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SUMMARY 

Structural engineers are now facing with new demands towards long spans, lightweight floors in steel-
concrete composite construction and big open interiors. Thеsе new design trends аrе leading to the 
extensive problems related to the serviceability limit state, especially problems with unwanted floor 
vibrations. Annoying vibrations caused by human activities are an important serviceability problem, 
which can significantly affect the comfort of people, quality of life and structure’s functionality. Over 
past years many design recommendations of floor vibrations induced by human activities have been 
published. This paper presents a short overview of dynamic loads modeling and design 
recommendations of floor vibrations induced by human activities. 
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1. INTRODUCTION 

The current design requirements in the field of building construction are mainly reflected in the design 
of slender structures, with long spans, large open interiors, unconventional shapes and structural 
solutions with lightweight composite steel-concrete floors. Also, structural engineers are now facing 
with increasing demands for buildings that are fast to construct, with the possibility of subsequent 
reuse of the space for other purposes in relation to those originally envisaged by project. These new 
design trends are leading to the extensive problems related to the serviceability limit state, especially 
problems with unwanted floor vibrations, because of lower natural frequencies and lower natural 
damping of structures. 

The term of vibration implies the occurrence of the oscillatory movement of individual structural 
parts, such as floors, with certain amplitude and frequency of oscillation. The most usual and most 
important internal source of vibrations is human activity. Human perception and uncompromised 
functionality of object are two most important acceptability criteria for design of floor vibrations. 
Once constructed, it is difficult to modify existing construction to reduce its susceptibility to 
vibrations. It is therefore very important that the acceptability criteria of floor vibrations, depending of 
the structure purpose, are defined at the early stage of design. Over past years many design 
recommendations of floor vibrations induced by human activities have been published. This paper 
presents a short overview of dynamic loads modeling and design recommendations of floor vibrations 
induced by human activities. 

2. DYNAMIC LOADS INDUCED BY HUMAN ACTIVITIES 

A major part of the loads encountered in the civil engineering can be defined as dynamic loads, 
because their intensities vary with time. According to their time functions they can be categorized as: 
harmonic, periodic, stochastic and impulsive. The most usual and most important internal source of 
structure’s vibrations is human activity. Dynamic loads induced by human activities can be 
categorized as periodic (such as walking, jumping, dancing and skipping) and stochastic represented 
as a single impulse to a floor structure (such as take off from the diving platform or landing on a floor 
after jumping from an evaluated position) (Bachmann and Ammann 1987).  

According to the site of action, dynamic loads induced by human activities can be classified in two 
categories: in situ (periodic jumping to music and sudden standing of a crowd) and moving loads 
(walking, marching, and running are examples of moving activities) (Ebrahimpour and Sack 2005; 
ISO Standard 10137 2007). 

According to Lim (1991) and Smith et al. (2009), floor vibrations induced by human activities can be 
classified in two categories: continuous and transient. Continuous vibrations of floor constructions 
arise from periodic dynamic forces lasting significant period of time such as dancing of people. This 
kind of excitation can produce resonance of the floor when the frequency of the dynamic force 
coincides with one of the natural frequencies of the floor structure. Transient vibrations are caused by 
single impulse or series of impulses. Walking with certain velocity is a main example of series of 
impulses which cause transient vibrations. Transient vibrations are rather annoying for people than 
structurally damaging. But in environments such as offices, shopping centers and residential buildings, 
where human activities represent main type of imposed loads, walking is considered as a source of 
continuous vibrations. 

Dynamic response of the structure depends on structure dynamic characteristics such as: mass of the 
construction, structure’s stiffness, damping ratio, structure’s natural frequency and period of 
oscillation. Resonance is a phenomenon that consists of a given system to oscillate with greater 
amplitude at some preferential frequencies when it is driven by external forces to oscillate. 
Frequencies at which the response amplitude is a relative maximum are known as the system's 
resonant frequencies. Historically, many designers have used natural frequency of the floor structure 
as a measure of acceptable performance of the structure due to the vibrations. Sufficiently high natural 
frequency of floor structure means that a floor is out of the frequency range of the first harmonic 
component of the walking activity (Smith et al. 2009). Resonant response can cause significant 
increase of the effects of vibrations.  
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According to ISO Standard 10137- Annex A (2007), the dynamic force induced by a person of weight 
Q, caring out repetitive coordinative activity such as jumping can be represented as a function of time t 
with a sequence of pulses (Fig. 5). One walking step by one person as a function of time is represented 
in Fig. 6. ISO Standard 10137- Annex A (2007), defines vertical and horizontal dynamic force on 
supporting construction, induced by different continuous human activities, as a combination of 
harmonic forces, using Fourier series, represented with Eq. (6) and Eq. (7): 

   )φtifπ2sin(α1P)t(F v,isv,iv

             

(6) 

   )φtifπ2sin(α1P)t(F h,ish,ih

             

(7) 

where: 

P   is the person’s weight (0.7kN); 
t   is the time (s); 
i   is the number of harmonics; 
fs   is the frequency (Hz) of the forcing function; 
αi,v   is the dynamic load factor for vertical direction; 
αi,h   is the dynamic load factor for horizontal direction; 
φi,v   is the phase angle of ith harmonic for vertical direction; 
φi,h   is the phase angle of ith harmonic for horizontal direction. 

Excitation frequency range and design value of coefficient αi for each harmonic, for different types of 
human activities, according to ISO Standard 10137- Annex A (2007) are presented in Table 3. 
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1 1,2-2,4 0,37(fs-1,0) 

0,1 

2 2,4-4,8 0,1 

3 3,6-7,2 0,06 

4a 4,8-9,6 0,06 

5a 6,0-12,0 0,06 
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ng

 1 2,0-4,0 1,4 

0,2 2 4,0-8,0 0,4 

3 6,0-12,0 0,1 

a These higher harmonics is rarely significant when human perception is of concern, but may be 
important for more sensitive building occupancies such as vibration-sensitive instrumentation. 

Table 3. Design parameters for moving forces due to one person. 

4. DETERMINATION OF DYNAMIC PROPERTIES OF FLOOR STRUCTURES 

Determination of dynamic properties of structures can be performed using FEM analysis or using 
simple calculation formulas for different construction types. The method for determination of dynamic 
properties of structures should not be disproportionately more refined than the method for the 
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dynamic load models should be determined for dynamic analysis and different procedures may be 
defined in National Annexes, such as NA to BS EN 1991-2:2003 (2008). 

6. CONCLUSIONS 

Annoying vibrations caused by human activities is an important serviceability problem, which can 
significantly affect the comfort of people, quality of life and structure functionality. This paper 
presents a short survey of the dynamic loads modeling induced by human activities, simplified 
procedures of determination of dynamic characteristics of floor structures and historical developments 
of the acceptance criteria of floor vibrations. Special attention is paid to dynamic modeling of 
continuous and impulse loading induced by human activities. Dynamic load modeling and analysis of 
vibrations is extremely complex and development of simplified procedures for determination of floor 
vibrations is very important in order to prevent problems with excessive vibration. Also, defining 
dynamic loads modeling as well as acceptability criteria for floor vibrations through implementation 
of National Annexes for different parts of European Standards is extremely important, and should 
facilitate design of constructions exposed to the dynamic loads.  
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