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Abstract

The capabilities of the visual system and the biological mechanisms controlling its active nature
are still unequaled by modern technology. Despite the spatial and temporal complexity of our
environment, we succeed in tasks that demand extracting relevant information from complex,
ambiguous, and noisy sensory data. Dynamically distributing visual attention across multiple
targets is an important task. In many situations, for example driving a vehicle, switching focus
between several targets (e.g., looking ahead, mirrors, control panels) is needed to succeed. This
is further complicated by the fact, that most information gathered during active gaze is highly
dynamic (e.g., other vehicles on the street, changes of street direction). Hence, while looking at
one of the targets, the uncertainty regarding the others increases. Crucially, we manage to do
so despite omnipresent stochastic changes in our surroundings. The mechanisms responsible for
how the brain schedules our visual system to access the information we need exactly when we
need it are far from understood. In a dynamic world, humans not only have to decide where to
look but also when to direct their gaze to potentially informative locations in the visual scene.
Our foveated visual apparatus is only capable of gathering information with high resolution
within a limited area of the visual field. As a consequence, in a changing environment, we
constantly and inevitably lose information about the locations not currently brought into focus.

Little is known about how the timing of eye movements is related to environmental regular-
ities and how gaze strategies are learned. This is due to three main reasons: First, to relate the
scheduling of eye movements to stochastic environmental dynamics, we need to have access to
those statistics. However, these are usually unknown. Second, to apply the powerful framework
of statistical learning theory, we require knowledge of the current goals of the subject. During
every-day tasks, the goal structure can be complex, multi-dimensional and is only partially acces-
sible. Third, the computational problem is, in general, intractable. Usually, it involves learning
sequences of eye movements rather than a single action from delayed rewards under temporal
and spatial uncertainty that is further amplified by dynamic changes in the environment.

In the present thesis, we propose an experimental paradigm specifically designed to target
these problems: First, we use simple stimuli with reduced spatial complexity and controlled
stochastic behavior. Second, we give subjects explicit task instructions. Finally, the temporal
and spatial statistics are designed in a way, that significantly simplifies computation and makes
it possible to infer several human properties from the action sequences while still using normative
models for behavior. We present results from four different studies that show how this approach
can be used to gain insights into the temporal structure of human gaze selection. In a controlled
setting in which crucial quantities are known, we show how environmental dynamics are learned
and used to control several components of the visual apparatus by properly scheduling the time
course of actions.

First, we investigated how endogenous eye blinks are controlled in the presence of non-
stationary environmental demands. Eye blinks are linked to dopamine and therefore have been
used as a behavioral marker for many internal cognitive processes. Also, they introduce gaps
in the stream of visual information. Empirical results had suggested that 1) blinking behavior
is affected by the current activity and 2) highly variable between participants. We present a
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computational approach that quantifies the relationship between blinking behavior and environ-
mental demands. We show that blinking is the result of a trade-off between task demands and
the internal urge to blink in our psychophysical experiment. Crucially, we can predict the tem-
poral dynamics of blinking (i.e., the distribution of interblink intervals) for individual blinking
patterns.

Second, we present behavioral data establishing that humans learn to adjust their temporal
eye movements efficiently. More time is spent at locations where meaningful events are short
and therefore easily missed. Our computational model further shows how several properties
of the visual system determine the timing of gaze. We present a Bayesian learner that fully
explains how eye movement patterns change due to learning the event statistics. Thus, humans
use temporal regularities learned from observations to adjust the scheduling of eye movements
in a nearly optimal way. This is a first computational account towards understanding how eye
movements are scheduled in natural behavior.

After establishing the connection of temporal eye movement dynamics, reward in the form
of task performance, and physiological costs for saccades and endogenous eye blinks, we applied
our paradigm to study the variability in temporal eye movement sequences within and across
subjects. The experimental design facilitates analyzing the temporal structure of eye movements
with full knowledge about the statistics of the environment. Hence, we can quantify the internal
beliefs about task-relevant properties and can further study how they contribute to the variability
in gaze sequences in combination with physiological costs. Crucially, we developed a visual
monitoring task where a subject is confronted with the same stimulus dynamics multiple times
while learning effects are kept to a minimum. Hence, we are not only able to compute the
variability between subjects but also over trials of the same subject. We present behavioral data
and results from our computational model showing how variability of eye movement sequences
is related to task properties. Having access to the subjects’ reward structure, we are able to
show how expected rewards influence the variance in visual behavior.

Finally, we studied the computational properties underlying the control of eye movement
sequences in a visual search task. In particular, we investigated whether eye movements are
planned. Research from psychology has merely revealed that sequences of multiple eye move-
ments are jointly prepared as a scanpath. Here we examine whether humans are capable of
finding the optimal scanpath even if it requires incorporating more than just the next eye move-
ment into the decision. For a visual search task, we derive an ideal observer as well as an ideal
planner based on the framework of partially observable Markov decision processes (POMDP).
The former always takes the action associated with the maximum immediate reward while the
latter maximized the total sum of rewards for the whole action sequence. We show that depend-
ing on the search shape ideal planner and ideal observer lead to different scanpaths. Following
this paradigm, we found evidence that humans are indeed capable of planning scanpaths. The
ideal planner explained our subjects’ behavior better compared to the ideal observer. In par-
ticular, the location of the first fixation differed depending on the shape and the time available
for the search, a characteristic well predicted by the ideal planner but not by the ideal observer.
Overall, our results are the first evidence that our visual system is capable of taking into account
future consequences beyond the immediate reward for choosing the next fixation target.

In summary, this thesis proposes an experimental paradigm that enables us to study the
temporal structure of eye movements in dynamic environments. While approaching this com-
putationally is generally intractable, we reduce the complexity of the stimuli in dimensions that
do not contribute to the temporal effects. As a consequence, we can collect eye movement data
in tasks with a rich temporal structure while being able to compute the internal beliefs of our
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subjects in a way that is not possible for natural stimuli. We present four different studies that
show how this paradigm can lead to new insights into several properties of the visual system.
Our findings have several implications for future work: First, we established several factors that
play a crucial role in the generation of gaze behavior and have to be accounted for when describ-
ing the temporal dynamics of eye movements. Second, future models of eye movements should
take into account, that delayed rewards can affect behavior. Third, the relationship between
behavioral variability and properties of the reward structure are not limited to eye movements.
Instead, it is a general prediction by the computational framework. Therefore, future work can
use this approach to study the variability of various other actions. Our computational models
have applications in state of the art technology. For example, blink rates are already utilized
in vigilance systems for drivers. Our computational model is able to describe the temporal
statistics of blinking behavior beyond simple blink rates and also accounts for interindividual
differences in eye physiology. Using algorithms that can deal with natural images, e.g., deep
neural networks, the environmental statistics can be extracted and our models then can be used
to predict eye movements in daily situations like driving a vehicle.



Zusammenfassung

Die Leistung des menschlichen visuellen Systems und der zugrunde liegenden Mechanismen sind
immer noch unerreicht von moderner Technologie. Unsere Umgebung ist geprägt von komplexen
zeitlichen und räumlichen Dynamiken, dennoch sind wir in der Lage aus uneindeutigen und mit
Rauschen versehenen sensorischen Daten jene Informationen zu extrahieren, welche uns in die
Lage versetzen, schwierige Aufgaben zu meistern. Eine Schlüsselrolle spielt dabei die dynamische
Verteilung unserer visuellen Aufmerksamkeit auf mehrere Regionen im Raum. In vielen Situa-
tionen, zum Beispiel während des Fahrens eines Autos, ist es wichtig Informationen von einer
Vielzahl an informationstragenden Punkten im Auge zu behalten (z. B., Abstand zum Vorder-
mann, überholende Autos im Seitenspiegel, die Einstellungen des Entertainmentsystems). Dies
wird zusätzlich dadurch erschwert, dass der Großteil der Informationen zeitlichen Veränderun-
gen unterliegt. So verändert sich beim Fahren zwangsläufig die Umgebung, da wir uns im Auto
fortbewegen. Zusätzlich bewegen sich die anderen Verkehrsteilnehmer. Da wir lediglich in einem
kleinen Bereich (der Fovea) visuelle Eindrücke mit hoher Auflösung wahrnehmen können, ver-
passen wir mit jeder Fixation Informationen an allen Regionen, die wir in diesem Moment nicht
fokussieren. Trotz der stochastischen Veränderungen in unserer Umgebung zeigen Menschen
gute Leistungen in vielen visuellen Aufgaben. Dabei ist es unklar, wie das Gehirn unser vi-
suelles System derart koordiniert, dass wir zum richtigen Zeitpunkt Zugang zu den richtigen
Informationen haben. Durch die zeitliche Dynamik in unserer Umwelt müssen wir nicht nur
entscheiden, wohin wir unseren Blick richten, sondern auch wann. Es ist unumgänglich, dass
wir ständig Informationen verlieren, da wir nicht alles gleichzeitig fokussieren können und sich
der Zustand unserer Umgebung ändert.

Viele Details der zeitlichen Steuerung von Augenbewegungen und der Verbindung zu Regel-
mäßigkeiten in unserer Umgebung sind ungeklärt. Auch existieren nur wenige Erkenntnisse
darüber, wie Strategien zur Kontrolle von Augenbewegungen erlernt werden. Dafür gibt es drei
Gründe: Erstens brauchen wir Zugang zu den Statistiken unserer Umgebung, um diese mit
Augenbewegungen in Verbindung zu bringen. Diese Statistiken sind allerdings im Allgemeinen
nicht zugänglich und daher unbekannt. Zweitens sind für die Modellierung des Verhaltens mit-
tels Methoden der statistischen Lerntheorie Informationen über die Zielstruktur der Probandin
notwendig. Diese latenten Strukturen sind in der Realität allerdings komplex, vielschichtig
und nur teilweise abrufbar. Drittens übersteigt die Komplexität der Berechnungen, welche zur
Beschreibung von natürlichem Verhalten nötig sind, die verfügbare Rechenleistung. Gewöhn-
lich handelt es sich nämlich nicht um das Erlernen einzelner Augenbewegungen, sondern um
Sequenzen von Augenbewegungen, welche in Gegenwart zeitlicher und räumlicher Unsicherheit
und dynamischer Veränderungen der Umgebung aus verzögerten Belohnungen abgeleitet werden
müssen.

In der vorliegenden Arbeit stellen wir einen experimentellen Ansatz vor, welcher speziell zur
Lösung dieser Problematik entwickelt wurde: Erstens nutzen wir Stimuli mit reduzierter räum-
licher Komplexität und kontrollieren deren stochastisches Verhalten. Zweitens verwenden wir
Aufgaben, bei denen wir Zugang zu der Belohnungsstruktur haben. Dies wird durch geeignete
Instruktionen sichergestellt. Zuletzt wählen wir die zeitlichen und räumlichen Statistiken auf
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eine Weise, sodass sich die Modellberechnungen signifikant vereinfachen und somit das Inferieren
von Eigenschaften der menschlichen Informationsverarbeitung aus Handlungssequenzen auch
mit normativen Modellen möglich wird. Wir präsentieren Ergebnisse aus vier verschiedenen
Studien, welche zeigen, wie dieser Ansatz genutzt werden kann, um Einblicke in die zeitliche
Koordination von Augenbewegungen zu erhalten. Für kontrollierte Umgebungen, in denen für
das Verhalten relevante Größen zugänglich sind, zeigen wir wie Umgebungsdynamiken gelernt
und zur Kontrolle verschiedener Komponenten des visuellen Apparats genutzt werden.

Zunächst haben wir untersucht, ob der Lidschluss von den Dynamiken und Anforderun-
gen einer sich stetig verändernden Umgebung beeinflusst werden. Eine Verbindung zwischen
der Häufigkeit des Lidschlusses und dem Neurotransmitter Dopamin gilt als erwiesen, daher
stellt der Lidschluss eine beobachtbare Verhaltensweise dar, welche Rückschlüsse auf viele nicht
sichtbare interne Prozesse erlaubt. Zudem führt der Lidschluss zu regelmäßigen Lücken in der
visuellen Wahrnehmung. Empirische Ergebnisse legen nahe, dass 1) das Lidschlussverhalten
von der aktuellen Tätigkeit beeinflusst wird und 2) dass eine hohe interindividuelle Variabilität
besteht. Mittels eines computationalen Modells konnten wir die Verbindung zwischen dem Lid-
schlussverhalten und den Anforderungen der Umgebung quantifizieren. In einem Wahrnehmung-
sexperiment konnten wir zeigen, dass Häufigkeit des Lidschlusses Folge eines Trade-Off zwischen
Erfordernissen der Aufgabe und dem Drang zu blinzeln ist. Erstaunlich ist dabei, dass wir
in der Lage sind die Verteilung der Zeiten zwischen zwei Lidschlüssen für einzelne Personen
vorherzusagen.

Im Anschluss präsentieren wir Verhaltensdaten, welche eine effiziente Anpassung der zeitlichen
Abfolge von Augenbewegungen beim Menschen belegen. Regionen werden länger fokussiert,
wenn bedeutungsvolle Ereignisse in diesen Regionen nur von kurzer Dauer sind und daher le-
icht verpasst werden können. Unser mathematisches Modell zeigt darüber hinaus wie Eigen-
schaften des visuellen Systems das Timing von Augenbewegungen leiten. Wir präsentieren einen
Bayesianischen Learner, der die Veränderungen in den Augenbewegungsstrategien auf das Er-
lernen der Ereignisstatistiken zurückführt. Dadurch können wir zeigen, dass Menschen zeitliche
Regelmäßigkeiten, erlernt über sensorische Beobachtungen, nutzen, um beinahe in optimaler
Weise Augenbewegunsstrategien anzupassen. Diese Ergebnisse sind ein erster Schritt zu einem
tieferen Verständnis von Augenbewegungen in natürlichem Verhalten.

Nachdem wir die Verbindung zwischen zeitlichen Dynamiken von Augenbewegungen, der
Belohnungsstruktur der zu erledigenden Aufgabe und physiologischen Kosten für Sakkaden
und Lidschlüsse nachgewiesen hatten, haben wir unser experimentelles Paradigma angewen-
det, um die interindividuelle Variabilität von Augenbewegungssequenzen zu erforschen. Das
experimentelle Design ermöglicht die zeitliche Struktur von Augenbewegungen zu analysieren,
während detaillierte Informationen bezüglich der Statistiken der Umgebung verfügbar sind. Mit
dieser Grundlage können wir die internen Vorstellungen der Probanden über aufgabenrelevante
Größen quantifizieren. Weiter können wir untersuchen, wie sie in Kombination mit physiologis-
chen Kosten zur Variabilität von visuellen Verhaltensweisen beitragen. Wir entwickelten eine
Aufgabe bei der die Probandin mehrere Regionen mithilfe von geeigneten Augenbewegungen
im Auge behalten muss. Durch geeignete Manipulation der Stimuli konnten wir dieselbe Se-
quenz mehrfach präsentieren, während Lerneffekte so gering wie möglich gehalten wurden. Dies
ermöglicht eine Quantifizierung sowohl der inter- wie auch der intraindividuellen Variabilität.
Wir präsentieren Verhaltensdaten und Ergebnisse von unserem Modell, welche aufzeigen, wie
Variabilität von Verhalten mit Eigenschaften der Aufgabe verbunden ist. Insbesondere sind wir
in der Lage eine Verbindung zwischen der erwarteten Belohnung einer Entscheidung und der
Variabilität in der Entscheidung herzustellen.
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Abschließend untersuchten wir die computationalen Eigenschaften, welche Sequenzen von
Augenbewegungen während visueller Suche unterliegen. Insbesondere untersuchten wir ob Men-
schen in der Lage sind Augenbewegungen zu planen. Forschungsergebnisse aus der Psychologie
legen nahe, dass mehrere Augenbewegungen gemeinsam in Form eines Scanpaths vorbereitet,
bzw. programmiert, werden. Unsere Fragestellung war, ob Menschen fähig sind die optimale
Sequenz von Augenbewegungen auszuführen, auch wenn dies erfordert, mehr als die nächste Fix-
ation in die Entscheidung einzubeziehen. Für eine Aufgabe aus dem Bereich der visuellen Suche
leiteten wir einen Ideal Observer und einen Ideal Planner basierend auf dem Framework der be-
lief MDPs her. Der Ideal Observer wählt jene Augenbewegung, welche zu maximaler sofortiger
Belohnung direkt im Anschluss an die Augenbewegung führt. Im Gegensatz dazu maximiert der
Ideal Planner die Gesamtsumme aller Belohnungen über alle Augenbewegungen hinweg. Wir
konnten zeigen, dass Ideal Observer und Ideal Planner zu unterschiedlichen Verhaltenssequenzen
führen, dies aber zusätzlich von der Form des Suchfeldes abhängt. Mithilfe dieses Paradigmas
konnten wir die Fähigkeit einen Scanpath zu planen beim Menschen nachweisen. Der Ideal
Planner lieferte eine weit bessere Erklärung für die erhobenen Daten unserer Probanden als
der Ideal Observer. Insbesondere hing die Landeposition der ersten Augenbewegung innerhalb
der Suchsequenz von der Zeit, die zur Suche zur Verfügung stand, ab. Dieser Effekt ist im
Einklang mit den Vorhersagen des Ideal Planners, nicht jedoch des Ideal Observers. Insgesamt
stellen unsere Ergebnisse die erste Evidenz dafür dar, dass unser visuelles System in der Lage
ist, mehr als unmittelbare Konsequenzen in die Entscheidung für die nächste Augenbewegung
mit einzubeziehen.

Zusammengefasst stellt die vorliegende Arbeit ein experimentelles Paradigma vor, welches die
quantitative Erforschung der zeitlichen Struktur von Augenbewegungen in dynamischen Umge-
bungen ermöglicht. Während eine computationale Beschreibung für den allgemeinen Fall nicht
möglich ist, haben wir die Komplexität in für die Untersuchung zweitrangigen Bereichen re-
duziert. Durch dieses Vorgehen konnten wir Daten über Augenbewegungen in Aufgaben mit
komplexer zeitlicher Struktur sammeln und trotzdem die für die Modellierung der internen
Vorstellungen der Probanden notwendigen Größen einbeziehen. Insgesamt stellen wir vier Stu-
dien vor, welche aufzeigen, wie das Paradigma zu neuen Erkenntnissen über zahlreiche Eigen-
schaften der visuellen Informationsverarbeitung führen kann. Unsere Ergebnisse haben klare
Auswirkungen auf zukünftige Forschungsarbeiten: Erstens haben wir Faktoren ermittelt, welche
bei der Generierung von visuellem Verhalten eine tragende Rolle spielen. Diese müssen für
die Beschreibung der zeitlichen Folge von Augenbewegungen in die Betrachtung mit einbezo-
gen werden. Zweitens sollten zukünftige Modelle für Augenbewegungen berücksichtigen, dass
auch Belohnungen über die unmittelbare Belohnung einer Handlung hinaus das Verhalten beein-
flussen können. Drittens sind die Ergebnisse über den Zusammenhang zwischen Variabilität und
den Eigenschaften der Belohnungsstruktur nicht auf Augenbewegungen beschränkt. Vielmehr
handelt es sich um eine allgemeine Vorhersage des Modells, welche auf andere Bereiche übertra-
gen werden kann. Zukünftige Arbeiten können demnach den Ansatz nutzen, um Variabilität in
anderen Verhaltensmodalitäten zu untersuchen.

Unsere Modelle sind außerdem relevant für zahlreiche technologische Anwendungen. Der
Lidschluss, zum Beispiel, wird bereits in Systemen zur Erfassung von Aufmerksamkeit und
Wachheit im Rahmen des Straßenverkehrs verwendet. Das von uns entwickelte Modell ist in der
Lage die zeitlichen statistischen Kennwerte des Blinzelns zu beschreiben und dabei insbeson-
dere physiologische Unterschiede zwischen Personen zu berücksichtigen. In Verbindung mit
modernen Algorithmen für komplexes hochdimensionales Datenmaterial wie Bilder und Videos,
zum Beispiel tiefe neuronale Netze, können die Statistiken der Umgebung abgeleitet werden.
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Auf diese Weise ist eine Anwendung der im Rahmen dieser Arbeit entwickelten Modelle auf
alltägliche Problemstellungen möglich.
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CHAPTER1
Introduction

Humans have adapted to their environment over the course of evolution (Darwin, 1859). Cru-
cially, we have learned to perform suitable actions depending on the needs of the situation -
for example, gathering food, fleeing from predators, and avoiding dangerous or life-threatening
situations. In order to do so, the human brain was designed to process sensory information and
to choose suitable actions based on these percepts. While reasoning about human behavior has a
long tradition (see Hergenhahn & Henley, 2013, for an overview), we are far from understanding
the mechanisms that generate behavior. In the beginning of quantitative experimental psychol-
ogy in the late 19th century, human behavior was described by a set of laws like the Gestalt
laws. However, over the last hundred years few laws have endured empirical and theoretical
advances in the field (Halvor Teigen, 2002). Where does the complexity originate that makes
finding general explanation for why we act the way we do so difficult?

1.1 Eye movements in dynamic environments

We live in a rich and complex environment and eye movements are deeply intertwined with
goals and actions (e.g., Rothkopf, Ballard, & Hayhoe, 2007; Henderson, 2003; Hayhoe & Bal-
lard, 2014). We heavily rely on visual input and in many situations visual information is vital
for survival or success in a task, for example in the mundane example of navigating through a
crowded city in order to safely and quickly reach a destination (see Figure 1.1A). Visual infor-
mation plays a crucial role in many of the associated subtasks, which have been investigated for
static environments: To find directions to the destination, we must look for cues like street names
(visual search, e.g., Najemnik and Geisler (2005) or Wolfe (1998)). Once we have determined
our goal, we walk along a path while avoiding obstacles (locomotion, e.g., Rothkopf et al. (2007)
or Warren Jr, Kay, Zosh, Duchon, and Sahuc (2001)). In order to cross the street, we might have
to activate the traffic lights by pressing a button (visuo-motor hand control, Trommershäuser,
Landy, and Maloney (2006) or Körding and Wolpert (2006)). When the traffic light turns green
(event detection), we can safely cross the intersection. It is advantageous to monitor other road
users to avoid collisions as well as to be able to react to unpredictable events (monitoring).

In an ever-changing environment, we need to constantly use new sensory information to
monitor our surroundings to avoid missing crucial events. However, the fraction of the visual
environment that can be perceived at a given moment is limited by the placement of the eyes and
the arrangement of the receptor cells within the eyes (Land & Nilsson, 2002). Thus, continuously
monitoring environmental locations, even when we know which regions in space contain relevant
information, is unfeasible. Instead, we actively explore by targeting the visual apparatus towards
regions of interest using proper movements of the eyes, head, and body (Yarbus, 1967; Findlay &
Gilchrist, 2003; Hayhoe & Ballard, 2005; Land & Tatler, 2009). This constitutes a fundamental
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Figure 1.1: Properties of visual tasks in natural environments. (A) Subtasks involved in the everyday scenario of
walking a crowded street to get to a destination. (B) Locations in the scene have different environ-
mental dynamics (top). The dynamics can differ with respect to how quickly the information in the
scene changes (bottom). (C) Locations can be dependant, i.e., the future state of one location can
depend on the state of another location. Clearly, the state of the traffic light informs us about the
probability of the next actions of the pedestrians.

computational problem requiring humans to decide sequentially when to look where. Solving
this problem arguably has been crucial to our survival from the early human hunters pursuing
a herd of prey and avoiding predators to the modern human navigating a crowded sidewalk and
crossing a busy road.

Extensive research has been conducted to study eye movements for tasks in static environ-
ments. However, event detection and temporal monitoring only arise in dynamic environments.
In the present thesis, we primarily focus on how eye movements are scheduled in these envi-
ronments and the various complicating factors that accompany dynamic changes: In a dynamic
world humans not only have to decide where to look, but the timing of gaze to potentially infor-
mative locations in the visual scene is crucial. For example in the context of a moving pray, the
location of relevant visual targets is not constant, instead, the temporal course of the scanpath
determines the received information. Thus, the “when” and the “where” become entangled.
This is further complicated by the fact that locations in our environment change at different
rates (Figure 1.1B) and are highly correlated (Figure 1.1C).

Little is known about how the timing of eye movements is related to environmental regu-
larities and how gaze strategies are learned. This is due to the complexity of natural behavior.
The true environmental state is only accessible through high dimensional and ambiguous visual
input, which itself is an ongoing research area. Also, our receptor cells are not distributed uni-
formly but are most dense at the fovea, further complicating the extraction of information from
the raw visual data. In addition, the spatial and crucially, the temporal statistics are unknown
and mutually depend on each other.

Here, we investigate the following questions:

• How can we construct stimuli suited to study temporal eye movement patterns while
preserving the temporal complexity of real-world problems?

• Do environmental regularities guide visual behavior (saccades, fixations, blinks)?
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• How does uncertainty about the state of the environment, action variability, and physio-
logical costs affect the temporal course of eye movements?

• What role do delayed rewards play in tasks involving eye movement sequences?

• Can we quantify the factors causing variability in sequences of eye movements?

1.2 Overview of the thesis

The present thesis is structured as follows: First, influential empirical and computational re-
sults related to eye movement strategies are outlined (Chapter 2). The relationship between
eye movements and attention is discussed (Chapter 2.1). A long line of research has reported
a close connection between where we target our visual apparatus to and what visual informa-
tion is processed and used for action selection. Gaze behavior has been shown to be a valid
behavioral marker for internal processes thus justifying using eye tracking to infer cognitive
states. When describing sequences of eye movements rather than isolated gaze targets in an
environment that itself has a rich dynamic the perception of time is omnipresent. Therefore,
we summarize the findings concerning how humans deal with time, in particular, how the brain
is able to estimate and reproduce time intervals (Chapter 2.2). The uncertainty introduced by
variability in time interval estimation has severe implications on gaze strategies in a dynamic
environment. In Chapter 2.3 we outline findings that suggest that humans are capable of finding
near-optimal action sequences despite this variability in action execution by accounting for it
when selecting appropriate actions. This is important as fixation durations, a critical factor for
vision in dynamic environments, have been shown to be variable. Subsequently, we outline how
physiological and psychological costs influence behavioral choices (Chapter 2.4) and give a brief
discussion on how the brain could implement the various computations involved in properly
controlling the visual apparatus and finding suitable action sequences (Chapter 2.5). Finally,
we present related work showing how eye movements are used beyond the purpose of gathering
visual information (Chapter 2.6).

Next, we describe the framework of partially observable Markov decision processes (POMDPs),
a computational approach which all of the modeling in this thesis is built on (Chapter 3). We
show how different models for cognitive processes and visual behavior can be derived from
POMDPs. Our presentation is restricted to the mathematical principles underlying the compu-
tational methods used later in this thesis.

In Chapter 4, computational approaches that have been used to describe human eye move-
ment behavior are reviewed. Also, we describe the experimental designs and task structures
used to study where humans look. We outline the differences between tasks and show their
limits with respect to the conclusions that can be drawn from them. Finally, we discuss which
properties of experimental designs are advantageous for studying the temporal dynamics of eye
movements.

In Chapter 5 we use a controlled detection experiment with parametrically generated event
statistics to investigate human blinking control. Subjects were able to learn environmental
regularities and adapted their blinking behavior to detect future events better. Crucially, our
design enables us to develop a computational model that allows quantifying the consequence
of blinking in terms of task performance. The model is based on optimal control of blinking
by trading off intrinsic costs for blink suppression with task-related costs for missing an event
under perceptual uncertainty. Remarkably, this model is not only sufficient to reproduce key
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characteristics of the observed blinking behavior but also predicts the well known and diverse
distributions of time intervals between blinks, for which an explanation has long been elusive.

In Chapter 6 we present behavioral data establishing that humans learn to adjust their
temporal eye movements efficiently. Our computational model shows how established properties
of the visual system determine the timing of gaze. A Bayesian learner only incorporating the
scalar law of biological timing can fully explain the course of learning these strategies. Thus,
humans use temporal regularities learned from observations to adjust the scheduling of eye
movements in a nearly optimal way, given their cognitive constraints.

In Chapter 7, we present data from a study investigating what factors contribute to the
variability of gaze behavior within as well as between subjects. We developed a visual monitoring
task where subjects switched between three locations. At each location a small dot moved
within a circular boundary. The goal was to detect when a dot first moves beyond its boundary.
Crucially, we generated the movement trajectories for the dots in a way that subjects were
presented with the same radial trajectories multiple times while not being aware of this. This
way, we were able to repeatedly probe our subjects’ visual system using a constant stimulus
while avoiding learning effects. Our results show that variability of temporal eye movement
sequences is linearly related to the expected reward in the task.

Finally, in Chapter 8 we investigate whether humans are capable of finding the optimal
scanpath even if it requires incorporating more than just the next eye movement into the decision.
For a visual search task, we derived an ideal observer as well as an ideal planner based on the
formalization of the POMDP as a belief MDP. We show that depending on the search shape
the ideal planner and ideal observer lead to different scanpaths. This allows us to investigate
whether humans are capable of planning eye movements. Following this paradigm, we found
evidence that humans are indeed capable of planning scanpaths. Our subjects’ behavior was
better explained by the ideal planner compared to the ideal observer. In particular, the location
of the first fixation differed depending on the shape and the time available for the search, a
characteristic well predicted by the ideal planner but not by the ideal observer. Overall, our
results are the first evidence that our visual system is capable of planning in computational
terms.

