the curvature of the undeformed beam has to be found 

[2]: 

( )* 1

,2 ,11 11 ,1
ˆm

m m
K K x u uκ = − = − Γ  (14) 

Terms ε11 and κ form the deformation vector E of the Bernoulli-Euler beam. 

After defining the normal strain of an arbitrary fiber ε11(η,ζ), where η and ζ are the cross 

sectional coordinates, the energetic conjugate forces S can be found [2]. Using the principle of 

virtual work [10], the deformation vector E, force vector S and vector of volume forces can be 

combined as: 

: : 0
s s

dx dxδ ρ δ+ =∫ ∫S E B u  (15) 

where ρ represents the mass density while δ represents virtual terms of the defined vectors. 

From equation (15), by using known procedures, the equation of motion for the free vibration is 

obtained as: 

· ·+ =K q M q 0&&  (16) 

where K is the stiffness matrix, M is the mass matrix and q is the vector of unknown terms 
i

u
α  

defined by equation (11). The Bernoulli-Euler beam element defined in this procedure has no 

rotation degree of freedom i.e. displacement is the only considered degree of freedom. For this 

reason it is called the rotation-free element. 

 

 

4. Numerical example 
 

In order to validate the IGA approach, numerical examples are presented in the following. 

After the free vibration analysis of beam with constant curvature the free vibration analysis of 

beam with parabolic shape will be presented. The results obtained by using the IGA will be 

validated with the results obtained from the conventional FEM software. In the IGA, the 

geometry of the beams and the solution spaces are described using the NURBS functions of order 

two. 

 

4.1 Quarter circle beam 

 

Free vibration analysis of a quarter circle curved beam with simply supported boundary 

conditions, Fig. 4, is presented here. Radius of the quarter circle is R = 3.75m, the dimension of 

the cross section in plane of the beam is h = 0.6m, the dimension of the cross section out of plane 

of the beam is b = 0.3m, the elastic modulus is E = 31.5 GPa, mass density ρ = 2500 kg/m3, the 

angle between boundary cross sections φ = 90°. 
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R

 

Fig. 4. Quarter circle beam 

 

In order to illustrate the convergence and the accuracy of the IGA approach, the first five 

natural frequencies are computed and compared with the FEM solutions using Abaqus [7]. The 

results are summarized in Table 1. Abaqus is software based on the FEM, able to model curved 

beams with constant curvature. The convergence and the accuracy of the results obtained using 

the IGA is investigated using twenty isogeometric elements. The results have shown excellent 

agreement with the result from Abaqus obtained using 196 finite elements. The last row in Table 

1 represents the relative error between the converged results obtained using the IGA and the 

results obtained from Abaqus. The maximum relative error of 1.51 % has been encountered for 

the fifth mode. Finally, the first five mode shapes of the quarter circle beam obtained using the 

IGA are presented in Fig. 5. 

 
Modes 1 2 3 4 5 

5 IGA elements 103.44 134.14 289.60 328.98 579.37 

10 IGA elements 96.67 133.05 253.70 326.05 468.92 

15 IGA elements 95.59 132.86 248.56 325.26 452.70 

20 IGA elements 95.30 132.77 246.50 325.03 447.45 

FEM 94.36 132.98 244.51 324.62 440.79 

[%] 0.99 0.16 0.81 0.13 1.51 

 

Table 1. Natural frequencies [Hz] of quarter circle beam  

 

 

Fig. 5. Mode shapes of quarter circle beam  
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4.2 Beam with parabolic shape 

 

The geometry of parabolic beam with simply supported boundary conditions is presented in 

Fig. 6. In this example the arch rise is f = 1.125m and the span length is L = 3.75m, the dimension 

of the cross section in plane of the beam is h = 0.6m, the dimension of the cross section out of 

plane of the beam is b = 0.3m, the elastic modulus is E = 31.5 GPa, material density ρ = 2500 

kg/m3.  

 

 

Fig. 6. Beam with parabolic shape 

 

The natural frequencies of the parabolic beam calculated using the IGA and SAP2000 [8] are 

given in Table 2. Using twenty isogeometric elements the results have shown excellent 

agreements with the converged results obtained using 30 finite elements in the software SAP2000 

[8]. In Table 2 the last row presents the relative error between the results obtained using 20 

isogeometric elements and the converged results obtained from SAP2000. The maximum relative 

error is encountered for fifth mode 2.92%. In Fig. 7 the mode shapes of the parabolic beam 

obtained using IGA are presented. 

 
Modes 1 2 3 4 5 

5 IGA elements 160.47 228.97 438.08 443.92 823.60 

10 IGA elements 152.52 228.84 408.05 434.93 771.56 

15 IGA elements 150.92 228.83 399.89 434.41 745.64 

20 IGA elements 150.46 228.82 396.97 434.26 736.91 

FEM 30 FE 147.97 231.12 388.89 438.31 716.01 

[%] 1.68 0.99 2.08 0.92 2.92 

 

Table 2. Natural frequencies [Hz] of parabolic beam  

 

 

Fig. 7. Mode shapes of parabolic beam 
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As mentioned before, in the FEM-based analysis the geometry of the model should be taken 

from the CAD model, whenever the refinement should be carried out. The refinement procedure 

for the parabolic beam using the FEM-based analysis is presented in Fig 8. 

 

Fig. 8. FEM model of the parabolic beam with: (a) 1FE, (b) 2FE (c) 3FE, (d) 4FE, (e) 5FE, (f) 6FE, (g) 

7FE, (h) 8FE 

 

On the contrary, in the IGA the refinement is carried out in the parametric domain. The 

refinement only has the influence on the control points and not on the model geometry i.e. the 

model geometry needs to be taken only once from the CAD model, Fig. 9. This represents one of 

the main advantages of the IGA over the FEM-based analysis. 

 

 

5. Conclusion 
 

The application of the isogeometric approach in the free vibration analysis of plane curved 

Bernoulli-Euler beams is presented in this paper. The NURBS basis functions have been used for 

description of the structural geometry and the solution space. NURBS basis functions are used for 

its capability to describe various geometric shapes of beams. The stiffness and mass matrices 

have been developed for the rotation-free Bernoulli-Euler curved beam. In order to derive these 

matrices, the convective coordinates are used, and the change of the basis vectors of the cross 

sections is analysed. Using the principle of virtual work the equation of motion is derived. Free 

vibration analysis is conducted for two curved beams, quarter circle and the parabolic beam. The 

results are compared with the results obtained using the FEM software. It can be noticed that the 

results have shown good performance and accuracy of the approach. In addition, the numerical 

example for parabolic beam has shown that in the FEM software in order to perform the 

refinement, geometry of the structure should be taken from the CAD model. In the IGA the 

geometry of the model should be taken only once, and the model geometry is not influenced by 

the refinement. 
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Fig. 9. Isogeometric model of parabolic beam defined with: (a) 3 control points (CP), (b) 4CP, (c) 5CP, (d) 

6CP, (e) 7CP, (f) 8CP, (g) 9CP, (h) 10CP   
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