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Abstract

This dissertation investigates notions of program equivalence and metric for higher-order sequential

languages with algebraic e�ects.

Computational e�ects are those aspects of computation that involve forms of interaction with the

environment. Due to such an interactive behaviour, reasoning about e�ectful programs is well-known

to be hard. This is especially true for higher-order e�ectful languages, where programs can be passed

as input to, and returned as output by other programs, as well as perform side-e�ects. Additionally,

when dealing with e�ectful languages, program equivalence is oftentimes too coarse, not allowing, for

instance, to quantify the observable di�erences between programs. A natural way to overcome this

problem is to re�ne the notion of a program equivalence into the one of a program distance or program

metric, this way allowing for a �ner, quantitative analysis of program behaviour. A proper account

of program distance, however, requires a more sophisticated theory than program equivalence, both

conceptually and mathematically. This often makes the study of program distance way more di�cult

than the corresponding study of program equivalence.

Algebraic e�ects provide a powerful formalism to structure e�ectful higher-order (sequential) com-

putations. Accordingly, e�ectful computations are produced by means of e�ect-triggering operations

which act as sources of the side e�ects of interest. Such operations are algebraic, in the sense that their

(operational) semantics is independent of their continuation, and thus e�ects act independently of the

evaluation context in which they are executed. Algebraic e�ects can be used to model several compu-

tational e�ects, proving formal models for higher-order languages with nondeterministic, probabilistic,

and imperative features, as well as combinations thereof. In fact, contrary to other theories of compu-

tational e�ects, algebraic e�ects naturally support operations to combine algebraic theories, and thus

allow for the combination of e�ects with one another. These features make reasoning about program

equivalence for languages with algebraic e�ects challenging, as the operational behaviour of a program

may be determined by complex interactions between the program and the environment.

The �rst part of this dissertation studies bisimulation-based notions of equivalence and re�nement

for λ-calculi enriched with algebraic e�ects. In particular, notions of e�ectful applicative and normal

form (bi)similarity are de�ned for both call-by-name and call-by-value λ-calculi, as well as a notion

of monadic applicative (bi)similarity for call-by-name calculi only. For all these notions, congruence

and precongruence theorems are proved, which directly lead to soundness results with respect to an

extension of Morris’ contextual equivalence to e�ectful calculi. In order to design the aforementioned

notions of equivalence and re�nement, an abstract relational framework is developed, which is based on

the notions of a monad and of a relator, the latter being an abstract construction axiomatising relation

lifting operations.

The second part of this dissertation is devoted to the study of program distances for languages with

algebraic e�ects. Following Lawvere analysis of metric spaces as enriched categories, the abstract rela-

tional framework developed in the �rst part of the dissertation, is extended to relations taking values

over quantales, the latter being algebraic structures whose elements represent ‘abstract quantities’. Us-

ing such a framework, the notion of an e�ectful applicative bisimulation distance is de�ned, and its
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main properties are studied. Due to the so-called distance trivialisation, however, the notion of an ef-

fectful applicative bisimulation distance is de�ned for a calculus supporting program sensitivity. The

latter is the law describing how much operational di�erences in output are a�ected by operational dif-

ferences in input. Relying on the notion of program sensitivity, an abstract (pre)congruence theorem for

e�ectful applicative (bi)similarity distance is proved, which states that the latter behaves as a Lipschitz-

continuous metric-like function, this way enabling compositional reasoning about program distance.
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Chapter 1

Introduction

This is why we call it a “calculus”.

We dare to use this word by analogy

with Leibniz’s di�erential calculus;

the latter - incomparably greater - is

based upon continuous mathematics,

while the π -calculus is based upon

algebra and logic; but the goal in

each case is analysis, in one case of

physical systems and in the other

case of informatic systems.

Speech by Robin Milner on receiving

an Honorary Degree from the

University of Bologna

Program equivalence is arguably one of the most important concepts in the theory of programming

languages. Besides its prime importance in the general understanding of programming languages, pro-

gram equivalence is also recognised as a fundamental tool in �elds like program veri�cation, compiler

optimisation design, and security. Unfortunately, giving satisfactory de�nitions and methodologies for

program equivalence is a challenging problem. In fact, in order to deem two programs as equivalent, sev-

eral aspects of their behaviour should be taken into account. Among those, one should consider whether

the two programs both terminate, what is their input-output behaviour, how the programs interact with

the environment, and which kind of side-e�ects (if any) are produced during their evaluation.

As a consequence, reasoning about program equivalence is particularly hard when dealing with

higher-order e�ectful languages i.e. languages in which programs can be passed as input to, and returned

as output by other programs, as well as perform side-e�ects. A remarkable example is provided by

programming languages based on algebraic e�ects (G. D. Plotkin & Power, 2002, 2003) — such as E� 1

(Bauer & Pretnar, 2015) — as well as extensions of mainstream languages — such as OCaml, Scala, and

C — with algebraic e�ects (Brachthäuser & Schuster, 2017; Dolan et al., 2017; Leijen, 2017).

Programs written in such languages usually employ speci�c operations to produce e�ectful compu-

tations, such as probabilistic choices or primitives to raise exceptions. As a consequence, the result of

the evaluation of a program usually depends on the environment in which the program is evaluated,

hence making reasoning about e�ectful programs notoriously hard.

A further di�culty is provided by the possibility of combining e�ects with one another. In fact, real

1 https://www.eff-lang.org/.
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world programs are often designed to perform combinations of di�erent e�ects — using e.g. probabilis-

tic, nondeterministic, and imperative primitives — and are thus complex entities. Reasoning about such

programs without an appropriate formal apparatus is simply not possible. For instance, even answering

a simple question like what does this program do? might require non-trivial forms of reasoning about

the interaction between the program and the environment. This cannot be safely done without a toolkit

of adequate formal techniques.

A less explored, yet increasingly important, concept than program equivalence, is the one of a pro-
gram metric or program distance, i.e. of a metric-like function de�ning a distance between programs

according to their behaviour. The notion of a program metric is emerging as a fundamental tool in the

study of languages for probabilistic computation (Crubillé & Dal Lago, 2015, 2017), di�erential privacy

(de Amorim, Gaboardi, Hsu, Katsumata, & Cherigui, 2017; Reed & Pierce, 2010; Xu, Chatzikokolakis, &

Lin, 2014), and e�ectful languages, more generally. In all these scenarios, program equivalence is a too

coarse notion for reasoning about program behaviour, as it does not allow to quantify the observable,

operational di�erences between programs. For instance, in probabilistic languages a small perturbation

in the probabilistic behaviour of programs may break program equivalence without proving any further

information.

To solve these issues, programming language theorists are increasingly interested in studying no-

tions of program distance, this way allowing for a quantitative (and thus �ner) analysis of program

behaviour. A proper account of program metrics, however, requires a more sophisticated theory than

program equivalence, both conceptually and mathematically. This often makes the design and study of

program distances way more di�cult than the corresponding study of program equivalences.

In the �rst part of this dissertation we aim to answer a simple, yet non-trivial question, namely when

two e�ectful programs should be deemed as (behaviourally) equivalent. In the second part, instead, we

tackle a di�erent problem, namely the one of quantifying behavioural di�erences between programs.

Before introducing the results obtained, we informally outline the main ideas behind the models we

use, and the notions we investigate in this work.

1.1 Program Equivalence: a Conceptual Introduction
A programming language is an arti�cial formalism in which algorithms can be expressed. For all its

arti�ciality, though, this formalism remains a language2
, and can thus be analysed using notions and

results from linguistics. However, looking at algorithms as speci�c mathematical functions (notably, the

computable ones), programming languages can also be seen as playing a role similar to algebra, as they

aim to control and manipulate complexity throughout linguistic abstraction. In this introduction we

will take advantage of both these views on programming languages, referring to them as the linguistic
and algebraic point of view, respectively.

Looking at a programming language as a language, we see that a program is ultimately a phrase

in such a language, and it is therefore natural to ask what its meaning is. The branch of programming

language theory that studies how to answer this question is called programming language semantics.
One of the most interesting question in program semantics is the one asking when two programs are

equivalent. Formally, answers to such a question are provided by relations between program phrases

that behave as notions of equality. According to the algebraic perspective, program equivalence is noth-

ing more than equality; according to the linguistic perspective, program equivalence can be understood

as a synonymy.

According to both these views, program equivalence is of paramount importance for the formal

study of programming languages. Algebraically, a good notion of program equivalence allows to de-

sign algebraic identities through which we can manipulate programs symbolically. Linguistically, a

2
Quoted from (Gabbrielli & Martini, 2010).
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well-behaved program equivalence ' allows to regard the meaning of a program phrase e as the '-

equivalence class of e (denoted by [e]'). This is nothing more than stating that the meaning of an

expression is the meaning of its synonyms.

Let us now try to spell out which are the minimal features that qualify a relation between program

phrases as a candidate notion of program equivalence. First of all, we notice that some of such features

will actually depend on the speci�c language one is interested in. We will come back on that later.

Nonetheless, there are some structural properties that any notion of program equivalence has to satisfy.

Let ' be a candidate relation.

1. In order to behave as an equality relation, ' needs to be an equivalence relation, i.e. it must be re-

�exive, symmetric, and transitive. Algebraically, such properties allow to deduce the equivalence

e ' e ′ from a chain of equivalences e ' e1 ' · · · ' en ' e ′. Linguistically, ' being an equivalence

relation we can state that the meaning of an expression e is the set [e]'.

2. Additionally, ' has to be compatible with all language constructors. That is, 'must be closed un-

der all language (syntactical) constructors. For instance, if our programming language has an ‘if-

then-else’ constructor, and e1 ' e ′
1
, e2 ' e ′

2
, e3 ' e ′

3
, then we also need to have if e1 then e2 else e3 '

if e ′
1
then e ′

2
else e ′

3
. Algebraically, thinking to language constructors as operations, we see that

compatibility makes ' a congruence relation. This gives the powerful reasoning principle of sub-
stitution of equals for equals (also known as Leibniz’s identity law). Accordingly, we can infer

the equivalence C[e] ' C[e ′] between the compound phrases C[e] and C[e ′] in virtue of the

equivalence e ' e ′. Linguistically, requiring ' to be a congruence gives the so-called principle
of compositionality3

. Indeed, the meaning [C[e]]' of a compound phrase C[e] can be seen as a

function of the meaning [e]' of its sub-phrase e . It comes with no surprise that a large part of this

dissertation will be devoted in proving congruence properties of program equivalences.

Having outlined some minimal desiderata any candidate notion of program equivalence has to sat-

isfy, we now look at the speci�c kind of equivalences we aim to study in this dissertation.

1.1.1 Higher-order Languages
According to our previous discussion, it comes with no surprise that answering the question of whether

two programs are equivalent is non-trivial. First of all, we should ask ourselves whether the latter is a

well-posed question. In fact, there is no unique notion of a program: di�erent programming languages

might come with di�erent notions of a program. It is thus of paramount importance for our investigation

to �x a good model for the languages we aim to analyse.

In this dissertation we focus on higher-order functional languages, that is languages in which pro-

grams are modelled as functions, and the latter are allowed to be passed as argument to, and returned

as result by other functions. A main feature of functional languages is that they have a solid formal

foundation, which allows for a �ne mathematical analysis of their properties. In fact, starting from the

pioneering work by Landin (Landin, 1965a, 1965b) (see also (G. Plotkin, 1975)), the λ-calculus (Baren-

dregt, 1984; Church, 1985) has been recognised as a foundational calculus for functional programming

languages.

The λ-calculus

The λ-calculus (Barendregt, 1984; Church, 1985) is a formalism to study functions as rules (as opposed to

the set-theoretic understanding of functions as graphs), i.e. as processes mapping arguments to values

(Barendregt, 1984). The syntax of the λ-calculus is minimal: a term of the λ-calculus is either a variable

3
Whereby the meaning of a complex expression is determined by its structure and the meanings of its constituents.
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x , an application of terms f e , or a functional abstraction λx .f . We call terms of the λ-calculus λ-terms.
The intended meaning of a λ-abstraction λx .f is to represent a function in the variable x with body f .

The latter describes how the variable x (which acts as a placeholder for an argument) is manipulated by

the function. Dually, an application f e represents the application of the function f to the argument e .

The only operation allowed to manipulate λ-terms is the so-called β-rule, which rewrites a term of the

form (λx .f )e as f [x := e]. The β-rule simply states that once a function λx .f is applied to an argument

e , the λ-term (λx .f )e thus obtained is rewritten as the λ-term obtained by replacing all occurrences of

the variable x in f (the body of the function) with e .

From this sketched description of the λ-calculus, we immediately recognise that all λ-terms indeed

represent and manipulate functions, so that the λ-calculus may serve as a linguistic abstraction for

studying functions. As showed in (Turing, 1937), the class of functions expressible in the λ-calculus is

exactly the class of computable functions, hence hinting the relationship between the λ-calculus and

the idea of a programming language as a language to express and manipulate algorithms.

However, the link between the λ-calculus and programming languages still needs some re�nements.

In fact, since a λ-term may contain several occurrences of terms of the form (λx .f )e , (called redexes),

the β-rule can be applied to di�erent redexes of the same λ-term, hence giving potentially di�erent

results. Such a nondeterminism can be eliminated by �xing a so-called reduction strategy (Barendregt,

1984). The latter is simply a rule that determines to which redex the β-rule should be applied in a λ-

term. In this dissertation we are concerned with two di�erent reduction strategies, the call-by-name
and call-by-value reduction strategy (G. Plotkin, 1975).

Roughly speaking, in the call-by-name reduction strategy, when a function λx .f is applied to an

argument e , the redex (λx .f )e is reduced as it is, thus giving f [x := e]. In the call-by-value reduction

strategy, instead, a redex is rewritten only if the argument of the function is a value, i.e. a λ-term on

which the β-rule cannot be applied any further.

Once a reduction strategy is �xed, the λ-calculus can be regarded as a foundational calculus for func-

tional programming languages, as showed by the pioneering work by Landin (Landin, 1965a, 1965b) who

established a correspondence between expressions of ALGOL 60
4

(Backus et al., 1960) and (a modi�ed

version of) the λ-calculus. Accordingly, λ-terms can be roughly identi�ed with programs, and evaluat-

ing a program corresponds to apply the β-rule to the λ-term representing the program until a value is

reached. Notice that since we have �xed a reduction strategy, program evaluation is deterministic.
Actually, even when equipped with a reduction strategy the λ-calculus is still lacking an important

feature of (mainstream) functional programming languages. In fact, almost no functional programming

language evaluates functions until they are called. Using the vocabulary of the λ-calculus, that means

that the β-rule cannot be applied on expressions (redexes) under the scope of a λ-abstraction
5
. As a

consequence, any λ-abstraction λx .e is regarded as a value. The λ-calculus obtained by regarding λ-

abstractions as values (independently of the reduction strategy adopted) is called the lazy λ-calculus

(Abramsky, 1990a). Our interest being in programming languages, from now, unless explicitly men-

tioned, we assume the λ-calculus to be the lazy one, and simply refer to it as λ-calculus.

The λ-calculus can be thus regarded as a foundational calculus for functional programming lan-

guages, and thus used as formal tool for their theoretical analysis. On one hand, the λ-calculus is ex-

pressive enough to allow for the description of interesting features of several languages, on the other

hand, it abstracts from those concrete details of real languages that would make the analysis too depen-

dent on the language chosen.

At this point it comes with no surprise that the theoretical model we use for our investigation is

4
Notice, however, that ALGOL 60 is a sequential procedural language, rather than a functional one.

5
Consider, for instance, the following Standard ML piece of code (Milner, Tofte, & Harper, 1990), to which we refer to as P :

fn x=>((fn y=>y)x). Regarded as a λ-term, the latter can rewritten as λx .((λy .y )x ). According to our de�nition of reduction

strategy (say the call-by-value one), an application of the β -rule gives λx .x . However, the evaluation mechanism of Standard ML

treats P as value, and does not evaluate (fn y=>y)x.
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based on the λ-calculus.

1.1.2 Three Views on Program Equivalence
In light of previous discussion, in order to study program equivalence it is somehow su�cient to study

equivalences between terms of the λ-calculus. That is, we can rephrase the question when two programs
are equivalent? as when two terms of the λ-calculus are equivalent?. Answering such a question means

nothing more than �nding good notions of equivalence for the λ-calculus. Here we give a lightweight

overview of the main ideas behind (some of) the equivalences we will study in this dissertation. In light

of the correspondence between programs and λ-terms, we will sometimes use the latter expressions

interchangeably.

Before continuing, we remark that although in this introduction we deal with program equivalence

only, this dissertation focuses both on program equivalence and program re�nement, the latter being

nothing but the order-theoretic counterpart of program equivalence
6
.

The kind of equivalences we will study in this work are the so-called operationally-based equiva-

lences, that is equivalences that aim to identify programs exhibiting the same operational behaviour. The

operational behaviour of terms in the λ-calculus is essentially given by the β-rule (properly adapted to

the reduction strategy considered), and thus our notions of equivalence should be equate λ-terms ac-

cording to how they behave when evaluated. For the sake of the argument, we �x the call-by-value

reduction strategy.

Does the Best Equivalence Exist?

Let us recall that any good notion of program equivalence must be a compatible equivalence relation.

Additionally, we remarked that such a relation should distinguish λ-terms for their operational be-

haviour only. As a �rst approximation, the latter requirement might be formalised by stating that if two

terms e and e ′ are related, then e evaluates to a given value v if and only if e ′ does the same. The choice

of the value we look at does not really matter.

Such a choice, however, does not work well, neither for the call-by-name nor for the call-by-value

λ-calculus. For instance, the two λ-terms λx .I and λx .I I , where I is the λ-term λy.y, should be deemed as

operationally equivalent, intuitively. However, being values they trivially evaluate to di�erent values,

and thus we should regard them as operationally di�erent. The standard solution to overcome this

problem is relaxing the above requirement asking that e converges (i.e. the evaluation of e terminates)

if and only if e ′ does. That is, instead of comparing λ-terms for converge to the same value, we compare

them convergence only.

It is then natural to ask: does a compatible equivalence relation that compare programs for convergence
exist?. The answer is obviously positive, as syntactic equality is such a relation. This is clearly an

unsatisfactory answer. What we would like to come up with is not just a compatible equivalence relation

that compare programs for convergence, but actually the coarsest one. That is, what we are looking for

is a compatible equivalence relation that discriminate programs only for their convergence behaviour.

Nothing more, nothing less. Mathematically, we are asking whether there exists the largest compatible

equivalence relation that compares programs for their convergence behaviour.

In his doctoral dissertation (Morris, 1969) Morris gave a positive answer to such a question, intro-

ducing the so-called contextual equivalence (also known as operational or observational equivalence).

Due to its universal property
7
, contextual equivalence is considered the golden notion of equivalence

6
That is, a program re�nement is a relation between program phrases relating pair programs e , e′ according to the rationale

the behaviour of e is re�ned (or approximates) the behaviour of e′. Mathematically, moving from program equivalence to program

re�nement means moving from equivalences to preorders, and from congruence to precongruence relations.

7
Contextual equivalence being the largest relation satisfying a desired property P (notably, being a compatible equivalence

relation equating λ-terms for their convergence behaviour), it can be seen as a canonical relation satisfying P . Its universal
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for the λ-calculus. Moreover, contextual equivalence can be explicitly characterised by saying that two

λ-terms e , e ′ are contextually equivalent if and only if for all compound expressions C[e], C[e ′], the

former converges if and only if the latter does, this way highlighting how compatibility is an essential

part of its de�nition
8
.

Unfortunately, contextual equivalence has a major drawback: in order to deem two λ-terms e , e ′ as

contextually equivalent, one has to analyse their behaviour in any possible compound expression C[e],

C[e ′], which is something oftentimes not doable in practice, due to the higher-order nature of the λ-

calculus. For that reason, semanticists are continuously interested in designing better proof techniques

for contextual equivalence. The proof techniques that are relevant for this dissertation take the form of

relations between λ-terms that satisfy the following minimal desiderata:

1. They must be easier to use than contextual equivalence.

2. They must be sound for contextual equivalence, meaning that, as relations, they must be included

in contextual equivalence. If the other inclusion holds as well, the relation is said to fully abstract
(or complete) for contextual equivalence.

If, additionally, such relations are congruence relations, then they can also become interesting notions

of program equivalence by themselves (i.e. independently of their relationship with contextual equiva-

lence). Among such techniques we mention logical relations (G. Plotkin, 1973; Reynolds, 1983), CIU-like

equivalences (Mason & Talcott, 1991), applicative bisimilarity (Abramsky, 1990a), and Böhm-tree like

equivalences (Barendregt, 1984; Böhm, 1968).

Interactions, Tests, and Experiments

Taking inspiration from ideas developed in process calculi (e.g. (Milner, 1989; Sangiorgi & Walker,

2001)), it is possible to look at notions of equivalence for the λ-calculus from a concurrent perspective, as

well as to design new equivalences with a more ‘interactive’ �avor. Accordingly, one thinks to program

equivalence by means of experiments and observations, following the rationale that two λ-terms should

be deemed as equivalent if there is no experiment (testing λ-terms for their operational behaviour) that

can tell them apart.

This way, program equivalence is de�ned by means of an interactive process in which (pairs of)

programs (i.e. λ-terms) interact with an external observer that tries to discriminate them using a given

apparatus of tests, experiments, and observations. The largest such an apparatus, the stronger the

discriminating power of the observer.

As we are interested in operationally-based equivalences, the main notion of observation we will

use is simply convergence, meaning that the outcome of an experiment will be a ‘yes/no’ answer telling

whether the tested program(s) converge or not. Moreover, dealing with higher-order languages (notably,

the λ-calculus), the role of the experiment is oftentimes — but not always — played by speci�c families of

programs, that represent the environment in which programs are evaluated. Such programs are called

property states exactly that: any relation satisfying P is included in contextual equivalence.

8
Most textbooks take this characterisation of contextual equivalence as a de�nition, and then prove its universal property.

Moreover, we should notice that Morris’s notion of contextual equivalence is actually di�erent from the one used nowadays for

the call-by-name and call-by-value λ-calculus, as it is based on the idea of comparing terms for convergence to the same value

(normal form, actually), and not just for convergence. Morris’ notion of contextual equivalence, however, is formulated for the

λ-calculus equipped with the so-called head reduction strategy (Barendregt, 1984). Without entering details, we simply remark

that such a strategy allows us to reduce under λ-abstractions, and therefore does not regard λx .I I as a value (notice that I I is

a redex). That allows us to prove that in such a λ-calculus, the notion of contextual equivalence obtained comparing terms for

convergence and the notion of contextual equivalence obtained comparing terms for convergence to the same value coincide. The

proof of such a result is, however, non-trivial as it requires the so-called Separation Theorem (Böhm, 1968) (a result on which we

will come back later).
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contexts, and are roughly formalised as programs with a hole [−] to be �lled in with the tested program.

This is nothing but the structure we have used so far to build compound expressions.

The larger is the family of contexts we use to test programs, the more testing power we have at

our disposal. In particular, if we test programs against any possible context, then we obtain Morris’

contextual equivalence. We thus notice how contextual equivalence captures the idea of operational

indistinguishability in a black-box scenario.

This perspective on contextual equivalence is essentially based on the ‘testing’ approach to be-

havioural equivalence (De Nicola & Hennessy, 1983), whereby the behaviour of a program is investi-

gated by a series of tests. There is another fundamental notion of program equivalence which is deeply

rooted in ideas coming from Concurrency Theory, namely applicative bisimilarity (Abramsky, 1990a). A

major contribution of Concurrency Theory has been the introduction of the notion of a bisimulation and

of bisimulation equality, called bisimilarity (Milner, 1989). Bisimilarity is a coinductively-de�ned (Park,

1981; Sangiorgi, 2011) notion of equivalence, which is arguably the most studied form of behavioural

equality for processes.

The theory of bisimulation has found an important application in the λ-calculus starting with the

work by Abramsky (Abramsky, 1990a), who introduced the notion of an applicative bisimulation. Abram-

sky built on the assumption that λ-terms ultimately represent (kind of) functions, notably λ-abstractions,

and should be thus tested according to the function extensionality principle. The latter states that two

functions F ,G : A → B are equal if for any a ∈ A, F (a) = G (a). The fundamental assumption behind

this de�nition is that there is a notion of equality for elements belonging to the set B9
. Applying ex-

tensionality to λ-terms, however, gives problems of well-foundedness: deeming two λ-terms f1, f2 to be

equal if and only if for any value v , f1v is equal to f2v , we see that we are using the relation we are

trying to de�ne as a part of its very de�nition.

Abramsky bypassed this problem imagining the following testing scenario. Given a λ-term e , e is �rst

evaluated, hence testing it for convergence. If it passes the test, then obviously e converged to a value

v . At this point we have the real interaction phase between the environment and v . The environment

cannot inspect v , nor it can use it as desired. The only possible interaction it can have with v is by

passing a value w to v , hence resuming the whole testing process on the term vw .

Two terms are applicative bisimilar if they cannot be discriminated by the above testing process.

Obviously, testing λ-terms in this way may take an in�nite amount of time, and it thus comes with no

surprise that applicative bisimilarity is de�ned coinductively.

Comparing λ-terms following Abramsky’s testing scenario, it is natural to ask how much testing

power we are loosing compared to contextual equivalence. In fact, applicative bisimilarity tests pro-

grams for their applicative behaviour only, hence drastically reducing the testing power given by arbi-

trary contexts, at least apparently. This is actually (part of) the strength of applicative bisimilarity, which

thus quali�es as a good candidate proof technique for contextual equivalence. Abramsky showed that

not only applicative bisimilarity works �ne as a proof technique for contextual equivalence (soundness),

but it also provides an alternative characterisation of the latter (full abstraction).

Looking at the Past Throughout the Concurrency Glasses

Recalling that we are interesting in operational equivalences, and that the operational behaviour of a

λ-term is essentially determined by the β-rule, there is candidate notion of equivalence that we have

not investigated, which is actually the most straightforward one: two λ-terms are equivalent if and only

if they evaluate to the same value.

This equivalence is rooted in Church’s original idea that the meaning of a λ-term is the value it

evaluates to, and is strongly related to the notion of β-equality (or β-convertibility) (Barendregt, 1984).

9
This is indeed the case in Set Theory, where everything is a set ( sets are essentially built starting from the empty set using

the axioms of e.g. Zermelo and Frankel (Jech, 1997)) and set-theoretic equality is de�ned by means of the axiom of extensionality.
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Broadly speaking, the latter is the notion of equality arising from the β-rule
10

. The major drawback of

Church’s proposal is that not all λ-terms converge
11

, and thus all diverging terms should be regarded

as equal (or, from a linguistic perspective, as meaningless). Unfortunately, the theory induced by such a

notion of equality has been proved to be inconsistent (see (Barendregt, 1984) for a nice exposition of the

subject). Historically, this problem has been solved by looking at a more informative notion of a value,

which can be elegantly described via the notion of a Böhm tree of a λ-term, giving raise to the so-called

standard theory (Barendregt, 1984).

Roughly speaking, the Böhm tree of a λ-term e is a kind of in�nitary value
12

representing all the

stable amount of information obtained by evaluating e . As a consequence, all λ-terms have a Böhm

tree, and we can thus regard two λ-terms as equivalent if and only if they have the same Böhm trees.

Actually, the Böhm tree of a λ-term e is obtained by evaluating e using neither the call-by-name nor

the call-by-value reduction strategy, but the so-called head reduction strategy (Barendregt, 1984). We

will be sloppy on that for the moment, and simply recall that Böhm tree-like structures can be de�ned

for both the call-by-name (giving the notion of a Lévy-Longo tree (Lévy, 1975; Longo, 1983)) and the

call-by-value (see e.g. (Carraro & Guerrieri, 2014; S. B. Lassen, 2005)) λ-calculus.

At this point of the story it is then natural to ask whether there is a link between the above ‘tree-

like’ equivalences, and the interactive approach to program equivalence of previous section. This is

indeed the case, as shown in (Sangiorgi, 1992, 1994). Moving from the theory of open bisimulation for

the π -calculus (Sangiorgi, 1993) and from encodings of the λ-calculus into the π -calculus (Milner, 1992),

Sangiorgi modi�ed Abramsky’s testing scenario as follows: instead of testing a value (which, for the

sake of the argument, we assume to be a λ-abstraction) λx .e by passing it a value v as argument, the

environment can now inspect the body of the function, i.e. the term e under the lambda
13

.

Compared to Abramsky’s idea of testing λ-terms extensionally, open bisimulation can be seen as an

intensional notion of equivalence, whereby functions are not tested for their input-output behaviour,

but for their intensional (syntactical, to some extent) structure. The tree-like structures associated to

λ-terms can be now seen as unfolded representation of this new testing process, and their equality thus

coincides with open bisimilarity, the latter being open bisimulation equality. This result had several

implications, as it provided (to the best of the author’s knowledge) the �rst coinductive account to tree-

like equivalences, whose theory was essentially induction-based at the time (see e.g. (Barendregt, 1984)).

The results proved in (Sangiorgi, 1992, 1994) concerned the call-by-name λ-calculus and the as-

sociated notion of Lévy-Longo tree equality. Such results have been then extended to Böhm trees

(S. B. Lassen, 1999) and to the call-by-value λ-calculus (S. B. Lassen, 2005), introducing the general

notion of a normal form bisimulation14
.

Open bisimilarity provides a powerful candidate proof technique for contextual equivalence, as λ-

terms are essentially tested in isolation (the environment can interact with them inspecting their inten-

sional structure only, and does not have the power to in�uence computations
15

), meaning that in order

to prove two λ-terms to be open bisimilar it is enough to reason about them locally. Open bisimilarity

can indeed be proved to be a sound proof technique for contextual equivalence. Unfortunately, due to

the limited testing power provided by open bisimulations, open bisimilarity turned out to strictly �ner

(i.e. strictly included) than contextual equivalence, in general
16

.

10
That is, the congruence relation (inductively) generated by the relation relating terms of the form (λx .e )v with e[x := v].

11
Think, for instance, to Ω , (λx .xx ) (λx .xx ).

12
Normal form, actually. We will say more on that later.

13
De�ning a λ-term e to be closed if all its variables are bound by a λ (and open otherwise), we see that the environment now

tests open terms, from which the name open bisimulation.

14
The expressions normal form bisimulation and open bisimulation are used interchangeably, although the former is arguably the

most used one. We will stick with this convention, although we remark that the name open bisimulation seems more appropriate

given both the foundational link with the notion of an open bisimulation for the π -calculus, and the relevance of testing open
terms (the latter being a central di�erence with applicative bisimulation).

15
E.g. by passing values as arguments to the tested terms.

16
That holds for both the call-by-name and the call-by-value λ-calculus, as we will see. However, due to the celebrated Böhm
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1.1.3 A Bird’s-eye View on Program Equivalence
In previous section we informally introduced some of the (operational) equivalences will study in this

dissertation. There are, of course, many other ones, such as logical relations-based equivalences (Ap-

pel & McAllester, 2001; G. Plotkin, 1973; Reynolds, 1983; Sieber, 1992), just to mention a single exam-

ple. Designing operational equivalences as well as (relationally-based) proof techniques for contextual

equivalence, it is possible to recognise a limited number of di�erent principles (or patterns) behind such

techniques. These principles can be used to classify program equivalences according to the key ideas be-

hind their de�nitions, and thus provide a convenient lens through which our analysis can be viewed. In

the following, we summarise such principles, taking inspiration from (McLaughlin, McKinna, & Stark,

2018).

• Observational, whereby programs are tested against a restricted family of contexts. This idea �nds

its prime example in Milner’s context lemma (Milner, 1977), and gives rise to program equiva-

lences such as CIU-like equivalences (Mason & Talcott, 1991).

• Applicative or extensional, whereby programs are tested according to the function extensionality

principle for their input-output behaviour. This principle gives rise to Abramsky’s applicative

bisimilarity (Abramsky, 1990a), and its extensions (e.g. environmental bisimilarity (Koutavas,

Levy, & Sumii, 2011; Sangiorgi, Kobayashi, & Sumii, 2011)).

• Intensional, whereby programs are tested in isolation according to the syntactic structure of suit-

able in�nitary normal forms. This is the principle behind Böhm tree-like equivalences (Baren-

dregt, 1984; Böhm, 1968) and open/normal form equivalences (S. B. Lassen, 1999; Sangiorgi, 1994).

• Logical, whereby programs are tested against logically related inputs and are required to produce

logically related outputs. This is the principle behind logical relations (Appel & McAllester, 2001;

G. Plotkin, 1973; Reynolds, 1983; Sieber, 1992).

1.2 Computational E�ects
The reader should now have some intuitions behind programs equivalence in general, and some concrete

λ-calculus equivalence in particular. However, up to this point we have ignored one of the main issue

of this dissertation, namely computational e�ects. Roughly speaking, (computational) e�ects are those

aspects of computation that involve forms of interaction with the environment (sometimes referred

to as the external world). Classical examples are probabilistic and nondeterministic computations (in

both cases the environment provides the source of nondeterminism), imperative stateful computations

(where the environment is given by the machine state), and computations performing input and output

operations. It is clear that any serious analysis of program equivalence should be concerned with com-

putational e�ects
17

, to some extent (after all, even printing the result of a computation on the screen of

a laptop is a computational e�ect).

Before looking at what a notion of an e�ectful program equivalence might be, we have to understand

what an e�ectful program is. In fact, the correspondence between programs and λ-terms on which we

built our previous analysis does not directly scale to e�ectful programming languages.

Theorem (also known as Separation Theorem) (Böhm, 1968), open bisimilarity has been proved to be fully abstract for contextual

equivalence when the λ-calculus is equipped with the head reduction strategy.

17
That of course does not mean that the analysis of e�ect-free programs is meaningless: several interesting notions can be

actually studied in the setting of e�ect-free programs, where such notions �nd good approximations.
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1.2.1 The Computational λ-calculus
According to our informal understanding of computational e�ects, a fast examination of the syntax of

the λ-calculus reveals a major drawback: the grammar of the λ-calculus allows to write pure programs

only, i.e. programs that can be somehow described as mathematical functions
18

. This is a major point

of departure with ordinary programming languages, which are, on the contrary, deeply e�ectful.

The notion of a pure program is usually identi�ed with the one of a referential transparent program
(Mitchell, 2002). Accordingly, a program is referentially transparent if it is equivalent to the value (if

any) it evaluates to. A more pragmatic, although less formal, de�nition of referential transparency

states that a program is referentially transparent if evaluating it multiple times always gives the same

result. This property is not enjoyed by e�ectful programs, in general, as their evaluation depends on the

environment in which they are executed (the result of program might depend on a keyboard input given

by the user, for instance). Terms of the λ-calculus, instead, can be deemed as referentially transparent,

since the evaluation of a λ-term is just the sequential application of the β-rule. As a consequence,

the λ-calculus as it is, does not provide an adequate foundational calculus for e�ectful programming

languages.

This de�ciency led semanticists to look at extensions of the λ-calculus capable of modelling e�ectful

computations. In his seminal work on notions of computation (Moggi, 1989, 1991), Moggi gave a uni-

�ed account of computational e�ects as monads (MacLane, 1971), and designed a core calculus, called

computational λ-calculus, for e�ectful computations.

The key insight of Moggi’s analysis can be easily explained by means of a simple example. First of

all, let us recall that a pure program f can be roughly approximated by a function F : I → O mapping

inputs to outputs. In particular, the function F (and thus the program f ) associates to any input i ∈ I
its unique output value F (i ) (notice that, according to such a reading, pure programs always terminates

. . .). This is no longer the case if f behaves nondeterministically, so that to any input i , f may associate

several outputs. That is, f cannot be modelled as a function from inputs to outputs anymore. Moggi

observed that such a nondeterministic program f can actually be modelled as function F , but instead

of having as codomain the set O of outputs, this time F has as codomain the powerset of O , denoted by

P (O ). That is, to any input i ∈ I , the function F associates a unique set F (i ) of outputs, representing the

possible outputs f may (nondeterministically) produce. In this way, it is possible to model the impure,

nondeterministic program f by means of a function F : I → P (O ), and thus by a pure program.

The very same analysis can be given for many other e�ects. For instance, programs printing numer-

ical strings can be modelled using the set N∗ ×O . Abstracting, we can think to an e�ectful program f
as a function F : I → T (O ), where T is some construction modelling the kind of e�ects f may produce.

We call such constructions notions of computations (Moggi, 1991).

It is then natural to ask what is the structure of T . To answer such a question, let us look at pure

programs �rst, and thus at functions. For simplicity, let us consider endofunctions, i.e. functions of the

form F : A → A, for some set A. The natural algebraic structure associated with the space of such

functions is the one of a monoid: function composition plays the role of monoid multiplication, and the

identity function 1 : A→ A behaves as the unit of the monoid. This is the algebra of functions, and thus

of (pure) functional programs. Generalising from endofunctions to functions, the algebra of functions

gives the notion of a category (MacLane, 1971). In particular, given functions F : A→ B andG : B → C ,

we can compose them obtaining G ◦ F : A → C . Computationally, that means that we can pass the

output of a program as input to another program.

A minimal desideratum T should satisfy, is to allow to lift the algebra of functions to functions

of the form F : A → TB. Let us brie�y expand on that. Consider two functions F : A → TB and

G : B → TC modelling e�ectful programs. We immediately notice that the output of F is di�erent from

the input of G, as the former comes together with the e�ects produced by the program associated to F .

18
This is not entirely true, as, for the sake of the argument, we are overlooking issues related to non-termination and partiality.
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Nonetheless, we would like to be able to pass the actual value computed by F as input to G, combining

somehow the e�ects produced. What we need is thus an operation ◦T allowing to produce the function

G ◦T F : A → TC . Additionally, we would like such an operation ◦T to behave as kind of function

composition, this way allowing to restore the algebra of functions
19

. The constructions T that allows

to perform such an algebraic constructions are called monad (MacLane, 1971), and are a well-known

notion in Category Theory (MacLane, 1971).

1.2.2 Algebraic E�ects
Moggi’s account of e�ectful computations is mostly denotational, focusing more on the nature of the

functions associated with λ-terms, rather than on the linguistic analysis of e�ectful programs. From

an operational perspective, the computational λ-calculus has minimal di�erences with the ordinary λ-

calculus, and thus it does not provide as an adequate calculus for an operational analysis of e�ectful

languages. In particular, the computational λ-calculus lacks primitives to actually produce e�ects, with

the consequent necessity of extending it with suitable e�ect-triggering operations, whenever one is

interested in giving formal accounts of e�ectful languages.

Moving from these observations, Plotkin and Power have recently introduced the theory of alge-
braic e�ects (G. D. Plotkin & Power, 2001, 2002, 2003) aiming to provide a more satisfactory account of

e�ectful computations, both from an operational and denotational perspective. Accordingly, the theory

of algebraic e�ects focuses on the computational primitives producing e�ects, rather than on e�ects

on their own. In languages supporting algebraic e�ects, programs are written using e�ect-triggering

operations (such as probabilistic choices or primitives for raising exceptions) which act as sources of

the side e�ects of interest.

Although introduced only in recent years, algebraic e�ects provide a standard formalism for the

operational analysis of e�ectful languages. This is due to their wide applicability to model concrete

e�ectful calculi, on one hand, and on their nice operational properties, on the other hand. In fact, alge-

braic operations provide, among others, models for probabilistic and nondeterministic computations (by

means of probabilistic and nondeterministic choice operations), imperative computations (by means of

primitives for reading and writing global stores), computations with output (by means of primitives for

printing values), and computations with exceptions (by means of primitives for throwing exceptions), as

well as combinations thereof. In fact, contrary to monads, algebraic e�ects naturally support operations

to combine e�ects with one another (Hyland, Plotkin, & Power, 2006), hence providing facilities for the

design and analysis of languages exhibiting di�erent kinds of e�ects.

Additionally, the algebraic nature of operations allows to have a tight control on the way e�ects are

produced and propagated in a computation. In fact, from an operational perspective, algebraicity of an

operation states that the operational behaviour of such an operation is independent of its arguments,

meaning that e�ects act independently of the evaluation contexts in which they are executed. Taking

advantage of this property of algebraic operations, (G. D. Plotkin & Power, 2001) de�nes a λ-calculus

with algebraic operations, which plays the same role of Moggi’s computational λ-calculus. Contrary to

the latter, however, the λ-calculus in (G. D. Plotkin & Power, 2001) has a well-behaved operational se-

mantics, hence giving evidences that by enriching the λ-calculus with algebraic operations, one obtains

an adequate foundational calculus for e�ectful languages.

Obviously, algebraic e�ects have their own limitations. For instance, neither continuations (Hyland,

Levy, Plotkin, & Power, 2007) nor exception handlers (G. D. Plotkin & Pretnar, 2013) can be modelled as

algebraic e�ects
20

. Nonetheless, as previously stressed, several computational e�ects can be described

19
Of course we also need to have a special function η : A→ T (A) playing the role of the unit of ◦T .

20
Moving from the analysis of exception handlers, the theory of algebraic e�ects has been extended to the so-called theory

of e�ects and handlers (Bauer & Pretnar, 2015; G. D. Plotkin & Pretnar, 2013; Pretnar, 2015). The latter is obtained by extending

programming languages not only with algebraic operations, but also with the so-called e�ects handlers, the latter being syntactical
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by means of algebraic operations. Additionally, by enriching the λ-calculus with algebraic operations we

obtain a powerful (and mathematically well-behaved) formalism for the operational analysis of e�ectful

programming languages. Even if such a formalism does not allow for a comprehensive analysis of

e�ectful computations, it certainly allows for the development of a rich theory of e�ectful program

equivalence, as this dissertation aims to show.

1.2.3 E�ectful Program Equivalence
In previous section we have identi�ed a family of core calculi for studying e�ectful programming lan-

guages, namely extensions of the λ-calculus with algebraic operations. The next step in our investigation

is to understand what a notion of program equivalence for such calculi might be.

Looking back at our general analysis of program equivalence, we notice that purity did not play

any role there, so that we are still interesting in �nding suitable congruence relations between program

phrases. That is not the case for the concrete equivalences we have introduced in Subsection 1.1.2.

In fact, all of them rely on the fundamental assumption that the operational behaviour of a λ-term

is entirely determined by the β-rule. Dealing with e�ectful programs, such an assumption has to be

dropped: the evaluation of a program cannot be identi�ed with the β-rule anymore, as it also has to

take into account algebraic operations.

This is a great source of complexity for the operational analysis of program behaviour. Contrary

to the β-rule (which made program evaluation a local process), evaluating algebraic operations require

a program to interact with the environment, hence making the evaluation process itself interactive.

Looking at program equivalence in terms of tests and observations, this further source of complexity

results in far richer notions of observation, whereby the external observer can detect (to some extent,

at least) not only the result of the evaluation of a program, but also the e�ects produced during such an

evaluation (this way requiring to introduce suitable techniques to compare e�ects with one another).

The �rst part of this dissertation studies the equivalences introduced in Subsection 1.1.2 for λ-calculi

extended with algebraic operations, with special focus on coinductive equivalences.

1.3 From Equivalences to Distances
Program equivalence answers the question of whether two programs have the same behaviour, and

gives meaning to programs via a notion of synonymy. However, when dealing with e�ectful programs

one may be interested in answering a di�erent, more informative question: how much di�erent two
programs are?. Our focus being on e�ectful languages, it is of prime importance for our investigation to

provide a satisfactory answer to such a question.

Our approach towards such an achievement is to design suitable notions of program distance (or

program metric). Quantifying di�erences between program behaviours is of paramount importance for

e�ectful languages, where e�ects are, by their very nature, context dependent. This is not the case for

pure programs, whose behaviour is independent of the environment in which they are evaluated. As

a consequence, changes in the environment do not a�ect the observable behaviour programs exhibit.

However, as we have already remarked, e�ectful programs interact with the environment, and are thus

sensitive to context changes. For instance, small perturbations in probabilities may break equivalence of

probabilistic programs. It is then useful to have information on how much changes in the environment

a�ect changes in the operational behaviour of programs, thus allowing for a �ner, quantitative analysis

of program equivalence.

The design of well-behaved notions of program distance constitute a challenging problem in the con-

text of higher-order computation. In fact, higher-order programs have the ability to copy and evaluate

constructors handling the behaviour of (algebraic) operations.
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their input as they like, so to speak. That means that when a higher-order program receives inputs with

similar (but not equal) behaviour, each time it forces their evaluation an observable di�erence between

their behaviour is detected. Additionally, whenever such a di�erence is the detected, it is added to the

ones previously observed. As a consequence, by copying and evaluating its inputs enough times, the

program is able to fully discriminate between its inputs, even if their expected di�erence is, in principle,

negligible.

This observation mines our approach to the behavioural analysis of programs at its very roots: by

reasoning in terms of experiments and observations, an external observer can always fully discriminate

(i.e. assign maximal distance) to any pair of non-equivalent programs. As we will see, �xing this problem

will force us to change our notion of testing process, following the rationale that one should take into

account not only how a program is tested, but also how much it is tested.

The second main contribution of this dissertation is the design of a well-behaved program distance

capable of handling the above described phenomenon. As we will see, achieving such a goal is simply

not possible without providing information on the environment in which programs are tested. After

all, this does not come with a big surprise, since context dependency is an intrinsic feature of e�ectful

programs.

We conclude this informal introduction spending few words on the foundational meaning of moving

from program equivalence to program distance.

1.3.1 A Foundational Interlude
Following the linguistic perspective on programming languages, we may ask what is the linguistic coun-

terpart of the shifting from program equivalence to program distance. From a mathematical perspec-

tive, moving from program equivalence to program distance means re�ning equivalence relations into

pseudometrics21
(Searcóid, 2006), with the rationale that given a pseudometric δ , the quantity δ (e , e ′)

quanti�es the (behavioural) di�erences between the program phrases e and e ′. As a notion of program

equivalence describes synonymy, this way inducing a notion of meaning for program phrases, we may

now ask what is the linguistic interpretation of program distance.

A conceptual (philosophical, somehow) answer to such a question is provided by structural lin-
guistics (de Saussure & Baskin, 2011). Accordingly, meaning is produced di�erentially, i.e. throughout

di�erences. As a consequence, in order to understand the meaning of an expression it is necessary to

study its di�erences with the other expressions of the language, hence giving to the role of synonymy

a secondary role.

The kind of di�erences we will consider in this work are rather rudimentary, as they are essentially

based on (abstract) notions of quantities. Nonetheless, our analysis of notions of program distance can

be read as constituting a small contribution to a richer understanding of program semantics, whereby

the notion of identity (formalised through the notion of program equivalence) is secondary to the notion

of di�erence (here formalised through the notion of program distance
22

)
23

.

Now that the reader has some background notions, we can outline the main contribution of this

dissertation in a more detailed way.

21
Understanding how to re�ne compatibility is not straightforward, and we will come back on that later.

22
It is a fascinating question how to generalise the notion of a program distance to the (richer) notion of a program di�erence.

23
The idea of regarding di�erence as having an ontological privilege over identity is at the heart of the �eld of philosophy

known as Di�erential Ontology (Donkel, 2001).
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1.4 First Contribution: E�ectful Program Equivalence and Re-
�nement

The �rst main contribution of this dissertation is the development of operationally-based notions of

program equivalence and re�nement for λ-calculi enriched with algebraic e�ects. The equivalences

and re�nements designed are mostly of a coinductive nature (with some minor exceptions given by

contextual-like equivalences) and are based on di�erent forms of bisimulation equivalence (resp. re-

�nement). Following the classi�cation of program equivalences outlined in Subsection 1.1.3, we can list

the equivalences and re�nements designed as follows.

Observational. Concerning observational equivalences and re�nements, we de�ne the notions of ef-
fectful contextual approximation �ctx

(resp. equivalence 'ctx
) and e�ectful CIU approximation �ciu

(resp. equivalence 'ciu
). These are de�ned in Chapter 5.

Applicative. Concerning applicative equivalences and re�nements, we de�ne the notions of e�ect-
ful applicative similarity �A

(resp. bisimilarity 'A
) and monadic applicative similarity �M

(resp.

bisimilarity 'M
). These are all de�ned in Chapter 5 and Chapter 6, respectively.

Intensional. Concerning intensional equivalences and re�nements, we de�ne the notions of e�ectful
normal form (bi)similarity (notably e�ectful eager normal for similarity �E

and bisimilarity 'E
,

and e�ectful weak head normal form similarity �W
and bisimilarity 'W

). These are de�ned in

Chapter 7.

We brie�y expand on the contributions given.

1.4.1 E�ectful Applicative Similarly and Bisimilarity
In Chapter 5 we de�ne the notion of e�ectful applicative similarity and bisimilarity for a call-by-value λ-

calculus with algebraic e�ects (Chapter 3). Applicative bisimilarity is a coinductive (Milner, 1989; Park,

1981) program equivalence for pure λ-calculi that tests pure functional programs extensionally, i.e. for

their input-output behaviour. Due to its coinductive nature, applicative bisimilarity comes equipped

with a powerful proof technique, called the coinduction proof principle, which makes applicative bisim-

ilarity a powerful tool for proving equivalence between programs.

Since Abramsky’s seminal work (Abramsky, 1990b), applicative bisimilarity has been extended to

several e�ectful calculi, notable examples being its extension to nondeterministic (S. Lassen, 1998b;

C. L. Ong, 1993) and probabilistic (Crubillé & Dal Lago, 2014; Dal Lago, Sangiorgi, & Alberti, 2014) λ-

calculi. However, all these extensions are rather speci�c to the e�ects considered, and seem to rely on

their speci�c properties (for instance, the proof of congruence of applicative bisimilarity in (Dal Lago

et al., 2014) relies on the Max-�ow Min-cut Theorem (Schrijver, 1986)).

Our notion of e�ectful applicative (bi)similarity, instead, is designed to be parametric over a large

class of computational e�ects. Concretely, e�ectful applicative (bi)similarity is parametrised by a monad

and a relator (Barr, 1970; Thijs, 1996), the latter being an abstract construction axiomatising the struc-

tural properties of relation lifting operations (Kurz & Velebil, 2016). This level of abstraction makes

e�ectful applicative bisimilarity (resp. bisimilarity) a powerful notion of program equivalence (resp. re-

�nement) for e�ectful higher-order languages. In fact, suitable choices of relators allow to recover pure,

probabilistic, nondeterministic, and imperative notions of applicative (bi)similarity, as well as combina-

tions thereof.

In order to develop the theory of e�ectful applicative (bi)similarity, in Chapter 5 we develop an ab-

stract relational framework in which several notions of e�ectful program equivalence and re�nement

can be de�ned. We take advantage of such a framework to de�ne and analyse, among others, e�ectful
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notions of contextual equivalence and approximation, CIU equivalence and approximation, and normal

form similarity and bisimilarity (Chapter 7). The main results proved in Chapter 5 are precongruence

(Theorem 4) and congruence (Theorem 5) theorems for e�ectful applicative similarity and bisimilar-

ity, respectively. These theorems state that for a suitable class of relators, whose members we call

Σ-continuous relators, e�ectful applicative similarity is a precongruence relation, whereas e�ectful ap-

plicative bisimilarity is a congruence relation. Remarkably, all the relators studied in this dissertation

(Section 4.3) are Σ-continuous. As an immediate corollary, we obtain soundness of e�ectful applicative

similarity (resp. bisimilarity) for e�ectful contextual approximation (resp. equivalence).

Theorem 4 and Theorem 5 are proved using an abstraction of Howe’s method, which take advan-

tage of the structural properties of relators. Howe’s method (Howe, 1996) is a powerful relational con-

struction used to prove (pre)congruence properties of operationally de�ned program relations. Howe’s

technique has been originally designed for the pure λ-calculus, and has later been generalised to several

e�ectful λ-calculi, prime examples being its generalisation to nondeterministic (S. Lassen, 1998b) and

probabilistic (Dal Lago et al., 2014) λ-calculi. Contrary to the �rst extension, the latter one is highly

non-trivial, and relies on results from probability theory and linear programming (see Chapter 2 for an

extensive discussion on Howe’s method). This, as well as other further di�culties, led to the belief that

Howe’s technique is fragile in presence of e�ectful extensions of the λ-calculus.

Besides providing a powerful construction to prove congruence properties of e�ectful notions of

equivalence, our abstract Howe’s method sheds some light on the very essence of Howe’s construc-

tion itself. In fact, using relators we can isolate the complexity of (pre)congruence proofs of applica-

tive (bi)similarity, showing how Howe’s method can be understood as a general relational technique

parametrised by the e�ects considered. Additionally, we show a further application of our abstract ac-

count of Howe’s method by proving that e�ectful CIU approximation (resp. equivalence) is fully abstract

for e�ectful contextual approximation (resp. equivalence) (Theorem 6).

1.4.2 Normal Form Similarly and Bisimilarity
In Chapter 7 we de�ne the notions of e�ectful normal form similarity and bisimilarity for both call-by-

name and call-by-value calculi with algebraic e�ects.

The notion of applicative (bi)similarity is rooted in the idea that programs should be compared ex-
tensionally, i.e. according to their input-output behaviour. However, it is also possible to test programs

intensionally, i.e. by inspecting the syntactic structure of the (possibly in�nitary) normal form pro-

duced by a term during (iterations of) the evaluation process. The notion of equivalence one obtains

by following this route is called open or normal form (bi)similarity24
(S. B. Lassen, 1999, 2005; Sangiorgi,

1994).

Starting from the pioneering work by Böhm on the pure λ-calculus, the notion of a Böhm tree (Baren-

dregt, 1984), and the associated notion of Böhm tree equality, has been proved extremely useful in rea-

soning about program behaviour. Roughly speaking, the Böhm tree of a λ-term e is a possibly in�nite

tree representing the in�nitary head-normal form of e . The celebrated Böhm Theorem, also known as

Separation Theorem (Böhm, 1968), stipulates that two terms are contextually equivalent if and only if

their respective (appropriately η-equated) Böhm trees are the same.

The notion of equivalence induced by Böhm trees can be characterised without any reference to

trees, by means of a suitable bisimilarity relation (S. B. Lassen, 1999; Sangiorgi, 1992, 1994). Additionally,

Böhm trees can also be de�ned when λ-terms are evaluated according to the call-by-name (S. B. Lassen,

1999; Sangiorgi, 1994) and the call-by-value (S. B. Lassen, 2005) reduction strategy. In both cases, the

notion of program equivalence one obtains by comparing the syntactic structure of trees, admits an ele-

gant coinductive characterisation as a suitable bisimilarity relation. The family of bisimilarity relations

thus obtained goes under the name of normal form bisimilarity.

24
See Subsection 1.1.2 for a short remark on terminology.
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Compared to other standard operational techniques, normal form bisimilarity has the major ad-

vantage of being an intensional program equivalence, equating programs according to the syntactic

structure of the (possibly in�nitary) trees produced by their evaluation. As a consequence, in order to

deem two programs as normal form bisimilar, it is su�cient to test them in isolation, i.e. independently

of their interaction with the environment (the latter being allowed to observe, but not to in�uence, com-

putations). This feature makes normal form bisimilarity a powerful technique for program equivalence.

The drawback of such a restricted form of testing, is, however, that normal form bisimilarity is usually

sound but not fully abstract for contextual equivalence (although full abstraction results are known to

hold for calculi with a rich expressive power (Sangiorgi, 1994; Støvring & Lassen, 2007)).

In Chapter 7 we generalise normal form (bi)similarity to λ-calculi with algebraic e�ects. The frame-

work employed for such a generalisation is the same one de�ned in Chapter 5 for e�ectful applicative

(bi)similarity. Perhaps surprisingly, the very same axioms of relators that guarantee e�ectful applicative

similarity to be a precongruence relation (and e�ectful applicative bisimilarity to be a congruence rela-

tions), guarantee our generalisation of normal form similarity, which we call e�ectful normal similarity,

to be a precongruence relation too (and thus e�ectful normal bisimilarity to be a congruence relation).

This is the content of Theorem 9, Theorem 10, and Theorem 11.

Additionally, e�ectful normal form (bi)similarity provides a sound proof technique not only for ef-

fectful contextual approximation (resp. equivalence), but for e�ectful applicative (bi)similarity as well

(Proposition 22). Finally, we show that normal form (bi)similarity allows for enhancements of the bisim-

ulation proof method (Pous & Sangiorgi, 2012) (Theorem 13 and Theorem 12), hence making normal

form (bi)similarity an extremely powerful tool for reasoning about program equivalence.

1.4.3 Monadic Applicative Similarly and Bisimilarity
In Chapter 6 we propose a new notion of applicative bisimilarity for a call-by-name calculus with alge-

braic e�ects, which we call monadic applicative (bi)similarity.

Contrary to e�ectful applicative (bi)similarity, monadic applicative (bi)similarity is not de�ned as a

relation between programs, but as a relation between their semantics. This paradigm shift originates

by the observation that in call-by-name calculi, contextual equivalence is de facto a form of trace equiv-

alence. In fact, contrary to call-by-value calculi, in a call-by-name λ-calculus terms can be tested in

functional position only, meaning that testing a term in an arbitrary environment is morally equivalent

to testing the term against a �nite sequence of inputs.

Taking advantage of this observation, monadic applicative (bi)similarity is shown to be not only

sound, but also fully abstract for e�ectful contextual approximation/equivalence, under mild conditions

(Theorem 8, Corollary 4, and Corollary 5). That holds, however, only for call-by-name calculi.

We summarise the soundness and completeness results obtained for call-by-value calculi in Table 1.1,

whereas the soundness and completeness results obtained for call-by-name calculi are summarised in

Table 1.2.

�E ( �A ( �ciu = �ctx

'E ( 'A ( 'ciu = 'ctx

Table 1.1: Call-by-value approximation/equivalence spectrum.

�W ( �A ( �M = �ciu = �ctx

'W ( 'A ( 'M = 'ciu = 'ctx

Table 1.2: Call-by-name equivalence/approximation spectrum.
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1.5 Second Contribution: E�ectful Program Distances
From Chapter 9 to Chapter 12 we tackle the problem of de�ning a well-behaved program distance for

e�ectful languages. As already remarked, the question of quantifying observable di�erences between

programs is particularly interesting (and challenging) for e�ectful higher-order languages, where ordi-

nary qualitative (i.e. boolean-valued) equivalences and re�nements are often too strong. This is wit-

nessed by recent results on behavioural pseudometrics for probabilistic λ-calculi (Crubillé & Dal Lago,

2015, 2017) as well as results on semantics of higher-order languages for di�erential privacy (de Amorim

et al., 2017; Reed & Pierce, 2010).

In Chapter 12 we de�ne e�ectful applicative bisimilarity distance, the quantitative re�nement of

e�ectful applicative bisimilarity, for an extension of the calculus Fuzz (de Amorim et al., 2017; Reed &

Pierce, 2010) with algebraic e�ects (Chapter 10). Fuzz is a foundational calculus developed in the context

of di�erential privacy (Dwork, 2006) with a linear-like type system (Maraist, Odersky, Turner, & Wadler,

1999) capable of expressing program sensitivity. Roughly speaking, the latter is the law describing how

much behavioural di�erences in output are a�ected by behavioural di�erence in input, and can thus be

used to provide information on the environment in which programs are tested.

The necessity of moving from the mainstream formalisms studied in previous parts of this disser-

tation to calculi with program sensitivity is grounded in the so-called distance trivialisation (Crubillé &

Dal Lago, 2015, 2017). Roughly speaking, a program metric trivialises when it collapses to a program

equivalence. Distance trivialisation results are rooted in higher-order features of functional languages.

Intuitively, when passing programs with distance ε as input to another program e , the latter can copy

and evaluate its inputs ad libitum, each time detecting a di�erence ε between them. Additionally, each

time such a di�erence is detected, it is also added to the one previously observed, so that in the end

e will be able to fully discriminate between its inputs. This makes reasoning about program metrics

compositionally simply not possible. Program sensitivity provides an elegant way to give information

about the testing power of programs, and thus about the environment in which programs are evaluated.

Relying on program sensitivity, it is possible to de�ne a suitable notion of ‘metric-compositionality’ in

the form of a Lipschitz-continuity condition.

In Chapter 10 and Chapter 11 we develop a general framework to study program metrics in the ab-

stract, and instantiate such a framework to de�ne e�ectful applicative (bi)similarity distance (Chapter 12),

the quantitative re�nement of e�ectful applicative (bi)similarity. Accordingly, the theory of e�ectful ap-

plicative (bi)similarity distance builds on three major improvements of the theory of e�ectful applicative

(bi)similarity of Chapter 5.

1. The �rst improvement is to move from boolean-valued relations to relations taking values on

quantitative domains (such as [0,∞] or [0, 1]) in such a way that restricting these domains to

the boolean algebra {0, 1} makes the theory collapse to the usual theory of e�ectful applicative

(bi)similarity. For that, we rely on Lawvere’s analysis (F. Lawvere, 1973) of generalised metric

spaces and preordered sets as enriched categories, and work with relations taking values over

arbitrary quantales (Rosenthal, 1990). We call such relations quantale-valued relations.

2. The second improvement is the generalisation of the notion of a relator to quantale-valued rela-

tors, i.e. relators acting on quantale-valued relations. Perhaps surprisingly, such a generalisation

is at the heart of the �led of monoidal topology (Hofmann, Seal, & Tholen, 2014), a sub�eld of

categorical topology aiming to unify ordered, metric, and topological spaces in categorical terms.

3. The third improvement is the development of a compositional theory of behavioural quantale-

valued relations (and thus of behavioural distances). Due to distance trivialisation, ensuring com-

positionality in an higher-order setting is particularly challenging. In order to achieve composi-

tionality, we take advantage of the notion of program sensitivity, and use the latter to de�ne a

24



suitable notion of metric-like compositionality. As we will see in Chapter 9, such a paradigm shift

is necessary in order to ensure good properties of program metrics.

The result obtained is an abstract theory of behavioural quantale-valued relations that allows to

de�ne notions of quantale-valued applicative similarity and bisimilarity — which we call e�ectful ap-

plicative similarity and bisimilarity distance, respectively — parametrised by a quantale-valued relator.

The notions obtained generalise the existing notions of real-valued applicative (bi)similarity and can

be instantiated to concrete calculi to provide new notions of applicative (bi)similarity distance. A re-

markable example is provided by probabilistic λ-calculi, where to the best of the author’s knowledge

a (non-trivial) applicative distance for a universal (i.e. Turing complete) probabilistic λ-calculus is still

lacking in the literature (but see Section 13.1).

Our �rst main result (Theorem 16) states that under suitable conditions on monads and quantale-

valued relators, e�ectful applicative similarity distance is a compatible (i.e. compositional) re�exive

and transitive quantale-valued relation. The second main result proved (Theorem 17), instead, states

that under mild conditions Theorem 16 extends to e�ectful applicative bisimilarity distance, which is

thus proved to be a compatible, re�exive, symmetric, and transitive quantale-valued relation (i.e. a

compatible pseudometric).
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Chapter 2

An Informal, Motivating Example

In signs one observes an advantage

in discovery which is greatest when

they express the exact nature of a

thing brie�y and, as it were, picture

it; then indeed the labor of thought is

wonderfully diminished

Gottfried Wilhelm Leibniz,

Briefwechsel von G. W. Leibniz mit

Mathematikern

In order to introduce and justify the abstract framework developed in this thesis, we begin with a

gentle, yet non-trivial, example of an e�ectful (functional) calculus, namely a call-by-value probabilistic

λ-calculus. Such a calculus, which we call Λp , is a �ne-grain (P. Levy, Power, & Thielecke, 2003) version

of the probabilistic untyped λ calculus studied in e.g. (Dal Lago et al., 2014; Dal Lago & Zorzi, 2012). The

latter is obtained by adding to the pure, untyped λ-calculus (Barendregt, 1984; Church, 1985) a binary

fair probabilistic choice operator, hence making program evaluation inherently probabilistic.

The reason behind this choice is simple: Λp allows to identify most of the features one encounters

when studying (algebraic) e�ectful extensions of λ-calculi, and thus provides a good starting point to

build intuitions behind the abstract machinery we will introduce in next chapters.

Besides introducing the syntax and (operational) semantics of Λp , in this chapter we de�ne the no-

tions of probabilistic contextual approximation (resp. equivalence) and probabilistic applicative similarity
(resp. bisimilarity), and prove that probabilistic applicative similarity is sound for probabilistic contex-

tual approximation, meaning that the former is contained in the latter. Although this thesis studies sev-

eral notions of program equivalence and re�nement, such as applicative and normal form (bi)similarity,

contextual equivalence and approximation, and CIU equivalence and approximation, here we will de
facto focus on applicative (bi)similarity only. In fact, proving probabilistic applicative similarity to be a

precongruence relation (from which its inclusion in contextual approximation directly follows) is highly

non-trivial, and provides fundamental insights into the mathematical apparatus we will use in our ab-

stract analysis of program equivalence and re�nement.

Let us expand on the latter point. In his seminal work (Howe, 1996) Howe introduced a powerful

relational technique to prove congruence of applicative bisimilarity for pure (i.e. e�ect free) λ-calculi:

such a technique is nowadays known as Howe’s method (Pitts, 2011). Howe’s method has been extended

to several calculi with speci�c e�ects, its extension to nondeterministic (S. Lassen, 1998b; C. L. Ong,

1993) and probabilistic (Crubillé & Dal Lago, 2014; Dal Lago et al., 2014) λ-calculi being prime examples.
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In most of these extensions the logical complexity of Howe’s method (which is essentially determined

by the so-called Key Lemma) is, in a way, comparable to the one of Howe’s original method for the pure

λ-calculus.

This is not the case for probabilistic calculi, where the proof of precongruence for applicative similar-

ity (and thus the proof of congruence for applicative bisimilarity) requires to combine non-trivial results

from linear programming (Schrijver, 1986) with the standard relational technique of Howe’s method.

This is witnessed by the complicated proof of precongruence of probabilistic applicative similarity in

(Dal Lago et al., 2014). As a consequence, there is an apparent mismatch between the complexity of

Howe’s method when applied to di�erent e�ectful calculi, which led several researchers to consider

Howe’s technique fragile in presence of e�ects.

The abstract analysis of applicative (bi)similarity we will make in Chapter 5 allows to isolate the

complexity of (pre)congruence proofs for applicative (bi)similarity, showing how Howe’s method can

be understood as a general relational technique parametric with respect to the e�ects considered. That

allows to understand the deep reasons why di�erent instances of Howe’s method in the literature seem

to have di�erent complexities: those are, so to speak, properties of e�ects, rather than of Howe’s method.

Organisation
After having introduced the syntax and operational semantics of Λp , we de�ne probabilistic contex-

tual approximation and probability applicative similarity. Compared to their symmetric counterparts,

probabilistic applicative similarity and probabilistic contextual approximation are amenable to an easier

mathematical treatment, and thus we focus on the latter for now.

We stress the de�nition of probabilistic applicative similarity in terms of a suitable relation lifting op-

eration. This is major di�erence compared to previous works on probabilistic applicative (bi)similarity

(Crubillé & Dal Lago, 2014; Dal Lago et al., 2014). Looking at (probabilistic) applicative similarity in terms

of relation lifting operations allows to isolate the structural properties such operations should satisfy in

order to guarantee (probabilistic) applicative similarity to be precongruence relation. We conclude the

chapter discussing the proof of the precongruence theorem for probabilistic applicative similarity and

its possible generalisation.

Finally, we remark that the theory presented in this chapter is nothing more than a mechanical

instantiation of the abstract theory of e�ectful applicative (bi)similarity we will study in Chapter 5.

Such a theory might then appear to the reader as a rather straightforward generalisation of the the

theory of probabilistic applicative similarity presented here: if that is the case, then this introductory

chapter made its purpose. Chronologically, however, Ugo Dal Lago, Paul Blain Levy, and the author �rst

developed the theory of e�ectful applicative (bi)similarity, which then led to a better understanding of

probabilistic applicative (bi)similarity.

2.1 A Probabilistic λ-calculus and Its Operational Semantics
We now introduce our running example calculus Λp . We will not give all formal details here (these are

not needed for our purposes), which are given instead in Chapter 3 in full generality.

Terms of Λp are divided into two disjoint classes: computations (denoted by e , f , . . .) and values
(denoted byv ,w , . . .). These are de�ned in Figure 2.1, where x ranges over a �xed countably in�nite set

of variables.

The di�erence between values and computation is the following: a computation produces (when

evaluated) a value, and in doing so can perform some (side) e�ects, whose nature is probabilistic. A value,

on the contrary, is the result of the evaluation of a computation. The key computation constructors are

these:
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e , f ::= return v (return) v ,w ::= x (variable)

| vw (application) | λx .e . (abstraction)

| let x = e in f (sequencing)

| e or f . (probabilistic choice)

Figure 2.1: Syntax of ΛΣ.

• returnv is the trivial computation. It converts a valuev into a computation returnv that (trivially)

produces v (without performing any side e�ect).

• let x = e in f is the sequenced computation (also known as sequencing). Its operational meaning

can be informally described as follows: “evaluate e (say it produces a value v), bind v to x in f
(we use the notation f [x := v] to denote the resulting computation), then evaluate f [x := v]”.

Clearly the e�ects produced during evaluation of e and f must be combined (we will come back

on that later).

• e or f is the actual e�ectful computation. The operation symbol or acts as an e�ect-triggering

operation, evaluating e with probability
1

2
, and f with probability

1

2
.

An example may help to clarify the intuitive (operational) semantics of Λp .

Example 1. Let Pr (e ⇓ v ) denotes the probability that the program e evaluates to the value v . For

instance, the term e , (return v1) or (return v2) evaluates to v1 with probability
1

2
and to v2 with

probability
1

2
. Symbolically, Pr (e ⇓ vi ) =

1

2
(for i ∈ {1, 2}). Let now f be a term with a single free

variable x such that f [x := v1] evaluates to u1 with probability
1

3
and f [x := v2] evaluates to u2 with

probability
2

3
. Then the probability that the program let x = e in f evaluates to u1 is obtained as the

product of the probability of e evaluating to v1 and the probability of f [x := v1] evaluating to u1. This

is the way e�ects are composed in Λp . More formally, the probability that the program let x = e in f
evaluates to a value w is obtained as:

Pr (let x = e in f ⇓ w ) =
∑

Pr (e ⇓ v ) · Pr ( f [x := v] ⇓ w )

�

Before giving a formal treatment of the operational semantics ofΛp , let us introduce some syntactical

conventions. We adopt standard syntactical conventions as in (Barendregt, 1984). In particular, we write

e[x := v] (resp w[v/x]) for the capture-free substitution of the value v for all free occurrences of x in e
(resp. w) and identify terms up to renaming of bound variables. A program is a closed computation, i.e. a

computation without free variables. In light of the relational apparatus we will develop in next sections,

it is useful to introduce the ‘hygienic’ convention of keeping track of free variables of computations and

values. We do so by means of sequents of the form Γ `Λ e and Γ `v v . The letter Γ ranges over �nite sets

of variables, and the intended meaning of a sequent Γ `Λ e is that e is a computation with free variables

among Γ (the sequent Γ `v v has a similar reading). Rules for sequents are given in Figure 2.2, where

we write Γ,x in place of Γ ∪ {x }.
Clearly, provable sequents are closed under weakening, meaning that if Γ `Λ e (resp. Γ `v v) is

provable, then so is Γ,x `Λ e (resp. Γ,x `v v). From now on when speaking about sequents we will

tacitly mean provable sequents. Closed terms thus correspond to sequents with empty premises (which
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Γ,x `v x

Γ,x `Λ e

Γ `v λx .e
Γ `v v Γ `v w

Γ `Λ vw
Γ `v v

Γ `Λ return v
Γ `Λ e Γ,x `Λ f

Γ `Λ let x = e in f

Γ `Λ e Γ `Λ f

Γ `Λ e or f

Figure 2.2: Sequents for Λp .

we simply denote as `Λ e and `v v). We also introduce the following notation:

Λ , {e | ∃Γ. Γ `Λ e} ΛΓ , {e | Γ `
Λ e} Λ◦ , {e | `

Λ e}

V , {v | ∃Γ. Γ `v v} VΓ , {v | Γ `
v v} V◦ , {v | `

v v}

We can now have a closer look at the operational semantics of Λp . A convenient way of representing

the result of the evaluation of a program e is by means of (discrete) subdistributions over values. A

discrete subdistribution over a set X is a function µ : X → [0, 1] such that the support supp(µ ) , {x ∈
X | µ (x ) > 0} of µ is countable, and

∑
x ∈supp(µ ) µ (x ) ≤ 1 (notice that because supp(µ ) is countable

such a sum always exists). Clearly, if X is countable (as it is e.g. the set of closed values), every map

µ : X → [0, 1] has countable support (and thus we simply write

∑
x ∈X µ (x ) in place of

∑
x ∈supp(µ ) µ (x )).

We denote by DX the collection of (discrete) subdistributions over X , and refer to its elements simply

as subdistributions.

We de�ne the result JeK of the evaluation of a program e as a subdistribution over (closed) values.

The idea is that JeK(v ) gives the probability that e evaluates to v . That is, JeK(v ) = Pr (e ⇓ v ). This

justi�es our choice of using subdistributions rather than distributions: by assigning probability zero to

values we can model divergence. For instance, the probability subdistribution JΩK associated with the

purely divergent program Ω , (λx .xx ) (λx .xx ) will assign probability 0 to any value (since Ω diverges,

it converges to a value v with probability 0).

When trying to formalise this idea we immediately face a �rst di�culty. In fact, contrary to pure

calculi, we cannot give a standard, inductive operational semantics to Λp . In pure (as well as purely

nondeterministic) λ-calculi, if a term converges to a value, then it does so in a �nite number of steps.

In a probabilistic setting a program may converge to a value with probability 1, but in in�nitely many

steps only.

To see that, it is useful to represent the subdistribution obtained evaluating a program syntacti-

cally. We do so by means of the so-called computation trees (G. D. Plotkin & Power, 2001). These are

in�nitary trees whose nodes are labelled with operation symbols (just the probabilistic choice symbol

or, in our case) and whose leaves are either values or a bottom symbol ⊥ denoting pure divergence.

For instance, the computation tree and its associated probabilistic reading of the recursive program

e , (�x(z,x ).((return I ) or zx ))v , where I is the identity combinator λx .return x and �x is a call-

by-value �xed point combinator
1

, are given in Figure 2.3. Looking at Figure 2.3, we easily see that e
converges to I with probability limn→∞

∑n
k=1

1

2
k = 1, but it does so taking in�nitely many reduction

steps.

To model such an in�nitary behaviour we follow (Dal Lago & Zorzi, 2012) and notice thatDX carries

an ω-cppo structure. The order v on DX is de�ned pointwise: we say that µ v ν holds if and only

µ (x ) ≤ ν (x ), for any x ∈ X . Clearly the always zero distribution ⊥ acts as bottom element for v.

Moreover, any ω-chain (µn )n = µ0 v µ1 v · · · v µn v · · · has least upper bound given by supn µn .

1
The call-by-value �xed point combinator �x is de�ned by the rule

Γ, z , x `Λ e
Γ `v �x(z , x ).e

Its computational behaviour is given by a kind of generalised β -rule, which allows to rewrite a term of the form (�x(z , x ).e )v as

e[z := �x (z , x ).e , x := v].
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Computation tree of e Probabilistic reading of e
or

I or

I
.
.
.

•1

2

1

2

I •
1

2

1

2

I
.
.
.

Figure 2.3: Computation tree of e , (�x(z,x ).((return I ) or zx ))v .

Relying on the ω-cppo of DV◦, we de�ne a N-indexed family of evaluation functions J−Kn : Λ◦ →
DV◦ such that, for any program e , (JeKn )n forms an ω-chain in DV◦. Intuitively, JeKn is the n-th ap-

proximation of the evaluation JeK of e . Accordingly, we de�ne JeK0 as ⊥. Moreover, we would like the

resulting evaluation function J−K to satisfy some minimal desiderata. First of all, in order to give se-

mantics to programs of the form return v we need to regard values as subdistributions. In particular,

we expect Jreturn vK to assign probability 1 to v (obviously return v converges to v with probability

one), and 0 to all other values. This can be easily done since we can regard any element of a set X as a

subdistribution by means of the map η : X → DX mapping x ∈ X to its Dirac distribution η(x ) de�ned

by:

η(x ) (y) =



1 if y = x

0 otherwise.

Secondly, in order to treat the operation symbol or as a fair probabilistic choice, we expect

Je or f K(v ) =
1

2

· JeK(v ) +
1

2

· Jf K(v )

to hold for any value v . Lastly, we analyse sequencing. Given a program let x = e in f we see that the

(open) computation x `Λ f induces a function Jf [x := −]K : V◦ → DV◦ de�ned by:

Jf [x := −]K(v ) , Jf [x := v]K.

There is a natural way to lift a function f : X → DY (not to be confusion with the term f above) to a

function f † : DX → DY which corresponds to the way we ‘concatenated e�ects’ in Example 1. Simply

de�ne:

f † (µ ) (y) ,
∑
x ∈X

f (x ) (y) · µ (x ).

As a consequence, we would expect Jlet x = e in f K = Jf [x := −]K†JeK. We can thus give the following

de�nition.

De�nition 1. The N-indexed family of functions J−Kn : Λ◦ → TV◦ is inductively de�ned as follows:

JeK0 , ⊥

Jreturn vKn+1 , η(v )

J(λx .e )vKn+1 , Je[x := v]Kn
Jlet x = e in f Kn+1 , Jf [x := −]K†nJeKn

Je or f Kn+1 , JeKn ⊕ Jf Kn ,

where for µ,ν ∈ DX , (µ ⊕ ν ) (x ) , 1

2
· µ (x ) + 1

2
· ν (x ).
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To see that De�nition 1 indeed gives an ω-chain we notice that we have the following monotonicity

and continuity result.

Lemma 1. Recall that any function space of the form X → DY inherits an ω-cppo structure from DY
pointwise2. The following monotonicity and continuity conditions hold, where n ranges over natural num-
bers.

µ v µ ′,ν v ν ′ =⇒ µ ⊕ ν v µ ′ ⊕ ν ′ sup

n
µn ⊕ sup

n
νn = sup

n
(µn + νn )

f v д =⇒ f † v д† (sup

n
fn )
† = sup

n
f †n

µ v ν =⇒ f † (µ ) v f † (ν ) f † (sup

n
µn ) = sup

n
f † (µn ).

The proof of Lemma 1 is straightforward (just notice that summations commute with suprema, since

all numbers involved are positive). Using Lemma 1 (monotonicity) we see that the evaluation function

of De�nition 1 de�nes an ω-chain (JeKn )n , for any closed term e . As a consequence, we can de�ne JeK
as the limit of such a chain:

JeK , sup

n
JeKn .

Finally, we observe that another consequence of Lemma 1 (continuity) is that our evaluation semantics

is continuous.

Proposition 1. The function J−K : Λ◦ → DV◦ is the least function φ : Λ◦ → DV◦ such that the following
identities hold:

φ (return v ) = η(v )
φ ((λx .e )v ) = φ (e[x := v])

φ (let x = e in f ) = (v 7→ φ ( f [x := v]))†φ (e )

φ (e or f ) = φ (e ) ⊕ φ ( f ).

At this point the reader might have noticed that so far we did not use anything really speci�c to

subdistributions. Our evaluation semantics relied on the existence of an ω-cppo structure on sets of the

form DX , as well as on the existence of (families of) functions of the form η : X → DX and f † : DX →
DY , for f : X → Y . Such maps give D a monad structure (MacLane, 1971). We required these maps to

properly interact with theω-cppo structure ofDX in the form of monotonicity and continuity properties.

The only place where subdistributions played an explicit role is in the de�nition of the semantics of

the operation symbol or. However, a more careful analysis reveals that the way we interpret such an

operation symbol does not really matter, as far as it is interpreted as a continuous binary operation on

DX . Moving from these observations, in the next chapter we will de�ne an abstract, monadic semantics

for e�ectful calculi. But before that, let us introduce the notion of probability applicative similarity.

2
Overloading the notation, we de�ne

f v д ⇐⇒
4
∀x ∈ X . f (x ) v д (x )

⊥(x ) , ⊥.

.
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2.2 Probabilistic Applicative Similarity
Following Abramsky’s insights, we notice that the evaluation semantics of De�nition 1 de�nes a prob-

abilistic labelled transition systems over computations and values of Λp . Such a transition system is

better described abstractly, as a structure resembling a Markov chain.

Recall that a discrete time Markov chain (Howard, 2007) (Markov chain, hereafter) is given by a set

X (the state space of the chain) together with a map c : X → DX . The function c describes probabilistic

transitions over X , with the rationale that if c (x ) (y) = p, then there is a transition from x to y with

probability p. A natural notion of equivalence on the state space X is given by Larsen-Skou probabilistic
bisimilarity (Larsen & Skou, 1989). Since most of the times we will be more interested in studying the

more primitive notion of probabilistic similarity
3
, we prefer to work directly with probabilistic similarity

(we will discuss probabilistic bisimilarity in later chapters).

Recall that for a set X , a relation R ⊆ X × X , and a set X ⊆ X , the R-image of X is de�ned as

R[X] , {y ∈ Y | ∃x ∈ X. x R y}. Moreover, for µ ∈ DX and X ⊆ X we write µ (X) for

∑
x ∈X µ (x ).

De�nition 2. Given a Markov chain c : X → DX , we say that a relation R ⊆ X × X is a probabilistic
simulation if

x R y =⇒ ∀X ⊆ X . c (x ) (X) ≤ c (y) (R[X]).

Probabilistic simulation is de�ned by lifting a relation R on the state space X to the set of subdistri-

butions over X . Such a lifting can be de�ned more abstractly as follows. Given µ ∈ DX , ν ∈ DY , and a

relation R ⊆ X × Y , we de�ne the relation D̂R ⊆ DX × DY by:

µ D̂R ν ⇐⇒
4
∀X ⊆ X . µ (X) ≤ ν (R[X]).

With a further abstraction, we can regard D̂ as a set-indexed family of functions from Rel(X ,Y ) to

Rel(DX ,DY ), where for sets X ,Y , Rel(X ,Y ) denotes the complete lattice of binary relations (ordered by

set-theoretic inclusion) between X and Y . We can thus phrase De�nition 2 as follows.

Lemma 2. Given a Markov chain c : X → DX , de�ne the functional Φ : Rel(X ,X ) → Rel(DX ,DY ) by:

ΦR , {(x ,y) | c (x ) D̂R c (y)}.

Then a relation R ⊆ X × X is a probabilistic simulation if and only if R ⊆ ΦR. That is, probabilistic
simulations are exactly post-�xed points of Φ.

Since D̂ is monotone (i.e. R ⊆ S =⇒ D̂R ⊆ D̂S), we see that Φ is a monotone endofunction

on Rel(X ,X ). By the Knaster-Tarski Theorem (Davey & Priestley, 1990; Tarski, 1955), Φ has a greatest

�xed point, which we call probabilistic similarity and denote by �. Probabilistic similarity being de�ned

coinductively (i.e. as the greatest �xed point of a Φ), it comes with an associated coinduction proof
principle (Milner & Tofte, 1991; Park, 1981): in order to prove that two states of a Markov chain are

similar, it is su�cient to exhibit a simulation relating them. Formally:

∃ R . R ⊆ ΦR x R y

x � y
(� -coind.)

or, in point-free notation,

R ⊆ ΦR
R ⊆ �

(� -coind.)

The notation employed to denote probabilistic similarity suggests the latter to be a preorder relation

(which is clearly a desired property). This is indeed the case. In order to see that, we �rst observe that

the map D̂ satis�es the following properties.

3
In general, a bisimulation is a relation R such that both R and its converse R◦ are simulation.
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Lemma 3. For all relations R ⊆ X × Y , S ⊆ Y × Z the following hold:

=DX ⊆ D̂ (=X )

D̂ S ·D̂R ⊆ D̂ (S · R ),

where S · R , {(x , z) | ∃y ∈ Y . x R y ∧ y S z} denotes relation composition.

We do not give a proof of Lemma 3 here, as proving properties of D̂ is in general non-trivial. A guide

is given in the case of full distributions by Strassen’s Theorem (Strassen, 1965), an important result that

characterises D̂ (whose de�nition is based on an universal quanti�cation) existentially.

Theorem 1 (Strassen’s Theorem). Let µ and ν be full distribution over X and Y , respectively. A coupling

of µ,ν is distribution ω over X × Y such that:∑
y∈Y

ω (x ,y) = µ (x )∑
x ∈X

ω (x ,y) = ν (y).

We denote by Ω(µ,ν ) the set of couplings of µ and ν . The following holds for any relation R ⊆ X × Y :

µ D̂R ν ⇐⇒ [∃ω ∈ Ω(µ,ν ). ω (x ,y) > 0 =⇒ x R y].

We will give intuitions behind the meaning of the notion of a coupling and Strassen’s Theorem in

Example 30. For now, it is su�cient to observe that using Strassen Theorem it is possible to easily prove

several properties of D̂, provided we restrict our treatment to full distributions.

Using Lemma Lemma 3 and the coinduction proof principle, we can prove that � is a preorder. For

instance, by showing that the identity relation is a probabilistic simulation, we can conclude � to be

re�exive. Let us brie�y expand on that. To see that for any Markov chain c : X → DX , the identity

relation =X is a probabilistic simulation, we simply observe that if x =X y, then c (x ) =DX c (y), and

thus c (x ) D̂ (=X ) c (y) by Lemma 3. In a similar fashion we can show that � · � is a simulation, hence

concluding � to be transitive.

We now look back at Λp . The evaluation function J−K : Λ◦ → DV◦ does not exactly de�ne a Markov

chain but, since there is an injection mapping values to computations, we have a ‘kind of’ Markov chain.

In particular, given a relation RV ⊆ V◦ × V◦ over closed values, we can modify De�nition 2 by saying

that a relation RΛ ⊆ Λ◦ × Λ◦ over closed computations is a probabilistic simulation with respect to RV

if:

e RΛ f =⇒ JeK D̂RV Jf K.

At this point we just need to provide conditions on RV making the above implication meaningful. As

for the pure λ-calculus, we test the behaviour of closed values (i.e. λ-abstraction) applicatively, hence

requiring:

v RV w =⇒ ∀u ∈ V◦. vu RΛ wu.

Summing up, we give the following de�nition of a probabilistic applicative simulation relation.

De�nition 3. A pair of relations R = (RΛ ⊆ Λ◦ × Λ◦,RV ⊆ V◦ × V◦) is a probabilistic applicative

simulation if for all closed computations e , f , and all closed values v ,w , we have:

e RΛ f =⇒ JeK D̂RV Jf K (app 1)

v RV w =⇒ ∀u ∈ V◦. vu RΛ wu. (app 2)
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De�nition 3 induces an endofunction R 7→ [R] on Rel(Λ◦,Λ◦) × Rel(V◦,V◦) mapping a pair of

relations (RΛ,RV ) to the pair of relations ([R]Λ, [R]V ) de�ned by:

e [R]Λ f ⇐⇒
4 JeK D̂RV Jf K

v [R]V w ⇐⇒
4
∀u ∈ V◦. vu RΛ wu.

In particular, we see that a pair of relations R as above is a probabilistic applicative simulation if and

only if R ⊆ [R]. Moreover, the set Rel(Λ◦,Λ◦) × Rel(V◦,V◦) inherits a complete lattice structure from

Rel(Λ◦,Λ◦) and Rel(V◦,V◦) pointwise. Monotonicity of D̂ makes R 7→ [R] monotone too, so that

the latter has a greatest �xed point, which we call probabilistic applicative similarity and denote by

� = (�Λ, �V ). That � is a good candidate program re�nement is witnessed by the following result,

which, as before, can be proved by coinduction (relying on Lemma 3).

Proposition 2. Probabilistic applicative similarity is a preadequate preorder relation, where a pair of
relations (RΛ,RV ) is preadequate if e RΛ f =⇒ JeK(V◦) ≤ Jf K(V◦).

Preadequacy of a relation (over closed computations) means that whenever two computations e , f
are related, then the probability of convergence of e (i.e. JeK(V◦)) is bounded by the probability of con-

vergence of f (i.e. Jf K(V◦)). Preadequacy is nothing but the non-symmetric counterpart of the notion

of adequacy, which simply states that related computations have the same probability of convergence

(which is indeed a desired property of any notion of probabilistic equivalence). We will expand on the

notions of adequacy and preadequacy in Chapter 5.

Proposition 2 gives good hints that probabilistic applicative similarity is an interesting candidate

program re�nement for Λp . Preadequacy tells us that probabilistic applicative similarity is consistent

with ground observations on the operational behaviour of programs, whereas re�exivity and transitivity

tell that we can use inequational reasoning to study program behaviour. In particular, transitivity allows

us to deduce the re�nement e � e ′ from the chain of intermediate re�nements e � e1 � · · · en � e ′.
However, in order to indeed qualify as a good program re�nement, probabilistic applicative similarity

must support compositional reasoning about program behaviour.

Compositionality is a fundamental notion in programming language theory, as well as in many other

�elds. In our context, we can roughly state that a program relation is compositional if it is preserved

by all language (syntactical) constructors. That is, compositionality provides a suitable variation of

Leibniz’s identity law, whereby a re�nement between compound expressions C[e] � C[f ] follows

from a re�nement e � f between their sub-expressions. This way, we can take advantage of powerful

algebraic laws for inqueational reasoning
4
.

Formally, we say that a program equivalence is compositional if it is a congruence relation, and that

a program re�nement is compositional if it is a precongruence relation. As a consequence, what we need

to show is that probabilistic applicative similarity is a precongruence relation. Before that, however, we

introduce the notion of probabilistic contextual approximation.

2.3 Probabilistic Contextual Approximation
In previous sections we identi�ed some desiderata that any (good) notion of program re�nement should

satisfy. These can be summarised as follows:

4
An analogous argument holds for probabilistic applicative bisimilarity (and more generally for notions of program equiva-

lence) and equational reasoning. Moreover, the notion of compositionality is oftentimes de�ned as the principle stating that the

meaning of an expression is a function of the meaning of its parts (i.e. its sub-expressions). If we de�ne the meaning of a program

as its equivalence class modulo a given program equivalence, then our notion compositionality states exactly that the meaning

of a program is determined by the meaning of its sub-expressions.
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1. The candidate notion must be a preorder.

2. The candidate notion must be preadequate.

3. The candidate notion must be compositional, i.e. a precongruence relation.

It is therefore natural to ask whether there exists a canonical program re�nement meeting all the above

desiderata. Obviously, the identity relation provides one such a re�nement. In fact, it comes with no

surprise that syntactic equality behaves both as a notion program equivalence and as a notion of pro-

gram re�nement. Moreover, syntactic equality is the least relation satisfying conditions 1,2, and 3 above,

meaning that syntactic equality is included in any re�nement satisfying such conditions. However, it

comes by itself that comparing programs according to their syntactic structure only does not tell any-

thing useful about their operational behaviour.

There is another canonical notion of program re�nement satisfying the above condition, namely

Morris’ style contextual approximation (also known as operational or observational approximation) (Mor-

ris, 1969). The latter is the largest, i.e. the less discriminating (or coarsest), relation satisfying conditions

1, 2, and 3. This universal property gives contextual approximation a prime position among program

re�nements, making it the universally accepted notion of operational re�nement for sequential, higher-

order languages.

From a more concrete perspective, contextual approximation is a syntax directed notion of re�ne-

ment that orders programs according to a pre�xed notion of observation (such as probability of conver-

gence, in our case, or pure convergence, in the pure λ-calculus). Accordingly, a program f contextually

re�nes a program e if there is no context of the language (the latter being a kind of program with a hole

to be �lled in with the tested program) capable of detecting operational behaviours of e that cannot be

simulated by f . Such operational behaviours are speci�ed by means of a suitable notion of observation,

which describes the observable outcomes of the execution of a program.

For our calculus Λp , (probabilistic) contextual approximation �ctx
can be roughly de�ned as follows:

e �ctx f ⇐⇒ ∀C. JC[e]K(V◦) ≤ JC[f ]K(V◦).

Here C ranges over contexts, i.e. terms with a single hole that can be replaced by a given program e ,

obtaining a new program C[e]. De�ning and working with contexts, however, can be rather heavy and

error-prone, as contexts cannot be de�ned modulo renaming of bound variables (see Remark 10 for

details). We thus de�ne probabilistic contextual approximation through its universal property. In order

to do so, we �rst have to introduce some basic notions of program relational algebra in the spirit of

(S. Lassen, 1998b).

The expression program relational algebra is used to denote a a symbolic apparatus allowing for

algebraic manipulations and calculations with program relations. Such relations, which we call λ-term

relations (S. Lassen, 1998b; Pitts, 2011), relate (possibly open) computations with (possibly open) com-

putations, and (possibly open) values with (possibly open) values.

De�nition 4. 1. A closed λ-term relation is a pairR = (RΛ,RV ) of relationsRΛ andRV onΛ◦ andV◦,
respectively. We refer to RΛ as the computation component of R, and to RV as the value component
of R.

2. An open λ-term relation R associates to each �nite set of variables Γ a relation Γ `Λ − R − on ΛΓ ,
and a relation Γ `v − R − onVΓ . We require open λ-term relations to be closed under weakening:

Γ `Λ e R f

Γ,x `Λ e R f
Γ `v e R w

Γ,x `v v R w
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Although it might appear cumbersome at �rst, the notation we use for open λ-term relations has

several advantages and highly improves readability (especially when dealing with typed calculi) of the

relational techniques we will develop. As a convention, when referring to λ-term relations what we

mean is open λ-term relations.

Example 2. Both the discrete/identity relation I and the indiscrete relation 0 de�ned by the rules below

are open λ-term relations. The empty relation is an open λ-term relation too.

e ∈ ΛΓ

Γ `Λ e I e
v ∈ VΓ

Γ `v v I v
e , f ∈ ΛΓ

Γ `Λ e 0 f

v ,w ∈ VΓ

Γ `v v 0 w

Since e ∈ ΛΓ (resp. v ∈ VΓ) implies e ∈ ΛΓ,∆ (resp. v ∈ VΓ,∆), for any �nite set of variables ∆, both 0

and 1 are closed under weakening. �

We denote by Rel and Relc the collections of open and closed λ-term relations, respectively. We can

lift most of the usual (abstract) relational algebra to λ-term relations. For instance, by noticing that for

any �nite set of variables Γ both Rel(ΛΓ ,ΛΓ ) and Rel(VΓ ,VΓ ) form a complete lattice, we see that Rel
carries a complete lattice structure too, its ordering being de�ned pointiwise. In particular, we write

R ⊆ S if:

∀Γ, e , f . Γ `Λ e R f =⇒ Γ `Λ e S f

∀Γ,v ,w . Γ `v v R w =⇒ Γ `v v S w .

We will take advantage of the complete lattice structure of Rel by de�ning λ-term relations both induc-

tively and coinductively.

Additionally, given λ-term relations R and S we can de�ne the composition of S with R, denoted

by S · R, as follows:

Γ `Λ e R д Γ `Λ д S f

Γ `Λ e (S · R ) f
Γ `v v R u Γ `v u S w

Γ `v v (S · R ) w

Since both R and S are closed under weakening, then so is S · R. Moreover, we see that the unit of

composition is given by the discrete λ-term relation I.
As a consequence, we obtain the notion of a preorder λ-term relation. In fact, we say that λ-term

relation R is re�exive if I ⊆ R and transitive if R · R ⊆ R. Moreover, we can de�ne the converse λ-term

relation R◦ of R by the rules below, hence obtaining the notion of symmetric λ-term relation (i.e. a

λ-term relation such that R◦ ⊆ R) and thus the notion of an equivalence λ-term relation too.

Γ `Λ f R e

Γ `Λ e R◦ f
Γ `v w R v
Γ `v v R◦ w

Finally, we observe that there are maps −c : Rel → Relc and −o : Relc → Rel restring open λ-term

relations to closed ones, and extending closed λ-term relations to open ones. Formally, we de�ne such

maps as follows. Given R ∈ Rel, de�ne the closed restriction5 Rc = (RΛ,RV ) of R by:

`Λ e R f

e RΛ f
`v v R w
v RV w

Dually, given a closed λ-term relation R = (RΛ,RV ) we de�ne Ro as its open extension. The latter is

de�ned as follows, where Γ , ~x , x1, . . . ,xn and ~u , u1, . . . ,un :

∀~u ∈ V◦. e[~x := ~u] RΛ f [~x := ~u]

Γ `Λ e Ro f

∀~u ∈ V◦. v[~u/~x] RV u[~u/~x]

Γ `v v Ro w

5
Notice that the notation RΛ (resp. RV ) is not de�ned for open λ-term relations, so that we can safely use that to denote the

computation (resp. value) component of Rc .
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Taking advantage of these de�nitions, for a closed λ-term relation R = (RΛ,RV ) we will often write

`Λ e R f in place of e RΛ f , and Γ `Λ e R f in place of Γ `Λ e Ro f (and similarity for values). Dually, for

an open λ-term relation S we will use the notations `Λ e S f and e SΛ f interchangeably (and similarity

for values).

Next we introduce the notion of a substitutive λ-term relation, which will be fundamental for proving

probabilistic applicative similarity to be a precongruence.

De�nition 5. 1. A λ-term relation R is value-substitutive if the following hold, where u ranges over
closed values:

Γ,x `Λ e R f

Γ `Λ e[x := u] R f [x := u]

Γ,x `v v R w

Γ `v v[u/x] R w[u/x]

2. A λ-term relation R is substitutive if the following hold:

Γ,x `Λ e R f `v v R w

Γ `Λ e[x := v] R f [x := w]

Γ,x `v v R w `v u R u ′

Γ `v v[u/x] R w[u ′/x]

A closed λ-relation is (value) substitutive if its open extension is. Moreover, we notice that the open
extension of a closed λ-term relation is trivially value-substitutive.

We now have formal notions that allow us to talk about substitutive preorder (and equivalence)

λ-term relations. However, what we are actually interested in are precongruence λ-term relations. In

order to de�ne the notion of a precongruence λ-term relation, we introduce the notion of compatibility.

Roughly speaking, a λ-term relation is compatible if it is preserved by all Λp syntactic constructors. For-

mally, we follow (Gordon, 1994; S. Lassen, 1998b) and de�ne compatibility via the notion of compatible
re�nement.

De�nition 6. The compatible re�nement R̂ of an open λ-term relation R is de�ned by the rules in Fig-
ure 2.4. We say R is compatible if R̂ ⊆ R, and that a closed λ-term relation is compatible if its open
extension is.

Γ,x `v x R̂ x
(comp-var)

Γ,x `Λ e R f

Γ `v λx .e R̂ λx .f
(comp-abs) Γ `v v R v ′ Γ `v w R w ′

Γ `Λ vw R̂ v ′w ′
(comp-app)

Γ `v v R w

Γ `Λ return v R̂ returnw
(comp-ret)

Γ `Λ e R e ′ Γ.x `Λ f R f ′

Γ `Λ let x = e in f R̂ let x = e ′ in f ′
(comp-let)

Γ `Λ e R e ′ Γ `Λ f R f ′

Γ `Λ e or f R̂ e ′ or f ′
(comp-op)

Figure 2.4: Compatible re�nement of R.

Notice that R̂ is indeed a λ-term relation (notably, R̂ is closed under weakening). Moreover, De�ni-

tion 6 induces a map R 7→ R̂ on the collection of open λ-term relations which is monotone and satis�es

the identity
̂(S · R ) = Ŝ · R̂. In particular, a λ-term relation is compatible if and only if it is a pre-�xed
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point of R 7→ R̂. It is not hard to see that the discrete open λ-term relation I of Example 2 is a pre�xed

point of R 7→ R̂, and actually the least such. As a consequence, any compatible relation is re�exive.

Standard calculations show that compatibility is preserved by relation composition, and that the

arbitrary intersection of compatible λ-term relations is compatible (the empty intersection being the

indiscrete λ-term relation 0). This is not the case for set-theoretic union, as the union of compatible λ-

term relations is in general not compatible. Nonetheless, we can de�ne the join a family ρ of compatible

λ-term relations as the smallest compatible λ-term relation extending

⋃
ρ, i.e. as:⋂

{S | Ŝ ⊆ S,

⋃
ρ ⊆ S}.

This way, we can give to the collection of compatible λ-term relations a complete lattice structure (see

chapter 5 for details), and thus de�ne compatible λ-term relations both inductively and coinductively.

We now have all the necessary ingredients to de�ne probabilistic contextual approximation.

De�nition 7. We say that a λ-term relation R is preadequate if R ∈ Adeq, where:

R ∈ Adeq⇐⇒
4
∀e , f ∈ Λ◦. JeK(V◦) ≤ JeK(V◦).

De�ne probabilistic contextual equivalence �ctx as the largest preadequate compatible λ-term relation.

It is not immediately clear whether De�nition 7 indeed de�nes a λ-term relation. In fact, we notice

that preadequacy is not a monotone property, meaning that R ⊆ S in general does not implies that

if R ∈ Adeq, then S ∈ Adeq too. As a consequence, we cannot extract (at least in a natural way) a

monotone functional from De�nition 7. However, we can show that the λ-term relation⋂
{R ∈ Adeq | R̂ ⊆ R}

is itself a preadequate compatible λ-term relation, and thus identity probabilistic contextual approxima-

tion with the latter. We will not give a proof of such a fact here, as the latter is a special case of the more

result proved in Lemma 12.

The reader might also have noticed that the de�nition of the property Adeq involves only the be-

haviour of λ-term relations on computations, and does not say anything about their behaviour on val-

ues. This is rather obvious, as adequacy is an operational notion based on the evaluation semantics of

a program. Formally, this does not mean that on values �ctx
coincides with the indiscrete relation 0.

In fact, compatibility of �ctx
forces to relate only those values that behaves appropriately when used

inside computations. For instance, if `v v �ctx v ′, then by compatibility (and re�exivity) of �ctx
we have

`Λ vw �ctx v ′w too, which gives JvwK(V◦) ≤ Jv ′wK(V◦). Obviously, this cannot be the case for all pairs

of values v ,v ′.
De�nition 7 comes with an associated proof technique resembling a coinduction proof principle. In

order to prove that a program e contextually approximates a program f , it is su�cient to exhibiting a

compatible preadequate λ-term relation R relating e and f . Symbolically,

R̂ ⊆ R R ∈ Adeq
R ⊆ �ctx (�ctx

-UMP)

We can use this proof technique to prove that �ctx
is a preorder, and thus a precongruence λ-term

relation. For instance, in order to show that �ctx
is transitive, it su�cient to prove that

̂(�ctx · �ctx) ⊆
(�ctx · �ctx) and (�ctx · �ctx) ∈ Adeq. By the proof principle induced by De�nition 7 we can then infer

�ctx · �ctx ⊆ �ctx
, i.e. transitivity of �ctx

.

Although �ctx
has several interesting mathematical properties, it has a major drawback: proving

that a program f contextually approximates a program e is oftentimes simply not doable in practice.
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The reason is evident if we think to �ctx
as de�ned with explicit contexts. In order to check whether

`Λ e �ctx f holds, one has to study the behaviour of e and f inside any possible context of the language.

In particular, it is necessary to test the behaviour of e and f when passed as input to arbitrary programs,

of which we have no information about.

It is then useful to de�ne suitable proof techniques for (probabilistic) contextual approximation. For

us, a proof technique has the form of a λ-term relation R that has nicer operational properties than

(probabilistic) contextual equivalence. The technique is said to be sound if R ⊆�ctx
and fully abstract if

R =�ctx
. Besides investigating probabilistic applicative similarity as program re�nement per se, we can

think to it as a proof technique for probabilistic contextual approximation. In particular, probabilistic

applicative similarity testing values for their applicative behaviour only (i.e. in functional, as opposed

to argument, position) and coming with an associated coinduction proof principle, it de�nitely quali�es

as a powerful proof technique for �ctx
(provided, of course, that it is included in �ctx

).

Before giving a proof of precongruence of probabilistic applicative similarity, we remark that in this

section, even more than in previous ones, we have almost never used speci�c feature of Λp . The only

place where we used its semantics is in the de�nition of the notion of preadequacy. It comes with no

surprise that we can abstract from such a notion and work with more general notions of preadequacy.

2.4 Howe’s Method
In light of previous discussion, it is of paramount importance for our aims to prove (the open extension

of) probabilistic applicative bisimilarity to be compatible. A direct attempt to prove compatibility of

probabilistic applicative similarity requires to show � to be substitutive, which turns out to be problem-

atic (see (Pitts, 2011)). Howe bypassed the problem by constructing a λ-term relation �H
extending �

that is compatible by construction. The so-called Key Lemma states that �H
is indeed a simulation, and

thus coincide with �, by coinduction.

De�nition 8. Given a closed λ-term relation R, the Howe extension RH of R is inductively de�ned by
the following rules:

Γ `Λ e R̂H д Γ `Λ д Ro f

Γ `Λ e RH f
(H-1) Γ `v v R̂H u Γ `v u Ro w

Γ `v v RH w
(H-2).

Unfolding De�nition 8 we see that we can give an alternative characterisation of RH
using rules in

Figure 2.5. Additionally, probabilistic applicative similarity being re�exive and transitive, we see that

�H
satis�es nice several properties.

Lemma 4. The following hold:

1. �o ⊆ �H .

2. �o · �H ⊆ �H (we refer to this property as pseudo-transitivity).

3. �H is re�exive, compatible, and substitutive.

We do not prove Lemma 4 here, as we will prove its generalisation in Chapter 5.

By Lemma 4, we know that �H
is compatible and extends �o , so that the restriction of �H

to closed

terms extends �. As a consequence, in order to prove probabilistic applicative similarity to be compat-

ible, it is su�cient to show that the restriction of �H
to closed terms is included in �. That is:

`Λ e �H f

`Λ e � f
`v v �H w
`v v � w
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Γ,x `v x R v

Γ,x `v x RH v
(H-var)

Γ,x `Λ e RH f Γ `v λx .f R v

Γ `v λx .e R̂ v
(H-abs) Γ `v v RH v ′ Γ `v w RH w ′ Γ `Λ v ′w ′ R e

Γ `Λ vw RH e
(H-app)

Γ `v v RH w Γ `Λ returnw R e
Γ `Λ return v RH e

(H-val)

Γ `Λ e RH e ′ Γ,x `Λ f RH f ′ Γ `Λ let x = e ′ in f ′ R д

Γ `Λ let x = e in f RH д
(H-let)

Γ `Λ e RH e ′ Γ `Λ f RH f ′ Γ `Λ e ′ or f ′ R д
Γ `Λ e or f RH д

(H-op)

Figure 2.5: Howe extension of R.

By coinduction, it is thus su�cient to prove that the restriction of �H
to closed terms is a probabilistic

applicative simulation. This is the content of the so-called Key Lemma.

Lemma 5 (Key Lemma). The restriction of �H to closed terms is a probabilistic applicative simulation.

Concretely, the Key Lemma requires to prove the following implications, for all closed computations

e , f , and all closed values v ,w :

`Λ e �H f =⇒ JeK D̂ (�H
V
) Jf K

`v v �H w =⇒ ∀u ∈ V◦. `
Λ vu �H wu.

Proving the second implication is straightforward, whereas proving the �rst one, i.e. condition (app 1)

in De�nition 3, is non-trivial. First of all, we observe that attempting a proof of (app 1) by induction on

e , we get stuck in the case for sequencing, i.e. for e = (let x = e1 in e2). In fact, treating such a case

requires to deal with the open computation x `Λ e2, and reasoning on instances of the form e2[x := v]

does allow us to use the induction hypothesis.

Standard proofs of the Key Lemma for the pure λ-calculus proceeds by induction on the big-step

semantics of the language, which is something not possible for Λp due to its in�nitary operational

semantics. To solve this problem we notice that D̂ satis�es the following induction-like principle. For

any ω-chain (µn )n in DX , relation R on X , and ν ∈ DX , we have:

(∀n ≥ 0. µn D̂R ν ) =⇒ sup

n
µn D̂R ν .

As a consequence, we can attempt to prove (app 1) showing

∀n ≥ 0. JeKn D̂ (�H
V
) Jf K,

and proceeding by induction on n. The case for n = 0 trivially holds, since for any ν ∈ DX and relation

R on X we have ⊥ D̂R ν .

Let us now look at the (n + 1)-case. We proceed by case analysis according to the de�nition of

J−Kn , and relying on the de�nition of �H
given by rules in Figure 2.5, which are syntax-directed. Let us

examine the most interesting cases.

40



• Suppose e = return v . We assume `Λ return v �H f and show Jreturn vKn+1 D̂ (�H
V
) Jf K. By rules

in Figure 2.5, the former must be the conclusion of a derivation of the form:

`v v �H w `Λ returnw � f

`Λ return v �H f
(H-val).

Since � is a simulation, returnw � д implies η(w ) D̂ (�) Jf K. If it is the case that `v v �Hw implies

η(v ) D̂ (�H
V
) η(w ), the we could conclude the thesis using Lemma 4 (pseudo-transitivity). That is

indeed the case. In fact, the operation D̂ satis�es the following general law. For all sets X ,Y , and

relation R ⊆ X × Y we have:

∀x ,x ′ ∈ X . x R x ′ =⇒ η(x ) D̂R η(x ′).

• Suppose e = (let x = д in д′) and assume `Λ let x = д in д′ �H f . By very de�nition of J−Kn , we

have to show:

Jд′[x := −]K†nJдKn D̂ (�H
V
) Jf K.

By rules in Figure 2.5, `Λ let x = д in д′ �H f must be the conclusion of a derivation of the form:

`Λ д �H h x `Λ д′ �H h′ `Λ let x = h in h′ � f

`Λ let x = д in д′ �H f
(H-let).

We can apply the induction hypothesis on `Λ д �H h, obtaining JдKn D̂ (�H
V
) JhK. However, we

cannot do the same on x `Λ д′ �H h′. Nonetheless, we notice that since �H
is substitutive, we

have:

∀v ,w ∈ V◦. `
v v �H w =⇒ `Λ д′[x := v] �H h′[x := w].

At this point the induction hypothesis can be applied, obtaining Jд′[x := v]Kn D̂ (�H
V
) Jh′[x := w]K.

Stated otherwise, the functions Jд′[x := −]Kn , Jh′[x := −]K : V◦ → DΛ◦ satisfy the following

generalised monotonicity condition:

`v v �H w =⇒ Jд′[x := v]Kn D̂ (�H
V
) Jh′[x := w]K.

What we need to prove in order to conclude the thesis — again by Lemma 4 (pseudo-transitivity),

noticing that `Λ let x = h in h′ � f implies Jlet x = h in h′K D̂ (�H
V
) Jf K — is that generalised

monotonicity is preserved by the operation −†. That is, we wish the following general law to

hold. For all programs e , e ′ and computations x `Λ f , f ′:

∀v ,v ′ ∈ V◦. `
v v �H v ′ =⇒ Jf [x := v]Kn D̂ (�H

V
) Jf ′[x := v ′]K

JeKn D̂ (�H
V
) Je ′K =⇒ Jf [x := −]K†nJeKn D̂ (�H

V
) Jf ′[x := −]K†Je ′K

Notice that the above law can rewritten as:

∀v ,v ′ ∈ V◦. `
v v �H v ′ =⇒ Jf [x := v]Kn D̂ (�H

V
) Jf ′[x := v ′]K

JeKn D̂ (�H
V
) Je ′K =⇒ Jlet x = e in f Kn+1 D̂ (�H

V
) Jlet x = e ′ in f ′K

The above condition is nothing but a speci�c instance of a more general (algebraic) law describing

the general behaviour of D̂. For all sets X ,Y , subdistributions µ ∈ DX , ν ∈ DY , functions f ,д :

X → DY , and relations R,S over X and Y , respectively, we have:

∀x ,x ′ ∈ X . x R x ′ =⇒ f (x ) D̂S д(x ′)

µ D̂R ν =⇒ f † (µ ) D̂S д† (ν )

Providing that D̂ satis�es the above property, is non-trivial, and essentially requires a modi�cation

of Strassen’s Theorem to subdistribution. We will prove that in a more abstract way in Chapter 4.
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• Finally, we consider the case for e = д or д′. This case can be proved as previous ones, simply

noticing that the following general law holds, for all setsX , subdistributions µ, µ ′,ν ,ν ′ ∈ DX , and

relation R on X :

µ D̂R µ ′ ν D̂R ν ′

µ ⊕ ν D̂R µ ′ ⊕ ν ′

Summing up, the proof of the Key Lemma is rather straightforward once we know that the map D̂
satis�es some general properties, which are totally independent of Λp . The reader may have noticed

that such properties can, in principle, be de�ned on any relation lifting operation. This is indeed the

case, as we are going to discuss.

2.5 Final Discussion
Looking back at what we have done in this chapter, we see that our de�nitions and results do not really

depend neither on subdistributions (and thus on the subdistribution functor D) nor on the map D̂ in

an essential way. Rather, they follow from suitable structural properties of D and D̂. Such structural

properties can be summarised as follows:

1. In order to give operational semantics to Λp , we noticed that the set DX comes with an ω-cppo

structure, as well as with maps η : X → DX and f † : DX → DY , for any map f : X → DY . Such

maps are required to be monotone and continuous. Abstractly, this means that the subdistribution

functor D is part of a monad carrying a suitable domain structure, and that the latter properly

interacts with the monad structure of D.

2. In order to de�ne probabilistic applicative similarity, we introduced a suitable map D̂ lifting rela-

tions over setsX to relations over DX . The map is required to be monotone and to quasi-preserve

the identity relation as well as relation composition. That guaranteed probabilistic applicative

similarity to be a preorder.

3. Finally, knowing that D̂ satis�es a suitable induction-like principle, and some suitable conditions

with respect to the maps η and f † (meaning that D̂ properly interacts with the monad structure of

D), we were able to use Howe’s method to prove compatibility of �, hence concluding the latter

to be a precongruence.

There are many other functors other than D that satisfy these properties, the powerset functor being

an example of such a functor.

However, to model e�ectful calculi we also need suitable e�ect-triggering operations, which act as

sources of side e�ects. This is done in Λp using the probabilistic choice operation or. We observed

that the choice of operations does not really matter, as far as they can be interpreted as operations on

D, and behave in a suitable way. Again, this is not speci�c to the functor D (think, for instance, to a

nondeterministic choice operation interpreted as set-theoretic union on the powerset functor).

2.5.1 What’s Next?
In next chapters we will take advantage of the above observations, de�ning an abstract calculus para-

metric over collections of operation symbols and monads. We will then de�ne an abstract notion of

applicative similarity, which we call e�ectful applicative similarity, and prove it to be a precongruence

using a generalisation of Howe’s method.

The resulting theory is rich, allowing to describe a large family of e�ectful calculi, including proba-

bilistic and nondeterministic calculi, as well as calculi with input/output, global states, exceptions, and
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combinations thereof. Additionally, the mathematical framework we will develop to de�ne e�ectful ap-

plicative similarity provides a powerful formal tool to study several notions of program equivalence and

re�nement. Among them, we will de�ne and analyse generalisation of contextual approximation (resp.

equivalence), CIU approximation (resp. equivalence), and normal form similarity (resp. bisimilarity) to

e�ectful calculi.
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Chapter 3

A Computational Calculus for
Algebraic E�ects

[. . .] what I will call a symbolic
calculus; which, with certain symbols

and certain laws of combination, is

symbolic algebra: an art, not a

science; and an apparently useless

art, except as it may afterwards

furnish the grammar of a science.

Augustus de Morgan, Trigonometry

and Double Algebra

In this chapter we introduce the main calculus we will use in this dissertation, namely a call-by-value

λ-calculus (G. Plotkin, 1975) with algebraic operations in the style of Plotkin and Power (G. D. Plotkin &

Power, 2001, 2002, 2003). We call such a calculus ΛΣ. ΛΣ is a calculus with algebraic e�ects (G. D. Plotkin

& Power, 2002, 2003), meaning that e�ects are produced (and can only be produced) by suitable opera-

tions. In his seminal work on notions of computation (Moggi, 1989, 1991), Moggi gave a uni�ed account

of computational e�ects as strong monads. An example is provided by the calculus Λp of Chapter 2,

where we used the subdistribution monad to model (the result of) probabilistic computations. However,

notions of computation (and thus monads) describe the e�ects produced by computations only, and do

not prescribe the existence of computational primitives to produce such e�ects. To do so, one needs to

have operations in the language to actually make e�ects happen. This in indeed the case in Λp , where

probabilistic computations are produced by the probabilistic choice operation or, and then propagated

using sequencing. The calculus ΛΣ builds upon this observation. Therefore, ΛΣ relies on monads to

model computational e�ects, and on (algebraic) operations to produce such e�ects.

These features qualify ΛΣ as a minimal computational λ-calculus with algebraic e�ects. On a syn-

tactic level, ΛΣ is parametrised by a signature Σ of (uninterpreted) operation symbols. Examples are

operation symbols meant to model probabilistic and nondeterministic choices, input and output primi-

tives, as well as primitives to read and write from a global store, or rise exceptions. On a semantic level,

we use monads (on Set) to de�ne an abstract operational semantics for ΛΣ, which we called monadic
operational semantics. Following Plotkin and Power (G. D. Plotkin & Power, 2001, 2002), we interpret

operation symbols as algebraic operations on monads. From an operational perspective, algebraicity of

an operation means that the (operational) behaviour of the operation is independent of its arguments, or,
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equivalently, of the environment in which it is evaluated. Such a restriction allows to structure e�ectful

computations and gives a tight control on the way e�ects are produced. All the operation symbols pre-

viously mentioned can be interpreted as algebraic operations on suitable monads. An example of a non-

algebraic, yet monadic e�ect (Benton, Hughes, & Moggi, 2000) is provided by continuations
1
(Hyland et

al., 2007), whereas exception handlers
2

are an example of non-algebraic, yet natural operations.

This chapter is organised as follows: we �rst recall some necessary background notions on monads

and give examples of relevant notions of computation (i.e. monads modelling interesting computational

e�ects). We then introduce algebraic operations abstractly, giving examples of both algebraic and non-

algebraic operations. Lastly, we introduce the calculus ΛΣ and de�ne its monadic operational semantics.

Such a semantics is de�ned in the same spirit of the evaluational semantics of Λp . This means that in

order to address in�nitary behaviours, we need to require monads to carry a suitable domain structure

and operation symbols to be monotone and continuous.

3.1 Monads and Algebraic Operations
We assume the reader to be familiar with basic category theory (MacLane, 1971) and basic domain theory

(Abramsky & Jung, 1994). In particular, we assume the reader to know the notions of a category and

of a functor, as well as the notions of an ω-pointed complete partial order (ω-cppo, for short), and of a

monotone and continuous function. Throughout this dissertation, we will work with the categories Set
(of sets and functions) and Rel (of sets and relations), only

3
. As a consequence, the amount of category

theory we will use is minimal: we may say that we use the vocabulary of category theory, rather than

category theory itself.

Concerning notation, we try to use the same notation used in (MacLane, 1971) for category theory,

and in (Abramsky & Jung, 1994) for domains. In order to improve readability, we use the notation (xn )n
to denote an ω-chain x0 v · · · v xn v · · · in a domain (X ,v,⊥), hence assuming n to range over

elements of N. As a minor di�erence with standard notation, we denote the composition of a morphism

д with a morphism f (with appropriate source and target) in a category C as д · f , rather than д ◦ f . We

denote by 1X : X → X the identity morphism, omitting subscripts when unambiguous.

We begin our technical exposition recalling the notion of a monoidal category (MacLane, 1971).

De�nition 9. A monoidal category 〈C, ⊗, I ,α , λ, ρ〉 consists of a category C equipped with a bifunctor
⊗ : C ⊗ C → C, called the tensor product of C, a distinguished object I , called the unit of C, and three
natural isomorphisms:

αX ,Y ,Z : X ⊗ (Y ⊗ Z ) � (X ⊗ Y ) ⊗ Z

λX : I ⊗ X � X

ρX : X ⊗ X � X .

The natural isomorphisms are required to satisfy the following coherence conditions:

1X ⊗ αY ,Z ,W · αX ,Y ⊗Z ,W · (αX ,Y ,Z ⊗ 1W ) = αX ,Y ,Z ⊗W · αX ⊗Y ,Z ,W

(1X ⊗ λY ) · αX ,I ,Y = ρX ⊗ 1Y .

1
According to (Hyland et al., 2007) continuations involve logical, as opposed to algebraic, operations.

2
Non-algebraicity of exception handlers led to the development of more general theories of algebraic e�ects, where algebraic

operations are combined with speci�c algebraic morphisms manipulating the control �ow of programs. Such morphisms are called

handlers, and the resulting theory goes under the name of theory of e�ects and handlers (Bauer & Pretnar, 2015; G. D. Plotkin &

Pretnar, 2013; Pretnar, 2015).

3
In Chapter 10 and Chapter 11 we will study a re�nement of Rel, where relations take values over arbitrary quantales (Rosen-

thal, 1990).
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A symmetricmonoidal category is amonoidal categoryC equippedwith the additional natural isomorphism
γX ,Y : X ⊗ Y � Y ⊗ X subject to the coherence condition:

γY ,X = γX ,Y = 1X ⊗Y .

Our primary example of a symmetric monoidal category is the category Set, with tensor product

given by cartesian product and unit object given by the terminal object. We now recall the notion of

a strong monad (Kock, 1972; Moggi, 1991). For our purpose, it is more convenient to work with the

equivalent notion of a (strong) Kleisli triple.

De�nition 10. Given a monoidal category 〈C, ⊗, I ,α , λ, ρ〉, a strong Kleisli triple on C is a triple T =
〈T ,η,−∗〉 consisting of:

1. A map T over objects of C, called the carrier of T.

2. A C-object-indexed family η of morphisms ηX : X → TX , called the unit of T on X .

3. An operation −∗, called strong Kleisli extension, mapping a C-morphism f : Z ⊗ X → TY to
f ∗ : Z ⊗ TX → TY . The morphism f ∗ is called the strong Kleisli extension of f .

These data must satisfy the following identities, where f : W ⊗ X → TY and д : W ′ ