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Summary: In this paper, two shear deformable dynamic stiffness elements for the free
vibration analysis of rectangular, transversely isotropic, single- and multi-layer plates
having arbitrary boundary conditions are presented. Dynamic stifness matrices are
developed for the Reddy’s higher-order shear deformation theory (HSDT) and the
Mindlin-Reissner’s first-order shear deformation theory (FSDT). The dynamic stiffness
matrices contain both the stiffness and mass properties of the plate and can be
assembled similarly as in the conventional finite element method. The influence of face-
to-core thickness ratio and face-to-core module ratio of sandwich plate, as well as the
influence of the shear deformation on the free vibration characteristics of sandwich
plates have been analysed. The results obtained by proposed HSDT and FSDT dynamic
stiffness element are validated against the results obtained using the conventional finite
element analysis (ABAQUS), as well as the results obtained by 4-node layered
rectangular finite element. The proposed model allows accurate prediction of free
vibration response of rectangular layered plate assemblies with arbitrary boundary
conditions.
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1. INTRODUCTION

Multi-layer plates composed of several laminas of different properties are widely used in
different areas of engineering. Sandwich panels are usually applied in civil engineering
as components of light roofs and walls to provide thermal isolation of buildings. These
elements are often placed in a dynamic loading environment, thus the adequate
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computational models capable to predict the dynamic response of such structures are
required. The dynamic response is usually predicted using different plate theories, where
the transverse shear effects are accounted by means of the shear correction factors, or the
higher-order approximation of the displacement field. Theories that consider the multi-
layer structure as a single homogeneous layer are referred as equivalent-single-layer
(ESL) theories [1-3]. The comparison of different ESL plate theories is given in the
Reddy's overview [4] and monographs [5, 6]. To overcome the problems that may arise
due to the simplifications associated with the plate kinematics in the ESL theories, the
generalized layerwise plate theory (GLPT) of Reddy [7] is used to improve the
representation of the kinematics. To obtain the numerical solutions for the dynamic
response of plates, finite element methods (FEM) are adopted [8-14].

In the vibration analysis, the dynamic stiffness method (DSM) [15-17] is used to obtain
more accurate and reliable results in comparison with the conventional FEM. The DSM
uses a unique element matrix (dynamic stiffness matrix) containing both stiffness and
mass properties of the structure. The selection of the DSM for solving the free vibration
problem is motivated by the fact that only one dynamic stiffness element per structural
member with constant material and geometrical properties can be used to accurately
represent its dynamic behavior at any frequency. Different applications of the dynamic
stiffness method based on the ESL plate theories are given in [18-20]. However, the
main lack of the proposed methods is the inapplicability to the plates having arbitrary
combinations of boundary conditions. This has been overcome in the authors’
investigations [21-23], where the dynamic stiffness matrices for a completely free
rectangular isotropic plate based on the Mindlin-Reissner’s first-order shear deformation
theory (FSDT) and the Reddy’s higher-order shear deformation theory (HSDT) were
developed. These solutions are free of restrictions regarding the boundary conditions.

In this paper the dynamic stiffness matrix for a completely free rectangular multi-layer
plate element based on the HSDT and FSDT is presented. Three coupled Euler-Lagrange
equations of motion have been transformed into two uncoupled equations of motion
using a boundary layer function [24]. The proposed method enables free transverse
vibration analysis of rectangular multi-layer plates with transversely isotropic layers,
having arbitrary combinations of boundary conditions. The natural frequencies obtained
using different dynamic stiffness multi-layer plate elements have been validated against
the solutions from the commercial software Abaqus [25] and the previously verified
results [13, 14]. The influence of face-to-core thickness ratio and face-to-core module
ratio of sandwich plate, as well as the influence of the shear deformation on the free
vibration characteristics of sandwich plates have been discussed. A variety of new
results is provided as a benchmark for future investigations.

