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Abstract. Product reviews are the foremost source of information for customers 

and manufacturers to help them make appropriate purchasing and production 

decisions. Today, the Internet has become the largest source of consumer 

thought. Sentiment analysis and opinion mining is the field of study that 

analyzes people’s opinions, sentiments, evaluations, attitudes, and emotions 

from written language. In this paper, we present a study of aspect-based opinion 

mining using a lexicon-based approach and their adaptation to the processing of 

responses written in Ukrainian and English. This information helps to build 

systems to understand customer’s feedback and plan business strategies 

accordingly. This also helps in predicting the chances of product failure. In this 

paper, it is explained how machine learning can be used for opinion mining. 

The research methods used in the work are based on data mining methods, Web 

mining, machine learning, and information retrieval. The stages of the method 

of cross-language aspect-oriented analysis of statements are presented. The 

cross-language categorization of characteristics of goods is considered. The 

algorithm describes the model learning in cross-language virtual contextual 

documents. 

Keywords: analysis of opinion, review, aspect, opinion orientation, sentiment 

analysis, categorization, machine learning 

1 Introduction 

The intellectual analysis of statements (opinion mining), which is in the extraction of 

subjective information (opinions, evaluative judgments, emotions, feelings, etc.) from 

text  information becomes very important due to the development of information 

technologies and its implementation in all spheres of life. Identifying and evaluating 

the positivity or negativity of expressions regarding a particular research object can be 

applied to a variety of industries, including industry, marketing, education, etc. The 
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practical application of aspect-oriented analysis of statements is possible in content 

analysis as a formalized method of text analysis. Analysis of the tonality of the text 

allows you to evaluate the success of the advertising campaign, political and 

economic reforms; to determine the attitude of the press and the media to a particular 

person or event; to determine consumer attitude to certain products or services. 

Market research shows that online reviews have a significant impact on the behavior 

of the level of products sales [1]. However, their growing volume leads to the fact that 

it becomes impossible for consumers to get acquainted with each one. On the other 

hand, online reviews provide manufacturers with information on whether consumers 

are satisfied with their products. The manufacturer collects various attributes such as 

comments, wall post as raw data and use advanced data mining approaches for 

dispersal of intellectual knowledge. He also analyzes the data collected for decision 

making and product promoting [2].  

Assessments of educational services users regarding the prestige of universities or 

the elitism of education in the applicant competition are becoming relevant in the field 

of higher education. Such estimations express the emotional perception of a product 

based on semantic parsing statements. Sentiment analysis and opinion mining is 

important for business and society due to the growth of social media such as reviews, 

forum, discussions, blogs, micro-blogs and social networks [3] [4]. Consequently, the 

task of determining the content and emotional color of consumer-related statements 

concerning aspects of goods (aspect-based opinion mining) in the evaluation system 

adapted to the Ukrainian market is relevant and important. 

For analyzing user feedback, it is necessary to handle complex syntactical 

constructs of expressions, phrases that were used in a figurative sense, identify spam, 

noise, sarcasm etc. Therefore, the development of the latest information technologies 

in the area of opinion mining reduces to the following tasks: 

 finding positive and negative statements in textual data; 

 assigning of a certain numeric equivalent for positive or negative statements; 

 summarizing positive and negative statements to a certain integral indicator in 

order to compare research objects. 

There are aspect-based opinion mining methods that based on frequency-based 

analysis and use simple filters on noun constructs to extract aspects. Methods based 

on the syntactic structure of the text use natural language processing to find 

relationships between aspects and their related feelings. Hybrid methods use the 

natural language relation for filtering frequently encountered aspects. Accuracy of 

hybrid methods is much higher than the previous two. However, such as in the 

previous two cases, hybrid methods require manual adjustment of various parameters. 

To avoid the need of manually adjusting the parameters, they use educational methods 

with a teacher who automatically studies the parameters of the data model. Methods 

of education without a teacher, as well as probabilistic models, allow us to determine 

what is said in the text, the semantics of the text.  

The tasks of the vocabulary analysis are divided into tasks of opinion mining at the 

level of the document (document-level), at the level of a separate sentence (sentence-



level) and opinion mining at the level of a separate phrase (phrase-level), which 

involves the analysis of individual characteristics of the product. 

Aspect-oriented analysis of statements is widely used for practical applications. 