1.3 Contributions

This thesis extends our understanding of active perception and the fundamental relationship
between sensing and acting through state-of-the-art models for human eye movement behavior
by using novel experimental paradigms to study the temporal course of action sequences related
to the visual system. All chapters of the present thesis are based on Hoppe and Rothkopf
(2016), Hoppe, Helfmann, and Rothkopf (2018), and Hoppe and Rothkopf (2019), and may
contain previously published content:

• Gaze behavior in dynamic environments can only be described if temporal
uncertainty, acting variability and the biological law of timing is taken into
account (Chapter 6).
In this work, we designed an experiment using stimuli with a simplistic spatial but a rich
temporal structure to gain insights into how humans schedule their eye movements in a
temporally uncertain environment. Crucially, we developed a computational model that
described not only how the temporal regularities present in the environment guide the
visual behavior, but also how behavior changes over the course of learning these statistics.



CHAPTER 1. INTRODUCTION 20

This work was published in:

Hoppe, D., & Rothkopf, C. A. (2016). Learning rational temporal eye movement strategies.
Proceedings of the National Academy of Sciences, 201601305.

• Blinking behavior is affected by environmental statistics (Chapter 5). By using a
controlled experiment with known temporal statistics we are able to link blinking behavior
to task-related rewards and physiological costs. In particular, this is the first work that
derives key properties of the distribution of time intervals between consecutive blinks.

This work was published in:

Hoppe, D., Helfmann, S., & Rothkopf, C. A. (2018). Humans quickly learn to blink
strategically in response to environmental task demands. Proceedings of the National
Academy of Sciences, 201714220.

• Eye movements are planned (Chapter 8). Here, we tested whether sequences of
eye movements are planned, i.e. whether the sequence is chosen to maximize the overall
reward, as opposed to performing the eye movement that maximized the immediate reward.
Based on the methodology of partially observable Markov decision processes we derived
a computational model for a visual search task. Using this model, we derived predictions
for an ideal planner (maximizing the total reward) and for an ideal observer (maximizing
the immediate reward). Our results question the assumption of greedy behavior that is
present in all state of the art models for eye movements.

This work was published in:

Hoppe, D., & Rothkopf, C. A. (2019). Multi-step planning of eye movements in visual
search. Scientific reports, 9(1), 144.

• Variability in temporal eye movement sequences (Chapter 7). By using a tem-
poral monitoring task we investigated variability in eye movement sequences. We found
a connection between human action variability and properties in the reward structure of
the task.

This work is currently in preparation for submission.



CHAPTER2
Human eye movement strategies

The work presented in this thesis builds on several influential findings that we review briefly in
the following chapter. First, to justify using eye tracking as a method to study how the visual
system acquires sensory information, it is necessary to show that the measured gaze traces are
related to the information that is processed. Second, we review how the human brain processes
temporal information, as the main part of the current thesis investigates vision in the presence
of temporally changing environments. Next, we describe related work presenting evidence for
the capability of humans to account for sensory uncertainties and variability in the execution
of actions. In particular, we list studies showing humans are able to perform nearly optimal
even if this requires incorporating behavioral variability. Next, we motivate the approach of
inverse reinforcement learning (see Chapter 3, for details on the mathematical methods) used
in all experiments presented in the thesis by showing related work pointing to the many-layered
reward structure of human actions. Finally, we review current proposals of how the brain may
implement Bayesian computations.

2.1 Eye movements and attention

What information the visual system processes at a given time is not directly accessible. Instead,
we can measure the current alignment of the visual apparatus using eye tracking. By measuring
the orientation of the eyes, we can detect when gaze is targeted at a location (fixation), when
gaze is redirected to a new location (saccade), when gaze is following a moving target (smooth
pursuit), and when gaze is interrupted (eye blinks). While eye movements are closely related
to internal cognitive processes, visual attention can also be enhanced at other locations in
the visual field. In an early study, Posner (1980) showed that subjects’ reaction times in a
detection experiment were smaller at cued locations in the visual field compared to trials without
cued locations and trials where a different location was cued (see Figure 2.1A-B). Hence, while
the visual apparatus was directed towards the same region (the center of the screen), visual
processing was different depending on which location was cued.

Various studies have investigated how visual attention influences performance in a spatial
detection task (see Smith & Ratcliff, 2009, for a review of the most important results as well as
a computational model). As with reaction time in the detection task, performance in a letter
discrimination task is also greatly affected by which location is cued (Hoffman & Subramaniam,
1995). Thereby, the letter discrimination task serves as a behavioral marker for the spatial
distribution of visual attention. Studies investigating visual attention have extensively used
discrimination tasks for arrays of letters in order to measure performance at various spatial
locations (e.g., Irwin, 2011; Hoffman & Subramaniam, 1995; Baldauf & Deubel, 2008b). The
found effects remain when using symbolic cues instead of arrows (Hommel, Pratt, Colzato, &
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Figure 2.1: (A) Experimental design adapted from Posner (1980). Subjects reacted to an increase of luminance
after receiving either a valid cue, an invalid cue, or without any clue. (B) Results from the experimental
design presented in A. Subjects responded quicker if the location was cued. (C) Dual task experimental
paradigm adapted from Hoffman and Subramaniam (1995). (D) Results illustrating the shift of
attention prior to making a saccade.

Godijn, 2001).
While these results point to the complexity of attention, nevertheless, the current target of

gaze is an indicator of the internal cognitive state. When making an eye movement, attention
has shown to be necessarily targeted at the target location of the movement (Deubel, Shimojo,
& Paprotta, 1997). Various studies have reported that saccades are preceded by a shift in covert
attention towards the saccadic target (Hoffman & Subramaniam, 1995; Peterson, Kramer, &
Irwin, 2004). Using a dual-task paradigm Hoffman and Subramaniam (1995, Figure 2.1C-D)
found that discrimination performance was improved if the location of the target stimulus was
also the target of a saccade. Four letters were grouped around a central fixation point. Subjects
performed a saccade towards one of the four locations cued by an arrow. After the presentation
of the cue but before the execution of the saccade three distractors (letters Es and Fs) and
one target (T or L) were displayed. Subsequent to the saccade, subjects indicated whether the
target letter comprised a T or an L. Performance was improved if the target letter was at the
location of the saccadic target. This suggests that visual attention is shifted towards the target
of a saccade prior to execution. In a similar study, Godijn and Theeuwes (2003) found that
attention precedes locations of future saccades, and visual attention is higher for closer saccadic
goals.

Studies suggested that spatial locations in our visual field are divided into movement rele-
vant and movement irrelevant locations. Before executing a sequence of two or three saccades,
visual attention at the respective saccadic targets is enhanced (Baldauf & Deubel, 2008a). This
enhancement is restricted to the distinct location and does not extend to locations inbetween.
Further, visual attention is stronger for locations targeted early in the programmed sequence
than for later locations. While they are not functionally equivalent (see Smith & Schenk, 2012,
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for a recent review), there is evidence for a coupling between motor preparation and spatial at-
tention (saccades: Hoffman and Subramaniam (1995); blinking: Irwin (2011); hand movements:
Baldauf and Deubel (2008b); head direction relative to the body: Nakashima and Kumada
(2017)). Finally, in their study, Henderson, Shinkareva, Wang, Luke, and Olejarczyk (2013)
could classify what task a person was performing using features derived from gaze patterns.

2.2 Time perception

Time plays a crucial role on many scales in our lives (see Figure 2.2A), especially when dealing
with dynamic environments. Time intervals involved in visual tasks range from 30 ms (e.g.,
deciding where to look next: Stanford, Shankar, Massoglia, Costello, and Salinas (2010)) over
200-300 ms (e.g., fixations: Rayner (2009)) to a couple of seconds (car in traffic, Figure 2.2C).
In many situations, it is of great significance to keep an internal belief about the environmental
state. This is a direct consequence of the fact that only a small proportion of relevant information
can be monitored using our sensory systems. Hence, overwhelming research has demonstrated
that we rely on predictions and extrapolation of dynamic events to succeed in many tasks (Miall,
Christensen, Cain, & Stanley, 2007; Hayhoe, McKinney, Chajka, & Pelz, 2012; Zago, McIntyre,
Senot, & Lacquaniti, 2008). For example, while driving, we need to keep information about the
location of other cars as accurate as possible even if not looking at them all the time. In order
to do that we need an estimate of the velocity, the last location of the car and, crucially, the
time elapsed since the previous measurement. Prior work has shown that accurate models for
sensory systems are needed to explain behavior (Schmitt, Bieg, Herman, & Rothkopf, 2017).
Hence, the internal estimate about time intervals plays a major role in the internal belief about
the environmental state and therefore in building computational models for eye movements.

How humans perceive and estimate time has been a question from the beginning of the
field of psychology (e.g., James, 1890). Classical experimental designs for the study of time
perception comprise verbal estimation (e.g., -How long is the following time interval? - Five
seconds), production (e.g., Please press this button, wait five seconds, and press it again.),
reproduction (e.g., Please reproduce the following time interval using the buttons), and the
method of comparison (e.g., Is the first time interval longer than the second? ) (Allan, 1979;
Grondin, 2010). It is unclear, which of the paradigms is closest to the role time estimation plays
in natural behavior.

On a neural level, the perception of time has been associated with the cerebellum and
the basal ganglia (see Ivry, 1996, and the references therein). Two dominant theories about
the implementation of temporal information are the global internal clock and a distributed
timing mechanism. Recent results suggest that the representation of temporal information is
distributed. In their study, Motala, Heron, McGraw, Roach, and Whitaker (2018) found that
adaption effects in a temporal reproduction task were only present within a modality but not
across modalities. This suggests that processing of temporal information is done separately
for different modalities. One of the most influential findings in the field of time perception
and particularly relevant to developing computational models for behavior involving temporal
dynamics is the scalar law of timing that follows from Weber’s law (see Figure 2.2B). Weber’s
law relates the size of change of a stimulus to the perceived change by

dp = k
dS

S
,

where dp is the perceived change, dS is the actual change, S is the stimulus size, and k is the
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Figure 2.2: (A) Different scales of time that are relevant in our life (adapted from Mauk & Buonomano, 2004).
(B) The scalar law of biological timing (adapted from Shi, Church, & Meck, 2013). (C) Effect of the
scalar law on estimating the location of a car driving at 50 km/h. Uncertainty about the location is
shown after an interval of 1 s (blue) and 2 s (red). The velocity is assumed to be known, hence the
uncertainty is only caused by the uncertainty of the time interval.

Weber fraction. The Weber fraction for time estimation has been reported to range between 0.05
and 0.35 and can be assumed to be constant for intervals greater 200 ms (Mauk & Buonomano,
2004). The differential equation can be solved by integrating both sides leading to Fechner’s law

p = k lnS + C .

The assumption that time estimation is unbiased has been questioned despite its use in com-
putational models (Hudson, Maloney, Landy, & Friston, 2008). For example, Verordt’s law
suggests that short intervals are overestimated while long intervals are underestimated (Eisler,
Eisler, & Hellström, 2008).

However, in contrast to psychophysical tasks probing the subject with time intervals, time is
often intertwined with complex environmental dynamics and seldomly isolated in more natural
behavior (e.g., crossing a street; Figure 2.2C). In their study, Brown and Merchant (2007)
compared the quality of produced time intervals in a single task design with a dual task design,
where participant concurrently performed a sequencing task. The results showed an increase in
temporal variability if an additional task was present. The fact that the variability in temporal
judgment is affected by resources used simultaneously for other requirements indicates that
uncertainty about time-related dynamics could be higher in complex behavior compared to
simple psychophysical experiments.

The estimation of time intervals has been shown to be affected by various properties of the
environment leading to numerous illusions (Eagleman, 2008). Crucial to models for temporal
gaze allocation, the judgment of time intervals is affected by how fast information changes
(see Eagleman, 2008, for an overview) as well as how predictable a stimulus is (Pariyadath &
Eagleman, 2007). Even the quality of static visual input can influence judgments (Oliveri et al.,
2008). Besides, subjects have been shown to use temporal cues and combine them with other
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reward (green area) was always centered at 650 ms, while the penalized durations were manipulated.
(C) Results for the velocity profiles of saccades from Harris and Wolpert (1998).

noisy percepts to improve an internal model of the dynamic environment (Chang & Jazayeri,
2018).

2.3 Action variability

We can execute actions only with limited precision introducing variability to all behavior. Im-
portantly, humans have shown to take into account variability in their actions. In the influential
study of Trommershäuser et al. (2006), subjects made ballistic hand movements and tapped on
a display with a finger (Figure 2.3A). The display contained two circular areas, one yielding a
positive reward, the other a negative reward leading to four different regions. The results showed
that dependent on the specific values for the rewards subjects targeted different locations in the
areas. If the negative reward was high, the target location chosen by subjects was further away
from the intersection yielding more taps to fall outside of any reward shape. Crucially, subjects’
choice of endpoints was in accordance with a model based on decision theory that maximizes
the expected reward while considering the reaching variability. Hence, the data suggest, that
humans are capable of including motor variability when deciding for future actions.

Besides including the endpoint variability in the decisions involved in movement planning,
studies have investigated whether humans account for temporal uncertainty when timing move-
ments. Indeed, humans have shown to be able to consider temporal uncertainty (Figure 2.3B;
Hudson et al., 2008). In their study, subjects performed nearly optimal in a reaching task that
required them to make hand movements with a specific duration.
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As for ballistic movements of the hands, humans have shown to account for behavioral
variability also when controlling movements of the eyes. In their paramount study, Harris and
Wolpert (1998, Figure 2.3C) showed that the velocity profile of human eye movements can be
described by a computational model minimizing endpoint variability while adjusting for signal
dependent noise.

2.4 Behavioral costs

All actions are associated with costs from contraction of big muscles during walking (e.g., Hall,
Figueroa, Fernhall, & Kanaley, 2004) to individual spikes of a single neuron performing a com-
putation (Lennie, 2003). These rewards and costs guide behavior and complex organisms must
consider various dimensions when choosing appropriate actions. The sources of costs influenc-
ing behavior are manifold and effects can be found on many levels. These respective costs
have to be traded off with the expected reward that is gained by the actions, for example, the
amount of metabolic energy consumed by a specific behavior. For many species, a connection
between behavior and resting metabolic rate has been established (see Biro & Stamps, 2010,
for a review). Besides physiological and anatomical costs, cognitive demand has been found to
influence what actions humans take. The law of least mental effort suggests that actions with
minimal cognitive demand are chosen if everything else is constant. Kool, McGuire, Rosen,
and Botvinick (2010) let subjects repeatedly choose between two task that were associated with
different mental efforts. The overall results showed a preference for the task with the smaller
effort.

Also, for hand movements, prior studies have used inverse computational control theory
to recover the compounds that contribute to the overall costs of an action (Berret, Chiovetto,
Nori, & Pozzo, 2011). The results show that the total costs of a movement can be attributed
to unique cost functions like energy, effort, hand jerk, and torque, among others. The multi-
dimensionality of reward and cost structures has been investigated extensively in economic choice
behavior. For example, a product’s value and therefore the expected reward of deciding in favor
of that respective product can depend on multiple characteristics (see Gupta & Kim, 2010, and
the references therein). Also, there exist various theoretical accounts for the connection between
costs and behavior. Inverse reinforcement learning methods have been developed to infer latent
cost structures from behavioral data (Ng, Russell, et al., 2000; Dimitrakakis & Rothkopf, 2011).
For example, Rothkopf and Ballard (2013) showed how different reward distributions affect the
trajectories in a navigation task. Overall, behavior is deeply intertwined with costs and rewards
and investigating the detailed composition of these structures is a huge ongoing research area.

2.5 The Bayesian brain

The models developed in the current thesis describe human behavior using partially observable
Markov decision processes (POMDPs, for details, see Chapter 3). This corresponds to the
computational level of the three levels of analysis proposed by Marr (1982). According to Marr,
the computational level describes what problem is to be solved, what sensory information is
available, and what computations have to be performed to solve the problem. The algorithmic
level states how the computations are carried out and what representations are used. Finally,
the implementational level describes, how the algorithm and representations are realized in the
real system.
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POMDPs are a suitable framework for modeling human actions as many studies have shown
that behavior is reward driven (e.g., Navalpakkam, Koch, Rangel, & Perona, 2010) and percep-
tual processes can be understood in terms of Bayesian inference. For example, human data on
how multiple sensory cues are combined into a single percept are in accordance with Bayesian
inference (cue combination; Ernst & Banks, 2002; Chang & Jazayeri, 2018). Also, humans
have shown to be able to exploit stochastic dependencies in our environment to improve sensory
measurements (explaining away; Battaglia, Kersten, & Schrater, 2011). Many complex visual
tasks have been successfully understood in terms of Bayesian perception, i.e., object percep-
tion (Kersten, Mamassian, & Yuille, 2004) or color constancy (Brainard & Freeman, 1997).
Also, Bayesian models are regarded as a suitable approach to unfolding the mechanisms behind
behavior (Zednik & Jäkel, 2016).

While our work does not claim to explain how our subjects perform any of the computa-
tions (i.e., on the algorithmic and implementational level), prior research has proposed how
populations of neurons could implement the computations involved in Bayesian inference (see
Pouget, Beck, Ma, & Latham, 2013; Knill & Pouget, 2004, and the references, therein). Two
approaches have been proposed to incorporate uncertainty in neural computations: represent-
ing the distribution parameters and sampling procedures (see Fiser, Berkes, Orbán, & Lengyel,
2010, for a discussion). The former suggests, that neurons represent not only an estimate for
a perceptual quantity but a full probability distribution over potential states of an uncertain
quantity (population codes Ma, Beck, Latham, & Pouget, 2006). The product of two probabil-
ity distributions, as necessary for Bayesian inference, can be realized by adding two population
codes. In the latter approach, Bayesian computations are realized using sampling. Thereby, the
posterior distribution is approximated by repeatedly drawing samples from it. The sampling
procedure can explain idiosyncracies of human behavior such as the unpacking effect and the
base-rate neglect (Sanborn & Chater, 2016).

2.6 Eye movements as actions

Throughout the entire thesis, eye movements are investigated as actions tied to gathering infor-
mation while not altering the state of the world. While the key purpose of the visual system is
perception, often in the specific context of a task, there are exceptions where visual behavior is
not merely a way to sense but has an active impact on the environment itself (Foulsham, 2015).
As an example, we can tell another person to close an open door by looking at it, hence we
can actively deliver information using eye movements. Many aspects of social interactions are
influenced by gaze behavior (see Kleinke, 1986, for example). Also, when working together, eye
movements carry information about future actions that are used by collaborators (Khoramshahi,
Shukla, Raffard, Bardy, & Billard, 2016). The ability to voluntarily use our eyes as effector is
utilized by modern technical applications like gaze-contingent displays as well as eye controlled
systems.

In addition, we have learned to use the information that is immanent to another person’s
gaze. In their study, Kuhn, Tatler, and Cole (2009) recorded eye movements while subjects
watched video clips of two versions of a magic trick. The videos differed with respect to the
magician’s gaze during the critical part of the trick. They found that subjects were more likely to
detect the misdirection if gaze was hinting towards essential locations for the misdirection. Eye
movements also play a vital role as a communicative device (Senju & Csibra, 2008). Infants were
shown videos of an adult gazing at one of two objects. If the adult either made eye contact or
spoke to the camera before looking at one the objects, infants were more likely to follow the gaze.
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Hence, in the presence of ostensive signals infants’ eye movements are guided by adults’ gaze
targets. Finally, gaze has been suggested to play a role during language acquisition. Yu, Ballard,
and Aslin (2005) found better performance in speech-segmentation as well as word-learning if
participants were presented with another person’s gaze location in addition to a visual scene.



CHAPTER3
Computational modeling of human behavior

Here, we will summarize the theoretical underpinnings used for our computational models. First,
we will give a brief introduction to probability theory. Without any claim to comprehensive-
ness, we selected the fundamental concepts underlying the computational models presented in
subsequent chapters. For a detailed treatment of filtering and acting in partially observable
domains see Thrun, Burgard, and Fox (2005). For a comprehensive presentation of Bayesian
inference and graphical models see Gelman et al. (2014) and Jordan (2003), respectively. For
an introduction to the application of Bayesian inference to computational modeling of cognition
and perception see Lee and Wagenmakers (2014). Using probabilistic reasoning to make sound
decisions is treated in DeGroot (2005), and for details on Markov Decision Processes, reinforce-
ment learning and dynamic programming see Sutton and Barto (1998). For an initial treatment
of inverse reinforcement learning, see Ng, Russell, et al. (2000).

3.1 Computational foundations

3.1.1 Probability theory

In order to build computational models for human behavior, we first need an abstract mathe-
matical representation of the problems that humans are designed to solve. For survival we need
to make the right decisions and actions based on sensory information. However, our sensors
are not perfect and the environment is stochastic and ambiguous. Therefore, our brain has to
be equipped to manage stochasticity and uncertainty. Quantitative models describing human
action selection (e.g., decisions in a two alternative choice task), or internal states (e.g., fMRI
data) heavily rely on probability theory.

In probability theory, a random variable x captures the uncertainty about a quantity. For
example, the outcome of a coin flip xi is a priori unknown, but we can assign a probability
p(xi) to seeing the event xi. The probability of an outcome xi is between 0 and 1, an impossible
outcome has probability zero and the probability of either xk or xj is the sum of the probabilities
of the individual outcomes p(xk) + p(xj). A probability distribution p(x) assigns a probability
to all outcomes xi ∈ X in the sample space X .

The probability of two random variables x and y is denoted the joint probability p(x =
xi∧y = yi). The joint distribution p(x, y) assigns a probability to each combination of outcomes
of x and y. The distribution of the individual random variable p(x) can be obtained from the
joint distribution of x and y by marginalization

p(x) =

∫
p(x, y)dy . (3.1)

29
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Figure 3.1: Examples for graphical models. (A) Graphical model showing the dependencies for the random
variables a, b, c, d, e, and f . (B) Same graphical model as in A after having observed the outcome
for c and d.

The probability distribution of a random variable x after we have observed the outcome of
y is the conditional distribution p(x|y). We can express the joint distribution as the product of
a conditional distribution and a marginal distribution as

p(x, y) = p(x|y)p(y) . (3.2)

Bayes’ rule follows by simply rewriting Equation 3.2:

p(x|y) =
p(x, y)

p(y)
=
p(y|x)p(x)

p(y)
(3.3)

Two random variables are independent if knowing the outcome of one of the variables does
not give us any information about the outcome of the other. Hence, if two random variables
x and y are independent, it follows that p(x|y) = p(x) and p(y|x) = p(y), respectively, and
therefore the joint distribution can be written as the product of the marginal distributions

p(x, y) = p(x)p(y) . (3.4)

Two random variables are conditionally independent if they become independent in the
presence of a third variable. If x is conditionally independent of y given z it follows that

p(x, y|z) = p(x|z)p(y|z) . (3.5)

Computations are simplified if variables are independent or conditionally independent.

3.1.2 Graphical models

A graphical model captures the dependency structure between random variables. It consists of
a set of random variables (nodes) as well as a set of connections (edges) between the nodes. An
edge between two random variables represents a dependency. For direct edges in a graphical
model we can derive a factorization of the joint distribution that considers all independence
assumptions and conditional independence assumptions made by the model using

p(nodes) =
∏

node∈nodes
p(node|pa(node)) (3.6)
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Figure 3.2: Different levels of computational models during ball catching. The figure depicts an agent (right)
trying to catch the ball reasoning about the current position of the ball (s) and what action (a) to
perform next. The researcher is observing the agent’s action (a) while trying to infer the uncertainties
of the agent’s sensory system (ψ) and the structure of the agent’s cost function (φ).

where pa(·) denotes the parents of node ·. For example, the joint distribution shown in the
graphical model in Figure 3.1A can be factorized as

p(a, b, c, d, e, f) = p(a|e, f)p(d|a, b)p(c|a)p(b)p(e)p(f) . (3.7)

In practice, we are interested in computing p(A|B), i.e., the probability distribution of a set
of random variables A after having observed a set of random variables B from a joint distribution
p(A,B, C). For example, when assessing a person’s IQ, we want to infer the latent concept of
intelligence (intelligence ∈ A) through the measurement of the test score (score ∈ B) while
integrating out the influence of confounding effects (e.g., fatigue ∈ C). Using the rules for
marginalization and conditional distributions we can compute any distribution of the random
variables in a graphical model using the joint distribution

p(A|B) =

∫
C

p(A,B, C)
p(B)

dC . (3.8)

For example, if we want to compute p(a, b|c, d) from the joint distribution p(a, b, c, d, e, f) in
Figure 3.1B we can use the same approach and set A := a, b, B := c, d, and C := e, f yielding

p(a, b|c, d) =

∫
e

∫
f

p(a|e, f)p(d|a, b)p(c|a)p(b)p(e)p(f)

p(c, d)
df de . (3.9)

3.1.3 Levels of modeling

A computational model for behavior is a quantitative description for the action selection of an
agent. It specifies how information in the form of sensory percepts is processed and used to choose
appropriate actions. However, it is important to distinguish two different levels of computational
models that arise when studying active agents (see Figure 3.2): (A) The cognitive model of the
human or the animal solving the problem. This model describes how the agent processes sensory
observation, makes inferences about latent environmental states, and finally takes actions that
optimizes a mixture of intrinsic and task-related rewards and costs (reinforcement learning). (B)
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Figure 3.3: Agent-environment relationship. The left panel shows the procedure of the agent interacting with the
environment. The right panel shows the statistical relationship.

The model of the researcher, who observes data in the form of the subjects’ actions and makes
inferences about latent characteristics (inverse reinforcement learning). While the subjects’
reasoning is targeted at what the best action is given the current belief and the reward function,
the researcher is reasoning about what the current belief and the reward function is given that
the observed action of the subject is close to optimal.

3.2 Partially observable Markov decision processes

Next, we describe a general formalization of how an agent interacts with its environment. The
procedure is as follows (see Figure 3.3): The agent, currently in a state s, takes an action a
and transitions to the next environmental state s′. It then receives an observation from the
sensory systems o′ as well as a reward r′. This formulation as well as all computational models
presented in the present thesis build on the concept of partially observable Markov decision
processes (POMDP). A Markov Decision Process (MDP Bellman, 1957; Sutton & Barto, 1998)
is a mathematical formalization of an agent acting in an environment. Formally, it denotes a
tuple (S,A, T,R, γ), where S is a set of states, A is a set of actions, the transition function
T = p(s′|s, a) is a conditional probability distribution of the next state given the current state
and the current action, R represents the reward function, and finally, γ denotes the discount
factor.

The state space S is a formal description of what states of the environment are relevant to
the problem. Usually, this depends on what problem we want to solve. For example, a potential
state-space is the location of a target in visual a search task. Another example is the location
and velocity of a ball in a ball catching task. A state formulation is denoted complete if it is
Markovian. The Markov property is satisfied, if p(s′|s−, a−, o−) = p(s′|s, a), where s−, a−, and
o− denote all states, actions, and observations prior to s′, for all states. Hence, the state s
captures all relevant information from past actions and observations.

In POMDPs (Kaelbling, Littman, & Cassandra, 1998; Murphy, 2000), the states are not
directly observable but can only be inferred through observations. For example, in a visual
search task, the location of the target is not known. With each eye movement, the distribution
of potential target locations is altered. A POMDP is formalized as a tuple (S,A,Z,O, T ,R, z0),
where S, A, T , R define the underlying MDP. In addition, Z is a set of belief states, O is a set of
observations and z0 is the initial belief state. A belief state is a probability distribution over states
and therefore summarizes the agent’s knowledge about the current state. In our visual search
example, the belief state could be the probability distribution over potential target locations.
The true state s is not observable directly, instead, it must be inferred from observations.
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Figure 3.4: Perception as graphical models for inferring the current state. (A) The current state s′ depends on
the complete history. (B) Assuming the Markov property, the current state is independent of past
actions and observations given the last state. (C) The action does not depend on the state.

3.2.1 Perception

Perception uses sensory systems to collect measurements of latent environmental quantities. In
the framework of POMDPs the task-relevant quantities are formalized as a state. Our envi-
ronment is complex, ambiguous, and our sensory systems are imperfect leading to additional
uncertainty in our perceptions. As a consequence, the environmental state is not fully observ-
able but must be inferred from perceptual observations. Probability theory provides consistent
methods both to quantify the uncertainty we have about the state using probability distributions
as well as to update these when novel measurements are received.

The graphical model shown in Figure 3.4 depicts the random variables of interest and the
dependencies. Assume that what we currently know about our environment is summarized
in the random variable s. Instead of knowing the exact value for s, we keep a probability
distribution p(s) assigning each potential state a value indicating the degree of belief of that
particular state being the true one. Next, we perform an action a and as a consequence collect
a new measurement o′ and transition to the next state s′. How can we incorporate this new
measurement into what we know about the state s?