2. FORMULATION OF THE MULTI-LAYER HSDT DYNAMIC
STIFFNESS ELEMENT

The geometry of rectangular multi-layer plate composed of n isotropic layers is
presented in Figure 1. The assumptions and restrictions introduced in the derivation of
the model are: (1) all layers are perfectly bonded together, (2) the material of each layer
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is homogeneous, transversely isotropic and linearly elastic, (3) small strains and small
rotations are assumed and (4) inextensibility of the transverse normal is imposed.

mid-plane
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Figure 1. (A) Geometry of multi-layer plate; (B) displacement components of the HSDT

Assuming zero-deformation in the mid-plane of the plate (see Figure 1la), the
displacement field of the HSDT at point (x,y,z) of a plate in the arbitrary time instant t is:

U(X, Y, Z,t) = Z¢y (X, y,t) —-C- Z3 (¢y (X, y,t) + avv(;;(y’t)j
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where ¢ and ¢ are the rotations about the x- and y-axis, respectively (Figure 1), while
c1=4/(3h?). Cross-sectional warping is accounted with a cubic approximation of the
displacement field. The Euler-Lagrange equations of motion of the HSDT are derived
using the Hamilton’s principle [3]:
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The higher-order stiffness coefficients 511,512,566,E11,E12,E66,Z\44 and mass

moments of inertia K,, J, are calculated by the integration of the plane stress stiffness

coefficients through the plate thickness, while the above dots denote the differentiation
in time. The natural (Neumann) boundary conditions of the HSDT theory are:
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The system of three coupled partial differential equations of motion (Eg. (2)) can be split
into two uncoupled equations introducing the boundary layer function [24]:

0 0
_%% @
ox oy
BBBVW—Z\M(// =K,y 5)
C, -VVVvw+C, -VVWw=C, -VVW+C, - VW -C, - VW+C, - W +C, - W
2 2
InEq. (5), V= ? + y denotes the Laplace operator, while constants C; are:
X
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Introducing a harmonic representation of the transverse displacement and boundary layer
function, the Fourier transform of Eq. (5) can be expressed as a function of the

amplitudes of transverse displacement (W(X,y,®)) and boundary layer function
(w(X,y,®)), in the frequency domain (according to the procedure from [22, 23]). The
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amplitudes of rotations @, (X,y,®) and ¢?y(x,y,a)) can be expressed in terms of
W(X,y,®)and y(x,y,) asfollows (@ is the angular frequency):

dypy +d,V @, = Des ai(dsl/? +d,V)+ %(d5v?/+ dzVVW+d, VW)
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The displacement field of the FSDT can be easely derived from Eq. (1) by setting the
constant ¢ to zero, making the reduction from the HSDT to the FSDT very convenient.
This reduction is not discussed here.

3. SOLUTION PROCEDURE

The amplitudes of the transverse displacement, the boundary layer function, as well as
the rotations of a rectangular plate element can be presented as a sum of four symmetry
contributions: symmetric-symmetric (SS), symmetric - anti-symmetric (SA), anti-
symmetric - symmetric (AS) and anti-symmetric - anti-symmetric (AA) [26]. Following
the procedure given in [22, 23], the deflections W(X,Yy,w), the rotations

¢3y (x,y,w) and gﬁx(x, Yy, ®), the forces and moments in all symmetry contributions can

be obtained. Then, the corresponding displacement and the force vectors ( § and Q) that

contain displacements and forces on the boundaries x=a and y=b are obtained for all
symmetry contributions. Using the Projection method [27, 28] as shown in [21-23], new

vectors § and Q are introduced, whose components are the coefficients in the Fourier
series expansion of the displacements and forces on the boundaries x=a and y=b. The
relation between the force vector Q and the displacement vector § for each symmetry
contribution is given as:

Q,=Kpg,, 1LI=SA )
where Rg is the dynamic stiffness matrix for considered symmetry contribution. The

details regarding the SS case are givein in [22, 23] . Based on the procedure presented
in Refs. [15, 19, 21-23], the dynamic stiffness matrix for completely free HSDT plate
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element is obtained by using the following expression: Kg = %TTKOT, where T is the

transformation matrix and Ko is the dynamic stiffness matrix obtained collecting the
dynamic stiffness matrices of the four symmetry contributions [23]. The transformation
matrix T relates the displacement vector §, (containing the displacement vectors of all

symmetry contribution) and the displacement vector § (containing the displacements
and rotations along the boundary lines for completely free rectangular plate [23]). The

transformation matrix is given in [23]. The size of the dynamic stiffness matrix KS

