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Coherent Beam Splitting by a Thin Grating
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The wide use of beam splitters in quantum interferometry, attosecond metrology, modern quantum infor-
mation processing, foundations of quantum mechanics, has been based on coherence of beams emerging from a
beam splitter. Here we further develop the approach in which a beam splitter is regarded as a transformer of an
incident wave field (photon field or matter wave field) into a field which has narrow maxima at the points along
and in close vicinity of two or more particular lines. This description was derived by considering a thin grating as
a model of a beam splitter for photons, atoms and molecules. It is applied to answer some questions raised in the
discussions on the interpretation of wave particle duality.
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1. Introduction

Beam splitter is a device which is in the heart of quan-
tum interferometry [1], attosecond metrology [2], modern
quantum information processing [3], the debate on the
foundations of quantum mechanics and interpretation of
a wave function [1, 4, 5]. But, a beam splitter’s name
reflects only one of its essential properties: that it splits
an initial beam into two beams. This name does not
take into account either the mutual coherence of the two
beams, which it generates from an initial narrow beam,
nor the influence of this coherence on a particle associ-
ated with a wave. This name neither reflects its prop-
erty to entangle two initial coherent beams [6]. On the
other hand, all these properties are crucial for the above
mentioned wide application of beam splitters. Maybe it
would be useful to give a name “coherent beam splitter”
to a beam splitter which performs coherent beam split-
ting. Here we present a theoretical description of beam
splitting by a thin grating which justifies this proposal.
The results of a dynamic theory of diffraction, on which a
neutron beam splitter [1, 7] is based could be represented
in an analogous way.

2. Transformation of an incident wave
by a thin grating

The wave function of a massive particle behind a
grating is a solution of the time-dependent free parti-
cle Schrödinger equation associated with the wave func-
tion incident to a grating and modified by this grating.
This modification is taken into account through bound-
ary conditions, usually expressed using the transmission
function T (x). For simplicity, we shall consider a one-
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-dimensional grating (Fig. 1). The incident wave func-
tion is assumed, in general, to have the form:

Ψ inc(x, y, t) = e− iωt e iyky,1 e ixkx,1W (x)

+ q e− iωt e iϕ e iyky,2 e ixkx,2W (x), y ≤ 0, (1)
where k2

x,1 + k2
y,1 = k2

x,2 + k2
y,2 = k2, kx,1 ¿ ky,1 ≈ k,

kx,2 ¿ ky,2 ≈ k, ω = kc. The quantities ϕ and q are
constants and W (x) is a real function which describes
the extent along the x axis of each plane wave compo-
nent of the incident wave. For q 6= 0 function Ψ inc is a
superposition of two plane waves, for q = 0 it reduces to
a plane wave. The evolution of wave (1) behind a grating
is given by

Ψ(x, y, t) = B e iky e− iωtψ(x, t), (2)
where

ψ(x, t) =
1√
2π

∫ ∞

−∞
dkxc(kx)e ikxx e− i~k2

xt/2m (3)

is the transverse wave function, B is the normalization
constant and c(kx) is the probability amplitude of parti-
cle transverse momentum (in ~ units), or the transverse
wave function in the momentum representation [8]. Func-
tion c(kx) is determined by the incident function at the
point y = 0− and the properties of the grating. If the
incident wave function has the form as in Eq. (1) the
function c(kx) is a sum of two terms associated with the
two terms in Ψ inc(x, y, t) :

c(kx) = ckx,1(kx) + q e iϕckx,2(kx). (4)

The function c(kx) is very useful for understanding
[8, 9] the space distribution of particles in the far field
because the function ψ(x, t) at a fixed distance y far from
the grating is approximated by:

ψ(x, t) =
√

m

~t
e− iπ/4 e ix2m/2~tc

(
x

m

~t

)
(5)

To be applicable to photons, the latter equation should
be modified by using the substitution, t → y at the left-

(479)
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Fig. 1. Free standing grating illuminated by a plane
wave (a) and by a superposition of two plane waves (b).

-hand side and m/~t → k/y at the right-hand side [9].
Therefore, one gets

ψ(x, y) =

√
k

y
e− iπ/4 e ix2k/2yc

(
x

k

y

)
(6)

The splitting of neutron waves [1, 7] and optical [10]
waves by crystal plates may be also described using func-
tions (5) and (6), respectively, and the properties of the
probability amplitude of transverse momentum, as we
shall show in the forthcoming paper.

3. Properties of the probability amplitude
of transverse momentum

By denoting the transmission function of the grating
by T (x) and assuming that the incident wave illuminates
n slits whose mutual distance is d, i.e. that

W (x) = M

for x ∈ [−((n− 1)d/2)− δ/2, ((n− 1)d/2) + δ/2] ,

W (x) = 0

for x /∈ [−((n− 1)d/2)− δ/2, ((n− 1)d/2 + δ/2] ,(7)
where M is a constant, we obtain

ckx,i(kx) =
1√
2π

×
∫ +((n−1)d/2)+δ/2

−((n−1)d/2)−δ/2

dx′ e ikx,ix
′
e− ikxx′T (x′). (8)

Assuming that the slits are totally transparent (for all x
at a slit T (x) = 1) and the bars totally absorbing (for all
x at a bar T (x) = 0), one finds the following expression
for the probability amplitude of transverse momentum
behind a grating with n slits of width δ with mutual dis-
tance d:

ckx,i(kx) =
1√
2π

1√
δn

×2 sin((kx − kx,i)δ/2)
(kx − kx,i)

sin((kx − kx,i)nd/2)
sin((kx − kx,i)d/2)

(9)

In the case of a Ronchi grating, d = 2δ, the above ex-
pression reduces to a simpler expression

ckx,i
(kx) =

1√
πdn

1
(kx − kx,i)

× sin((kx − kx,i)nd/2)
cos((kx − kx,i)d/4)

. (10)

The latter function has three pronounced maxima at kx

given by
kx = kx,i, kx = kx,i ± (2π/d) (11a)

and a less pronounced maximum at
kx = kx,i ± (6π/d), (11b)

ckx,i(kx,i) = (
√

nd/
√

π)/2,

ckx,i(kx,i ± 2π/d) = (−1)n+1(
√

nd/
√

π)/π,

ckx,i(kx,i ± 6π/d) = (−1)n(
√

nd/
√

π)/3π. (12)
The important characteristic of the Ronchi grating is

ckx,i(kx,i ± 4π/d) = 0. (13)
In between the maxima at (11) the function ckx,i(kx) os-
cillates with amplitudes of oscillations much smaller than
the values in (12). Outside this range, the values of the
function ckx,i(kx) are negligible.

From the above properties of the function ckx,i(kx) and
Eqs. (2) and (3) it follows: If the incident beam (1) con-
tains only one plane wave component (q = 0), 52.59% of
transmitted particles retain the x-component of momen-
tum in the close vicinity of kx,i whereas 42.67% of trans-
mitted particles acquire new value which differs from the
initial value by 2π/d or by −2π/d, approximately.

In interferometry, of particular interest is coherent
splitting when kx,i of the incident wave (1), i = 1, 2,
take values from the set

S = [0, 2π/d,−2π/d] . (14)
The importance of this set comes from the fact that
one or two components of the multi-component outgo-
ing wave propagate along the same direction/directions
which characterize the incident beam.

But one has to consider individually two important
cases: (α) the incident wave (1) has one component
(q = 0) characterized by kx,1 ∈ [0, 2π/d,−2π/d] and
(β) the incident wave (1) has two components (q 6= 0)
characterized by (kx,1 = 0, kx,2 = 2π/d) or (kx,1 = 0,
kx,2 = −2π/d).
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(α) In this case, the probability amplitude of transverse
momentum behind the beam splitter has three prominent
maxima at kx,m, one of which coincides with the x com-
ponent of momentum of the incident beam

kx,1 = 0, kx,m ∈ [0, 2π/d,−2π/d] ,

kx,1 = 2π/d, kx,m ∈ [0, 2π/d, 4π/d] ,

kx,1 = −2π/d, kx,m ∈ [0,−2π/d,−4π/d] . (15)

One can see that the coherent beam splitting is a phe-
nomenon in which an incident field, matter wave field
or photon EM field, having the form of a narrow beam
propagating along certain direction is transformed by a
grating to a new field which has a more complex struc-
ture than the incident one, especially in the vicinity of a
grating [8, 11]. But, far from a grating this structure is
simpler. It consists of three prominent maxima along the
x axis and many small oscillations which in the far field
move together coherently along the x axis. Combined
with a motion along the y axis, this results in a joint
motion of prominent maxima along three straight lines
and many small maxima in between. The three lines are
at the same time the lines of the quantum mechanical
current of massive particles [12] and of electromagnetic
flow lines of photons [11].

(β) When the incident wave function is the sum of two
plane waves propagating along two different directions
(kx,1 = 0, kx,2 = 2π/d) or (kx,1 = 0, kx,2 = −2π/d), the
probability amplitude of transverse momentum is given
by (4). From this expression one concludes that max-
ima of |c(kx)|2 are determined not only by maxima of
functions ckx,1(kx) and ckx,2(kx), but by the parameters
q and ϕ, as well. In order to investigate the dependence
of maxima of the function |c(kx)|2 on parameters q and
ϕ, it is useful to find complex values of the function c(kx)
for kx ∈ [0, 2π/d,−2π/d, 4π/d,−4π/d, 6π/d,−6π/d]. It
is enough to consider the values of the function c(kx) as-
sociated with the pair (kx,1 = 0, kx,2 = 2π/d) since the
results and conclusions for the pair (kx,1 = 0, kx,2 =
−2π/d) are similar

c(kx) = c0(kx) + q e iϕc2π/d(kx). (16)
Using (12) and (13) we find

c(0) =
1
2

√
nd

π

[
1 + (−1)n+1q e iϕ 2

π

]
, (17a)

c

(
2π

d

)
=

(−1)n+1

π

√
nd

π

×
[
1 + (−1)n+1q e iϕ π

2

]
, (17b)

c

(
−2π

d

)
=

(−1)n+1

π

√
nd

π

c

(
4π

d

)
=

(−1)n+1

π

√
nd

π
q e iϕ (17c)

c

(
−4π

d

)
=

(−1)n

3π

√
nd

π
q e iϕ,

c

(
6π

d

)
=

(−1)n

3π

√
nd

π
. (17d)

By comparing (12) and (17) we see that the result of the
action of a grating on the initial distribution of parti-
cle’s transverse momentum is very different in cases (α)
and (β). In the case (α) probability distribution depends
on the value of the initial momentum along x-axis and the
grating constant. In the case (β) it depends on the two
values of the initial momentum along x-axis, the grat-
ing constant and quantities q and ϕ. The dependence of
|c(kx)|2 on latter two quantities is very important. In fact
it is the source of the interference phenomena in Michel-
son and Mach–Zehnder interferometers in which gratings
have been used as beam splitters.

4. Grating as a beam splitter in Michelson’s
interferometer for attosecond pulses

Michelson interferometer for the characterization of at-
tosecond pulses described by Goulielmakis et al. [2, 13].
uses a grating as a beam splitter (Fig. 2). Inci-
dent monochromatic plane wave which propagates along
y-axis (kx,1 = 0, q = 0) is transformed by a grating to a
wave having maxima along three directions (only two di-
rections are shown at Fig. 2). The components associated
with the zeroth-order maximum and the first-order max-
imum are then reflected from two mirrors, M1 and M2.
As a result, a coherent wave containing two components
(kx,1 = 0, kx,2 = −2π/d, q = −2/π) is arriving to a
grating from its right-hand side.

Fig. 2. The scheme of Michelson interferometer with
a grating as a beam splitter [2, 13].

The wave emerging at the left-hand side of a grating
has maxima (components) propagating along several di-
rections. The component propagating in the direction
(ky = −k, kx = −2π/d) has been used in the experiment
[2, 13]. The intensity I3 along this direction (towards
mirror 3) is determined from Eq. (17b) by substituting
q = −2/π. It is a periodic function of ϕ, which was var-
ied by moving mirror 1:

I3 ∝
∣∣c(2π/d)

∣∣2 ∝ 1 + (−1)n cosϕ. (18)
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5. Summary

In considering the action of a beam splitter on a quan-
tum particle it is essential to take into account the quan-
tum state of a particle, i.e. its wave function. A time-
-dependent wave function of a single particle, behind a
beam splitter, describes the wholeness of a wave and its
evolution [4, 8, 9, 11]. The possible paths of a parti-
cle are the lines along which its wave function has max-
ima [9, 11, 12]. This explains the intriguing finding of
quantum interferometry, that a single quanton moving
along one of the paths has the information about the ex-
istence of other paths [1, 14]: this information is due to
the wholeness of particle’s wave function along and in
between these paths.
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