Formally, we want to compute p(s′|a−, o−), the probability of s′ given all past actions a− and
all past observations o−. From the graphical model, we can derive this probability distribution
using the rules for probability distributions introduced in the last section

p(s′|a−, o−) =

∫
s−

∫
a−

∫
o−

p(s′, s−, a−, o−, a, o′)

p(a, o′)
do− da− ds− . (3.10)

We can simplify this problem by making several independence assumptions leading to the Bayes’
filter and finally to Bayesian inference.

Assumption 1: Markovian state If we assume our state formulation to be complete, i.e.,
each state summarizes all relevant information about the latent quantities of interest, the se-
quence of states becomes a Markov chain. Hence, the probability distribution of each state is
independent of the past given the last state. In the graphical model, this corresponds to the
absence of edges between the state and past observations, actions, and states (Figure 3.4B)

p(s′|a, o′) =

∫
s

p(s′, s, a, o′)

p(a, o′)
ds . (3.11)
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From the graphical model, we can derive the factorization as

p(s′|a, o′) =

p(o′|s′)
∫
s
p(s′|s, a)p(a|s)p(s)ds

p(a, o′)
(3.12)

where p(o′|s′) is the likelihood of the observation given the new state,
∫
s p(s

′|s, a)p(a|s)p(s)ds is
the prior probability of the new state before observing o′, and p(a, o′) is the marginal probability
of the observations.

Assumption 2: Action does not depend on the state If we make the assumption that
the action is independent of the state (Figure 3.4C), i.e., p(a|s) = p(a), computations simplify
and we get the equation for the Bayes filter

p(s′|a, o′) =

p(o′|s′)p(a)
∫
s
p(s′|s, a)p(s)ds

p(a, o′)
∝ p(o′|s′)

∫
s

p(s′|s, a)p(s)ds . (3.13)

This assumption is easily violated, for example, when we design an experiment a based on what
we already know s about a quantity of interest s′. It is apparent that in some situations the prior
knowledge has an impact on the experimental design. For example, during visual search, our
prior belief about the location of a target influences where we direct our gaze to next (Torralba,
Oliva, Castelhano, & Henderson, 2006).

Assumption 3: Action does not change the state If we assume that the action does not
change the state, p(s′|a, s) becomes a point mass at s′ = s, computations simplify and we obtain

p(s′|a, o′) =
p(o′|s′)p(s)

p(o′)
, (3.14)

which is Bayes’ rule as it is applied in data analysis. This assumption is valid for purely percep-
tual tasks, for example, eye movements usually do not influence the course of the environment.
Although, under some circumstances, they have been shown to do so, e.g., in social settings (see
Chapter 2.6).

3.2.2 Action

In the previous section, we have shown how observations can be used to update our belief
about potential states. Here, we describe an approach for finding actions that lead to good
performance, i.e., yield high rewards. In particular, our goal is to find an action sequence that
maximizes the expected sum of future rewards, i.e., the optimal policy π∗. A policy is a mapping
between states and actions and the optimal policy connects each state to the optimal action.
In partially observable environments, complete states comprise probability distributions over
states s, the belief states b = p(s). Hence, we account for the uncertainty about the current
state through the belief state b.

The expected sum of long-term rewards associated with performing action a in belief state
b and following policy π after that is denoted the state-action value Qπ(b, a). We can compute
Qπ(b, a) by

Qπ(b, a) =

∫
b′

p(b′ | b, a)
[
R(b′, a) + γV π(b′)

]
db′ (3.15)
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where V π(b′) is the expected future reward in the next belief state b′ = p(s′) and p(b′|b, a) is
the probability of transitioning from belief state b to belief state b′ when performing action a.
R(b′, a) is the expected immediate reward and γ is the discount factor. Essentially, this means
that the value of an action based on the current belief is a combination of the immediate reward
and the expected long-term reward, weighted by how likely the next belief is under the action.
The discount factor controls the trade-off between immediate rewards and long-term rewards.

The transition probability p(b′|b, a) can be computed as

p(b′|b, a) =

∫
o′

p(b′|b, a, o′)p(o′|b)do′ . (3.16)

Crucially, under the assumption that the agent uses the Bayes’ filter to update its belief
p(b′|b, a, o′) is a point mass at b′ = p(s′|b, a, o′). This is due to the fact, that given a belief
b, an action a, and an observation o′, there is a unique next belief b′ under the Bayes’ filter.
Plugging this into Equation 3.15 yields

Qπ(b, a) =

∫
o′

p(s′|b, a, o′)p(o′|b)
[
R(p(s′|b, a, o′), a) + γV π(p(s′|b, a, o′))

]
do′ (3.17)

We can compute the Q values using dynamic programming. Once we have computed the Q
values, we can derive the optimal policy π∗, i.e., a mapping between belief states and actions that
maximize the reward. Given the optimal Q values Q∗(s, a) = max

π
Qπ(b, a) the action according

to the optimal policy aπ∗ can be derived as

aπ∗ = arg max
a

Q∗(s, a) (3.18)

3.3 Applications

The presented framework of partially observable Markov decision processes is powerful but com-
putationally expensive. Due to its generality, it subsumes various prominent methods, including
Bayesian decision theory, ideal observer theory, Bayesian experimental design, and reinforcement
learning.

3.3.1 Observable states and delayed rewards

If the state space is observable, i.e., the current state s is fully known, our belief state b = p(s)
is one at s and zero everywhere else. Hence, we can simplify the computation of the state-action
values by using s instead of b in Equation 3.15

Q(s, a) =

∫
s′

p
(
s′ | s, a

)[
R(s′, a) + γV ∗(s′)

]
ds′ . (3.19)

This yields the general formalism of reinforcement learning, that has been applied frequently to
experimental data (see Dayan & Daw, 2008, and the references, therein).



CHAPTER 3. COMPUTATIONAL MODELING OF HUMAN BEHAVIOR 36

3.3.2 Observable states and immediate rewards

If delayed rewards do not play a role, computations can be simplified further by setting the
discount factor γ to zero yielding

Q(s, a) =

∫
s′

p
(
s′ | s, a

)
R(s′, a)ds′ . (3.20)

For example, this approach was used by Trommershäuser et al. (2006, see Chapter 2). In their
study, perceptual uncertainty was negligible, thus the state was assumed to be known. As the
task only comprised single ballistic action, delayed rewards did not play a role. In their reaching
model, subjects chose the location with the maximum expected reward while considering their
reaching variability p(s′|s, a).

3.3.3 Partially observable states and immediate rewards

The sensory information we perceive is noisy, and due to the limited resources of our visual
system, we can only perceive a small proportion of our environment at any given time. Hence,
in most situations, we have uncertainty about the current state. Nevertheless, under some
circumstances, it is sufficient to compute the optimal next action rather than the action that
maximizes the long-term return. A first example is a scenario in which the task only comprises
a single action and only a single reward is received. Clearly, the sum of all returns is equal
to the single reward in this scenario. A second scenario is if the action does not change the
state. For example, when tossing a coin several times the state before each toss does not change,
hence finding the optimal action for this state is sufficient (this is exploited in the model for the
temporal event detection task in Chapter 6). Third, maximizing the immediate reward instead
of long-term returns can be an appropriate model for agents not capable of the computations
involved in handling delayed rewards (a characteristic often implicitly assumed for human eye
movements, which we question in Chapter 8).

Removing delayed rewards from our full POMDP model yields

Qπ(b, a) =

∫
b

p
(
b′ | b, a

)
R(b, a)db′ , (3.21)

alternatively, Equation 3.17 leads to

Qπ(b, a) =

∫
o′

p(s′|b, a, o)R(p(s′|b, a, o), a)do′ . (3.22)

This corresponds to taking the action that yields the belief that leads to the maximal reward
and is equivalent to the ideal searcher in the visual search task of Najemnik and Geisler (2005),
which suggests fixating the location that subsequently maximizes the probability of finding the
target.

If we assume that the observation has already been received the model results in Bayesian
decision theory. To maximize the reward, the action that maximizes the expected reward should
be taken.

Qπ(b, a, o′) =

∫
s′

p(s′|a, o′)R(s′, a)ds′ . (3.23)
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where p(s′|a, o′) is the posterior and R(s′, a) is the reward function.

3.3.4 Partially observable states and delayed rewards

This is the most general and most complex scenario described at the beginning of the chapter.
However, for many problems, the approach is computationally not feasible (Murphy, 2000).
Over the last years, approximate techniques have been developed, but guarantees are scarce and
empirical evaluations currently limited (Hausknecht & Stone, 2015). Especially, when modeling
human behavior, multiple characteristics further complicate the approach. The optimal action
an agent can take is the action that yields the maximum expected long-term reward. The reward
or utility ”are numerical representations of . . . tastes and preferences” (DeGroot, 2005, p. 86).
The reward function R : (s, a) → R maps each state-action pair (s, a) to a scalar number r.
However, seldom a single factor contributes to the reward (Rothkopf & Ballard, 2013). Instead,
a state action pair is associated with multiple sources of positive (reward) and negative (cost)
returns. It has been shown that many aspects contribute to the total reward associated with an
action (see Chapter 2.4, for empirical work regarding the cost structure)

R(s, a) =
∑
i

ri(s, a) (3.24)

where ri(s, a) denotes a component contributing to the reward associated with state action pair
(s, a). The different factors contributing to the overall reward originate from the environment
(e.g., task performance) or from the agent itself (e.g., intrinsic costs like mental effort). The
specific structure of the reward function is unknown to the researcher, in general, and is inferred
in the research process (inverse reinforcement learning), for example using a linear model and
estimating how much each dimension contributes to the total reward

R(s, a) =
∑
i

wixi(s, a) (3.25)

where xi is an explanatory variable connected to the costs measured by the researcher and wi
quantifies how much the variable influences the total reward. Also, action selection may be influ-
enced by uncertainties regarding consequences of actions, as humans may know which states are
rewarding, but not how to reach them. This can be modeled using structured generative models
of actions deviating from reward maximization in inverse reinforcement learning (Rothkopf &
Dimitrakakis, 2011).

In natural behavior, the action space is high-dimensional as various end effectors are con-
trolled simultaneously. For example, in tasks involving eye-hand coordination like making a
peanut butter and jelly sandwich (Hayhoe & Ballard, 2005) the action space comprises at least
tuples of actions A = (ahand, agaze) at each time step. In reality, various joints have to be con-
trolled using motor signals to generate proper hand movements. If we consider sports games
like playing squash (Hayhoe et al., 2012) even more dimensions need to be controlled simulta-
neously. Finally, in addition to learning the connections between actions, rewards, observations,
and states, human subjects may even have to learn what state representations to use, which ac-
tion they might have at their disposal and what can be considered rewarding. This full problem
is still out of scope of current machine learning.



CHAPTER4
Related work on temporal eye movements

4.1 Computational models for eye movements

Computational and algorithmic models for eye movements attempt to describe where we direct
gaze and predict future fixation locations in quantitative, mathematical terms. Various factors
have shown to influence where we choose to fixate including low-level image features (Borji,
Sihite, & Itti, 2013), scene gist (Torralba et al., 2006) and scene semantics (Henderson, 2003),
task constraints (Rothkopf et al., 2007), extrinsic rewards (Navalpakkam et al., 2010), and
also combinations of factors have been investigated (Schütz, Trommershauser, & Gegenfurtner,
2012). Studies have cast doubts on the optimality of spatial gaze selection (Morvan & Maloney,
2012; Morvan & Maloney, 2009; Clarke & Hunt, 2015), but computational models of the spatial
selection have in part established that humans are close to optimal in targeting locations in
the visual scene, as in visual search for visible (Najemnik & Geisler, 2005) and invisible targets
(Chukoskie, Snider, Mozer, Krauzlis, & Sejnowski, 2013) as well as face recognition (Peterson
& Eckstein, 2012) and pattern classification (Yang, Lengyel, & Wolpert, 2016).

4.1.1 Bottom-up models

Bottom-up models predict human eye movements solely from the visual input suggesting that
low-level features in the visual scene guide eye movements. In order to predict spatial targets
of eye movements, low-level features like contrast and orientation are used to assign a value to
each region present according to how salient it is. The resulting map is referred to as saliency
map (e.g., Itti, Koch, & Niebur, 1998). “The purpose of the saliency map is to represent the
conspicuity ... at every location in the visual field by a scalar quantity and to guide the selection
of attended locations” (Itti et al., 1998, p. 1255).

Although many different saliency models have been proposed in the past, the approaches
share a common procedure: First, the image is transformed to low-level features like color or
orientation using filtering by appropriate kernels. The maps that result from filtering are then
combined to yield a saliency map. Bruce and Tsotsos (2009) proposed a saliency model they
term Attention based on Information Maximization (AIM). They computed the likelihood of
the features for an input image using the distribution of feature coefficients at each location in
the image. The saliency map is created from these distributions after transforming them to the
information-theoretic measure of self-information. The described methods use predefined filters
that are either handcrafted or based on findings of human information processing. However, more
recently, machine learning has been used to learn to classify salient regions in natural images
(see Zhao & Koch, 2013, for a review). Also, the computation of saliency using deep neural
networks has been proposed (Zhao, Ouyang, Li, & Wang, 2015). Thereby, a deep convolutional

38
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network is pretrained on image classification. The resulting filters are then used as initial values
for predicting the saliency of image regions.

As only the visual input is considered, computational and algorithmic models based on
saliency maps predict the same scanpath independent of which task a person is solving, although
this is a factor known to be contributing to gaze behavior (Yarbus, 1967, Figure 4.1A). Prior
studies have shown, that these computer-generated saliency maps are in accordance with the
judgments of observers about the saliency of objects in scenes. In their study, Borji et al.
(2013) let subjects choose which object in a scene containing two objects was considered more
salient. The results showed that the computed saliency of objects selected by the subjects
was significantly higher compared to the objects that were not selected. While being able
to qualitatively reflect the effects found in humans regarding pop-out and conjunctive search,
saliency models performed poorly for visual search in complex natural images (Itti & Koch,
2000).

A saliency map is not a direct model for eye movements, i.e., it does not imply any actions.
Instead, it merely is a description of how much each location attracts gaze. Hence, an additional
mechanism generating actions from the map is needed. For example, in Itti et al. (1998) the
last layer of the saliency map is modeled as leaky integrate-and-fire neurons. The inputs of
the neurons are the aggregated feature maps. The neurons excite a network of winner-takes-all
neurons. Once a threshold of activation is reached, the model predicts an eye movement to the
corresponding location.

However, additional characteristics have to be accounted for when generating realistic eye
movement patterns from saliency maps. First, the saliency map is independent of the task as
well as of the previous actions of the observer. Hence, a location with a high value of saliency
remains a high value independent of how long it already has been fixated. In order to prevent
getting stuck at a location or reattending the same location over and over again, previously
attended locations are inhibited (inhibition of return). Using inhibition of return eye move-
ments are pushed towards other high saliency regions apart from the current fixation location.
However, this does not depend on the distance to the next location, hence it assumes that
the amplitude of the saccade does not play a role. Clearly, the distribution of saccade ampli-
tudes is not uniform (Tatler, Baddeley, & Vincent, 2006), instead, it is dominated by smaller
amplitudes. In order to favor locations close to previously attended regions, mechanisms that
promote smaller amplitudes have been suggested (proximity preference). More fundamentally,
it has been disputed, whether inhibition of return actually is a biologically plausible spatial
mechanism in gaze selection (Wilming, Harst, Schmidt, & König, 2013; Ludwig, Farrell, Ellis, &
Gilchrist, 2009). For example, it has been shown that inhibition of return is greatly influenced
by environmental statistics (Farrell, Ludwig, Ellis, & Gilchrist, 2010). Finally, saliency models
do not include the temporal course of eye movements, i.e., the fixation durations. Overall, while
various results indicate that eye movements are influenced by low-level features, saliency models
account for only a part rather than yielding complete models for human eye movements.

4.1.2 Top down models

Besides low-level features the impact of top-down processes on the perception of visual stimuli
has been investigated (see Gilbert & Li, 2013, for a review on a neural level). Eye movements
have been shown to be particularly influenced by the current goals (Rothkopf et al., 2007; Yarbus,
1967; Castelhano, Mack, & Henderson, 2009, Figure 4.1B). The specific reward structure an
agent attempts to maximize is usually unknown, though the performance in the current task is
likely to be a factor (see Peterson & Eckstein, 2012; Najemnik & Geisler, 2005, for example).
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Figure 4.1: (A) Data shown form Yarbus (1967). Subjects’ eye movements are shown (white traces) while looking
at the painting An Unexpected Visitor by I.E. Repin. The graphical images overlaying the original
data from Yarbus (1967) onto a color image of the painting was retrieved from Archibald (2008).
(B) Experimental design and results from Rothkopf, Ballard, and Hayhoe (2007). During navigation
(left), eye movements were different with respect to the instruction. If picking up the purple objects
was the dominant task, purple objects were fixated more often compared to if the task was to avoid
blue obstacles (right). (C) Effect of context information in visual search (adapted from Torralba,
Oliva, Castelhano, & Henderson, 2006). The bottom-up features of the scene are independent of the
task. However, the scene context, i.e. the prior belief about where an object is located within a scene
highly depends on the object. Therefore, when searching for a painting, the upper part of the scene
is more likely as paintings usually hang on walls. The results showed that eye movement patterns
resembled a combination of saliency and location prior.

This indicates that we control our eye movements in a way that leads to maximal task related
reward. In contrast, information theoretic measures suggest that eye movements are deployed
to maximize knowledge about the environment. Itti and Baldi (2006) proposed a model based
on Bayesian surprise suggesting that we move our eyes to the location that leads to the greatest
difference between prior and posterior, i.e., the highest gain in information. Also, it has been
suggested that actions are chosen that minimize free energy of sensory inputs (see Friston,
Adams, Perrinet, & Breakspear, 2012, and the references therein). A similar methodology
was used for defining goal relevance, a measure of how much an observation changes how a
problem can be solved (Tanner & Itti, 2017). Another information theoretic approach was
presented by Renninger, Verghese, and Coughlan (2007). Under specific conditions, information
theoretic approaches lead to similar actions as maximizing task-related reward. In their study,
participants studied an irregular shape for 1.2 seconds. Subsequently, they were asked to choose
the previously displayed shape among a set of two similar shapes. The results showed that eye
movements were well described by a computational model maximizing information. However,
the proposed action selection only maximized the information in the next step, a property that
we will question in Chapter 8. Finally, a combination of task related reward and information
theoretic minimization of uncertainty has been presented in the past (Schwartenbeck et al.,
2015).
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Figure 4.2: Experimental designs used to study eye movements. First, experimental paradigms can either have a
clear reward structure (left) or not (right). While in the former actions are associated with different
costs and benefits, for example, smart gaze behavior in visual search leads to a greater probability of
finding the target, the latter has no such relationship. Second, we can categorize the stimuli as static
(they remain constant during the task) or dynamic. Finally, on the spatial level stimuli can either be
more complex like natural images or less complex like Gabors or Ts among Ls.

4.1.3 Combination of bottom-up models and top-down models

Humans have shown to fixate locations that are both salient as well as valuable (Navalpakkam
et al., 2010). There have been attempts to combine low-level visual features with top-down
processes. For example, prominent top-down factors comprise features like face detection and
preference for central and horizontal locations (see Judd, Ehinger, Durand, & Torralba, 2009;
Borji, 2012, for example). Using Bayes’ rule Oliva, Torralba, Castelhano, and Henderson (2003)
combined low-level image based features with top-down characteristics. In particular, a prior
probability over locations for objects in scenes was learned from a set of images. The study gives
a possible explanation, how the heuristics used in other works (e.g., horizon preference) could
arise from experience. It has been shown that humans use context information when searching
for a target in natural images. Results from human eye movements show that that information
about the task-specific scene context is combined with bottom-up features to select suitable gaze
targets (Torralba et al., 2006). The influence of scene context is shown in Figure 4.1C.

4.2 Experimental design for studying eye movements

Different experimental designs have been used to study the visual system deploying different
stimuli and tasks (Figure 4.21). The distribution of eye movements in our daily lifes is charac-
terized by enormous complexity making studies about the underlying processes and predicting
future behavioral actions incredibly difficult. Consider a complex visual task like navigating
through a crowded city. We need to find a suitable path to our destination while avoiding col-
liding with traffic and pedestrians. This is done by receiving visual information through eye

1Images were taken from Mital, Smith, Hill, and Henderson (2011), Najemnik and Geisler (2005), Peterson
and Eckstein (2012), Judd et al. (2009), Hayhoe and Ballard (2005).
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movements and simultaneously solving the complex motor tasks involved in walking. Hence, we
perform multiple actions at any given time. In addition, various aspects of this environment
have their own dynamics which are stochastic and uncertain. Also, inherent in an environment
containing other active agents, there are several other factors introducing uncertainty: First,
extracting relevant information, e.g., the current velocity of a car driving by, is only possible
with limited precision. Second, our visual apparatus can only perceive a small area at any given
time. This introduces uncertainty about the state in the regions that are currently not fixated.
Third, uncertainty increases over time due to memory leakage. These statistics and their uncer-
tainties need to be considered when making predictions about the environmental state. Being
able to predict the course of the environment is crucial on many levels ranging from overcoming
internal delays in eye-hand coordination (Miall et al., 2007) to successfully managing complex
tasks (e.g., Hayhoe et al., 2012).

In a natural task, the environmental state is high dimensional and uncertain, the dynamics
(transition function) are only partially known, stochastic and depend on the current time. Also,
a rich structure of dependencies connect the spatial and temporal aspects of the environment
and multiple actions are often performed simultaneously. Finally, the reward structure is multi-
dimensional, usually only known to the researcher to some extent, and the connection to actions
is often delayed. Hence, while some authors claim that studying the visual system should always
use natural images as stimuli (Yuille & Kersten, 2006), creating computational models for eye
movements in these tasks is unfeasible due to the complexity of natural behavior in dynamic
environments. While many of the effects found in spatial gaze selection originate from controlled
experiments using simple stimuli with known statistics, research applying this paradigm to the
temporal dynamics of vision is scarce.

4.3 Stimuli for complex temporal dynamics

In Chapter 3, we gave a brief introduction in partially observable Markov decision processes.
While the approach is powerful in describing decisions and actions in various situations, the
computations involved in finding optimal solutions are costly and for complex scenarios the
analysis quickly becomes unfeasible. In particular, this applies to nonstationary environments
where the state transition p(s′|s, a, t) also depends on time. Here, we investigate properties
of experiments and stimuli which make computational models based on POMDPs applicable.
We want to probe the visual system using stimuli with temporal dynamics that reflect the
dynamics found in our natural environment. The following stimulus and task characteristics
are advantageous for modeling visual behavior as they reduce complexity not relevant for the
research question.

(1) Controlled temporal statistics.
The relevant temporal statistics should be known and controlled. This enables computing
the probability distribution over the future states p(st+n|st, n), the basis of inferring the
subjects’ belief about the state progression while gaze is directed elsewhere. When the
transition probability is unknown, e.g., when using natural stimuli like movies, images, or
real-world behavior, computing the transition in the belief space p(b′|b, a) is not possible.

(2) No peripheral vision.
We minimize the spatial complexity of the stimuli by eliminating the role of peripheral
vision (either by adjusting the distance between stimuli or by using gaze-contingent tech-
niques). As a consequence, information is only obtained from a single location at any given
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time and we do not need to account for the decline of visual acuity with increasing eccen-
tricity. While proper methods to account for foveation exist (see Geisler & Perry, 1998, for
example) and have been used in computational models for spatial problems (Najemnik &
Geisler, 2005; Peterson & Eckstein, 2012), unnecessary complexity is added to the study
of the time course of eye movement strategies. By excluding peripheral vision, the action
space becomes discrete.

(3) Discrete observations.
The detection of the environmental state should be as simple as possible. In particular, the
state of a stimulus should be completely observed after an initial processing time. Hence,
if fixated, the belief about the state of a stimulus is constant, unless there are changes
in the stimulus. This yields an observation distribution p(o′|s′) that can be managed
computationally. This is opposed to complex visual scenes where information about action
relevant states must be integrated from multiple observations. For example, while driving,
multiple observations are needed to infer the velocity from the car behind us. Also, in
complex scenes, information must often be integrated across multiple fixations.

(4) Independent locations.
The dynamics of the discrete regions should be independent. Thus, observing a location
does not reveal any information about the state of any other region.

Stimuli having these characteristics facilitate tractable computational models while still shar-
ing similarities with the temporal dynamics found in our environment. However, in order to use
the framework of partially observable Markov decision processes for studying eye movements,
we need to have access to the reward structure. This excludes free viewing of static and dynamic
scenes. Instead, we propose event detection tasks as a natural counterpart to what visual search
is for spatial gaze selection in the temporal domain. There is a clear connection between inter-
nal beliefs about the current environmental state and reward. More knowledge in task-relevant
domains leads to higher probability of event detection and therefore to better task performance.
While eye movements are organized together with other actions in natural behavior, in an event
detection task no other actions are needed and therefore the complexity is reduced further.
However, the approach is not limited and can easily be extended, for example by combining it
with a control task.



CHAPTER5
Humans quickly learn to blink strategically in

response to environmental task demands

5.1 Introduction

5.1.1 Physiology of blinking

Blinking is an omnipresent involuntary process, which humans carry out 15 – 17 times per minute
(Bressman, Cassetta, & Bentivoglio, 1997), on average. It primarily serves the physiological
purpose of cleaning the surface of the eye and providing a stable tear film (Sweeney, Millar,
& Raju, 2013), of preventing optical aberrations (Montés-Micó, 2007; Koh, Maeda, Hirohara,
Mihashi, & Ninomiya, 2006; Montés-Micó, 2007; Koh et al., 2008), and thus maintaining a good
quality of vision (Tutt, Bradley, Begley, & Thibos, 2000). Besides these positive consequences,
blinking has an immediate negative consequence on perception as while blinking the stream
of visual information is interrupted (Figure 5.1A). Moreover, in addition to the break of optic
signals due to the occlusion of the pupil by the upper lid, neural processing is inhibited (Bristow,
Haynes, Sylvester, Frith, & Rees, 2005; Volkmann, Riggs, & Moore, 1980). This leads to
perceptual gaps every two to three seconds. If not timed correctly, these gaps can lead to
negative outcomes in numerous situations. In social interaction, for example, microexpressions
have a duration between 160 and 500 ms and can therefore easily be missed due to a blink
(Yan, Wu, Liang, Chen, & Fu, 2013). Indeed, humans have been shown to reduce these gaps
by combining blinks with saccades (Fogarty & Stern, 1989; Evinger et al., 1994), during which
neuronal processing is also inhibited. The same has been shown for animals (Yorzinski, 2016;
Gandhi, 2012). Overall, the positive effects of blinking on the maintenance of proper vision
and the negative effects of the interruption of vision constitute a fundamental trade-off. Hence,
controlling actively when to blink provides a behavioral advantage compared to blinking at
random points in time.

5.1.2 Blinking and visual information

Investigations of the control of blinking have revealed an intriguing multitude of additional
factors influencing human blink rates so that blinking is often used as a behavioral marker for a
variety of internal processes. Blinking is closely intertwined with cognitive functions connected
to dopamine (see Hayes & Greenshaw, 2011, for a recent review). In particular, blink rates
reflect the progress of learning (Slagter, Georgopoulou, & Frank, 2015) and the perception of
time (Terhune, Sullivan, & Simola, 2016). Blinking is also affected by our current goals and
actions. It depends on what task we are solving (see Garcia, Pinto, Barbosa, & Cruz, 2011;
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Figure 5.1: Experimental design and stimulus generation. (A) Schematic time course for a single blink (adapted
from Volkmann, Riggs, & Moore, 1980). (B) Four different interblink interval distributions found by
Ponder and Kennedy (1927). The shapes are not equally frequent. Most subjects showed J-shaped
(62 %), Symmetric was the least often (4 %), Bimodal and Irregular comprised 12 % and 22 % of the
cases, respectively.

Doughty, 2001; Cruz, Garcia, Pinto, & Cechetti, 2011, for reviews), how long we are on the task
(Stern, Boyer, & Schroeder, 1994), how difficult the task is (Schieppati & Schmid, 2011), and
it is an indicator of what we remember afterward (Shin et al., 2015). Even the coordination of
blinks and saccades is influenced by cognitive factors (Williamson, 2004). Finally, blinks have
been shown to be synchronized across people during conversation and thus might play a role in
human social communication (Nakano & Kitazawa, 2010). While blinking is clearly related to
these cognitive processes it is still debated whether the appropriate measure is the blinking rate
during a task, the spontaneous blinking rate, or possibly the distribution of times between two
consecutive blinks, the so-called interblink interval distribution (IBI), or whether these quantities
are potentially inherently related (see Jongkees & Colzato, 2016, for a recent discussion). Thus,
a better understanding of the process underlying blinking behavior is beneficial to understanding
a wide range of perceptual and cognitive processes.

5.1.3 Related work on blinking

Although numerous empirical studies have established the importance of blinking, quantitative
explanations have been scarce. Current models assume a linear increase in urge when blinking
is suppressed (Berman, Horovitz, Morel, & Hallett, 2012) or an oscillating blink generator
(Moraitis & Ghosh, 2014), but both models considered voluntary blink suppression and do not
incorporate any task-related influences. One reason might be that environmental regularities
and task related costs are usually complex and unknown. The lack of quantitative models
is surprising considering the strong contingencies between environmental statistics and gaze
behavior, which have been explained successfully through modeling (Najemnik & Geisler, 2005;
Chukoskie et al., 2013; Peterson & Eckstein, 2012; Hoppe & Rothkopf, 2016). As with blink
rates, few computational approaches exist that describe the temporal course of blinking. In
particular, the IBI distribution is an active research area. In their seminal paper, Ponder
and Kennedy (1927) found four different types of IBI distributions (see Figure 5.1B). Since
then, many studies have presented similar results showing that subjects’ IBI distributions show
great variability (e.g., Zaman & Doughty, 1997). However, the origin of these different IBI
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Figure 5.2: Experimental design and stimulus generation. (A) Task design. In each block a grey dot (0.3°) moved
on a circular trajectory for 100 consecutive laps. The trajectory was not visible to the subject. In
each lap 3 – 5 events occurred. An event comprised the circle being replaced with a comic face for 50
ms. Subjects attempted to detect as many of the events as possible by pressing a button. (B) Event
generation for a single block. Three to five events per lap were drawn from a mixture of a uniform and
a Gaussian distribution. Sample laps and events are given in the lower panel. Overall, four different
conditions were presented to the participants. The conditions differed with respect to the mean of
the Gaussian distribution.

distributions and their variability is unclear.
Here we address the question of how blinking behavior is related and adapted to the current

task. We conducted a controlled blinking experiment with parametrically generated environ-
mental statistics. Using an event detection paradigm, we created a direct connection between
temporary loss of visual information due to blinking and task performance. Crucially, knowing
the probabilistic structure of the task, we can investigate how blinks are linked to internal beliefs
about task parameters and how participants adapted their blinking to the task. The computa-
tional model treats blinking dynamics as the result of a trade-off between the physiological need
to blink and the task-related cost of blinking given subjects’ beliefs. The model captures our
subjects’ strategic blinking behavior in the experiment and provides a quantitative explanation
for changes in blinking behavior. Importantly, based on the computational model we derive the
temporal structure of blinking behavior including the IBI distribution on an individual subject’s
basis. This provides a first explanation of the classic IBI distributions observed in numerous
experiments and lays the groundwork for quantitative studies investigating blinking behavior,
task structure, and subjects perceptual uncertainties.

5.2 Experimental design

5.2.1 Task design

Subjects directed their gaze to a grey dot moving on a circular trajectory (counter clock-wise)
displayed on a computer monitor in order to detect events (Figure 5.2A). A circular trajectory
was chosen to avoid blinks being triggered by saccades (Fogarty & Stern, 1989; Evinger et al.,
1994). The velocity of the dot was chosen to lead to smooth pursuit without catch up saccades.
Events were defined by replacing the dot with a stylized face for 50 ms. Hence, an average blink
(Volkmann et al., 1980; Wang, Toor, Gautam, & Henson, 2011; Schiffman, 1990) could lead to
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missing an event. Events were generated probabilistically and were drawn from a mixture of a
Gaussian distribution (Figure 5.2B) using a mixing weight of p = 0.8 and a uniform distribution
with mixing weight of 0.2. For each lap, the number of events was randomly chosen between
three and five. Over the course of 100 consecutive laps, subjects could learn the relationship
between the angle at which the dot was on its circular trajectory and the probability of an event
occurring. Overall, subjects completed four blocks differing with respect to the location of the
Gaussian. Blocks were presented in a random order. After each block subjects were given the
percentage of detected events as feedback.

5.2.2 Blink detection

Blinks were detected using an infrared eye tracking device (Tobii EyeX eye tracker; 60 Hz).
This technique has been used by past research (e.g., Kaminer, Powers, Horn, Hui, & Evinger,
2011; Terhune et al., 2016). During blinking and thus closed eyes, the eye tracking device loses
track of the pupils and can not determine the gaze location. These artifacts were identified and
used to detect blinks by analyzing their temporal structure. We tested different thresholds on
three subjects while manually recording blinks and chose the threshold with the best agreement.
For the analysis, blinks were treated as point processes. Using this procedure, we found similar
statistics regarding blink rates and interblink intervals compared to studies using magnetic search
coils (e.g., Garcia et al., 2011), manual video analysis (Naase, Doughty, & Button, 2005), and
EEG (Shin et al., 2015).

5.2.3 Experimental setup

The test subjects were seated in front of a computer screen (Flatron W2242TE monitor; 1680 ×
1050 resolution, 60 Hz refresh rate) at a distance of about 55 cm. All experimental procedures
were carried out in accordance with the guidelines of the German Psychological Society and
approved by the ethics committee of the Darmstadt University of Technology. Subjects gave
informed consent and were aware that their eye movements were recorded, however, they were
told about the purpose of the task after the experiment to prevent conscious control of the
blinking behavior.

5.2.4 Procedure

The experiment was conducted in single sessions. Subjects confirmed the detection of an event
by pressing a button on a keyboard. If the button press occurred within a 1s time range after
the event, the event was regarded as detected. If no button was pressed, the event was marked
as missed. Missing an event produced a sound to signal the miss to the subject. A different
sound was played in case of a response without prior event. The sounds served as feedback
to help the subject learn the event distribution. Additional feedback was given to the subject
after each block in form of a score (one point per detected event, minus one for button presses
without events, zero points for missed events).

5.3 Results

Overall, 25 subjects (8 male) participated in the experiment in exchange for course credit. Their
age ranged from 19 to 56 years (M = 26.52, SD = 10.97). Seven subjects wore glasses, however,
sufficient accuracy of the eye tracker and the detection of blinks was assured for all participants.
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Figure 5.3: Behavioral results. (A) Raw data (blinks and events) for a single participant in nine consecutive
laps. The top row depicts the temporal dynamics of blinks and events. The two bottom rows show
histograms for the blinks and events aggregated over the angular locations of the laps. (B) Blinking
frequencies over locations within the circular trajectory. Histograms are shown for all four conditions
(upper panel). Center of the event generating mixture distribution is indicated by a green bar for
each condition. Data from all conditions were normalized by rotation (lower panel). The normalized
event generating distribution was centered to 180 degrees.

5.3.1 Behavioral results

Data from nine consecutive laps is shown for a single participant in Figure 5.3A. Visual inspection
yields the first indications for a connection between event probability and blinking behavior.
Overall, the distribution of blink locations for all participants showed a similar time course
across all conditions (Figure 5.3B, upper panel). As conditions only differed with respect to
the mean of the Gaussian while sharing the same variance, data was aggregated by normalizing
the event distribution to peak at 180 degrees (Figure 5.3B, lower panel). The data show that
blinking behavior was clearly affected by the distribution of event probabilities. Instead of being
distributed uniformly over the circle two characteristics of the distribution of blinks can be
observed: First, blinking is suppressed in the area of high event probability (HEP, ± 2 standard
deviations from the center of the mixture distribution). Fewer blinks occurred in the HEP area
(blink rate rHEP = 11.28) compared to the remaining part (rnot HEP = 20.46; see Figure 5.4A).
The 95 % credibility interval for the difference in blinking rates was [8.67, 9.67]. This indicates
that blinking behavior is adapted to the event distribution in order to avoid missing events.
Second, visual inspection indicates an asymmetry of blinking counts before and after the HEP
region. Indeed, we found a higher number of blinks after (blink rate rafter HEP = 25.16; see Figure
5.4B) than before the HEP region (blink rate rbefore HEP = 15.76; 95 % credibility interval for
the difference was [8.71, 10.01]).

To investigate how learning of the event distribution affected blinking, we computed the pro-
portion of blinks in the HEP area over the course of the 100 laps (Figure 5.4C). The proportion
of blinks occurring in the HEP region declined over the course of the first laps and was constant
afterward. This indicates that in the beginning subjects learned the hidden event distribution
by observing the event locations. Bayesian change point analysis (see also Perreault, Bernier,
Bobée, & Parent, 2000) revealed that steady state was reached on average after about 13 laps
(95 % credibility interval of the change point was [9.15, 17.47]).
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Figure 5.4: Behavioral results. (A) Comparison of the mean number of blinks aggregated for all conditions
between the area ±2 standard deviations (HEP) from the center and the remaining part of the circle.
Error bars correspond to the standard error of the mean. (B) Differences in number of blinks between
the 60° area before and after the HEP area. Again, error bars correspond to the standard error of the
mean. (C) Percentage of blinks occurring in the HEP area over the course of 100 laps. Chance level
assumes that blinks are uniformly distributed over the circle (red dashed line).

5.3.2 A computational model for blinks

The design of our experiment gives access to the statistical structure of the task in terms of a
probabilistic generative model. Crucially, we are able to determine the loss of information due
to a blink by quantifying the influence on task performance at each point in time during the
experiment. This is a distinct advantage compared to investigations studying human blinking
behavior during reading or free viewing, where it is difficult to capture the consequences of
blinking quantitatively.

The computational model is motivated by capturing the fundamental trade-off between costs
and benefits of blinking and comprises two distinct components that control blinking behavior:
1) internal costs for blink suppression and 2) external task-related costs for blink execution.
Internal costs for blink suppression arise due to the subjects physiological need to blink from
time to time to maintain healthy vision. Formally, we denote the costs for blink suppression as
cs. It is important to note that cs does not depend on the current location within the lap since it
is independent of the task. Further, our data suggest that cs does not depend on the time since
the last blink. The second factor is the cost associated with blink execution ce(θ). It points
in the direction opposite to cs, as more blinks lead to higher costs. This component denotes
the amount of task performance that is lost in case of a blink. In our experimental procedure,
this is the probability of detecting events. In contrast to the costs for blink suppression cs, the
task-related costs ce(θ) depend on the current angle and therefore are not constant over the
course of a lap (higher blink related costs in HEP region). Whether to blink or not to blink at
any point in time therefore can be described as a trade-off between cs and ce(θ).

Here we assume that the probability of a blink occurring at an angle θ can be modeled as
being inversely proportional to the sum of the costs of blink suppression cs and blink execution
ce:

P (blink at θ | α,ψ) ∝ 1

(1− α)cs + αce(θ, ψ)
. (5.1)

where cs is the cost for blink suppression, ce(θ, ψ) is the cost for blink execution in terms
of reduced task performance, α is between 0 and 1 and regulates how much weight is put on
the task and ψ = [mixing proportion, perceptual uncertainty] are parameters describing the
subject’s belief about the experiment given previous observations. Intuitively, a weight of α =



CHAPTER 5. HUMANS QUICKLY LEARN TO BLINK STRATEGICALLY 50

Angle  θ

P
(m

is
s
)

n(θ) p(miss) with 
perceptual uncertainty

n
(θ

)

Angle  θ

P
(e

v
e
n

t 
| 
ψ

, 
n

)

Angle  θ

n(θ) p(miss) 

Angle  θ

P
(e

v
e
n

t)

Angle  θ

P
(e

v
e
n

t)

Angle  θAngle  θ

P
(e

ve
nt

 | 
ψ

)

Event statistics

Uncertainty about
mixing rate

Number of 
events left

Perceptual
uncertainty (I)

(II)

(III)

A B

TaskBlinks Angle  θ

ActionsValue

Figure 5.5: Schematic of the computational model for blinking. (A) Steps of the computational model describing
subjects’ belief about the event probabilities. (B) The belief structure is used for action selection
while balancing multiple costs.

1 corresponds to blinking only because of the external task and therefore suppressing blinks
for maintaining vision while a weight of α = 0 corresponds to putting complete priority on
maintaining healthy vision and thereby blinking only to lubricate the cornea (Figure 5.5).

The cost for blinking ce(θ) is derived as the probability of missing an event and therefore
depends on the current angle θ.

P (miss|θ, µ, σ2, p) = n(θ)P (event at θ | µ, σ2, p) (5.2)

where µ, σ2 and p are the parameters of the mixture distribution generating the events, θ is a
location during the lap, and n(θ) is the average number of events left at each location during a
particular lap. The belief about the probability of missing an event depends on how many events
have already been seen over the course of the current lap. In order to describe our subjects’
belief, we computed the average number of events observed up to a certain point within the lap.
This was done for all locations in the lap, parameterized by the angle θ:

n(θ) = n̄− n̄
θ∫

0

P (event at τ | µ, σ2, p)dτ , (5.3)

where P (event at τ) is the probability of an event at an angle τ (this corresponds to our mixture
of U(0, 360) and N (180, 30) at a location τ), (µ, σ2, p) are the parameters of the event generating
distribution and n̄ is the mean number of events per lap.

The subjects’ belief about the costs for blinking is furthermore influenced by their uncertainty
about the true underlying event distribution during the experiment. We accounted for the
imperfect knowledge by assuming that subjects do not have access to the exact parameters
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of the mixture distribution. In particular, we allowed the mixing proportion to be different
from the true value that was used for event generation. In addition we hypothesized that
subjects have perceptual uncertainty given previous observations about the exact parameters
describing the Gaussian distribution from which the events are drawn. Overall, four parameters
(mixing proportion p, cost trade off α, average blinking rate r, and the spread of the temporal
uncertainty) were estimated from data across subjects. For parameter estimation, only data
from the subjects’ steady state behavior were used, as the changes in blinking behavior at the
beginning of a block are related to learning the new event distributions. Thus, changes in the
subjects’ belief, which occur during learning the experimental statistics at the beginning of a new
block, would affect these estimates. Changepoint analysis revealed that steady-state behavior
was reached after 20 laps.

The starting point for modeling our subjects’ belief is the probability distribution of the
events (see Figure 5.5). Subjects do not have access to the true distribution, therefore we allowed
for uncertainty about the mixing weight of the mixture distribution. Next, we incorporated
recent observations by computing the average number of events seen during a lap. We used this
to weight the probability of an event by the number of events left in a lap, n(θ). Finally, we
accounted for uncertainty regarding the current location. Computationally, this was done by
convolving the belief using a Gaussian distribution accounting for this position uncertainty. At
the end of a lap (I) the event probability increases as it becomes more likely that the new lap
has started. The probability of being in the next round saturates but the HEP region is not
reached yet (II). Finally, there is a steep increase of event probability at the HEP region (III),
which is followed by a decrease caused by both the decreasing probability of a single event as
well as the decreasing number of events left in the lap.

5.3.3 Model results

We fitted our model to the aggregated blinking data. The result is shown in Figure 5.6A.
Our model is capable of reflecting the characteristic course of blinking behavior. Moreover,
we are now able to link both main effects, blink suppression as well as blink compensation,
to computational quantities in our model: 1) Blink suppression follows from putting a higher
value on the ongoing task. This leads to a higher proportion of blinks related to the ongoing
external task. In the current experiment, this means that fewer blinks are carried out in those
regions around the circular trajectory of the target where the probability of an event is high and
thus the loss of task-related information is high. 2) The asymmetric shape of the curve is due
to uncertainties in the subjects’ belief where exactly the probability of an event is highest and
the dynamic changes in this belief structure due to observing events over the course of a lap.
Specifically, similar to a survival process, the fewer events have been observed during a lap, the
higher the probability that an event is imminent. Finally, closer inspection of the probability
of blinking in Figure 5.6A reveals a less steep decrease in blinking probability at around ninety
degrees. In this region, the belief that all events from the previous lap have already occurred is
small given the perceptual uncertainty and past event observations.

The results further suggest that the mixing rate of the mixture distribution is underestimated
by our subjects (p̂ = 0.58 compared to p = 0.8 ). This is not surprising since learning a complex
mixture distribution from noisy observations is a difficult task (e.g., Körding & Wolpert, 2004).
Hence, our subjects know less about the task statistics compared to an ideal observer. Perceptual
uncertainty due to observations of events as well as uncertainty from storing events in memory
was estimated to σperc = 29.6 degrees.

A crucial property of the proposed model of the probability of blinking is that it allows
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Figure 5.6: Computational model results. (A) Model results for blinking behavior. Number of blinks per degree
(black line) and fitted model (orange line). (B) Model prediction of the temporal statistics of the
blinking behavior. The distribution of the interblink intervals shown in the left panel. The histogram
depicts all our subjects data. The right panel depicts the distribution of number of blinks per lap.
Data is shown in black, model predictions are shown in orange. (C) Probability of blinking depending
on the location on the circle (x-axis, from 0 to 360 degrees) and the time since the last blink (y-axis,
from 0 to 5 seconds). Model predictions are shown in the right panel, subject data is shown in the
left panel. We weighted very short IBIs using a cumulative Gaussian (see Hoppe & Rothkopf, 2016).
This accounts for motor delays making two blinks occurring with close to zero IBI very unlikely. (D)
Single participant results. From top to bottom: blinking proportion over the circle, IBI distributions,
blinks per lap, and blinking probability in the angle and time domain are shown for three participants.
Fitted model is depicted in orange, data is shown in black. The bottom row contains the theoretical
distribution (left), samples from the theoretical distribution matched to the number of blinks of the
individual subject (center), and our subjects’ data (right). Results for all participants can be found
in Figure 5.11 and 5.12 and Table 5.1.

deriving the temporal statistics of subjects’ blinking data. The probability of a specific interblink
interval d (IBI; the time between two consecutive blinks) can be computed as follows: Assume
a blink occurring at a random location θ with probability P (blink at θ). Since the next blink is
executed at θ + d for the next d time steps no blink occurs. Finally, d time steps after the first
blink the next blink occurs. This yields

P (blink at θ | d) = P (blink at θ − d)·

·

[
θ−1∏

k=θ−d+1

(1− P (blink at θ − k))

]
· P (blink at θ) . (5.4)

Figure 5.7 shows the application of Equation 5.4 to constant blink rates. For the changing blink
rates we observed in our experiment, IBI distributions can be obtained by repeating this process
for all values of θ and d and averaging over θ. Thus, our approach yields an analytic description
of the distribution of IBIs as a product of geometric distributions, which has an intuitive link to
blinking as sequential Bernoulli trials with varying probabilities. Note that previous empirical
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studies have proposed a power law distribution to describe the IBI distributions (Kaminer et al.,
2011). However, our approach explicitly incorporates the non-stationary nature of the blinking
rate in our task. By using this procedure, we are able to recover main characteristics of the
temporal dynamics (Figure 5.6B–C) of subjects’ blinks. Crucially, no further parameters need
to be estimated.

As prior research on blinking has shown large individual differences, we fitted our model
to each subject independently. We estimated the parameters for the cost trade-off as well as
for the mean blinking rate on a subject-by-subject basis. The uncertainty about the temporal
structure and the event generating distribution were assumed to be the same across partici-
pants. We therefore used the respective values estimated from the aggregated data. Results
for three subjects are shown in Figure 5.6D. Individual blinking strategies were highly variable
and IBI were qualitatively different across subjects. Remarkably, our model captures and ex-
plains this variability. As a consequence, we are able to link qualitative differences in behavior
between individuals to quantitative differences in model components. The model suggests that
the variability in blinking behavior can be ascribed to differences among subjects in motiva-
tional as well as physiological parameters. Specifically, three of the four IBI histogram shapes
(J-shaped, bimodal, irregular) consistently found by previous studies can be explained through
motivational differences across subjects combined with the temporal structure of the task. The
analysis further reveals, that the least frequently found shape (symmetric) does not result from
differences in the trade-off between task demands and physiological needs or differences in the
general blinking rate.

Overall, participants detected 87 percent of all events. Two participants showed very low
performance scores (smaller than 70 percent, > 2σ) and were excluded from the analysis. We
tested whether subjects who put greater weight on the external task, i.e., a higher estimated
α parameter, showed better performance (Figure 5.10). Linear regression revealed a significant
relationship between the individually estimated values for α and the percentage of detected
events, r(23) = .51, p = .01. Importantly, this means that subjects blinked more strategically
instead of less often, as we found no significant connection between smaller blinking rates and
higher performance, r(23),= 0.38, p = .07.
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Figure 5.8: Derivation of the blink probability p(blink|θ, d). Left panel: The blinking density P (blink, θ, d) is
shown depending on the location within a lap (x-axis, from 0 deg to 360 deg) and the time since the
last blink (y-axis, from 0 s to 10 s). For example, the value at the white cross depicts the proportion
of blinks occurring at location 180 deg in the lap and simultaneously occurring 2 s after the last blink.
Importantly, this implies that the last blink occurred at location 60 deg (180 deg−2s ·60 deg /s), since
the angular velocity of the visual target in the experiment was 60 deg / s. Center panel: Probability
distribution of how often each combination of a position in the lap and a time since last blink is
reached in our experiment. Not all combinations of (θ, d) are equally likely as they are heavily
affected by the uneven distribution of blinks over the course of a lap (see Figure 5.3). For illustration
purposes, three blinks (depicted by white crosses) are shown together with the corresponding two
interblink intervals (gray: interval between Blink I and Blink II; black: interval between Blink II and
Blink III). Blink I occurs at location 180 degrees. As can be seen by following the gray line, the
same location (180 degrees) is reached again exactly after six seconds. After eight seconds Blink II is
executed and following the black line leads to Blink III. Right panel: The blink probability for each
combination of location in the lap and time since the last blink is shown. This can be computed as
P (blink, θ, d)/P (θ, d).

5.3.4 Constant costs for blink suppression

We tested whether the costs for blinking depend on how much time has passed since the last
blink since our computational blinking model assumes that the costs for blink suppression cs are
constant and therefore neither depend on the current location θ in the lap nor on the time since
the last blink d (interblink interval; IBI). The first independence follows from the definition of
the cost as task independent, but the second is not apparent. While we do not claim that costs
do not increase at all with time, we provide evidence that for the durations between two blinks
observed in the current experiments, costs indeed did not increase significantly. The statistical
independence assumption in our model can be formalized as:

P (blink|θ, d)
?
= P (blink|θ) . (5.5)

This formalization provides a way to test whether costs for blink suppression depend on the
IBI. If the assumption holds, we expect P (blink|θ) not to be affected by the value of d, i.e., the
marginal distribution of blinks over a lap should not be different if the time since the last blink
is 4 s instead of 2 s, for example. On the other hand, if costs for blink suppression increase
with the time passed since the last blink, we expect a more even blink distribution for longer
IBIs, as with greater costs for blink suppression less value is given to the task. We tested this
empirically using our data by comparing the conditional probability of blinks at a location θ for
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the following ranges for d:

P (blink|θ, 0s < d < 2s)
?
= P (blink|θ, 2s < d < 4s)

?
= · · · ?

= P (blink|θ, 8s < d < 10s) . (5.6)

In order to test our hypothesis by applying Equation 5.5 and 5.6, we need to compute the
conditional probability P (blink|θ, d). Using basic probability theory we obtain:

P (blink|θ, d) = P (blink, θ, d)/P (θ, d) (5.7)

where P (blink, θ, d) is the joint probability of our blinking data (Figure 5.8, left panel) and
P (θ, d) is the probability of being at a location θ after d seconds have passed since the last
blink. Hence, we must normalize the blinking probability at a location θ and interblink interval
d by the probability of reaching location θ d seconds after the last blink. In order to compute
the conditional probability P (blink|θ, d) we first need to obtain P (θ, d). We can compute this
quantity from our blinking data as follows (see Figure 5.8, center panel): For each blink (tuple
of location θ and IBI d) we can reconstruct all the points (θ, d) that have been visited since the
last blink. In our experiment, the target stimulus moves with constant angular velocity on a
circular trajectory. The velocity was 60 deg / s. Hence, we move through the parameter space
along a line with slope 60 deg/s (see gray and black lines in Figure 5.8 (center panel)). The
probability P (θ, d) is the normalized number of times each point Q (θq, dq) is visited. P (θ, d)
clearly is not uniform, instead, it is strongly influenced by where blinks occurred in the lap. For
example, fewer blinks occurred in the HEP region (120 - 240 deg). Hence, the location (θ = 60, d
= 4) is not visited often (dark blue value), as the point is only reached if the last blink occurred
in the HEP region (shown by the gray line). We now can compute P (blink|θ, d) according to
Equation 5.7 . The results are shown in Figure 5.8 (right panel).

Our initial question, whether costs for blink suppression can be assumed to be independent
of the time since the last blink, can be tested using P (blink|θ, d). We computed P (blink|θ) for
five different ranges of d (see Figure 5.9). Our results indicate that blinking behavior does not
change depending on the time since the last blink. This suggests that for interblink intervals
between 0 and 10 s, which comprises 93 % of all blinks in our experiment, costs can be assumed
to be constant.

We additionally used our behavioral results in Figure 5.9 to check whether longer times since
the last blink lead to differences in the trade-off between costs for blink suppression and costs for
blink execution. Therefore, we divided the lap into three equally sized areas: before HEP (0 -
120 deg), HEP (120 - 240 deg), and after HEP (240 - 360 deg). If the cost for blinking increased
with time, then blinks with greater interblink intervals should less reflect the task related costs
for greater IBIs (Figure 5.9, upper left panel) leading to smaller differences in the proportion of
blinks across the areas. If, on the other hand, costs are constant, we would not expect a change
in the relative distribution of blinks across the three areas (Figure 5.9 B, upper right panel).
Our results (Figure 5.9 B, lower panel) clearly favor constant cost. Blinking was not suppressed
less in the HEP region for greater IBIs.

5.4 Discussion

In our study, we investigated how blinking behavior is related to internal costs and environmental
visual demands. In particular, while prior research has provided various accounts of the link
between blinks and task demands, little work quantifying this connection exists. We created
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Figure 5.9: Evidence for constant costs of blink suppression for the observed IBI. (A) Proportion of blinks over
the course of the laps computed separately for different interblink intervals. The colors correspond to
the areas Figure 5.8 (right panel). For example, the blue line depicts the mean blinking proportion
given that the time since the last blink is between 0 and 2 s. We used a bin size of 1/3 second
for the time since the last blink (0 s - 0.33 s, ... , 1.66 s - 2s) and computed the mean for the six
resulting values at each location. Error bars correspond to the standard deviation. (B) Schematic
course of blinking proportions for the three areas (Before HEP, HEP, After HEP). If costs increased
with IBI (left panel), blinking would become less effected by task related costs. For constant costs
(right panel) this should not be the case. The lower panel shows the proportion of blinks dependent
on the time since the last blink. Overall, this provides clear evidence, that costs for blink suppression
were constant over the IBI durations in our experiments.

an event detection task tailored to studying blinking behavior quantitatively. Subjects detected
events while fixating a moving dot. The event probability was linked to the spatial location
of the dot, a regularity subjects could learn over the course of the experiment. Our design
provides full control and knowledge regarding the temporal statistics of the visual input as well
as the reward structure of the task. In particular, the consequences of blinking on the loss of
information can be quantified.

The probabilistic design of the experiment allowed developing a computational model of
blinking behavior. The basic assumption is that blinking is the consequence of a trade-off
between an internal urge to blink in order to maintain healthy vision and external task require-
ments of not blinking when crucial information needs to be acquired from the environment.
Given subjects’ perceptual and memory uncertainties about the event generating process in the
experiment, it is possible to quantify the cost of blinking in terms of task performance, i.e., the
probability of detecting an event.

The behavioral data show two main effects: First, blinking was significantly suppressed in
the high event probability (HEP) region, i.e. where most events occurred. Our computational
model results suggest that this effect can be explained in terms of minimal loss of task-relevant
information. This result is in accordance with prior research that reported a connection between
blink suppression and task performance (Gregory, 1952). Also, in classical psychophysical ex-
periments blinks have been shown to occur around the time of response (Oh, Han, Peterson,
& Jeong, 2012) and toddlers watching movies showed suppressed blinking at scenes containing
affective and physical events (Shultz, Klin, & Jones, 2011). Thus, subjects who weighted costs
associated with the external task more tended to blink more strategically and therefore avoided
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Figure 5.10: Relationship of the α parameter fitted to
individual subjects and task performance.
Solid line depicts the regression curve.

to blink in the HEP region.
Second, more blinks occurred after the HEP region compared to before. Although the prob-

ability of missing an event is symmetrical around the peak of the event generating distribution,
the observed blinking pattern is not. This asymmetry is predicted by our model if we account for
observations made over the course of a lap. The event probability and therefore the probability
of missing an event during a blink is proportional to the number of events left. Hence, blinking
earlier in a lap leads to greater loss of detection performance. With every observed event the
number of events left in a lap decreases. Finding this asymmetry of blinking strategies in our
data reveals two properties of our subjects’ information processing: subjects learned the num-
ber of events per lap and they were able to dynamically incorporate recent information about
observed events for deciding when to blink. Compensation between episodes of suppression has
been reported in the past (Gregory, 1952). While other studies argue that blinks take on a role
of breakpoints to facilitate mental processing (Nakano, Kato, Morito, Itoi, & Kitazawa, 2013), in
our study, blinking was well described in terms of collecting maximal task-relevant information.

The distribution of interblink intervals (IBI) is highly variable across humans (Ponder &
Kennedy, 1927). Four different shapes have been identified repeatedly: J-shaped, irregular
plateau, bimodal, and symmetric (Doughty, 2002; Ponder & Kennedy, 1927; Naase et al., 2005).
Here, we showed that three of these shapes arise as an immediate consequence of the trade-off
between internal and external task costs. Our model is capable of capturing the characteristics
of the first three types (see also individual model fits for all data in Figure 5.11 and 5.12). One
participant (subject 19 in Figure 5.12), however, showed a symmetric distribution which was
not well fitted by our model. One explanation could be that the symmetric shape (the least
often according to Ponder & Kennedy, 1927) does not arise from interacting with the task but
from physiological properties that were not captured by our model.

Few models have been developed to describe blinking behavior. In their urge model (Berman
et al., 2012) assumed a linear increase in urge when blinking is suppressed. However, the model
does not account for any external task related influences. In another study Moraitis and Ghosh
(2014) proposed that blinks are generated by an oscillating blink generator. However, both stud-
ies used voluntary blink suppression. Here we presented a computational model that explicitly
included task-related goals as well as intrinsic costs, thereby building a natural connection to
the reward-related learning literature involving dopamine. Hence, the model can be applied to
a broader area of investigations as long as some properties about the environmental statistics
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are known. While we presented results for a psychophysical detection task, our approach is not
limited to simple stimuli. Recent developments in machine learning and deep neural networks
(e.g., LeCun, Bengio, & Hinton, 2015) have paved the way for retrieving statistical regularities
even in complex and dynamic visual scenarios. In combination with these methods, our blinking
model can readily be applied to many real-world problems. Better understanding and in partic-
ular, quantitative insights, into human blinking behavior are also relevant for building technical
aid systems (see Krolak & Strumillo, 2008, for example), and detecting mental states during
critical tasks to prevent accidents (Smilek, Carriere, & Cheyne, 2010).
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Table 5.1: Individual parameter estimates for all subjects.

Subject Performance Blink rate Blink rate estimate Cost trade-off

1 0.879 6.37 6.54 0.68410

2 0.905 6.95 7.30 0.65063

3 0.942 4.42 4.50 0.65705

4 0.933 24.42 24.86 0.59144

5 0.847 38.95 39.03 0.21002

6 0.946 7.67 7.98 0.76929

7 0.948 5.50 5.56 0.85248

8 0.936 7.75 7.77 0.24398

9 0.919 4.20 4.36 0.57620

10 0.818 22.70 22.70 0.20509

11 0.640 18.30 18.21 0.44432

12 0.888 14.50 14.46 0.18871

13 0.894 27.35 27.27 0.47012

14 0.876 12.92 12.92 0.36731

15 0.939 26.95 26.84 0.35454

16 0.912 10.77 11.07 0.62687

17 0.938 7.25 7.29 0.77236

18 0.928 6.07 6.07 0.72495

19 0.933 16.65 16.78 0.44933

20 0.587 11.68 12.00 0.82670

21 0.769 6.90 6.90 0.52826

22 0.900 29.30 30.05 0.68391

23 0.764 30.22 30.21 0.29622

24 0.952 6.50 6.79 0.89559

25 0.913 2.92 2.93 0.72884
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Figure 5.11: Individual data and model fits for all participants (1 – 12). For each subject the blinking rate over
the circle (first row), the distribution of inter blink intervals (second row), and the distribution of
blinks per lap (third row) are shown. The fourth row depicts the density of blinks in the location on
the circle (x-axis) – time since last blink (y-axis) plane.
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Figure 5.12: Individual data and model fits for all participants (13 – 24). Same as Figure 5.11.



CHAPTER6
Learning rational temporal eye movement

strategies

6.1 Introduction

During active behavior, humans redirect their gaze several times every second within the visual
environment. Where we look within static images is highly efficient as quantified by compu-
tational models of human gaze shifts in visual search (Najemnik & Geisler, 2005) and face
recognition tasks (Peterson & Eckstein, 2012). But when we shift gaze is mostly unknown
despite its fundamental importance for survival in a dynamic world. So far, the emphasis of
most studies on eye movements has been on spatial gaze selection. While these studies provide
insights into where humans look in a visual scene, the ability to manage complex tasks cannot
be explained solely by optimal spatial gaze selection. Even if relevant spatial locations in the
scene have been determined these regions must be monitored over time to detect behaviorally
relevant changes and thus keeping information updated for action selection in accordance with
the current state of the environment. Successfully dealing with the dynamic environment there-
fore requires intelligently distributing the limited visual resources over time. For example, where
should we look, if the task is to detect an event occurring at one of several possible locations?
In the beginning, if the temporal regularities in a new environment are unknown, it may be best
to look quickly at all relevant locations equally long. But with more and more observations of
events and their durations, we may be able to use the learned temporal regularities. To keep
the overall uncertainty as low as possible, fast-changing regions (e.g., streets with cars) should
be attended more frequently than slow-changing regions (e.g., walkways with pedestrians).

Although little is known about how the dynamics in the environment influence human gaze
behavior, empirical evidence suggests sophisticated temporal control of eye movements in object
manipulation (Ballard, Hayhoe, & Pelz, 1995; Johansson, Westling, Bäckström, & Flanagan,
2001) and natural behavior (Hayhoe & Ballard, 2005; Land & Tatler, 2009). A common ob-
servation is that gaze is often predictive both of physical events (Diaz, Cooper, Rothkopf, &
Hayhoe, 2013) and events caused by other people (Flanagan & Johansson, 2003), and studies
comparing novices’ and experienced sportsmen’s gaze coordination suggest that temporal gaze
selection is learned (Land & McLeod, 2000). However, the temporal course of these eye move-
ments and how they are influenced by the event durations in the environment has not been
investigated so far. We argue that understanding human eye movements in natural dynamic
settings can only be achieved by incorporating the temporal control of the visual apparatus.
Also, modeling of temporal eye movement allocation is scarce with notable exceptions (Hayhoe
& Ballard, 2014), but while ideal observers (Najemnik & Geisler, 2005; Peterson & Eckstein,
2012; Chukoskie et al., 2013) model behavior after learning is completed and usually exclude

62
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Figure 6.1: Experimental procedure for the temporal event detection (TED) task. The procedure of a single trial
is shown on the right. The left panel depicts the steps involved in generating an event for a trial in
the Condition LS.

intrinsic costs, reinforcement learning models based on Markov decision processes (Chukoskie et
al., 2013; Hayhoe & Ballard, 2014) can be applied to situations involving perceptual uncertainty
at best only approximately.

Here we present behavioral data and results from a computational model establishing sev-
eral new properties of human active visual strategies specific to temporally varying stimuli. In
particular, we address the question, what factors specifically need to be accounted for to predict
human gaze timing behavior in response to environmental events, and how learning proceeds.
To this end, we created a novel temporal event detection (TED) task to investigate how humans
adjust their eye movement strategies when learning temporal regularities. Our task enables
examining the unknown temporal aspects of eye movement strategies by isolating them from
spatial selection and the complexity that arises from natural images. Our results are the first to
show that human eye movements are consistently related to temporal regularities in the envi-
ronment. We further provide a computational model explaining the observed gaze behavior as
an interaction of perceptual and action uncertainties as well as intrinsic costs and biological con-
straints. Surprisingly, based on this model alone, the learning progress is accounted for without
any additional assumptions only based on the scalar law of biological timing, allowing crucial
novel insights into how observers alter their behavior due to task demands and environmental
regularities.

6.2 Experimental design

6.2.1 The temporal event detection task

Participants switched their gaze between two regions marked by gray circles to detect a single
event (Figure 6.1). The event consisted of the little dot within one of the circles disappearing
(depicted as occurring on the left side in this trial). Participants confirmed the detection of
an event by indicating the region (left or right) through a button press. The event duration



CHAPTER 6. LEARNING TEMPORAL EYE MOVEMENT STRATEGIES 64

A B
a bp

event
region

event
start

event
duration

μL μR

Left

Right

fR + 2δ

fL + 2δ

fL 

fR 

δ

p(miss | r = L)

p(miss | r = R)

Switching Pattern

μL

μR

q

d

s

Figure 6.2: Derivation of the statistics in the TED task. (A) Probabilistic graphical model of the event generating
process. (B) Probability of missing an event. The condition for the shown segment is LM, i.e., long
event durations at the left region and medium event durations at the right region. The probability
of missing the event (orange area) is shown for an arbitrary switching pattern (dashed line), where
the left region is fixated for a duration fL and the right region for a duration fR. Events are missed
if the event’s region is not fixated for the entire duration of the event. For long event durations the
offset of the probability of missing an event (purple lines) is greater than for short event durations.
As a consequence, the time between two fixations can be greater if the event duration is long without
missing events.

(how long the dot was invisible) was drawn from one of three probability distributions (small,
medium, and long). Overall, six different conditions resulting from the combination of three
event durations and two spatial locations were used in the experiment (SS, MM, LL, SM, SL,
MM, LL). A single block consisted of 20 consecutive trials with event durations drawn from the
same distributions. For example, in a Block LS, all events occurring at the left region were long
events with a mean duration of 1.5 s, all events occurring at the right region were short events
with a mean duration of 0.15 s. A single event for the Condition LS was generated as follows
(lower left panel): first, the start time for the event was drawn from a uniform distribution
between 2 and 8 s. Next, the region where the event occurred was either left or right with
equal probability. Finally, the duration of the event was drawn dependent on where the event
occurred. Given, that in the example the condition was LS and the event was determined to
occur at the left region, the event duration was drawn from a Gaussian distribution with mean
1.5 s (long event).

6.2.2 Statistics of the temporal event detection task

Events for the TED task were generated according to the graphical model presented in Figure
6.2A. An event was defined as a tuple (s, d, q) with the generative process

s ∼ U(a, b) (6.1)

q ∼ B(1, p) (6.2)

θ =

{
µL if q = 0

µR if q = 1
(6.3)

d | q ∼ N (θ, σ2) , (6.4)
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where the random variable s denotes the event’s starting time within a trial, which was dis-
tributed uniformly between a = 2s and b = 8s. The region q where the event occurs (q = 0:
left; q = 1: right) was drawn from a binomial distribution and the event’s duration d from a
Gaussian distribution. The standard deviation of the event durations σ was fixed to a small
value (100 ms). Events were equally probable at both regions (p = 0.5). The mean of the event
duration depended on the region where the event occurred. The mean event durations for the
right region (µR) and the left region (µL) were fixed over the course of a block according to the
respective condition. For example, in a block belonging to Condition LM (Long-Medium) µL
and µR were set to 1.5 s and 0.75 s, respectively. Since the reward function for our task is known
we are able to derive the relationship between switching patterns and detection probability (see
the derivation of the model as well as Figure 6.2B).

6.2.3 Procedure

The TED task required participants to complete 30 experimental blocks, each consisting of 20
consecutive trials. Subjects were instructed to detect a single event on each trial and press a
button to indicate the detection of the event, which could occur at one of two possible locations
with equal probability. The two regions (distance 35 deg) were presented on a Flatron W2242TE
monitor (1680 × 1050 resolution, 60 Hz refresh rate). Each region was marked with a gray circle
(0.52 deg in diameter). The contrast of the target dot was adjusted to prevent extrafoveal vision.
Eye movement data were collected using the SMI Eye Tracking Glasses (60 Hz sample rate).
Calibration was done using a three-point calibration. For detection of saccades, fixations, and
blinks dispersion-threshold identification was used.

6.3 Computational models for the temporal event detection task

All of the presented models are based on the methods described in Chapter 3, i.e., as a trade-
off between task-related reward and physiological costs. In order to quantify the relationship
between eye movements and reward, we derive the probability of missing an event (Figure 6.3).
Although the gaze sequences in the task comprise many switches, it is sufficient to only consider
a single fixation at each side to find the optimal behavior (Figure 6.2B)1.

We first derived the probability that an event ends at time e at region q based on the
generative process. This corresponds to the joint distribution p(e, q) which can be factorized
into p(e, r) = p(e | r)p(r). For any event, the ending time is the sum of the starting time and
the duration. The probability of an event ending at a specific time e given the region r can be
computed by the sum of s and d, which results in the convolution of the respective probability
density functions

p(e | q) = p(s) ∗ p(d | q) =
1

b− a

[
ψθ

(
b− e
σ

)
− ψθ

(
a− e
σ

)]
. (6.5)

The last identity follows from the convolution of a Gaussian and a Uniform distribution, where
ψθ denotes the cumulative distribution of a normally distributed variable centered at θ.

1After executing the two fixations (left and right) the environmental state is the same as before. Hence, the
optimal pattern for these two switches is also the optimal pattern for the next two switches and so on (see also
Chapter 3).
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Figure 6.3: Eye movement strategies for the TED task. The relationship between switching patterns and the
probability of missing the event in a single trial is shown for two conditions. For the Condition MM
(top) the probability of missing an event is lower for faster switching (short fixation durations at both
regions). For the Condition LS (long events at the left region, short events at the right region) the
probability of missing an event can be decreased by longer fixating the region with short events, i.e.
the right region.

We formalized switching patterns (SP) as a tuple (fL, δ, fR), where fL and fR are the fixation
durations for the left and right region, respectively, and δ is the time needed to move focus from
one position to the other (i.e., the duration of a saccade). Using our results for the distribution of
event ending times, we derived the probability of missing an event when performing a switching
pattern (see Figure 6.2B). For a single region (e.g., R), the time between two consecutive fixations
is fL + 2δ. Events both starting and ending within this time range at region R are regarded
missed. The probability of missing an event at region R while fixating L can therefore be
computed as

p(event missed | fL, δ, fR, q = R) = p(e ≤ fL + 2δ | q = R) =

fL+2δ∫
0

p(e | q = R)de . (6.6)

The probability of missing an event at region L can be computed analogously. The event
generating process implies that events are mutually exclusive at the two regions. Therefore, we
can calculate the probability of missing an event when performing the switching pattern (fL, δ,
fR) by marginalizing over the regions

p(event missed | fL, δ, fR) =
∑

q∈{R,L}

p(event missed | fL, δ, fR, q)p(q) . (6.7)

The derived probability of missing an event only covers the sequence of two fixations. Thus,
the total time covered is fL + fR + 2δ. To compute the probability of missing an event over the
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course of the entire trial and to compare different switching patterns, we divided the probability
of missing an event over the course of the switching pattern by the total time covered by the
switching pattern. As a result, we get the expected probability of missing an event in a single
time step ∆t associated with a certain switching pattern (SP)

P (event missed | fL, δ, fR)/∆t =
P (event missed | fL, δ, fR)

fL + fR + 2δ
. (6.8)

6.3.1 Computational models of gaze switching behavior

Based on the statistical relationships derived from the event generating process we now pro-
pose different models for determining the optimal switching pattern assuming that the event
durations are learned. The time needed to perform a saccade is small compared to the fixa-
tion durations and by and large determined by its amplitude as reflected by the main sequence
relation. Thus, δ was treated as a fixed value and omitted from the equations. Further, the
probability of detecting the event when performing a certain switching pattern can be com-
puted from P (event missed|fL, δ, fR) and can be expressed as a task related reward function
rtask(fL, fR).

We started by deriving an ideal observer which chooses switching patterns fL, fR solely by
maximizing rtask

SPIO = arg max
fL,fR

rtask(fL, fR) . (6.9)

Ideal observer models are frequently used to investigate human behavior involving perceptual
inferences. However, a perceptual problem may have multiple ideal observer models depending
on which quantities are assumed to be unknown. Ideal observers usually do not consider costs
but provide a general solution to an inference problem. Therefore, we extended our ideal observer
in order to obtain more realistic models.

First, by using the true event durations d the ideal observer assumes perfect knowledge
about the generative process. Especially, the mean duration for both regions (µL and µR) are
assumed to be known. This is clearly not the case at the beginning of the blocks and even after
learning perceptual uncertainty and, crucially, the scalar property prevents complete knowledge.
While the former is irrelevant for the case of learned event durations, the latter is not. Building
on findings regarding the scalar property we augmented the ideal observer by including signal
depending Gaussian noise on the true variance of event durations σ2. As a result the distribution
d|q becomes N (θ, σ2 + wf2θ), where wf is the Weber fraction.

Second, the ideal observer only considers task performance for determining optimal switching
patterns. It implicitly assumes that switching patterns do not differ with respect to other relevant
metrics. However, switching at a very high frequency consumes more metabolic energy and can
be associated with further internal costs. Therefore, we hypothesized that human behavior is
the result of trading off task performance and intrinsic costs

SPIO+Cost(α, τ) = arg max
fL,fR

[rtask(fL, fR) + α · reye(fL, fR, τ)] (6.10)

where α quantifies eye movement costs in units of rtask. To our knowledge the exact shape of
these costs is unknown. We hypothesize that eye movement costs are greater for higher switching
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frequencies and are therefore connected to fixation durations. We used the positive range of a
bell curve as a cost function

ceye(fL, fR, τ) = exp

[
−(fL + fR)2

τ2

]
. (6.11)

where τ controls how quickly costs increase with switching frequency. Using ceye we can compute
a reward function for switching frequencies as reye = (max ceye(fL, fR, τ))− ceye(fL, fR, τ).

So far, all models have assumed the switching patterns to be deterministic. However, humans
clearly are not capable of performing an eye movement pattern without variability. In addition,
they have shown to take motor variability into account when choosing actions, hence they can
be described as ideal actors. The ideal actor model takes into account that there is variation
when targeting a certain switching pattern fL, fR. This property can be considered when no
longer treating fixation durations as fixed but as samples drawn from some distribution. We
chose an exponential Gaussian, centered at the targeted durations fL and fR.

p(f | fX) = ex-Gaussian(ζ, η, ω) . (6.12)

for X in (L,R), whose expected value E[f ] = ζ + η is equal to the respective target fixation
duration fX . Given fX the shape parameters of the distribution were determined using fX =
ζ + η together with ζ = w0 + w1η. The regression parameters w0 and w1 as well as ω were
estimated from the data. The expected value of rtask(fL, fR) is then computed by marginalizing
out the variability of fL, fR

racttask(fL, fR) =

∫
f0

∫
f1

p(f0 | fL)p(f1 | fR)rtask(f0, f1)df1df0 . (6.13)

Finally, the abilities of the motor system and the speed of information processing constrain
switching patterns. As a consequence, targeted fixations durations have a lower bound. To
account for this constraint, we propose a threshold using a cumulative Gaussian

p(fX) = ψ(β, γ2) (6.14)

where the mean β was estimated from the data and γ2 was fixed to a small value. Combining
all components yields the Bounded Actor

SPBounded Actor(α, τ, β, w0, w1, ω) = (6.15)

= arg max
fL,fR

p(fL)p(fR)

∫
f0

∫
f1

p(f0 | fL)p(f1 | fR)rtask(f0, f1)df0df1 + α · reye(fL, fR, τ)


 .

(6.16)

6.3.2 Learning the temporal statistics

All models discussed so far have assumed perfect knowledge of the event durations despite
perceptual uncertainty. They are therefore only applicable to the steady state case since event
durations were unknown at the beginning of a block and had to be learned over the course of
the block. Learning was formulated as updating the models’ belief about the event durations
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through observations. From a Bayesian perspective, this can be seen as using the observation
to transform a prior distribution to a posterior distribution

p(θ | o) =
p(o | θ)p(θ)

p(o)
, (6.17)

where θ denotes the mean of the event duration and o a sequence of observations. The updated
belief, the posterior distribution P (θ | o), is computed as the product of the prior P (θ) and the
likelihood P (o | θ). The denominator normalizes the posterior in order to sum to one.

In the TED task there are three types of observations: First, if an event starts at a region
while the respective region is fixated and is perceived for the whole event duration the observation
is defined as fully observed. Second, if the region is not fixated at all while the event occurs
the observation is defined as missed. Third, if only a fraction of the event is observed (event is
already occurring when the region is fixated) the observation is defined as partially observed.
Hereby, we assume that if a region is fixated while an event occurs, participants continue fixating
the respective region until the event has finished. Our data show that this is indeed the case.
The different types of observations lead to different types of censoring. The resulting likelihood
can be computed by

p(o | θ) =
∏

fully observed

p(o | θ)
∏

missed

F (tE − tL) (6.18)

·
∏

partially observed

F (tE − tL)− F (tE − tS) , (6.19)

where P (o | θ) is Gaussian and F is the cumulative distribution function of θ. The starting and
ending time for the event are denoted as tS and tE , respectively. The time when the region of
interest is fixated is denoted by tL.

In order to extend our models from the steady state case to all trials, the progression of
uncertainty over the course of the blocks was simulated using the proposed Bayesian Learner.
The mean estimate and the uncertainty of the event duration were computed for each trial in
a block as follows: We repeatedly simulated events and determined the type of the resulting
observation using the mean switching pattern for each stage of a block. We then used Markov
Chain Monte Carlo methods to draw samples from the posterior belief about the true event
durations for each trial. For each trial, the prior distribution for the event duration is equivalent
to the posterior distribution in the trial before. For the first trial, we used a Gaussian distribution
fitted to the means of the three event durations. To model the initial belief prior to the first
observation, we used a Gaussian distribution fitted to the true event durations for the three
conditions. We controlled the subjects prior belief by having them perform a few training trials
during which they became familiar with the overall range of event durations.

6.3.3 Parameter estimation

Parameters were estimated by least squares using the aggregated data from trials 10 to 20
because switching behavior was stable across subjects during this period. AIC values for the
models were computed according to Burnham and Anderson (2004) as

AIC = n log(
SSE

n
) + 2(p+ 1) + C (6.20)
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Figure 6.4: Results for fixation durations. (A) Sample switching pattern for participant MK in a single block
(left) and mean fixation duration for each region (right). Switching patterns are shown for two trials,
i.e., before learning the event durations (Trial 1) and after learning the event duration (Trial 20). (B)
Mean fixation duration aggregated for all participants and all blocks grouped by condition (error bars
correspond to standard error of the mean). Mean fixation duration is shown in seconds (y-axis) and
is the same scale for all conditions. Trial number within the block is shown on the x-axis. Colors of
the lines refer to the event duration used in that condition. (C) Mean fixation duration difference as a
function of event duration difference (left). Each data point corresponds to a specific condition. Mean
fixation duration as a function of mean event duration (right). Again, each data point is associated
with one of the conditions.

where n is the number of data points, p the number of free parameters, and SSE the sum
of squared errors. The constant C contains all additive components that are shared between
the models. Since we use the difference of AIC values between the models for model compar-
ison, these constant values can be ignored, as they cancel out. Akaike weights were computed
according to Wagenmakers and Farrell (2004).

wi(AIC) =
exp

{
−1

2∆i(AIC)
}

K∑
k=1

exp
{
−1

2∆k(AIC)
} (6.21)

where i refers to the model the weight is computed for, ∆i(AIC) is the difference in AIC between
the ith model and the model with the minimum AIC. The Akaike weight of a model is a measure
for how likely it is that the respective model is the best among the set of models. The probability
ratio between two competing models i and j was computed as the quotient of their respective
weights wi/wj .
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Figure 6.5: Performance results. (A) Percentage of detected events for all conditions. Values in square brackets
correspond to the 95% credibility interval for the differences in proportion. Different conditions are
shown on the x-axis. (B) Behavioral changes from Trial 1 to Trial 20 (arrows) for each condition.
Color density depicts the probability of missing an event for every possible switching pattern . Each
plot corresponds to a single condition. Conditions are arranged as in Figure 6.4 B. (C) Difference in
detection performance between the first and last trial in each block. Different conditions are shown
on the x-axis.

6.4 Results

6.4.1 Subjects

Ten undergraduate subjects (4 females) took part in the experiment in exchange for course
credit. The participants’ age ranged from 18 to 30 years. All subjects had normal or corrected
to normal vision. Data from two subjects were not included in the analysis due to insufficient
quality of the eye movement data. Participants completed two to four shorter training blocks
(ten trials per block) prior to the experiment to get used to the setting and the task (5 minutes
on average). The number of training blocks, however, did not influence task performance. All
experimental procedures were carried out in accordance with the guidelines of the German
Psychological Society and the university’s ethics committee.

6.4.2 Behavioral results

We investigated how participants changed their switching behavior over trials within individual
blocks as a consequence of learning the constant event durations within a single block. Figure
6.4 shows two example trials for participant MK, both from the same block (Block LS – long
event duration at the left region, short event duration at the right region). In the first trial
when event durations were unknown (upper panel), MK switched evenly between the regions in
order to detect the event (t7 = 0.48; p = 0.64). However, at the end of this block in Trial 20, we
observed a clear change in the switching pattern (lower panel). There was a shift in the mean
fixation duration over the course of the block (right panel). The region associated with the short
event durations was fixated longer in the last trial of the block (t4 = 2.75; p = 0.04). Hence, the
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Figure 6.6: Properties of eye movement sequences. (A) Distributions of fixation durations across conditions. For
each condition histograms and fitted exponential Gaussian distributions are shown for both regions.
(B) Scalar law of biological timing. The upper panel depicts the relationship between the mean fixation
durations in a trial and the respective standard deviation observed in our experiment. The solid line
refers to the result of a fitted linear regression. The lower panel depicts the linear relationship of the
parameters of the exponential Gaussian distribution, where µ denotes the mean of the Gaussian and τ
denotes the rate of the exponential distribution. Each point represents the best parameter estimates
for a single distribution shown in A. (C) Quantifying oculomotor fatigue. Saccade durations over the
course of trials aggregate over all blocks (top). Saccade durations over the course of blocks aggregated
over all trials within the respective blocks (bottom).

subject changed the gaze switching pattern over trials in this particular block in response to the
event durations at the two locations.

Mean fixation durations aggregated over all participants are shown in Figure 6.4B. Variability
and temporal properties of fixation durations for the different conditions are shown in Figure
6.6. Steady-state behavior across subjects was reached within the first five to ten trials within
a block suggesting that participants were able to quickly learn the event durations. Behavioral
changes were consistent across conditions. In conditions with different event durations (SM,
SL, ML), regions with shorter event durations were fixated longer in later trials of the block
(all differences were highly significant with p < 10−5). Participants’ gaze behavior was not only
influenced by whether the event durations were different, but was also guided by the size of
the difference (Figure 6.4C, left panel). Greater differences in event durations led to greater
differences in the fixation durations (linear regression, r2 = 0.93, p < 0.002). Moreover, the
overall mean fixation duration aggregated over both regions was affected by the overall mean
event durations (Figure 6.4C, right panel). Participants, in general, switched faster between the
regions if the mean event duration was small (linear regression, r2 = 0.88, p < 0.005). Blocks
with long overall event durations (e.g. LL) yielded longer mean fixation durations compared
to blocks with short event durations (e.g., SS). Taken together, these results establish that
participants quickly adapted their eye movement strategies to the task requirements given by
the timing of events.

However, further inspection of the behavioral data suggests non-trivial aspects of the gaze
switching strategies. The conditions in our TED task differed in difficulty depending on the
event durations (Figure 6.5A). The shorter the event durations in a specific condition, the more
difficult was the task. The improvement over the course of a block differed between conditions
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Table 6.1: Model comparison for all fitted models. Differences in AIC (∆AIC), Akaike weights (w(AIC)) and
the probability ratios (wmin/w) were computed with respect to the Full Model (FM).

Model n p SSE AIC ∆AIC w(AIC) wmin/w

Full Model (FM) 90 6 0.15 -561.56 0 0.99 1.0

FM without Perc. Uncer-
tainty

90 6 0.18 -543.11 18.44 9.9× 10−5 1.0× 104

FM without Cost 90 4 0.65 -434.06 127.50 2.1×10−28 4.8× 1027

FM without Processing
Time

90 5 1.04 -389.14 172.42 3.6×10−38 2.8× 1037

FM without Acting Un-
certainty

90 4 1.21 -377.95 183.61 1.4×10−40 7.4× 1039

Note: n = number of data points, p = number of fitted parameters

(Figure 6.5B-C) and participants only improved in detection accuracy in conditions associated
with high task difficulty. In contrast, participants showed a slight decrease in performance in
the other conditions.

This can be represented as arrows pointing from the observed switching behavior in the first
trial to the behavior in the last trial within blocks in the action space (Figure 6.5B). Overall,
several aspects remain unclear, i.e., the different rates of change in switching frequencies across
trials in a block as well as the different directions and end points of behavioral changes observed
in the performance space.

6.4.3 Bounded actor model

We hypothesized that multiple processes are involved in generating the observed behavior, based
on the behavioral results in the TED task and taking into account known facts about human
time constraints in visual processing, time perception, eye movement variability, and intrinsic
costs. Starting from an ideal observer (Geisler, 1989) we developed a bounded actor model by
augmenting it with computational components modeling these processes (Figure 6.7A).