depends on the number of terms in the general solution M and is equal to 32M+12.
The dynamic stiffness matrices of individual plates are assembled to compute the global
dynamic stiffness matrix of plate assembly consisting of several plates. The assembly
procedure is carried out in the same manner as in the FEM, except the plates are
connected along boundary lines instead at nodes. The procedure was demonstrated in the
previous works of Kolarevi¢ et al [22, 23]. The boundary conditions are applied to the
global dynamic stiffness matrix by removing the rows and columns corresponding to the
components of constrained displacement projections. The boundary conditions used in
the numerical verification of the model are:
o Simply supported (S): w = 0 and ¢x = O for the edge parallel to the y-axis and
w = 0 and ¢y = 0 for the edge parallel to the x-axis;
o Clamped (C): w = ¢y = ¢y = Wy = 0 for the edge parallel to the y-axis, and w = ¢y =
#x = wy = 0 for the edge parallel to the x-axis;
o Free (F): all displacements (w, ¢y, ¢y, Wx and w) are = 0.

The proposed shear deformable dynamic stiffness elements have been implemented in
the original program coded in MATLAB [29] and used for the numerical validation.

4. NUMERICAL VALIDATION AND DISCUSSION

The applicability of the proposed model is illustrated considering square sandwich (3-
layer) panels, having the dimensions 2ax2b = 2.0x2.0m and the total thickness h = 0.2m.
The face thicknesses are ti = 2mm (h/ti = 100). The panels are clamped along all edges
and composed of two rigid isotropic faces (Er = 100GPa) and core having the Young’s
modules varying from 0.2-100GPa (where E#/E; = 1 corresponds to the isotropic plate).
The Poisson’s ratio and the mass density of both faces and core are constant: » = 1 =
0.3 and pr = p. = 3000kg/m®. The plates are analized using four different numerical
models: FSDT dynamic stiffness element - FSDT DSM (shear correction factor k=5/6
and 2 elements), HSDT dynamic stiffness element - HSDT DSM (2 elements), 4-node
GLPT layered rectangular finite element with reduced integration - GLPT P4R (20x20
elements) (see [21, 22]) and 4-node conventional shell element with reduced integration
(S4R), built in the commercial software Abaqus (100x100 elements). In the calculations
performed by the dynamic stiffness method, M = 9 terms in the series expansion were
used to obtain the accurate solution, according to the convergence studies presented in
[22, 23]. The first four natural frequencies are illustrated in Figure 2.
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Figure 2. Natural frequencies of sandwich panels with variable E/E. ratios (h/ti = 100)
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Figure 3. Natural frequencies of sandwich panels with variable h/t; ratios (E+#/E; = 100)
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In the second part of this benchmark example, the influence of the face thickness on
natural frequencies of sandwich panels isanalysed. The Young’s modules of faces and
core are fixed: E; = 100GPa, E; = 1GPa, while the ratios h/t; are varying: h/t; = {5, 10,
20, 50, 100, 200 and 500}. The results are presented in Figure 3.

5. CONCLUSIONS

The development of the dynamic stiffness matrix for a completely free rectangular multi-
layer plate element based on the HSDT has been presented in this study, implemented in
a MATLAB computer code and applied in the free vibration analysis of sandwich
panels. The numerical study presented in this paper proves the ability of the proposed
HSDT-based model to accurately predict the dynamic behavior of sandwich panels, with
some restrictions regarding the h/t; and E«/E. ratios. For h/t; =100, the model accurately
predicts the fundamental frequencies for all considered E#/E. ratios, varying from the
isotropic plate (E+/Ec=1) to typical sandwich panel (E#/E.=500). The discrepancy in the
results is detected when the quality of the core layer decreases (E#/Ec>20). For all
considered cases, the results obtained using the GLPT P4R layered finite elements are in
excellent agreement with the finite element solution from Abaqus. Generally, better
agreement is obtained for lower modes of vibration. The FSDT dynamic stiffness
element exhibits higher stiffness in comparison with other models due to the
simplifications regarding the transverse shear deformation. For E+/E. =100, the proposed
model accurately predicts the fundamental frequencies if h/t; >50.
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CJIOBOJHE BUBPAIIMJE ITPABOYT'AOHHUX
N30TPOITHUX BUILHECJIOJHUX ITJIOYA
HNPUMEHOM METOAE TMHAMUNYKE KPYTOCTHU

Pesume: YV osom pady npuxazane cy OuHamuuke Mampuye Kpymocmu 3a npasoyeaomy,
(mparnceep3aino) U30MPONHY, JjeOHOCHOJHY U BUIMECTOJHY WIOYY Cad NPOU3BO/LHUM
SPAHUYHUM YCTOBUMA, KOje CY NPUMereHe y aHausu cioboonux subpayuja. Junamuure
mampuye kpymocmu useedene cy 3a Reddy-egy cmuuyhy meopujy nioua suwee peda
(HSDT), kao u 3a Mindlin-osy meopujy naoua (FSDT). Juuamuuxe mampuye kpymocmu
cadpace napamempe Kpymocmu u mace pasmampanux niova u mMozy ce cabupamu Ha
cauyan Hayun kao y Memoou rxounaunux enemenama (MKE). Pasmampan je ymuyaj
o0HoCca O0ebbUHE NOBPUIUHCKOZ ClOja U je3epa, KAo U ymuyaj 00HOCa MOOYIa
enacmuyHOCmy  NOBPUUHCKOZ Cloja U je3epa KOO CeHOsuY Nioyd, KAo u ymuyaj
degpopmayuje cmuyarba Ha cro600He subpayuje cendeuy naoya. Pesyimamu dobujenu
npumenom ounamuuxux mampuya kpymocmu HSDT u FSDT eremenama cy ynopehenu
ca pesymmamuma KoMmepyujainoe npocpamckoe naxema Abaqus u  peszynmamuma
3ACHOBAHUM HA  CAOJeGUMOM NPABOY2AHOM KOHAYHOM —eNleMeHmy ca 4-ugopa.
Ipeonosicenu modenu omoeyhasajy npeyusno oopehugarse OUHAMUYKOZ 002080pa
cucmema npagoy2aoHUX NI04A Ca NPOU3BOTTHUM SPAHUUHUM YCIOBUMA.

Kuwyune peuu: cnoboone subpayuje crojegumux nioua, memooa OUHAMu4Ke Kpymocmi,
Mindlin-oea meopuja nioua, cmuuyha meopuja nioua suwez peda
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Summary: In this paper a unified frame for quasi-static and dynamic inelastic buckling

and ultimate strength of uniformly compressed longitudinally stiffened plate girders is

presented. The finite strip method is used in structural analysis. The nonlinear behavior

of the material is modelled using the rheological-dynamical theory. According to this

theory, a very complicated nonlinear problem in the inelastic range of strains is solved

as a simple linear dynamic one. The orthotropic constitutive relations for inelastic

buckling and a new modulus iterative method for the solution of nonlinear equations are

derived in previous papers and the extensive numerical application is presented here.

Keywords: Finite strip method, rheological-dynamical theory, ultimate strength

1. THEORETICAL BACKGROUND

The purpose of this paper is to investigate ultimate limit state (ultimate strength) of
uniformly compressed plate girders with longitudinally stiffeners under quasi-static and
dynamic loading. These are the structures which are generally made by joining flat plates
at their edges. Some important subsets of these systems are those composed of structures
with essentially prismatic form, with or without stiffeners, such as the ones used in
column members, stiffened slabs and box girders. Analysis of the behavior of these
structures is here performed using the finite strip method (FSM). The FSM
approximation of displacement field is based on beam eigenfunctions, which are derived
as the solution of the differential equation of beam transverse vibration, and proved to be
an efficient tool for analyzing a great deal of structures for which both geometry and
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material properties can be considered as constant along a main direction. This method
was pioneered by Cheung [1], who combined the plane elasticity and the Kirchhoff plate
theory. Wang and Dawe [2] have applied the elastic geometrically nonlinear FSM to the
large deflection and post-overall-buckling analysis of diaphragm-supported plate
structures. Also, the FSM is very rapidly increasing in popularity for the analysis of thin-
walled structures. Kwon and Hancock [3] developed the spline FSM to handle local,
distortional and overall buckling modes in post-buckling range. Interaction of two types
of column failure (buckling) in thin-walled structures, local and global (Euler) column
buckling, may generate an unstable coupled mode, rendering the structure highly
imperfection sensitive. The geometrically nonlinear harmonic coupled finite strip
method (HCFSM) [4, 5, 6] is also one of the many procedures that can be applied to
analyze the large deflection of folded-plate structures and buckling-mode interaction in
thin-walled structures. For these problems, only geometrically nonlinear terms such as
square derivatives of transverse displacement w need to be included (von Karman
approach). An analysis of the buckling-mode interaction is carried out using the HCFSM
in [7], taking into account the visco-elastic behavior of material.

If uniformly compressed plate girders or thin-walled girders undergo inelastic
deformation, these structures generally sustain both nonlinearities, geometrically
nonlinear effects and a nonlinear behavior of the material caused by inelastic
deformation. A mathematical-physical analogy named the rheological-dynamical
analogy (RDA) has been proposed in explicit form to predict a range of inelastic and
time-dependent problems related to one-dimensional members, such as buckling, fatigue
etc. [8, 9]. Consequently, the RDA inelastic theory enables the engineer concerned with
materials (for various quasi-static and dynamic structural problems) to utilize simple
models, expressible in a mathematically closed form, to predict the stress-strain
behavior. The main results in the paper [8] are obtained in regard to inelastic buckling in
the short to intermediate column range taking into account the governing RDA modulus.
However, wide-flange column members or thin-walled girders fail as continua by first
developing local or global buckling modes, which may develop into plastic mechanisms
and failure, which is why two-dimensional (2D) or three dimensional (3D) analyses must
be used.

The proposed approach combines the RDA and damage mechanics [10] to solve the
nonlinear problem of plate girders under compression using 2D analysis in the frame of
the FSM. The one-dimensional RDA modulus is used to obtain one simple continuous
modulus function and a stress-strain curve [11]. When the critical stress exceeds the limit
of elasticity, the first iteration of the modulus provides the Hencky loading function and
the von Mises yield stress, whereas the next ones involve the strain-hardening of the
material through visco-plastic flow. At the end of the iterations the member failure
occurs. The key global parameters, such as the creep coefficient, Poisson’s coefficient
and the damage variable are functionally related. However, it is a fact that material
damage growth is accompanied by an emission of elastic waves which propagate within
the bulk of the material [12]. Consequently, a 3D analysis of the propagation of
mechanical waves is used in this paper. The elastic properties of steel and aluminum
determined on test cylinders and based on longitudinal resonance frequencies [13], are
used in the numerical applications. For the analysis of plate girders using the FSM, an
inelastic isotropic 2D constitutive matrix is derived starting from the one-dimensional
state of stress. Although the quasi-static and dynamic constitutive relations are derived
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for isotropic materials, different stress components induce orthotropy in the material
through the RDA modulus-stress dependence. The nonlinear term is the stiffness matrix,
which depends on the inelastic orthotropic constitutive matrix. Because of that, a new
modulus iterative method for the solution of nonlinear equations is used. In the case of
inelastic buckling of rectangular slabs it has been demonstrated that convergence of the
method is fast and that it gives satisfactorily accurate solutions with only several
iterations [14]. Presented numerical algorithm is implemented in software package
BASS [15] and the exhaustive numerical study is performed. Obtained solutions for
known modulus are compared with the ones from CUFSM [16], and they excatly match.

2. NUMERICAL APPLICATION

A theoretical investigation into the effectiveness of a stiffener against the ultimate
strength of a stiffened plate girders under thrust is carried out. The transition from the
various buckling modes by changing the plate/stiffener proportions for various stiffening
configurations is shown. Four models are analyzed for two different materials, steel and
aluminum. For each material, plate without stiffeners is analyzed first. Then, plate
girders with one, two and three stiffeners are examined and buckling curves are given.

Series of the buckling analyses, the elastic, visco-plastic (VP) and failure (ultimate
strength) are performed on the stiffened plate girders under quasi-static and dynamic
loading. The panels (Model 1, 2 and 3) were divided into finite strips as shown in Fig. 1.
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2 2

4 ) 6 7 1 3 4
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k

" 500 (50) 500 (50)

Model 2 Model 3
2 3 2 3
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£ 25009 500 (25) £ 25005 250 (25) , 250(25) , 250(25) , 250(25) ,

A
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Figure 1. Models of steel and aluminum stiffened panels with nodal lines

Figures 2 and 3 illustrate the buckling curves (critical stress versus length/width ratio,
a/b) for steel and aluminum slabs. In order to obtain the inelastic quasi-static critical
stresses, the Euler formula for buckling of an isolated plate strip was employed to find
the structural-material constant of a plate. The convergence of the failure stresses for all
a/b ratios is obtained using only six or seven iterations. The first iteration gives the
visco-plastic yield stress. An excellent agreement with the generalized beam theory
(GBT) is observed [14], in which the values of both ratios E/Er and E/Es (Er is the
unixial tangent modulus and Es is the secant modulus) depend on the applied stress level
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and are obtained using the uniaxial stress-strain law which adequatly describes the
material behavior along the fundamental path. The GBT theory used the Ramberg-
Osgood curve. The dynamic visco-plastic and failure buckling curves of steel and
aluminum slabs for relative angular frequencies (RAF) 1 and 10 are also presented. All
dynamic stresses are below the elastic critical stresses. The reason for that is the cyclic
stress variation in the material under which the visco-plastic effects like viscous damping
are developed.

Figures 4 to 9 present the quasi-static elastic, visco-plastic and failure buckling curves
for three panels (Model 1, 2 and 3) made of steel and aluminum.

For buckling of a stiffened plate (panel), it is well known that there exists a minimum
stiffness ratio of a stiffener to the plate, (Els/bD)Bnmin, which gives the maximum limiting
value of the buckling strength. Considering the ultimate strength it was confirmed that
there exists a significant stiffness ratio of a stiffener to the plate, (EI1s/bD)Unmin, Similar to
(Els/bD)Bnmin for the buckling strength.

The effect of various parameters like panel geometry, stiffening scheme, stiffener size
and position are considered in quasi-static and dynamic stability analysis of stiffened
panels. Figure 10 presents typical buckling modes.

The proposed appoach for quasi-static and dynamic inelastic buckling and for global
failure analysis combines the FSM linear stability analysis and the RDA inelastic theory.
The RDA inelastic theory is a new theory for the simulation of inelastic material
behavior, alternative to other theory based on nonlinear fracture mechanics, plasticicity
theory or damage mechanics previously published in the literature.
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Figure 2. Quasi-static and dynamic elastic, visco-plastic and failure buckling curves for
a steel slab - Model 0
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Figure 3. Quasi-static and dynamic buckling curves for a aluminum slab - Model 0
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Figure 4. Quasi-static and dynamic buckling curves for a steel panels - Model 1
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Figure 5. Quasi-static and dynamic buckling curves for a steel panels - Model 2
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Figure 6. Quasi-static and dynamic buckling curves for a steel panels - Model 3
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Figure 7. Quasi-static and dynamic buckling curves for a aluminum panels - Model 1
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Figure 8. Quasi-static and dynamic buckling curves for a aluminum panels - Model 2
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Figure 9. Quasi-static and dynamic buckling curves for a aluminum panels - Model 3
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Steel elastic and RAF10 failure, I= 5m Steel RAF1 failure buckling, I=5m
Figure 10. Typical buckling modes of stiffened panel

3. CONCLUSION

Derived theory is composed into algorithm and implemented into software package.
Intensive numerical study is performed and the infulence of various parameters is
examined. The most important results obtained in this paper are the failure stresses by
which the failure buckling curves are determined. The failure stress present the ultimate
strength of longitudinally stiffened plate girder under compression.
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I'PAHUYHA YBPCTORA ITPUTUCHYTHUX
HOAYKHO YKPYREHHUX IIVIOYACTHUX HOCAYA

Pezume: V pady je oOam 3ajeOHuyKu OKSUp 34 KBAZUCMAMUYKO U OUHAMUYKO
HeelacmuyHo U38ujare u epanudny 4epcmolhy nooysicHo yKpyheHux nioyacmux Hocayd
npu jeOHako pacnoouje/beHoM HPUMUCKY HA Kpajesuma Hocauda. Kouwcmpykyuje cy
MoOenupane NPUMjeHOM MemoOda KOHAuHuX mpaka. Mamepujanna Henuneapnocm je
VK/YUEHAd pPeonouwKo-OuHaAMu4Kom meopujom. Ilpema o060j meopuju, KOMNIUKOBAH
HenuHeapar npodiem Yy NOOPYYjy Heeracmuunux Oegopmayuja je pjeuien Kao
jeonocmaesawn 1uHeapan OuHamMuuxu npobrem. Y npemxoonum padosuma cy uzeeodeHe
OpmomponHe KOHCMUMymusHe peiayuje 3a HeelacmuyHo U3sujaree Kao 1 NOCmynax 3da
umepamueHo pjeuiasarbe HeIUHeapHuxX jeOHauuHa, 00K je 080je NpUKA3aHa UcCYpnHa
HYMepu4Ka aHaiu3d.

Kwyune peuu: Memoo xonaunux mpaka, peoiowko-OUHAMUYKA Meopujd, 2paHudHd
ygpcmoha
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