However, many scientists are working on improving the methods of analysis in such 

directions like identification of aspects in reviews, expression of emotions in relation 

to aspect, extraction of implicit attitudes towards aspects, identification of attitudes in 

comparative sentences, identification of aspects in multilingual systems. [5], [6], [7] 

2 Stages of the cross-language aspect-oriented method of 

analyzing the statements 

Each statement can be represented as the next five-dimensional vector [8]: 

  liijkljkj thsoae ,,,,  (1) 

where je  is j - essence for which the analysis of statements is performed; 

jka  is k - aspect of the essence je ; 

ih  is i - author of the statement; 

lt  – time when the author ih  left his statement; 

ijklso  – the emotional direction of the statement left by the author ih  in relation 

to the aspect jka  of the essence je in time lt . May be positive, negative or neutral, 

may express different levels of intensity, for instance, from 1 to 5. 

A couple je  and jka  (essence and aspect of the essence) always expresses the 

purpose of the statement. 

The presence of indices emphasizes the correspondence of the five components of 

the expression (1) to each other. Any discrepancy will lead to an error during the 

analysis of statements. Each of the five components in (1) is significant. The absence 

of any of them makes the analysis problematic. This definition covers most, but not 

all possible aspects of semantic analysis of statements, which can in fact be arbitrarily 

complex. In this regard, a five-dimensional vector can lead to loss of information. In 

this case, the five-dimensional vector is still used. 

Definition (1) is the basis for transforming unstructured text into structured data. A 

five-dimensional vector can be the basis of a database schema according to which the 

extracted statements will be placed in its table. Then qualitative, quantitative analysis 

and analysis of the expression’s trends can be made using the capabilities of database 

management systems and OLAP tools. 

Definition of the notion of utterance given in this paper is sharpened by more than 

regular expressions. Another type is a comparative statement that requires a different 

definition. As an input, a collection of user reviews written in English and Ukrainian, 

and a cross-language categorization model Φ [9]. The point of the method’s stages is: 



1. To categorize all aspects of the product that are found in the reviews in English and 

Ukrainian (referred to as "Multilingual") in semantic aspects. 

2. To extract pairs of "aspect-expression" from multi-language reviews and grouping 

into aspect-oriented sets of statements. The association of product aspects and 

expressions will be carried out according to their mutual position in the text of the 

review. Through linguistic analysis of text and specific rules words are defined that 

indicate the author's attitude and are closest (within certain limits) to the term, 

which refers aspect of the product. The extracted statement is associated with the 

term aspect. Then the polarity of the expression is determined and is associated 

with the semantic aspect, to which the current term aspect refers. Determination of 

the power of emotionality of expressions that relate to the aspect of a product is 

made by summing up all the extracted statements of this aspect. 

3. To summarize the cross-language differences in expressions for various aspects, 

for instance, in the form of aspect ratings. 

3 Cross-language latent semantic association 

Each aspect of a product is usually indicated by a set of terms. Cross-language 

categorization of product aspects focuses on their categorization into a single 

semantic categorical structure. 

Let X be a space of characteristics for representing instances of multi-language 

product characteristics, and Y is a set of labels for semantic categories. Let  yxps ,  

be predicted semantic distribution of categories and  yxpt ,  be genuine semantic 

distribution of categories, according to which the pair  yx,  determines the relation 

of object X to categoryY . It is expected that  yxps ,  will approximate  yxpt ,  

better without using any labeled data. 

Cross-language categorization of product characteristics, which is based on lexical 

comparison, is not capable of determining the basic semantic distribution of various 

multi-language characteristics [10]. Many terms that means the same aspects are not 

similar on the lexical level. Such hidden semantic associations between words provide 

an opportunity to determine the basic semantic distribution in the domain. 

Therefore, for further research, the model Φ is used to define cross-language latent 

semantic associations between multilingual terms that means aspects of the product. 

This model learns on unlabeled text of user statements. In the learning process, a 

multivariate key vector characterizes each aspect of the product.  

Characteristics of semantic associations in the model are hidden random variables 

derived from the data. Obviously, the model Φ can better define cross-language latent 

semantic associations between aspects of goods. It is possible to better approximate 

the actual distributions of semantic categories  Mxypt ;  using the model without 

the need of using labeled data. 



4 Model training on cross-language contextual virtual 

documents 

4.1 Cross-language contextual virtual document 

In order to determine the hidden relationships between multilingual terms, each term 

of the aspect of a product is characterized by a cross-language contextual virtual 

document. 

The term of the product aspect pf  is given, pfcvd  is cross-language contextual 

virtual document, which consists of such multidimensional hidden semantic keys: 

 the current term pf ; 

 the term Tpf  which is an automatic translation of term pf ; 

 the set of components pf  and Tpf , which are labeled as 
pfW  and Tpf

W ; 

 hidden semantic themes of components pf  and Tpf , which are labeled as 
pfS  

and Tpf
S  at the word-level; 

 monolingual latent semantics pf of product aspects, which are labeled as 
pfMFS . 

Therefore, contextual virtual document is a set: 

  pfpfpfpfpf

T

pf MFSSSWWpfpfcvd TT ,,,,,,  (2) 

For example term pf  = «screen resolution». Table 1 provides a cross-language 

context-sensitive virtual document pfcvd  («screen resolution»), extracted from 

English and Ukrainian review texts. 

Table 1. Components of a cross-language contextual virtual document 

pfcvd = «screen resolution» 

Keys Contextual virtual document pfcvd  («screen resolution») 

pf  screen resolution (English) 

Tpf  роздільна здатність екрану (Ukrainian) 

pfW  «screen», «resolution» 

Tpf
W  «роздільна», «здатність», «екрану» (Ukrainian) 

pfS  S(«screen»), S(«resolution») 

Tpf
S  S(«роздільна»), S(«здатність»), S(«екрану»)  

pfMFS  MFS («screen resolution») 



In the construction of a cross-language virtual contextual document, they generate 

monolingual hidden semantic themes on equal aspects of the product and words, 

using the algorithms presented in [11]. 

Component words are grouped in the set of hidden themes, according to their 

context in a monolingual collection (corpus). A monolingual hidden semantic theme 

at the level of product aspects is created in accordance with their hidden semantic 

structure and contextual passages in the corresponding collection. A complete 

machine translation document is usually used to define semantic associations between 

aspects written in different languages. In order to reduce the noise that occurs in 

machine translation, the cross-language virtual context document only uses the 

translation of the individual term of the product aspect instead of the translation of the 

full text of the review. 

Contextual virtual document pfcvd usually describes the multidimensional cross-

language hidden semantic aspects pf in the reviews. A vector is constructed for pf  

with all reviewed features from pfcvd in the model: 

  mjpf xxxcvdVector ,,,,)( 1   (3) 

where jx  - describes j context related feature associated with pf ,  m – total number 

of features in pfcvd . 

Weight of each contextual feature jx in pfcvd  is calculated by PMI index 

(pointwise mutual information) between jx  and pf  [4]: 

  
 

   pfPxP

pfxP
pfxPMI

j

j

j



,

log, 2  (4) 

where ),( pfxP j   –  the probability that pf  and jx will be met in the text next to 

each other; 

)( jxP  – the probability that 
jx will appear in the text; 

)( pfP  – the probability that pf  will appear in the text. 

The weight is normalized as an integral part of the logarithmic function. 

4.2 Model training 

The Machine Learning provides a solution to the classification problem that involves 

two steps: learning the model from a corpus of training data, classifying the unseen 

data based on the trained model [13]. This model can in fact be considered as a 

general probabilistic topic model. It can be trained with non-tagged reviews using 

hidden thematic models, such as the latent placement of Dirichlet (Latent Dirichlet 

Allocation – LDA) [14] and probabilistic hidden semantic indexation (Probabilistic 

Latent Semantic Indexing – PLSI) [15]. Thematic models are models of text 

document collections that determine which topics each collection document refers to. 



The LDA is a generative model that allows you to interpret the results of observations 

with implicit groups, which allows you to get an explanation of why some parts of the 

data are similar. The algorithm for constructing a thematic model receives a collection 

of text documents at the input. The output for each document is a numeric vector, 

which consists of assessing the degree of belonging of this document to each topic. 

The size of this vector is equal to the number of topics and can be set at the input of 

the model or determined by the model automatically. 

Let us consider the algorithm of training given model. 

Input data: 

 
1l

R  is collection of user reviews written in language 1l ; 

 
2l

R  is collection of user reviews written in language 2l ; 

 SetPF  represents all titles of the aspects that are encountered in 
1l

R and 
2l

R ; 

 monolingual latent thematic models 1l
wd

  and 2l
wd

  at the word level wd written in 

languages 1l and 2l ; 

 monolingual latent thematic models 1l
wp  and 2l

wp .at the aspect-level of products 

wp. 

Output data: Cross-language aspect-categorization model Φ. 

The scheme of the algorithm consists of such steps. 

Initialization: Cross-language set of contextual documents Setcvd . 

Step 1. For each term ipf , which belongs to the set of all terms SetPF ,.

SetPFpf i   do the following:  

Step 1.1. Perform a machine translation of the term ipf  and determine 
T

ipf : 

 i
T

i pfMTpf  . 

Step 1.2. Define language sl  of the original aspect ipf :  )( is pfLanguagel  . 

Step 1.3. Define language tl  of automatically translated aspect 
T

ipf :

 T
it pfLanguagel 

. 

Step 1.4. Define the vector of component words for a term ipf :

 ipf pfntWordsGetComponeW
i
 . 

Step 1.5. Define the vector of component words for the translated term 
T

ipf : 

 T

ipf
pfntWordsGetComponeW T

i

 . 

Step 1.6. For each component word jw , which belongs to the vector  

ipfW  (
ipfj Ww  ) do the following: 



Step 1.6.1. Generate latent theme 
jwS  for the component word jw  using the 

model sl
wd :   s

j

l

wdjw wTPS , . 

Step 1.6.2. Add to the set 
jpfS  of hidden semantic themes of components jpf at 

the word-level latent theme 
jwS  received in step 1.6.1:  

jj pfw SSAddTo , . 

Step 1.7. For each component word kw , which belongs to the vector T
ipf

W   

( T
tpfk Ww  ) do the following: 

Step 1.7.1. Generate latent theme 
kwS for the component word kw  using the  

model tl

wd :  t

k

l
wdkw wTPS , . 

Step 1.7.2. Add to the set T
jpf

S  of hidden semantic themes of components 
T

jpf at 

the word-level latent theme 
kwS  received in step 1.7.1: 








T

jk pfw SSAddTo , . 

Step 1.8. Generate monolingual latent semantics for jpf  at the aspect-level of the 

product using the model sl

mp : ),( s

i

l

mpipf pfTPMFS  .  

Step 1.9. Provide the values for components of the cross-language virtual context 

document:  
iT

iiT
iii pfpfpfpfpf

T

iipf MFSSSWWpfpfcvd ,,,,,, . 

Step 1.10. Add to a set of cross-language virtual contextual documents SetCVD  

current document
ipfcvd :  SetCVDcvdAddTo

ipf , . 

Step 1.11. Generate model Ф with Dirichlet distribution on set SetCVD . 

Consider a more detailed training process of model Ф type LDA on cross-language 

virtual semantic contextual documents. 

Non-tagged collections of reviews 
1l

R and
2l

R , which are written in languages 1l  

and 2l  are given. Will consider the terms of goods aspects written in the language l . 

In the construction, pfcvd  latent topics from component words are generated using a 

monolingual word-level model
l
wd . The monolingual latent semantic pfMFS  of each 

product aspect is generated using a monolingual thematic model l
mp  of the term-

aspects level. The weight of each element pfcvd  is calculated using the PMI index 

by the formula (1). Next, the studied model Ф with Dirichlet distribution generates a 

set of cross-language virtual context documents. In experiments conducted within the 

framework of this article coefficient 1.0  and the number of iterations was 1000. 

The given modeling algorithm describes in detail the complete training process, 

where: 



 the function  ipfMT  means the result of the automatic translation of the term      

ipf ; 

 the function  ,dataTP  generates a latent theme for an argument data  using a 

latent thematic model  ; 

 l
wd  describes a monolingual thematic model at the word-level for a given 

language l ; 

 l
mp  describes a monolingual thematic model of the product aspects for a given 

language l . 

The investigated model studies the a posteriori probability of decomposing 

multilingual aspects of terms and their virtual contextual documents in the subject. It 

expands the traditional "bag of words" thematic models into a context-dependent, 

cross-language concept associative model. 

5 Experimental studies 

Input data is collected from user reviews of mobile phones and laptops in English and 

Ukrainian. Reviews are accumulated on popular websites designed to consolidate 

custom product reviews [16], [17]. All multilingual designations of product aspects 

are automatically removed from the data obtained using the statistical method [11]. 

For pre-processing data, Maximum Entropy part-of-speech (POS) tagger uses the 

maximum entropy for generating POS markup for data in English. For the data in 

Ukrainian, a hidden Markov model is used to generate POS-markup.  

While carrying out experiments, the categorization of multilingual titles of the each 

aspect of the subject areas (mobile phones and laptops) in semantic aspects was 

performed and a cross-language aspect-oriented analysis of statements was made. 

 

Fig. 1. Estimation of the cross-language categorization of aspects for mobile phones for 

different topics 



Figure 1 shows the dependence of the Rand Index on the number of topics for two 

comparative methods: the investigated method and method based on the LDA. These 

methods effectively detect latent semantic associations in reviews.  

Experimental results show that the studied model effectively group multivolume 

titles of aspects into semantic categories. 

6 Conclusions 

Aspect-oriented analysis is the most detailed among the all levels of the analysis of 

statements and is necessary for most practical applications. In this article, the 

mathematical formulation of aspect-oriented expression problem and the cross-

language latent semantic association are considered, the characteristic of the product 

aspect under the cross-language virtual contextual document and the model learning 

process is reviewed. Method of aspect-oriented analysis based on the categorization 

model and the LDA, is trained in virtual contextual documents. Experimental results 

show that the studied model effectively groups multivolume names of aspects into 

semantic categories.  
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