The ideal observer chooses switching patterns that maximize performance in the task. The
gaze behavior suggested by the ideal observer corresponds to the switching pattern with the
lowest probability of missing the event (Figure 6.5B). We extend this model by including per-
ceptual uncertainty, which limits the accuracy of estimating event durations from observations.
An extensive literature has reported how time intervals are perceived and reproduced (Mer-
chant, Harrington, & Meck, 2013; Ivry & Schlerf, 2008; Wittmann, 2013). The central finding
is the so-called scalar law of biological timing (Gibbon, 1977; Merchant et al., 2013), a linear
relationship between the mean and the standard deviation of estimates in the interval timing
task (which we also found in our data, see Figure 6.6). We included perceptual uncertainty in
the ideal observer model based on the values found in the literature.

The second extension of the model accounts for eye movement variability, which limits the
ability of humans to accurately execute planned eye movements and has frequently been reported
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Figure 6.7: Computational model. (A) Schematic visualization describing how the different model components
influence the preferred switching patterns for a single condition (Medium - Medium). Images show
which regions in the action space are preferred by the respective models. Each location in the two
dimensional space corresponds to a single switching pattern (see also Figure 6.5B). White dots are the
mean fixation durations of our subjects aggregated over individual blocks. The optimal strategy is
marked with a black cross for each model. The ideal observer only takes the probability of missing an
event into account. The ideal actor also accounts for variability in the execution of eye movement plans
thus suppressing long fixations (as they increase the risk of missing the event). Therefore, strategies
using shorter fixation durations are favored. Next, additive costs for faster switching yield a preference
for longer fixation durations. Hence, less value is given to switching patterns near the origin. Finally,
the Bounded Actor model excludes very short fixation durations, which are biologically impossible,
as they do not allow sufficient time for processing visual information. (B) Model components for
processing time and switching costs after parameter estimation. Parameters were estimated through
least squares using the last ten trials of each block. (C) Model comparison. For the absence of each
component the model was fitted by least squares. Differences in AIC with respect to the full model
are shown.

in the literature. While many factors may contribute to this variability in action outcomes,
humans have been shown to take this variability into account (Hudson et al., 2008). Further
evidence comes from experiments that have shown, that in a reproduction task the impact of
prior knowledge on behavior increased according to the uncertainty in time estimation (Jazayeri
& Shadlen, 2010) and studies that extended an ideal observer to an ideal actor by including
behavioral timing variability (Sims, Jacobs, & Knill, 2011). In order to describe the variability
of fixation durations, we used an exponential Gaussian distribution (Ratcliff, 1979) as it is a
common choice for describing fixation durations (Laubrock, Cajar, & Engbert, 2013; Staub,
2011; Luke, Nuthmann, & Henderson, 2013; Palmer, Horowitz, Torralba, & Wolfe, 2011). The
parameters were estimated from our data using maximum likelihood.

While behavioral costs in biological systems are a fundamental fact, very little is known about
such costs for eye movements, as research has so far focused on extrinsic costs (Navalpakkam
et al., 2010; Schütz et al., 2012; Hayhoe & Ballard, 2014). We included costs into our model
by hypothesizing that switching more frequently is associated with increased effort. In a similar
task that did not reward faster switching participants showed fixation durations of about one
second (Schütz, Lossin, & Kerzel, 2013). To our knowledge, a concrete shape of these costs has
not been investigated yet and in the present study, we used a sigmoid function (Figure 6.7B,
right panel) for which the parameters were estimated using least squares from the measured
data.
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Figure 6.8: Bayesian Learner Model. (A) Different types of observations in the TED task. Dashed lines depict
switching patterns, rectangles denote events. (B) Mean estimates and uncertainty (standard deviation)
for the event durations over the course of a block. Prior belief over event durations before the first
observation is shown on the left side. (C) Human data and model predictions for the Bayesian learner
model. Fitted parameters from the full model were used. Dashed lines show the mean fixation
duration of the bounded actor model over the course of the blocks. For each trial the mean estimate
suggested by the ideal learner was used.

Finally, the model has so far neglected that all neural and motor processes involved take
time. The time required for visual processing is highly dependent on the task at hand. It can be
very fast (Stanford et al., 2010), however, in the context of an alternative choice task processing
is done within the first 150 ms (Thorpe, Fize, Marlot, et al., 1996) and does not improve with
familiarity of the stimulus (Fabre-Thorpe, Delorme, Marlot, & Thorpe, 2001). In our study,
the demands for the decision were much lower since discriminating between the two states of
a region (ongoing event, no event) is rather simple. Still, some additional constraints limit the
velocity of switching, i.e., eye-brain lag, time of planning and initiating a saccade (Trukenbrod
& Engbert, 2014). In addition, prior research suggests that in general saccades are triggered
after processing the current fixation has reached some degree of completeness (Remington W.,
Wu, & Pashler, 2011). We estimated the mean processing time (Figure 6.7B, left panel) from
our behavioral data using least squares.

To investigate which model should be favored in explaining the observed gaze switching
behavior we fitted the model leaving out one component at a time and computed the Akaike
information criterion (AIC) for each of these models. The results are shown in Figure 6.7C. The
conditional probability for each model was calculated by computing the Akaike weights from
the AIC values as suggested in Wagenmakers and Farrell (2004). We found that gaze switches
were more than 10000 times more probable under the full model compared to the second best
model (see Table 6.1). In addition, models lacking a single component deviate severely from the
observed behavior. This strongly suggests that the temporal course of eye movements cannot be
explained solely on the basis of an ideal observer. Instead, multiple characteristics of perceptual
uncertainty, behavioral variability, intrinsic costs, and biological constraints have to be included.
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Figure 6.9: Learning of gaze strategies over blocks for all conditions according to different models. For each model
(except D), a single component was removed from the full model. The remaining parameters were
estimated from the data using only the steady state behavior (Trial 10-20). (A) Eye movement costs.
(B) Processing time. (C) Acting uncertainty. (D) Full model with all parameters fitted.

6.4.4 Bayesian learner model

All models so far have assumed full knowledge of the event durations, as is common in ideal
observer models. This neglects the fact, that event durations were a priori unknown to the
participants at the beginning of each block of trials and needed to be inferred from observations.
In our TED task information about the event durations cannot be accessed directly but must
be inferred from different types of censored and uncensored observations (Figure 6.8A). Using
a Bayesian learner, we simulated the subjects’ mean estimate and uncertainty of the event
duration for each trial in a block using Markov Chain Monte Carlo techniques (Figure 6.8B).
We used a single Gaussian distribution fitted to the true event durations for the three conditions
to describe subjects’ initial belief prior to the first observation within a block. Our Bayesian
learner enables us to simulate the bounded actor model for every trial of a block using the
mean estimates (Figure 6.8C). The results show that our bounded actor together with the ideal
Bayesian learner is sufficient to recover the main characteristics of the behavioral data. Crucially,
the proposed learner does not introduce any further assumptions or parameters. This means
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Figure 6.10: Learning effects over the course of the experiment. (A) Mean performance aggregated over all
participants grouped by the position of the block within the experiment. Error bars correspond to
the sample standard deviation. Different conditions are shown as separate lines. (B) Histogram
of regression slopes. For each participant and each condition linear regression between the mean
performance in the blocks and the position of the respected blocks in the experiment was computed.
The distribution of regression slopes indicates no improvement in the task over the course of the
experiment.

that the behavioral changes we observed can be explained solely by changes in the estimates of
the event durations. As with the steady-state case, all included factors contributed uniquely to
the model. Omitting a single component lead to severe deviation from the human data (see also
Figure 6.9).

6.4.5 Lower bound model fit

Our model predicted a single optimal fixation duration for each aggregated line in Figure 6.9 (in
the range of Trial 10 to 20). The sum of squared errors was computed as the variation around
this predicted value and then used to obtain the AIC. Differences in AIC were used to compare
different models. However, we used the AIC solely for the purpose of model comparison, not as
an absolute measure of model fit, as AIC is not well suited for evaluating the absolute model fit
due to the missing of a fixed lower bound. If a model were so good that it perfectly predicted the
dependent variable, the error-sum-of squares would approach zero, and the natural logarithm of
this value and thereby the AIC would approach negative infinity. Further, the AIC by itself is
highly dependent on the units of measurement, which influence the error-sum-of squares.

Here we present an absolute lower bound on AIC for the data presented in our experiment.
We computed the sum of squared errors for a model that estimates the best fitting parameter
for each aggregated line in Figure 6.9. For each line, the parameter that minimizes the SSE
is the mean. The lower bound for the data we collected is SSE = 0.09 and AIC = -603.15,
respectively. We used n = 90 and p = 9 (one for each line separately) parameters.

Note that this is an overly optimistic bound for two reasons: First, the estimates for fixation
durations underlying the lower bound are independently chosen to best represent each individual
optimal strategy. For the full model, however, these predictions are not independent since each
estimated parameter simultaneously affects the optimal fixation durations for all conditions.
This dependency puts a constraint on the full model that is not considered by this lower bound.
Second, the lower bound assumes the sample mean of the data to be equal to the optimal fixation
duration and only quantifies the variation around that mean. This neglects the variability across
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blocks and participants. In contrast, the full model uses all available data to estimate biologically
plausible parameters. Using these parameters the optimal fixation duration is predicted by the
dynamics of the full model rather than directly estimated from the data. While this is necessary
to provide generalizability and indispensable to prevent overfitting, it naturally introduces a
further source of variability. This is reflected in a higher sum of squared errors of the full model
compared to the lower bound.

6.5 Discussion

The study investigated how humans learn to adjust their eye movement strategies to detect rel-
evant events in their environment. The minimal computational model matching key properties
of observed gaze behavior includes perceptual uncertainty about duration, action variability in
generated gaze switches, a minimal visual processing time, and finally intrinsic costs for switch-
ing gaze. The bounded actor model explains seemingly suboptimal behavior such as the decrease
in performance in easier task conditions as a tradeoff between detection probability and faster
but more costly eye movement switching. With respect to this bounded actor model, the ex-
perimentally measured switching times at the end of the blocks were close to optimal. While
ideal observer models (Najemnik & Geisler, 2005; Peterson & Eckstein, 2012; Chukoskie et al.,
2013) assume, that the behaviorally relevant uncertainties are all known to the observer, here
we also modeled the learning progress. The speed at which learning proceeded was remarkable,
as subjects were close to their final gaze switching frequencies after only five to ten trials on
average, suggesting that the observed gaze behavior was not idiosyncratic to the TED task.
Based on the bounded actor model we proposed a Bayesian optimal learner, which only incor-
porates the inherent perceptual uncertainty about time passage on the basis of the scalar law
of biological timing (Gibbon, 1977; Merchant et al., 2013; Wittmann, 2013). Remarkably, this
source of uncertainty was sufficient to fully account for the learning progress. This suggests,
that the human visual system is highly efficient in learning temporal regularities of events in the
environment and that it can use these to direct gaze to locations in which behaviorally relevant
events will occur.

Taken together, this study provides further evidence for the importance of the behavioral goal
in perceptual strategies (Yarbus, 1967; Rothkopf et al., 2007; Hayhoe & Ballard, 2014), as low-
level visual feature-saliency cannot account for the gaze switches (Itti & Koch, 2001). Instead,
cognitive inferences on the basis of successive observations and detections of visual events lead
to changes in gaze strategies. At the beginning of a block, participants spent equal observation
times between targets to learn about the two event durations and progressively looked longer at
the location with the shorter event duration. This implies that internal representations of event
durations were likely used to adjust the perceptual strategy of looking for future events.

A further important feature of the TED task and the presented model is that, contrary
to previous studies (Najemnik & Geisler, 2005; Peterson & Eckstein, 2012; Chukoskie et al.,
2013), the informativeness of spatial locations changes moment by moment and not fixation by
fixation, which corresponds more to naturalistic settings. Under such circumstances, optimality
of behavior is not exclusively evaluated with respect to a single, next gaze shift, but instead
driven by a complex sequence of behavioral decisions based on uncertain and noisy sensory
measurements. In this respect, our TED task is much closer to natural vision than experiments
with static displays. On the other hand, the spatial locations in our task were fixed and the visual
stimuli were simple geometric shapes. Naturalistic vision involves stimuli of rich spatiotemporal
statistics (Simoncelli & Olshausen, 2001) and semantic content across the entire visual field.
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How the results observed in this study transfer to subjects learning to attend in more nat-
uralistic scenarios will require further research. The challenge under such circumstances is to
quantify relative uncertainties as well as costs and benefits of all contributing factors. There is
nothing that in principle precludes applying the framework developed here to such situations
because of its generality. Clearly, several factors indicate that participants did not depart dra-
matically from eye movement strategies in more normal viewing environments and thus that
natural behavior transferred well to the TED task. First, subjects did not receive extensive
training. Secondly, they showed only minimal changes in learning behavior across blocks over
the duration of the entire experiment (see Figure 6.10), and thirdly intersaccadic interval statis-
tics were very close to the ones observed in naturalistic settings according to previous literature
(Laubrock et al., 2013; Staub, 2011; Luke et al., 2013; Palmer et al., 2011). Overall, the found
concepts contribute uniquely to our understanding of human visual behavior and should inform
our ideas about neuronal mechanisms underlying attentional shifts (Gottlieb, 2012), concep-
tualized as sequential decisions. The results of this study may similarly be relevant for the
understanding of learning optimal sensory strategies in other modalities and the methodologies
can fruitfully be applied there, too.



CHAPTER7
Variability of eye movement sequences

7.1 Introduction

Variability is inherent to all actions. Even extensive training, for example in professional athletes,
does not lead to deterministic action execution. Various sources have been found responsible
for behavioral variability. These include fluctuations in the internal states of the subject, past
experiences, the current level of attention as well as microscopic processes in the brain, among
others (see Renart & Machens, 2014; Beck, Ma, Pitkow, Latham, & Pouget, 2012; Nienborg &
Cumming, 2009; Faisal, Selen, & Wolpert, 2008).

However, little is known about variability in temporal human visual behavior. While spatial
variability, for example, endpoints of saccades (van Beers, 2007), is straightforward to measure,
investigating the connection of variability and environmental dynamics is more complicated
because one has to deal with action sequences instead of single actions. Even for tasks in non-
changing stationary environments such as looking at pictures quantifying the similarity of eye
movement sequences is hard (see Hacisalihzade, Stark, & Allen, 1992, for an approach based on
Markov matrices). Previous research indicates that the external visual input influences variabil-
ity. When watching movies eye movements are similar between subjects (Goldstein, Woods, &
Peli, 2007) and across species (humans and maquaces, see Shepherd, Steckenfinger, Hasson, &
Ghazanfar, 2010). Also, eye movements have shown to be more consistent in Hollywood trailers
than in natural movies (Dorr, Martinetz, Gegenfurtner, & Barth, 2010) and consistency of eye
movements across observers increases with the observers’ age (Franchak, Heeger, Hasson, &
Adolph, 2016). One explanation is that the short clips are specifically designed to lead atten-
tion (Dorr, Vig, & Barth, 2012). Also, the frequency of cuts could play a role since variability
between observers increases with viewing time when viewing static images (Tatler, Baddeley, &
Gilchrist, 2005). Surprisingly, Wang, Freeman, Merriam, Hasson, and Heeger (2012) found eye
movements to be less consistent across observers of movie junks presented in a random order
the smaller the duration of the junks.

How interindividual variability relates to characteristics of a visual task is still unanswered.
There is a connection between the variability of motor actions and the reward structure of the
task (Pekny, Izawa, & Shadmehr, 2015). If the probability of reward was low, variability in
the movements increased. Past studies concentrated on natural stimuli like movies where many
aspects of the task are unknown and the statistics of the stimuli are far from understood. Also,
repeatedly probing a subject with the same stimulus is impossible due to learning. For movies,
it was shown that variability increased with repeated watching (Dorr et al., 2010). Further,
variability serves an essential purpose during the development of skills (see Dinstein, Heeger, &
Behrmann, 2015, and the references therein) and studies have shown that variability itself can
be altered through reinforcement (Paeye & Madelain, 2014). During learning, variability can

80
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Figure 7.1: Stimulus for the temporal monitoring task.
Only a single dot (at the fixated circle) is vis-
ible at any time. In this case, gaze is targeted
at the lower left circle. For the other two lo-
cations, only the circular bound is shown.

serve the purpose of exploration and facilitate finding multiple equivalent solutions to a problem
(see Sternad, 2018, for a review).

In this study, we fill a gap in the eye movement literature by investigating goal-directed eye
movements in a changing environment with controlled dynamics. This includes simultaneous
demands on spatial and temporal control of gaze. In particular, we study the influence of task
characteristics on interindividual behavioral variability. Therefore, we developed a monitoring
task where three spatial locations with independent dynamics are monitored over time in order
to detect an event. Crucially, we designed the stimulus dynamics in a way to make repeated
presentation of the same stimulus dynamics possible while preventing learning effects. All par-
ticipants were shown the same movements as the primary goal of the study was to investigate
variability between participants’ eye movements. Using this experimental paradigm we inves-
tigated the following questions: 1) How do humans decide when to make a saccade to a new
target in a dynamic environment? 2) How do humans determine the target of the next saccade?
3) How does the reward structure of the task influence variability?

7.2 Methods and materials

7.2.1 Stimulus and task design

In our visual monitoring task, three circles (diameter 8.72 deg, 300 px) were shown to the
participant at different spatial locations arranged as a triangle (Figure 7.1). Within each of the
circles, a small dot (diameter 0.29 deg, 10 px) moved randomly according to a random walk (see
Figure 7.2). At the beginning of each trial, all dots were located at a distance of 1.74 deg (60 px)
away from the center of their respective circles at a random angle. The dots moved at a rate of
three times per second (step duration 333 ms). The dot locations were updated simultaneously
at all three circles. The end of the trial was reached if one of the dots moved outside its circle.
This was the event participants were instructed to detect by switching their gaze between the
circles. A trial was successful if participants fixated the correct circle at the moment of the dot
crossing the circular bound. Eye movement data were collected using the Tobii EyeX eye tracker
(60 Hz).

7.2.2 Stimulus generation

The goal of our stimulus design was to investigate inter- and intra-individual variability in eye
movement sequences. In our event detection task, the movement of the dots was generated
using polar coordinates with different generative processes for radial and angular movement.
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Figure 7.2: Experimental design and stimulus generation. We used the same radial stimulus movement for multiple
trials (first row). To disguise this from the participants we randomly drew a spatial ordering for each
trial (second row). Also, the angular movement was sampled from a uniform distribution (third row).
As a result, the same radial stimulus movement lead to different presentations (fourth row).

The steps for the radial movement were drawn from a Gaussian distribution, the steps for the
angular movement were drawn from a uniform distribution

rt+1 = rt + εr, εr ∼ N (0, σ2) (7.1)

θt+1 = θt + εθ, εθ ∼ U(−15, 15) , (7.2)

where σ is the standard deviation of the Gaussian stepsize (set to 0.29 deg / 10 px throughout
this experiment), rt is the current distance of the dot to the center and θt is the current angle.
The increment for the angle was chosen uniformly between -15 and 15 degrees. The dot’s location
at time t+ 1 in Cartesian coordinates can then be computed as

(xt+1, yt+1) =
(
rt+1 cos(θt+1), rt+1 sin(θt+1)

)
(7.3)

where x and y refer to the coordinates in the two-dimensional space.
In order to generate differently looking stimuli with the same underlying probabilistic struc-

ture, we created eight different random walks (Figure 7.3) ranging between 34 (11.3 s) and 49
(16.3 s). We prevented the subjects from noticing the repeated presentation by generating each
trial as follows (Figure 7.2): First, one of the eight radial movements, each comprising of three
different Gaussian random walks, was selected. Second, we randomly assigned each of the three
trajectories to one of the three locations (top, left, right). Third, we sampled the angular move-
ment uniformly for each trial. As a consequence, we were able to generate stimuli with different
appearance while keeping the task-relevant dimension (radial movement) the same. Overall,
each of the eight different random walks was presented 15 times, hence each participant finished
a total of 120 trials.
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Figure 7.3: Different radial movements used in the experiment. In the beginning, all dots were located 1.74 deg
(60 px) away from the center. The stimulus movement continued for 2 s (6 steps) after the circular
bound was reached.

7.2.3 Computational model

In contrast to real-world situations, where we do not have access to the environmental statistics,
in the presented temporal monitoring task, we have full knowledge about the process that
generates the movement of the dots. Therefore, we can build a computational model based
on these statistics. Also, we have access to the reward structure of the task the subject is
solving, where reward is proportional to the probability of missing an event, i.e., one of the
targets moving beyond the boundary. The critical event only depends on the radial position,
hence we can disregard the angular movement leading to a one-dimensional problem. Using
the task statistics, we can derive the optimal eye movement strategy. In each time step, the
radial position of the dot is altered by additive Gaussian perturbations. For the region currently
fixated, this change in location is observable up to perceptual uncertainty. For regions, which
are not fixated, the change of the dot’s location is not visible, hence the uncertainty increases
with every time step.

We ensure that the location of only one of the dots is perceptually accessible at any given time
while the remaining two dots are hidden using a gaze-contingent display. Having full knowledge
about the stimulus movement, we can compute the course of the uncertainty and thus model the
belief of the subject with respect to the dots’ locations. The state space S has three components,
i.e., the location of the three dots. However, only one of the dots is observable at any given time,
hence the full state is only partially observable and a belief state is used instead. We can utilize
the additive property of the Gaussian distribution to calculate the belief about the location of
a dot at any time as

p(sn|s0, n) ∼ N (s0, nσ
2) , (7.4)

where s0 is the location of the dot at the time of the last observation, n is the number of steps
elapsed since then, and σ2 is the variance of the Gaussian random walk (Figure 7.4). The belief
state b(s) comprise the three locations as well as the duration since the last fixation for each
dot.

In our task subjects repeatedly decided which circle to fixate. A trial is considered successful
if the dot which first moves beyond the boundary is fixated at the time of the event. Similar
to all models presented in this thesis we assume that one component of our subjects’ reward
function is to solve the task in the experiment. Using our probability distribution for the dot
locations p(sn|s0, n) we can derive the optimal decision, i.e., the decision that maximizes the
reward by minimizing the chance of missing the event. This corresponds to switching gaze to
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Figure 7.4: Schematic overview of the computational model. Using the observed quantites (s, n) for each location
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of the three actions, which is proportional to the probability that the dot moves outside the circle
(center panel). The expected reward can be transformed to a probability distribution over actions
using a softmax transformation (right panel). The temperature coefficient regulates how differences
in the expected reward lead to differences in action selection.

the dot that is most likely to exceed the boundary in the next time step at any given time. The
reward function is given by

R(s, a) =

{
G if sa > bound

0 else
(7.5)

where sa is the location of the dot at the circle targeted by action a ∈ {0, 1, 2} and G is the
immediate return a subject receives when successfully detecting the event. We can now compute
the optimal policy

π = arg max
a∈{0,1,2}

E
[
R(s, a)] = arg max

a∈{0,1,2}

∫
s

p(s|o)R(s, a)ds (7.6)

where p(s|o) is the belief state summarizing the subjects’ knowledge about the location of the
dots and o = (s0, n) is the available information that can be observed.

Various factors are not accounted for in this model: uncertainty in the belief, inaccuracy in
internal computations of the probability, among others. Hence, we used a softmax function to
transform the expected reward to a probability distribution over actions.

p(a) =
eQ(s,a)/τ∑K
k=1 e

Q(s,ak)/τ
(7.7)

where Q(s, a) = E
[
R(s, a)

]
and τ is the temperature coefficient. The temperature coefficient

scales the differences in value and is used to relate internal rewards to actions probabilities (e.g.,
Neiman & Loewenstein, 2011).
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Figure 7.5: Eye movement sequences for two participants and data drawn from the model. Data is shown for
the same trial (first row). Eye movement sequences of the participants are shown in the second row.
Each square represents a time step in the experiment (300 ms). The colors of the squares correspond
to the colors shown in the first row. Each line of squares is a single trial leading to a total of 15 lines
per participants, as this stimulus was presented in 15 trials. The simulated data is shown in the third
row. The proportion of how often a specific dot was fixated at each time step is shown in the fourth
row. The solid lines correspond to the proportion computed from the participant data, the dashed
lines to those of the computational model. The fifth row shows the fixation duration distribution.

7.2.4 Deciding when and where

So far, we have derived the probability of deciding for one of the three locations given the
internal beliefs about the task statistics. However, it is unknown at what rate this probability
distribution is evaluated and therefore at what rate actions are selected. For example, while in
our task new information is presented every 330 ms it is not clear that subjects make decisions
at the same rate. It is unlikely that we perform active decisions every time new information is
perceived as information can be continuous and our information processing resources are limited.

This introduces ambiguities in our behavioral sequences, as the observation of a subject
repeatedly fixating a location can originate either from (1) the subject actively deciding to stay
at a location or (2) the subject not deciding. We need to account for this by explicitly modeling
the different possibilities. Let us consider the eye movement sequence ”1112” - a subject fixating
Location 1 for three time steps and then switching to Location 2. We can incorporate the two
possibilities in the computation of the likelihood by

p(stay at 1) = p(decide) · p(decide for 1) + p(decide) (7.8)

where p(decide) = 1 − p(decide) and p(decide for 1) is the probability of Action 1 according
to Equation 7.7. The total likelihood of the measured eye movement sequence ”1112” can be
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Figure 7.6: Task performance for human and model data. (A) Mean performance for the individual stimulus
dynamics. Upper panel: The bars correspond to the random walks in Figure 7.3. Errorbars correspond
to the 95 confidence interval of the mean. Lower panel: For each random walk we computed the
likelihood for the outcome of the random walk three time steps prior to the event. Random Walk F
is the only condition where another event was more likely thus explaining the drop in performance
shown in the upper panel. (B) For Random Walk D and H the probability for events at each of the
circles is shown three steps prior to the end of the trial. (C) Relationship between the human task
performance and the model task performance.

computed as

p(1112) = p(stay at 1)3 · p(decide) · p(decide for 2) . (7.9)

This approach captures both characteristics of the decision: which location to target next and
when. Our probabilistic decision model that accounts for the rate of action selection is similar
to using a stickiness factor for the softmax decision rule to address the preference for repeating
the same action, that has been proposed in the past (see Gershman, 2016, for example).

7.2.5 Parameter estimation

Overall, we estimated three parameters for each subject: the probability of deciding at each step
p(decide), an additional uncertainty about the location sd = σ and the temperature coefficient
tau = τ . The parameter t = p(decide) accounts for differences in the temporal dynamics of
the eye movement behavior, i.e., subjects differ with respect to their rate of action selection.
Further, as it is unlikely that subjects have full knowledge about the random movement of
the dots, we estimated our subjects additional uncertainty (variance σ2) of the step size. The
increased uncertainty can originate from various sources, i.e., uncertainty regarding the step
size, uncertainty regarding the memory of the last location, as well as uncertainty regarding
how much time has passed since the last observation. Finally, humans differ with respect to
their action selection. We estimated the temperature coefficient τ of the softmax decision rule
separately for each participant. All parameters were estimated through Maximum Likelihood
using the computational model for the action selection together with our model of the temporal
dynamics.
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Table 7.1: Fitted parameter values for each subject. The fitted parameters comprise t (temporal dynamics), τ
(action selection), and sd (additional uncertainty). In addition the likelihood for the model fit (fun)
is shown for each participant as well as the fixation duration (fixdur) and the overall performance
(correct).

part fun t tau sd fixdur correct

1 4262.02 0.846 0.172 11.878 0.565 0.650

2 4015.66 0.928 0.125 22.004 0.540 0.733

3 4428.64 0.964 0.163 4.201 0.626 0.658

4 2185.68 0.335 0.091 18.210 0.193 0.541

5 3978.10 0.631 0.196 1.964 0.446 0.525

6 4555.15 0.938 0.232 3.032 0.636 0.583

7 3880.24 0.667 0.156 8.206 0.441 0.533

8 3970.53 0.881 0.115 14.006 0.519 0.658

9 3810.49 0.611 0.195 18.784 0.428 0.600

10 4590.52 1.000 0.210 0.000 0.732 0.516

11 4195.44 0.706 0.226 2.888 0.499 0.558

12 4313.45 0.898 0.165 11.370 0.577 0.641

13 4659.51 1.000 0.299 0.000 0.834 0.425

14 3855.07 0.644 0.189 26.753 0.440 0.533

15 4290.45 0.951 0.160 14.749 0.602 0.616

16 4465.53 0.944 0.222 13.777 0.624 0.700

17 4526.29 1.000 0.221 7.764 0.748 0.616

18 4061.07 0.889 0.155 18.208 0.567 0.675

19 4171.98 0.761 0.185 11.559 0.505 0.591

20 4380.03 0.902 0.196 12.128 0.570 0.708

21 4200.85 0.779 0.173 6.642 0.504 0.575
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7.3 Results

To investigate how closely our model captures the behavioral data, we used the parameter
estimates for each participant to simulate eye movement sequences from our model (for the
parameter estimates see Table 7.1). Thereby, we applied the model to each participant’s trial
yielding a simulated dataset that matches our human data in size. The results of the model fits
for two different subjects as well as the raw eye movement data can be seen in Figure 7.5.

7.3.1 Subjects

Overall, 22 subjects (16 females) took part in the experiment in exchange for course credit. The
participants’ age ranged from 15 to 28 years (M = 22, SD = 3.5). All subjects had normal
or corrected to normal vision (seven wore glasses, two contact lenses). Sufficient eye tracking
quality was ensured for all subjects. Since the gaze-contingent paradigm used in the present
study did not require a high amount of spatial accuracy (as it was only used to detect which
of the three circles was attended), deteriorated signal quality introduced by glasses was not an
issue.

7.3.2 Performance

Performance, measured as the percentage of detected events, differed between the experimental
stimuli. Figure 7.6 depicts the proportion of events detected for each stimulus dynamic. Subjects
showed the best results for the Condition B (M = 0.81, SD = 0.14). The least events were
detected for Condition F (M = 0.24, SD = 0.14). The model results suggest a close connection
between the model behavior and the participants’ eye movements. Linear regression showed
that the model behavior closely resembles our subjects data with respect to how they performed
in the task (p = 0.0002, R = .90).

7.3.3 Temporal eye movements and stimulus dynamics

Our results show that humans are capable of scheduling eye movements in accordance with
the stimulus dynamics. The proportion of eye movements targeted at a specific circle is far
from uniform. Instead, it is affected by the location of the dot in that circle (see Figure 7.8). In
particular, the distribution of gaze is very similar across subjects. Our simulated data reflect the
eye movement patterns we observed in our subjects (see Figure 7.9). These results suggest that
humans can execute temporal eye movement plans following dynamic environmental demands.
They are able to monitor multiple changing locations and detect events by moving their focus
to relevant spatial locations and monitoring these locations more closely.

The gaze patterns drawn from the estimated model showed similar temporal statistics as
our subjects’ data (Figure 7.7). In particular, the estimated rate of deciding t is sufficient to
recover the distribution of fixation durations for individual participants. Surprisingly, our model
is capable of explaining our data despite the implicit assumption that the probability of making
a decision does not depend on the current reward distribution, a simplification made out of
computational convenience.

7.3.4 Variability of eye movements

Finally, we investigated how variability in eye movement patterns was related to the stimulus
dynamics. Variability in gaze behavior was computed as the entropy of the participants gaze
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Figure 7.7: Participant fixation duration distributions and fitted model results. For each participant the fixation
duration distribution is shown (black bars) as well as the results from the simulated data (red bars).
The x-axis denotes the duration of the fixation (in time steps of the experiments 300 ms) and the
y-axis the percentual proportion. The results for the individual paramter estimates can also be found
in Table 7.1.

patterns for each time step

H(X) = −
∑
i

P (xi)logP (xi) , (7.10)

where X is the multinomial distribution of the aggregated eye movement patterns for each time
step computed from the proportion each location is fixated at a particular time. For example,
if all participants had fixated the same location at a particular time step, the distribution p(X)
would have been be (1,0,0) and the entropy minimal. We found the entropy in the fixation
patterns to decrease if the distance of the dot closest to the boundary is small (Figure 7.10A).
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Figure 7.8: Fixation proportions for all eight different stimulus dynamics. For each stimulus dynamic the radial
movement is shown (first and fourth column) as well as the fixation proportion of the participant data
(second and fifth row) and the fixation proportion of the model (third and sixth row). For the fixation
proportion, each line corresponds to a single participant (also compare to the fixation proportion in
Figure 7.5). Lines correspond to a moving average of the fixation proportions with a window width
of five time steps. For example, for the stimulus in the upper right, both the participants as well as
the compuational model strongly favor the circle with the pink stimulus movement towards the end
of the trial.

Our computational model well described this effect. The maximum distance is closely related
to the utility of the correct action, i.e., how much reward can be expected if the correct action
is chosen. We converted the maximum distance to the expected loss using the experimental
dynamics. For each distance to the boundary, we can assign a probability of the dot exceeding
the boundary - a quantity that is directly related to the expected loss. As a result, we reveal
a nearly linear relationship between eye movement variability and expected loss (see Figure
7.10B). This relationship is also well described by our model.

7.4 Discussion

The goal of this study was to investigate variability in eye movement sequences. To this end, we
developed a temporal monitoring task using stimuli with a simple spatial structure. Subjects
switched their gaze between three location, at each location a dot was moving inside a circular
boundary according to a stochastic process. The goal of the monitoring task was to detect
when one of the dots left the circle. Crucially, participants were presented with each movement
multiple times while not being aware of this. This way we were able to compute the gaze
distribution for each subject separately for each time step, e.g., at time step five subject k
fixated Region A 50 percent of the time. We developed a computational model for our monitoring
task, that was able to reproduce key characteristics of our human data. Our results show that
external environmental dynamics and task-related rewards guide eye movement sequences. We
further show, that the variety of temporal statistics showed by subjects could be explained by
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Figure 7.9: Model predictions and human data. (A) Fixation proportions for all eight different stimulus dynam-
ics. The fixation proportions are shown for the aggregated data (dotted lines correspond to model
predictions). The individual fixation proportions are shown in Figure 7.8. All data was smoothed
using a moving average with a window size of three time steps. (B) Relationship between model and
human data. Each dot corresponds to a single time step in (A).

a memory-less process, in which the probability for deciding what action to take at any time
is independent of the current environmental state. Further, our model reflected key properties
of the eye movement variability found in our data. Behavior became more similar across all
participants if one of the dots was close to the boundary. In particular, this relationship became
linear, when the distance was transformed to the expected loss in the task.

7.4.1 Eye movements in a monitoring task

The eye movement sequences drawn from our computational model were close to the measured
human behavior. This suggests that participants were able to distribute gaze over time according
to the demands of our task. In particular, they did so despite the fact that only a single location
was visible at any time while the uncertainty regarding the other two increased. Due to our
stimulus design, the behavior cannot be explained in terms of saliency (Itti et al., 1998), as all
locations had the same visual features, or prior knowledge (Torralba et al., 2006). Also, subjects
did not visit the locations in a fixed order, which would have resulted in an equal proportion
of time spent at each location. Instead, the eye movements were connected to the stimulus
dynamics in a complex manner ruling out a simple heuristic. Crucially, this behavior was shown
by all participants indicating similar information processing across subjects.
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Figure 7.10: (A) Relationship between stimulus location and eye movement variability. For each trial the entropy
in our eye movement data is shown dependent on how close the furthest of the dots was to the
boundary. When all dots were far away from the boundary (e.g., in the beginning of each trial)
entropy was maximal (1.08). However, the closer they are to the boundary, variability in terms
of entropy in our eye movement data (black) as well as in our model simulations (red) decreases.
(B) Relationship between entropy of eye movement sequences and expected loss. Expected loss
was computed using the subject’s belief that the most eccentric dot would hit the boundary. Dots
correspond to the raw data for our subjects (black) and our model (red). Error bars correspond to
the standard error of the mean.

7.4.2 Variability is task-dependent

The connection of variability and expected loss quantified in the present experiment is in ac-
cordance with related empirical (Valero-Cuevas, Venkadesan, & Todorov, 2009) and theoretical
studies (Todorov & Jordan, 2003) reporting evidence for the minimal intervention principle. Ac-
cording to this principle, deviations in actions are corrected less if the consequences with respect
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to reward are small. Also, fixation durations of infants have shown to be less variable when
cognitive control is increased (Wass & Smith, 2014). Here, we showed that the variability of eye
movement sequences is linearly related to the expected loss. We used a softmax decision rule
with temperature parameters estimated separately for each participant. The softmax decision
rule is frequently used to account for randomness in behavior (see Daw & Doya, 2006, and the
references therein). By estimating the temperature coefficient we can represent the extent to
what subjects acted according to the optimal Q values. Subjects do not have direct access to
the real rewards and computations involved in computing the optimal action at every moment
in the experiment are only feasible with limited precision. Prior research has shown, how using
an approximation can be optimal, if the computations are costly (Vul, Goodman, Griffiths, &
Tenenbaum, 2014) which they usually are (Kool et al., 2010; Lennie, 2003). The presented
behavioral results and the insights gained from our computational model manifest a connection
between properties of the task’s reward structure and the variability of human actions. The
findings are not limited to eye movements, instead they are a general prediction of the frame-
work. Hence future work can apply the approach to test whether this relationship can also be
found in other domains.



CHAPTER8
Spatial planning of eye movements

8.1 Introduction

Actively deciding where to direct our eyes is an essential ability in fundamental tasks, which rely
on acquiring visual information for survival such as gathering food, avoiding predators, making
tools, and social interaction. As we can only perceive a small proportion of our surroundings
at any moment in time due to the spatial distribution of our retinal receptor cells (Land &
Nilsson, 2002), we are constantly forced to bring task-relevant parts of the visual scene into
focus using eye movements (Findlay & Gilchrist, 2003). Thus, vision is a sequential process of
active decisions. These decisions have been characterized in terms of optimizing performance in
the ongoing task (Najemnik & Geisler, 2005; Torralba et al., 2006; Peterson & Eckstein, 2012;
Hoppe & Rothkopf, 2016; Yang, Lengyel, & Wolpert, 2016), maximizing knowledge about the
environment (Itti & Baldi, 2006; Renninger, Coughlan, Verghese, & Malik, 2005; Renninger
et al., 2007), or targeting gaze towards locations that are most salient (Itti & Koch, 2000).

The capability of directing gaze to relevant parts of the environment is crucial for our survival.
Computational models based on ideal-observer theory have provided quantitative accounts of
human gaze selection in a range of visual search tasks. According to these models, gaze is
directed to the position in a visual scene, at which uncertainty about task-relevant properties
will be reduced maximally with the next look. However, in tasks going beyond a single action,
delayed rewards can play a crucial role, thereby necessitating planning. Here, we investigate
whether humans are capable of planning more than the next single eye movement.

Surprisingly, all of the reviewed computational models for eye movements are myopic, i.e.,
they choose actions that maximize the immediate reward (Najemnik & Geisler, 2005; Naval-
pakkam et al., 2010; Schütz et al., 2012; Peterson & Eckstein, 2012; Hoppe & Rothkopf, 2016;
Yang, Lengyel, & Wolpert, 2016). In practice, the problem of delayed rewards is circumvented
by either investigating only single saccades or by choosing tasks where both policies lead to
equivalent solutions. To our knowledge, there exist neither computational models nor empir-
ical data examining whether humans are capable of planning eye movements. The execution
of eye movement sequences has been subject to psychological research and results have shown
that the latency of the first saccade was higher for longer sequences of saccades (Zingale &
Kowler, 1987). Also, discrimination performance was enhanced at multiple locations within an
instructed sequence of saccades (Baldauf & Deubel, 2008a). Further, if an eye movement plan
was interrupted by additional information midway, the execution of the second saccade was
delayed (De Vries, Hooge, & Verstraten, 2014). Although these results indicate that a scanpath
of at least two saccades is internally prepared before execution, no light is shed on whether
multiple future fixation locations are jointly chosen to maximize performance in a task.

94
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8.1.1 The ideal observer

To understand the requirements of perceptual tasks, ideal-observer analysis (Geisler, 2003, 2011)
has been very successful based on the idea that visual perception is inference of latent causes
based on sensory signals (Knill & Richards, 1996; Kersten et al., 2004). In this framework, the
goal of the visual system is to use sensory data o to infer unknown properties of the state s of the
environment. For example, s could be indicating whether a predator is hiding behind a bush,
and by directing gaze to the bush visual data o about the latent variable describing the true
state s of the environment is obtained. This information can be incorporated into what is known
about s using Bayes’ theorem p(s|o) = p(o|s)p(s)/p(o) (see also Chapter 3). Hence, the ideal
observer combines prior knowledge p(s) and sensory information p(o|s) to form an updated
posterior belief about environmental states relevant to the specific task. The ideal-observer
paradigm has been used successfully to understand how humans choose locations for the next
saccade. Specifically, human eye movements use the current posterior and target the location
where they expect uncertainty about task-relevant variables to be reduced most after having
acquired new data from that location in situations such as visual search (Najemnik & Geisler,
2005), face recognition (Peterson & Eckstein, 2012), and temporal event detection (Hoppe &
Rothkopf, 2016).

A limitation of ideal-observer theory is that performing sensory inference by itself does not
prescribe an action, i.e., information about s in the end needs to be used for action selection,
e.g., whether to flee. The costs and benefits for the potential outcomes of the action can be
very different, e.g., not to flee if a predator is present is more costly than an unnecessary flight.
Bayesian decision theory provides such an answer by using the costs and benefits of different
outcomes with the respective uncertainties of the associated outcomes. Hence, different potential
outcomes of s are weighted with a reward function R(a, s) to determine the action with highest
expected utility: a = arg maxa

∫
sR(a, s)p(s|o)ds. Thus, it may be better to flee, even when

one is not certain that a predator is hiding behind a bush, because the consequences may be
particularly harmful. Interestingly, if all information is equally valuable in terms of reward, the
optimal action targets the location where the next fixation will reduce uncertainty the most and
not the location that currently looks like the most probable target location. Indeed, both explicit
monetary rewards (Schütz et al., 2012) and implicit behavioral costs (Hoppe & Rothkopf, 2016)
in experimental settings have been shown to influence eye movement choices.

8.1.2 The ideal planner

However, Bayesian decision theory is limited to a particular subset of visual tasks, namely tasks
that do not involve planning. Repeatedly taking the action with the maximum immediate utility
may, in general, fail in tasks with longer action sequences and delayed rewards depending on the
specific task structure. In these cases, an ideal planner based on the more powerful framework
of belief MDPs, which contains the ideal observer and the Bayesian decision maker as special
cases, is needed to find the optimal strategy. In a belief MDP only partial information about
the current state s is available, therefore a probability distribution over states is kept as a belief
state b = p(s | D) (Kaelbling et al., 1998). The action-value function Q denotes the expected
reward associated with performing action a in a belief state b:

Q(b, a) =

∫
b′

{P
(
b′ | b, a

)[
R(b′

)
+ γV ∗

(
b′
)]
}db′ (8.1)

where V ∗(b′) is the expected future reward gained from the next belief state b′. Essentially, this
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Figure 8.1: Experimental design. (A) Gaze contingent visual search paradigm. Targets were only visible in close
proximity to the current fixation location (i.e., inside the search area). (B) Procedure for a single trial.
Subjects fixated a fixation cross either shown on the left or the right side, respectively. The shape
appeared 750 ms prior to the start of the search. The search time was initiated by the participants’
gaze crossing the dotted line. The line, however, was not visible to the subjects. Depending on the
condition (short or long) subjects were able to perform one or two fixations inside the shape. (C) Raw
gaze data is shown for a trial with short search time and initial fixation on the right side (upper panel)
and for a trial with long search time and initial fixation on the left side (lower panel). Shapes were
mirrored in a counterbalanced design to ensure equal orientation with respect to the initial fixation
cross.

means that the value of an action based on the current belief is a combination of the immediate
reward and the expected long-term reward, weighted by how likely the next belief is under the
action. Thus, as the belief about the state of task-relevant quantities depends on uncertain
observations, actions are influenced both by obtaining rewards and obtaining more evidence
about the state of the environment.

In the present study, we devised a task that allows probing whether ideal-observer models
are sufficient to describe human eye movement strategies. For our visual search task, we derived
computational models based on ideal-observer theory as well as on the framework of belief MDPs.
Using these models, we specifically created our stimuli such that the two models led either to
different behavioral sequences or the same. The rationale for this was not only to show the
differences between ideal planer and ideal observer but to also demonstrate that the solutions
of both may lead to the same action sequence, depending on the structure of the specific task.
Using this experimental paradigm we are able to test whether human eye movement strategies
follow the computational principles underlying ideal-observer theory and sequential Bayesian
decision making or whether the strategies are planned and future rewards need to be considered
(belief MDP).

8.2 Experimental design

8.2.1 Task

In our task subjects searched for a hidden target within irregularly bounded shapes (Figure
8.1A). Using a gaze-contingent paradigm the hidden target only became visible if a fixation
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landed close enough (||pFix − pTar|| < 6.5°). The search area was made explicit by showing the
shape’s texture for all points closer than 6.5° to the fixation location. Targets within that area
became visible to the participant after a delay of 130 ms. This was done to prevent participants
from sliding over the image and instead encourage them to perform distinct fixations. The
texture was chosen to reinforce the feeling of looking through the shape (subjects were told to
imagine wearing x-ray goggles).

A single trial was as follows (Figure 8.1B): Participants fixated a fixation cross that was
randomly presented either on the left or the right side of the screen. After 1 s the shape was
shown in the center of the screen, thus subjects had access to the contour through peripheral
vision. Shapes were mirrored if necessary yielding equal distances for left and right starting
points. After 750 ms the fixation cross disappeared and participants could initiate the search for
the target. Trials in which the first saccade was made while the fixation cross was still visible
were dismissed and had to be repeated. It was made transparent to the participants that the
search interval started once they made the first eye movement as opposed to when the fixation
cross disappeared. After the search interval was over the shape disappeared and participants
stated, whether it contained a target. Overall, shapes contained a target in half the trials. We
used two durations as search intervals: a short interval (250 ms) providing enough time for a
single saccade and a long interval (550 ms) providing enough time for two saccades. Trials were
presented in blocks either containing only short intervals or long intervals, respectively.

8.2.2 Materials

Our computational models enabled us to specifically select shapes that facilitate testing our
hypothesis. In particular, we identified stimuli that triggered different policies for the ideal-
observer model and the ideal-planner model. First, multiple candidates shapes were generated
using the following approach: Five points were drawn uniformly in a bounded area (23.24°×
23.24°). Next, a B-spline was fitted to the random points. Finally, the shapes bounded by
the splines using the fitted parameters were filled with a texture (white noise). We applied
both models to identify shapes that lead to different policies (see Figure 8.7). Overall, four
different shapes were used in the experiment (see Figure 8.2B). We chose two shapes where
optimal behavior requires planning (S3 and S4) and two where it does not (S1 and S2), i.e.,
where the sequence of eye movements from the ideal observer and the ideal planner coincide. In
each category, we selected two shapes by visual inspection ensuring that they were similar with
respect to the area covered. For the display in the experiment the shapes were upscaled with
a factor of 1.5 and centered on the monitor such that the center of the shapes bounding box
matched the center of the screen. The target was a circular grating stimulus (0.87°in diameter).
The contrast was set in a way that it was easily detected if it was within the visible search radius
of the current fixation. The target’s position was generated by randomly choosing a location
within the shape.

8.2.3 Procedure

After signing a consent form, the eye tracker (SMI Red, 250 Hz) was calibrated using a 3
point calibration. Subsequently, subjects completed three to five short training trials, (about 1
minute) as part of the experiment instruction. During these training trials it was ensured that
the search time was sufficiently long for the individual subject to execute a single saccade in the
short condition and two fixations in the long condition, respectively. If necessary, the search
time was adjusted (between 500 ms and 580 ms, for the long search interval). Participants
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Figure 8.2: Computational models for visual search. (A) Illustration of optimal scanpaths for both models de-
pending on the search time. For the short search interval (left side, one fixation) both models show
the same behavior. For the long search interval (right side, two fixations), the ideal observer and the
ideal planner differ with respect to the scanpath. While the ideal observer’s next fixation is chosen to
maximize the immediate reward (better performance after the first fixation, bottom row), the ideal
planner’s scanpath is chosen to maximize performance after two fixations. Computational complexity
(depicted as decision trees) is higher for the ideal planner as in the condition with long search intervals
all two-fixation sequences are evaluated in order to maximize performance. (B) Shapes used in our
visual search experiment. For each shape, the optimal policy is shown for the ideal observer (pink) and
the ideal planner (green). Whether these models lead to different strategies depends on the particular
shape. Scanpaths are the same for Shapes S1 and S2, but differ for S3 and S4.

were encouraged to ask questions if anything was unclear. After training, participants answered
ten items from a checklist to ensure that they understood the task correctly (e.g., when does
the search interval start and how many targets can be found at most). Incorrect answers were
documented and the solution was discussed. After successfully finishing the training, four blocks
each containing 100 trials were performed. Thereby, the order of the blocks was either SSLL
(two blocks with short search time followed by two blocks with long search time) or LLSS.
Participants were randomly assigned to one of the two orders. Eye tracking calibration was
renewed before each block.

8.3 Model

8.3.1 Visual search as planning under uncertainty

To develop a computational model of visual search as optimal planning under uncertainty it is
first necessary to specify the relevant quantities describing the task, i.e., the state representation.
In our visual search task (Figure 8.1), a suitable candidate for a state representation is the target
location and the current location of gaze. However, in general, the exact location of the target is
unknown. Therefore, we formalize the probability distribution of the target as a belief state. The
action space comprises potential fixation locations and with each action, we receive information
about the target, update our belief and transition to the next belief state. The reward function is
an intuitive mapping between the belief state, which comprises the knowledge about the location
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of a potential target, and the probability of finding the target.
How should the actor decide where to look next according to this framework? A policy

π is a sequence of actions and the optimal policy π∗ comprises actions a = arg maxaQ(b, a)
that maximize the expected reward. In tasks comprising sequences of actions, the optimal
strategy, the ideal planner, incorporates rewards associated with future actions V ∗(b′) into action
selection. As a result, the sequence of actions that leads to the maximum total reward is chosen:

π∗ideal planner = argmax
a0,a1,...,an

E[r0 + γr1 + · · ·+ γnrn] , (8.2)

where γ is the discount factor, which controls how much future rewards influence the current
action selection.

Ideal observer as a special case of the ideal planner. If we are only interested in the
optimal next action (γ = 0) or if there is only a single action to perform Equation (8.1) simplifies
to:

Q(b, a) =

∫
b′

P
(
b′ | b, a

)
R
(
b′, a

)
db′ (8.3)

where P
(
b′ | b, a

)
is the posterior over relevant quantities in the task and R(s, a) is the cost

or reward function. Therefore, if reduced to the next action alone, the ideal planner reduces
to the ideal observer with an action selected to maximize task success after the next action.
For sequences of actions, the sequential application of the ideal-observer paradigm leads to the
action sequence:

πideal observer =

(
argmax

a0
E[r0], argmax

a1
E[r1], . . . , argmax

an
E[rn]

)
, (8.4)

where a0, . . . , an is the sequence of actions that yields the maximum expected return rt for each
time step t. Whether πideal observer and π∗ideal planner lead to the same action sequence depends
on the specific nature of the task. However, in general:

π∗ideal planner 6= πideal observer (8.5)

as can be seen in Figure 8.2. Ideal-observer approaches only lead to optimal actions if future
rewards do not play a role, for example, if only a single action is concerned.

8.3.2 Ideal observer and ideal planner formalizations

Here we derive expressions that implement the general mechanisms of Equation (8.2) and (8.4)
for our visual search task. According to our experimental design participants directed their gaze
to suitable locations within a shape in order to decide if a target was present. Depending on the
condition, the action sequence in our task comprised one (short condition) or two (long condition)
fixation locations. Formally, the greedy policy of the ideal observer (Equation (8.4)) leads to
the sequence of fixation locations (x0, y0), (x1, y1), . . . , (xn, yn) that maximizes the quality of the
decision after each step. In the case of two fixations this leads to:

πideal observer :=

(
argmax
(x0,y0)

p(correct | x0, y0), argmax
(x1,y1)

p(correct | x0, y0, x1, y1)

)
(8.6)
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where xn, yn are the coordinates of nth fixation location and p(correct|xn, yn) denotes the prob-
ability of deciding correctly whether a target is present after the nth fixation.

The non greedy policy of the ideal planner can be derived from Equation (8.2) in a similar
fashion. Again, we consider the case of two fixations (LI). Here, the next fixation location is
determined by maximizing the reward simultaneously using the next two fixation locations:

πideal planner := argmax
(x0,y0),(x1,y1)

p(correct | x0, y0, x1, y1) (8.7)

Thereby, (x0, y0) is the next location and (x1, y1) is the location thereafter. By jointly
optimizing the entire sequence of fixation locations the ideal planner is always equal or better
compared to the ideal observer. Intuitively, πideal observer and πideal planner yield the same action
sequence if the sequence only contains a single action, i.e., a single fixation. Also, the first
fixation location of the ideal observer is the same for both conditions. Crucially, this is not the
case for πideal planner. By jointly maximization the reward over the whole action sequence, even
the first fixation location can differ between the conditions.

Next, we derive the probability of a correct decision given a sequence of fixation locations
since both proposed policies depend on the performance in the task, i.e., the detection proba-
bility. The probability of correctly judging the presence of a target is proportional to the area
covered by the search. This can be computed as:

p(correct | xn, yn) ∝
∑
x

∑
y

PT (x, y)PO(x, y|xn, yn) (8.8)

where PT (x, y) is the probability that the target is located at (x, y) and PO(x, y|xn, yn) is the
probability that the location (x, y) is covered by the search given that the saccade was targeted
at (xn, yn). The former is 1/N if (x, y) lies within the shape and zero otherwise, where N is the
number of possible target locations. The latter depends on the distance between the saccadic
target (xn, yn) and the target location (x, y). Therefore:

PO(x, y|xn, yn) =

{
1 if || [xn − x, yn − y]T || < threshold

0 else
(8.9)

where the threshold is equal to the radius of the search area (6.5°).

8.3.3 Model extensions

The application of the two models to the shapes used in the experiment yields the gaze strategies
shown in Figure 8.2. To take into account known cognitive and biological constraints we need
to incorporate several well-known characteristics of the human visual system. We introduced
costs on the saccade amplitude thus favoring smaller eye movements. As was shown by prior
research, greater amplitudes lead to higher endpoint variability (van Beers, 2007) and longer
saccade duration (Baloh, Sills, Kumley, & Honrubia, 1975). It has further been demonstrated
that humans attempt to minimize endpoint variability when execution eye movements (Harris &
Wolpert, 1998). Therefore, we hypothesized that subjects show a preference for smaller saccade
amplitudes. Computationally, we obtain the total reward as a combination of performance and
saccade amplitude

rn(α) = p(correct|xn, yn)− αc(xn, yn) (8.10)
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1. Fixation 2. Fixation 1. Fixation 2. Fixation
A B
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S3 S3

S2 S2

S4

Figure 8.3: Foveated versions of the experimental stimuli. (A) Red circles correspond to the current fixation. All
shapes depict the location of the planned policy as second fixation location. Shapes are filled with
white noise to illustrate the decline of details with greater distance to the fixation location. (B) Same
as (A). Instead of texture the probability of a location being part of a shape is shown. The black area
inside the shape corresponds to a high probability of being part of the shape.

where c is a linear cost function returning the amplitude of the saccade. The parameter α
determines how much detection probability a subject is willing to give up to decrease saccade
amplitude (Hoppe & Rothkopf, 2016). This was estimated from the mean fixation locations of
our participants using least squares.

Next, the human visual system does not have access to visual content at all locations in
the field of view with unlimited precision. We accounted for the decline of visual acuity at
peripheral locations (Figure 8.3). Therefore, foveated versions of the shapes were generated
using the known human contrast sensitivity function (see Geisler and Perry (1998), Najemnik
and Geisler (2005), Peterson and Eckstein (2012), for example). For the first fixation foveation
was computed using the initial fixation location of the trial. As it was not computationally
tractable to compute foveated images corresponding to the exact location of the first landing
position, we approximated it by using the mean fixation location of our subjects instead. The
same contrast sensitivity function was used for all participants, hence we did not account for
interindividual differences in peripheral vision.

Finally, prior studies have shown that saccades undershot target locations (Gillen, Weiler,
& Heath, 2013). Initial landing positions are closer to the start location of a saccade. The final
target is reached using subsequent corrective saccades. However, in our experiment there is no
visible fixation target, therefore corrective saccades might not be present. To account for that,
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Figure 8.4: Behavioral und model results. (A) Mean human scanpaths for both conditions (solid lines correspond
to long search intervals, dashed lines correspond to short search intervals) are shown in the left column.
Colors refer to the condition and the position within the scanpath (red: short search interval, green:
first fixation in the long search interval, and blue: second fixation in long search interval). Dots
depict mean fixation locations aggregated for each subject individually, error bars show the standard
deviation for the fixation location aggregated over all data. The scanpaths suggested by the best
fitting models for the ideal planner and the ideal observer are shown in the center and the right
column, respectively. Again, solid lines depict the strategy for the long search interval, dashed lines
for the short search interval. Global means of the human data are also shown for reference (red,
green, and blue). (B) Actual and predicted spatial relation of first saccades for all four shapes.
Graphs are centered at the fixation location in the short search interval condition. Arrows depict the
displacement of the first fixation location in the long search interval relative to the short interval.
Arrow color corresponds to the data source. For the ideal observer, the first fixation location is the
same for both conditions (indicated by the square centered at (0,0)). (C) Difference in BIC between
all tested models. The lower bound corresponds to a model directly estimating the mean fixation
locations for each shape and condition from the data (3 × 4 means).

we estimated the undershot from our data.

8.4 Results

8.4.1 Participants

Overall, 16 subjects (6 female) participated in the experiment. The subjects’ age ranged from 18
to 30 years (M = 21.8, SD = 3.1). Participants either received monetary compensation or course
credit for participation. All subjects had normal or corrected to normal vision (four wore contact
lenses). One subject stated to have dyschromatopsia, which did not influence the experiment.
Sufficient eye tracking quality was ensured for all data entering the analysis. In each trial, a
single fixation location (short search interval) or a sequence of two fixation locations (long search
interval) entered the analysis. Further, informed consent was obtained from all participants and
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all experimental procedures were approved by the ethics committee of the Darmstadt University
of Technology.

8.4.2 Preprocessing

First, fixations were extracted from the raw gaze signal using the software of the eye tracking
device. Overall, 6400 trials (16 participants × 4 blocks × 100 trials per block) entered the
preprocessing. 15 trials (0.23 %) were dismissed because the subjects failed to target gaze
towards the shape. In these trials, subjects triggered the beginning of the trial by crossing
the boundary, however did not engage in visual search. While search time was adjusted to
enable subjects to perform a single saccade in the short condition and two saccades in the long
condition, respectively, in 17 % of the trials subjects failed to do so. Since we are only interested
in comparing the difference between strategies consisting of one or two targeted locations we
only used the remaining 5288 trials. Next, we excluded trials where the target was present,
regardless of whether it was found, leaving 2589 trials. Clearly, behavior after successfully
finding the target is confounded and does no longer provide valid information about the search
strategy. Also, trials in which a target was shown but not found are biased as they are more
likely to occur in the context of inferior eye movement strategies.

Our analysis and our estimated model parameters rely on mean landing positions aggregated
within subjects. Therefore, we need to make sure that the variation in landing positions arises
due to saccadic endpoint variability or uncertainties the subject might have about the shape,
but not from qualitatively different strategies. Shapes S1 and S2 consist of two separate parts,
as a consequence the reward distribution is no longer unimodal across potential gaze targets (see
Figure 8.5A). Indeed, qualitatively different strategies in the short condition were found for these
stimuli (see Figure 8.5B). Using mean gaze locations therefore would have lead to misleading
results as it implicitly implied unimodal variability in landing positions while the real data
showed clear multi-modality. To further analyze the gaze targets of our participants, we first
identified the strategy for each trial using a Gaussian mixture model. We only considered the
most frequent strategy (see Figure 8.5C) for both shapes and discarded trials (10.6 %) deviating
from the chosen strategy. However, our findings do not depend on the particular choice of
strategy as shapes that revealed differences between the myopic observer and the planning
observer (S3 and S4) did not elicit different strategies. The remaining 2313 trials were used for
our analysis.

8.4.3 Behavioral and model results

For all shapes subjects showed higher detection performance in the condition with the long
search interval (Figure 8.6A). The spatial distribution of detected and missed targets is shown
in Figure 8.6B. The mean fixation location for each participant separately for all shapes and
conditions is shown in Figure 8.4A. Also, fixation sequences for the best fit of the ideal observer
(right column) and the ideal planner (center column) are depicted. Visual inspection suggests
that the behavioral data is closer resembled by the results of the ideal planner. To test whether
eye movements were planned, we compared the first fixation location in the short condition
to the first fixation location in the long condition for all shapes. If subjects were capable of
performing planning, we expected a difference in the first fixation location for Shape S3 and
S4. We used Hotelling’s T-test to compare the bivariate landing positions of the first saccade
between the two search intervals (Table 8.1). Indeed, mean target locations for the first saccade
were different in Shape S3 and S4. No significant differences, however, were found in shapes S1
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Table 8.1: Descriptive statistics of landing positions (in screen pixel) for all shapes as well as inferential statistics
(two-sided) for the comparison across conditions (long and short).

N Centroid Covariance Hotelling’s T p
x̄ ȳ σ2xx σ2yy σ2xy

S1
Short

16
540 568 862 686 191

0.744 .485
Long 535 554 1 018 1040 513

S2
Short

16
669 622 267 1270 271

2.66 .086
Long 669 650 223 1574 210

S3
Short

16
766 554 1676 3991 -2136

17.43 1.07× 10−5*
Long 705 675 550 3207 -492

S4
Short

16
748 608 3903 815 -106

7.89 .002*
Long 677 631 2094 1066 -223

and S2. Unlike the ideal observer, our ideal planner well predicted this behavior. In addition,
the direction of the spatial difference of the first fixation location between the search interval
conditions followed the course suggested by our ideal planner (Figure 8.4B).

8.4.4 Bounded actor extensions

We extended both the ideal observer as well as the ideal planner to yield a more realistic model
for human visual search behavior, i.e., a bounded actor. We added additive costs for longer
saccade amplitude, as they lead to longer scanpath duration (Baloh et al., 1975) and higher
endpoint variability (van Beers, 2007), which humans have been shown to minimize (Harris
& Wolpert, 1998), used foveated versions of the shapes to account for the decline of visual
acuity in peripheral vision (Geisler & Perry, 1998), and accounted for the often reported fact,
that human saccades undershoot their target (Harris, 1995; Gillen et al., 2013). To obtain
a quantitative evaluation of the computational models, we employed model selection using the
Bayesian information criterion (BIC). The two free parameters in the models, i.e. the magnitude
of additive costs for saccade length and the magnitude of the undershot, were estimated using
Maximum Likelihood with bivariate Gaussian error terms on subjects’ empirical data. We also
estimated the covariance matrices for the models’ predictions and the behavioral gaze data to
compute the BIC for each model.

Figure 8.4C shows the difference in BIC of all models compared to the best model. The
lower bound was derived by computing the mean fixation locations directly from the data for
each of the four shapes as well as for each of the three fixation locations. The difference in
BIC values between two models is an approximation for the log-Bayes factor and a difference
∆BIC > 4.6 is considered to be decisive Kass and Raftery, 1995. Results clearly favor the
planning observer over the myopic observer (∆BIC = 139). Crucially, the planning observer
without any parameter fitting still provided a better description of our human data than the
myopic observer with all extensions (∆BIC = 59). Further, costs for saccade amplitudes and
foveation did not only improve our model fit for the planning observer but were also favored by
model selection, suggesting that they are needed for better describing the eye movement data
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Figure 8.5: (A) Theoretical detection performance for the shapes used in the experiment. Contour lines depict the
percentage of detected events dependant on the fixation location. Two shapes show unimodal detection
performance maps, two have multiple modes. (B) Raw data for the two multimodal shapes. Gaussian
mixture models were fitted to our subjects raw data. Model comparison revealed qualitatively different
strategies. First fixations were distributed over the different modes for multimodal shapes. (C)
Proportion of trials corresponding to the different strategies. Panels are aligned to (B). Color represent
the choice of strategy according to the mixture model shown in (B).

in our experiment. For the saccadic undershot model comparison was less decisive but still in
favor of the full model (∆BIC = 3 between planning observer with all extensions and planning
observer without undershot).

Parameter estimates for the saccadic undershot were similar for the myopic observer (2.9 %)
and the planning observer (3.2 %). The influence of the costs for longer saccades was higher
for the myopic observer (0.69 DP / Deg) compared to the planning observer (0.34 DP/Deg).
The unit of the costs is detection performance (DP in %) per degree (Deg) and states, how
much performance subjects were willing to give up to shorten saccade amplitudes by one visual
degree. It is important to note, that both factors, costs and saccadic undershot, represent distinct
computational concepts. The influence of the costs does not depend on the amplitude of the
saccade directly, but on the reward structure of different potential landing locations. Hence, for
two different shapes the same costs can have very different effect on where to target gaze. On
the other hand, the undershot is relative to and only depends on the amplitude of the saccade
and does not depend on the reward structure and therefore the shape. We also estimated the
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Figure 8.6: (A) Human detection performance for all shapes and conditions separately. (B) Error distribution for
all four shapes and both conditions. Green crosses depict locations where a target was successfully
detected. Red cross depict locations of targets that were missed. The upper panel shows the error
distribution for the short condition. The errors for the long condition are shown in the lower panel.

radius of the circular gaze contingent search shape centered at the current fixation. Parameter
estimation yielded values very close to the true radius and did not improve model quality for
neither the planning observer nor the myopic observer.

8.5 Discussion

It has been unclear whether sequences of human eye movements are planned ahead of time.
Prior studies indicate that multiple saccadic targets are jointly prepared as a scanpath and that
cueing new targets during execution of eye movements results in longer execution times (Zingale
& Kowler, 1987; Baldauf & Deubel, 2008a; De Vries et al., 2014). However, to our knowledge,
there has been no experimental evidence that eye movements are chosen by considering more
than one step ahead into the future. Instead, the ideal-observer paradigm, that models human
eye movements as sequential Bayesian decisions has been the predominant approach.

In our study, we tested whether the implicit assumptions that accompany the ideal observer
are justified. Therefore, we contrasted the ideal observer with the more general ideal planner that
was formalized as a Markov Decision Process (Sutton & Barto, 1998) with partially observable
states (Kaelbling et al., 1998). We formalized policies for the ideal observer, only considering
the immediate reward for action selection, and for the ideal planner, which also considers future
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Figure 8.7: Shapes generated by the algorithm with random initialization. Green and pink lines correspond to
the optimal two fixation search strategy of the ideal planner and the ideal observer, respectively.

rewards. Next, we derived the specific circumstances under which the models produce different
policies. Ultimately, we used these insights to manufacture stimuli that maximized the behav-
ioral differences elicited by the different cognitive strategies and also obtained stimuli that show
very similar strategies. Thus, the experiment was highly suitable for examining which cognitive
strategy was adopted by our subjects.

We developed a visual search task where we expected different behavioral sequences depend-
ing on the cognitive strategy of our subjects. In particular, we investigated whether subjects
adjust their scanpath during visual search depending on the duration of the search interval.
Therefore, we controlled the length of the saccadic sequence. The short search interval allowed
subjects to execute a single saccade, while in the long search interval subjects were able to fixate
two locations.

Our results suggest that eye movements are indeed planned. Subjects’ scanpath was very
well predicted by the ideal planner while showing severe deviations from the scanpath proposed
by the ideal observer. Crucially, this was the case even if the sequence required planning.
We found fixation locations to be different depending on the duration of the search interval.
This difference is only expected under the ideal planner and cannot be explained by the ideal
observer. Finally, model comparison favored the ideal planner and its extensions over the ideal
observer by a large margin. Furthermore, extending our ideal planner model to a bounded
planner, we found evidence that subjects traded off task performance and saccade amplitude.
Including additive costs for saccades with great amplitude into the ideal planner and accounting
for saccadic undershot was best capable of explaining our data further.

Finding and executing near optimal gaze sequences is crucial for many extended sequential
every-day tasks (Hayhoe & Ballard, 2005; Land & Hayhoe, 2001). The capability of humans
to plan behavioral sequences gives further insights into why we can solve so many tasks with
ease, which are extremely difficult from a computational perspective. In many visuomotor tasks
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coordinated action sequences are needed rather than single isolated actions (Hayhoe, 2017).
This leads to delayed rewards and thus a complex policy is required rather than an action that
directly maximizes the performance after the next single gaze switch. Additionally, our findings
have implications for future models of human eye movements. While numerous influential past
models have considered planning (Najemnik & Geisler, 2005; Peterson & Eckstein, 2012; Hoppe
& Rothkopf, 2016; Navalpakkam et al., 2010), our results indicate that in the case of visual
search humans are capable of including future states into the selection of a suitable scan path.

The broader significance of the present results beyond the understanding of eye movements
lies in the fact that human behavior in our experiment was best described by a computational
model of a bounded probabilistic planner including perceptual uncertainty. In this framework,
sensory measurements and goal-directed actions are inseparably intertwined (Gottlieb, 2012;
Yang, Wolpert, & Lengyel, 2016). So far, the predominant approach to probabilistic models
in perception has been the ideal observer (Geisler, 2003, 2011), which can be formalized in the
Bayesian framework (Knill & Richards, 1996; Kersten et al., 2004) as inferring latent causes in
the environment giving rise to sensory observations. Models of eye movements selection have
so far used ideal observers (Najemnik & Geisler, 2005; Peterson & Eckstein, 2012; Hoppe &
Rothkopf, 2016) without planning.

A limitation of the current study is that it does not disambiguate between open-loop and
closed-loop planning (Russell, Norvig, & Davis, 2010). The distinction between these two types
of planning lies in the way future observations are utilized within the planning process. While
open-loop algorithms plan a sequence of actions but disregard the outcome of future observations,
closed-loop algorithms are much more sophisticated by taking all possible future observations
after each action in the entire sequence into account within the planning process. As such,
closed-loop planning is even more demanding computationally than open-loop planning. The
current experiments cannot disambiguate whether human behavior is better explained by either
of these two planning algorithms, because for the second fixation in the long search interval
condition the belief after the first fixation only depends on whether the target was found. Thus,
subjects terminating the search in the long search interval condition after finding the target after
the first fixation may be the only support for closed-loop control in our experiments. Future
work will need to address, which of these two types of planning better describes human gaze
selection.

Probabilistic, Bayesian formulations of optimality in perceptual tasks (Ernst & Banks, 2002;
Körding & Wolpert, 2004), cognitive tasks (Oaksford & Chater, 2007; Gershman, Horvitz, &
Tenenbaum, 2015), reasoning (Tenenbaum, Griffiths, & Kemp, 2006), motor control (Todorov
& Jordan, 2002), learning (Daw, Niv, & Dayan, 2005), and planning (Huys et al., 2015) have
led to a better understanding of human behavior and the quest to unravel, how the brain could
implement these computations (Ma et al., 2006; Fiser et al., 2010; Sanborn & Chater, 2017),
which are known in general to be intractable (Kwisthout & Van Rooij, 2013). Our results extend
the current understanding by demonstrating that planning under perceptual uncertainty is also
part of the repertoire of human visual behavior and open up the possibility to understand recent
neurophysiological results (Foley, Kelly, Mhatre, Lopes, & Gottlieb, 2017) within the planning
under uncertainty framework.



CHAPTER9
General discussion

9.1 Summary of the findings

The present thesis investigated how eye movements are scheduled in dynamic environments.
To this end, we developed a family of tasks that facilitated us to probe our subjects’ visual
system while having full knowledge of the temporal statistics and the reward structure of our
experiments. Crucially, these two components are usually unknown when considering natural
behavior. This enabled us to develop normative computational models for temporally complex
visual behavior. Using these models, we were able to gain new insights into several aspects of
the human visual information processing.

We found new insights into the mechanisms underlying the control of blinks. Using an event
detection task together with known temporal statistics we were able to explain the spatial as well
as the temporal properties of human blinking behavior. Using the information about the task
properties, we predicted when blinks should occur and also the distribution of times between
two consecutive blinks, the interblink intervals. Importantly, this yielded a computational expla-
nation for the characteristic interblink interval distributions proposed by Ponder and Kennedy
(1927) and repeatedly found by various investigations. Surprisingly, our results suggest, that
costs for blink suppression do not increase with the duration since the last blink. Instead, they
can be sufficiently explained by a memoryless stochastic process.

Further, our findings suggest that temporal eye movements are guided by internal represen-
tations of the stochastic quantities in our environment. Crucially, we were able to understand
the processes involved in learning these quantities using computational approaches. Further,
our results suggest that eye movement strategies take into account the temporal variability in
fixation durations when deciding for a particular scheduling of eye movements. It has been
shown for pointing (Trommershäuser et al., 2006) that humans perform nearly optimal despite
the variability of actions. Our data and computational model results suggest that this is also
the case for fixation durations and saccades. We showed that the scalar law of biological timing,
a well-documented phenomenon in psychophysical tasks, also plays a part in action selection for
eye movements. Also, we presented work on how physiological limits bound the visual system,
e.g., the processing time, that is needed to perform the computational steps in order to decide
for a subsequent action.

Having continuous access to the environmental statistics during a dynamic task provides
an opportunity to study the variability of eye movements. We created stimuli that appeared
different but shared the same statistical structure in dimensions relevant to the task. Using this
approach, we were able to probe subjects’ with same stimulus sequences multiple times while
avoiding learning and training effects. We found that variability of eye movements is related
to the expected loss in the task. This means, that if the stakes are high, subjects show similar

109



CHAPTER 9. GENERAL DISCUSSION 110

eye movement behavior while variability increases if the expected loss is smaller. Again, we
substantiated our results using a computational model that closely reflected the eye movements
of our subjects.

Finally, normative computational models understand action selection in terms of reward
maximization. In a simple two-alternative forced-choice paradigm, there is only a single action
and therefore the action with the maximum reward should be taken. This is not the case when
considering sequences of eye movements, as the accumulated reward and therefore the optimal
action sequence depends on the length of the sequence. However, state-of-the-art models for
eye movements do not take this into account (Najemnik & Geisler, 2005; Navalpakkam et al.,
2010; Schütz et al., 2012; Peterson & Eckstein, 2012; Hoppe & Rothkopf, 2016; Yang, Lengyel,
& Wolpert, 2016). We contrasted two different models, an ideal observer taking the action
with the maximal immediate reward, and an ideal planner taking the action that maximizes the
accumulated total reward. Taking future actions into account for action selection leads to higher
rewards but also to higher computational costs. While humans have shown to be able to trade
off how far ahead they plan (Krueger, Lieder, & Griffiths, 2017), and hand and eye movements
can be affected by future rewards in foraging tasks (Diamond, Wolpert, & Flanagan, 2017),
there has been no normative evidence that eye movements are scheduled using planning. We
derived a visual search task with search shapes designed to maximally discriminate between the
two models. Our results showed that our subjects’ scanpath was closely reflected by the ideal
planner while deviating severely from the ideal observer. This suggests that the visual system
is capable of planning ahead at least two eye movements. Our study also shows, that whether
or not future rewards need to be accounted for highly depends on the specific choice of stimuli.

9.2 Influence of costs on action selection

All the empirical data in the present thesis showed that visual behavior can be explained as a
trade-off between multiple sources of costs and rewards. We used inverse reinforcement learning,
i.e., we inferred the goal structure from action sequences, to show the mechanics of this trade-off.
In our experiments, the task-related reward that could be earned through suitable actions was
controlled and known. We then explored the physiological and motivational costs that influence
action selection.

Outside of the lab, we constantly have to trade-off multiple different costs and benefits.
Various studies have investigated the trade off between eye movements and memory. The results
show, that whether subjects acquire information by targeting their sensory system towards the
region of interest compared to retrieving the information from memory depends on the cost for
storing the information in memory (Droll & Hayhoe, 2007) as well as the cost for making the
explorative eye movement (Ballard et al., 1995). In a block sorting task, subjects more frequently
relied on information stored in memory if the distance of the eye movement needed to gather
information was increased (Ballard et al., 1995). On the other hand, Droll and Hayhoe (2007)
increased the cost of solving a sorting task using memory by increasing the number of features
that needed to be remembered. As a result, they observed an increase in the use of strategies
relying on online information. Both studies show that by manipulating either of the dimensions
of the reward function (memory and eye movements) behavioral changes can be observed that
reflect an internal trade-off. While there exists evidence pointing to the influence of costs on
behavior, computational accounts that quantitatively show how costs affect action selection are
scarce.

Here, we provided quantitative evidence for the trade-off between task-related costs, benefits
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and physiological costs. We reported costs for the frequency of saccades (Chapter 6), the sup-
pression of blinks (Chapter 5), the amplitude of a saccade (Chapter 8), and simply how closely a
subject pays attention to the stimulus (Chapter 7). We are still a long way from deciphering the
complex interplay of the different sources of rewards and costs that produce complex everyday
behavior in natural contexts. Future work should focus on quantifying the behavioral costs and
trade-offs for different actions. One possibility could be to measure quantities related to energy
consumption for a movement.

For example, the physiology of the eye affects blinking behavior and various measures for
aberrations have been proposed, e.g., the tear breakup time (Al-Abdulmunem, 1999). These
physiological measures give insight into the cost structure for different actions. In their seminal
work on cue combination, Ernst and Banks (2002) showed, that humans optimally combine
different sensory measurements and weigh them according to their variability to yield a single
estimator. Crucially, they measured the uncertainty in both modalities - audio and visual -
separately. In the same fashion, future work should attempt to unfold the cost structure using
separate diagnostics and plug these measurements into our computational models.

9.3 Temporal dynamics of human visual behavior

While there exists a rich literature on human time perception (James, 1890; Allan, 1979;
Grondin, 2010; Mauk & Buonomano, 2004; Brown & Merchant, 2007) little research has applied
this principle to behavioral data that go beyond time estimation tasks. There are studies from
the field of engineering that deal with action selection in dynamic scenarios (Levinson et al.,
2011), however, technical systems do not usually share the same characteristics as the human
visual system. In a series of experiments, we showed that humans are capable of performing
nearly optimal despite the temporal uncertainty that is omnipresent in natural environments.
In particular, Weber’s law for time estimation plays a key role in scheduling actions with critical
timing. Humans even accounted for it during learning the temporal statistics from experience.
We extended past research showing that humans are near optimal in spatial tasks (Najemnik
& Geisler, 2005; Peterson & Eckstein, 2012; Navalpakkam et al., 2010; Chukoskie et al., 2013)
to the temporal domain. In our experiments, subjects performed close to computational mod-
els based on optimal decision making, if uncertainties and costs were considered. Future work
should attempt to unite the advances of models in both domains, spatial and temporal, to make
predictions for eye movements in more complex situations.

9.4 Alternative models for eye movements

In the present thesis, we proposed models based on optimal decision making using Bayesian
decision theory and generalized this to partially observable Markov decision processes. We
found that the developed models were able to relate the behavioral data to biologically plausible
concepts on a computational level. However, various other methods have been proposed and
applied to predicting eye movements in the past (see Chapter 4). In their influential work on
Bayesian surprise, Itti and Baldi (2006) suggest that eye movements are targeted at locations
with maximum gain in information. However, models using information theoretic criteria instead
of maximizing a reward only lead to optimal behavior if every bit of information that a subject
can harvest at any time is equally valuable in terms of task performance. This property is
violated, for example, in the experiment presented in Chapter 7. The dots at all three of the
presented regions moved according to a random walk with the same step size. Hence, when not
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being fixated, the uncertainty about the current location of the dot grows with the same rate
for all three locations. As a consequence, the amount of information associated with pointing
gaze to a location does not depend on the last seen location of the dot but depends solely on
the time since the last fixation. However, in terms of reward, the information of a dot last seen
closer to the boundary is much more valuable than information of a dot closer to the center.

Saliency models comprise a prominent family of computational models relating low-level
visual features to the probability of attracting gaze. However, they do not incorporate temporal
characteristics of behavior, hence they can not explain any of the experiments described in the
present thesis. Saliency is a spatial concept and, crucially, does not change over time. This is
clearly not the case in dynamic environments, where a single location can attract gaze in one
moment and stop to do so in the next.

9.5 Connection to natural stimuli

We used stimuli designed explicitly for studying temporal environments without the spatial
complexity present in real-world tasks. This approach was motivated in Chapter 4 as it facili-
tates developing computational models for temporal eye movements. How do our experimental
designs relate to real-world tasks and how can the developed models be applied to everyday
problems? First, while the spatial properties of the stimuli were kept as simple as possible, the
temporal statistics of the stimuli followed complex dynamics. The different statistics used in the
experiments are connected to real-world dynamics and cover a wide range of everyday activities.
The events’ durations used in our experiments ranged from 50 ms (blinking) to 1.5 s (TED).
Many everyday tasks have events with similar durations between a couple milliseconds and a few
seconds including facial expressions during conversation (Yan et al., 2013), traffic light changes
during locomotion, or speed changes of the car ahead during driving. Second, we covered two
different monitoring tasks with clear connections to everyday activities. The TED task (Chapter
6) where observing that the event has not yet occurred does not give any information about the
likelihood of the event in the future. This, for example, is similar to waiting for a traffic light
turning or a bus coming. Second, in the monitoring task in Chapter 7 observing the location of
a dot, even when the event has not occurred yet, changes the probability of the event at that
location, i.e., the probability becomes very low if the dot is near the center. The same is true
for monitoring the vehicle in front of us in driving.

All tasks required minimal practice (5 minutes for the TED task, 1 minute for the planning
task, no training for the remaining two experiments) despite the reduced spatial complexity. This
indicates that participants resorted to eye movement strategies they also use in daily tasks with
similar temporal dynamics instead of learning eye movement patterns specifically adapted to
the experimental settings. Further evidence comes from the fact that the visual behavior during
the experiments shared common statistical properties when compared to natural behavior. The
temporal statistics of the behavioral data were similar to previous findings, i.e., the blinking
rates (similar to Garcia et al., 2011), the distribution of interblink intervals (similar to Ponder
& Kennedy, 1927), even if they contained more natural stimuli, i.e., the distribution of fixation
durations (similar to Dorr et al., 2010).

9.6 Application in technical systems

Results about human eye movement patterns are essential to advanced systems that infer the
attentional state of drivers (see Dong, Hu, Uchimura, & Murayama, 2011, for an overview).
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According to the World Health Organization (WHO) some 1.25 million people die in traffic each
year (World Health Organization, 2015). Hence, improvement of the systems preventing road
accidents by monitoring the state of the driver has great benefits. Many of the indicators of
inattention and fatigue reported in the literature use static thresholds to determine the state of
the driver (see the references in Dong et al., 2011). Besides static thresholds, machine learning
algorithms (Liu, Yang, Huang, Yeo, & Lin, 2016) as well as deep neural networks (Streiffer,
Raghavendra, Benson, & Srivatsa, 2017) have been proposed to infer whether a driver is dis-
tracted. However, all reviewed systems focus solely on data about the driver while neglecting
both the environmental dynamics as well as the current task.

The percentage of eyelid closure (PERCLOS) is a measure for drowsiness comprising three
metrics: the proportion of time the eyes are closed at least 70 and 80 percent, respectively, and
the mean square percentage (Dinges & Grace, 1998). It is frequently applied to the detection
of fatigue as higher PERCLOS scores have found to be an indicator for fatigue (Sommer &
Golz, 2010). However, studies have suggested that driver fatigue can be detected better when
using EEG-based systems and not reducing eyelid movements to the PERCLOS measures, our
results reveal two further weaknesses of this commonly used metric. First, our results show that
blinking rates change according to the current demands. Second, interindividual differences in
the physiology of the eyes lead to great blinking variability across subjects. Both aspects have
shown to heavily influence blinking behavior and therefore directly affect the percentage of eyelid
closure.

Our results emphasize, that task-related properties greatly influence where people target
their gaze. This was the case both for the event detection task (Chapter 6) as well as for
the temporal monitoring task (Chapter 7). Both psychophysical approaches are related to
visual tasks during driving: keeping an eye on the car in front as well as checking the mirror
for passing vehicles. Models that include task-relevant effects have been proposed in the past
(Wickens, Helleberg, Goh, Xu, & J. Horrey, 2001; Feuerstack & Wortelen, 2017). According
to the Wickens et al. (2001) the probability that a region is attended through eye movements
depends on the respective saliency, the effort of making a saccade to the location, the expectancy
for receiving new information at the location, and the value.

The Human Efficiency Evaluator (Feuerstack & Wortelen, 2017) is based on the Saliency
Effort Expectancy Value (SEEV) model. SEEV models have been used to model in various
scenarios related but not limited to driving (see Feuerstack & Wortelen, 2017, and the references
therein). The parameters for the models are estimated using lowest ordinal heuristic. However,
they require human judgments in order to estimate the free parameters.

While our results link human eye movement behavior to task-related rewards, our data show
great interindividual variability. In our experiments, both for blinking behavior as well as for
monitoring, we have shown that differences in physiological costs across participants lead to
severe behavioral differences. This indicates, that interindividual differences need to be taken
into account to correctly infer the current state from visual behavior. In addition, state of the art
computational models could benefit from the methodology described in the present thesis as all
reported characteristics of dynamic gaze behavior ground on biologically plausible mechanisms,
i.e., the scalar law of biological timing and physiological cost for blink suppression, which have
been reported repeatedly in the literature.



CHAPTER10
Conclusion

The study of human behavior lags behind when it comes to general explanations for how hu-
mans behave in their natural environment compared to other disciplines like physics or chemistry,
where detailed mathematical descriptions for complex phenomena exist. In order to understand
human behavior in natural settings, we must understand the statistics of the respective environ-
ment. Imagine a ball rolling through a hilly landscape. The ball’s trajectory can be described by
application of Newton’s mechanics which is essentially that F = ma. However, without knowing
the topology of the landscape, the observed trajectory is of great complexity. The present thesis
has shown, that visual behavior highly depends on the environmental regularities and can only
be explained if those regularities are taken into account. In a series of experiments we found
a clear connection between behavioral action selection and environmental statistics. This ob-
servation is crucial as it makes finding general laws for the generation of behavior impossible,
unless they comprise the complexity of natural statistics. However, it does not contradict the
existence of psychological laws. Instead, we might not be in possession of the right quantities for
them so far. For example, in our experiment investigating eye movement variability we found
a simple linear relationship between variability and task properties. However, without access
to the environmental statistics and the computational theory this relationship would have been
untraceable or would seem of great complexity. Therefore, it might be that complex phenomena
retain a law-like structure once we have more knowledge of the complex environmental statistics
and task structures that humans are designed to solve. Recent advances in intelligent algorithms
as well as easy access to large quantities of environmental data open a chance to discover more
about these problems.
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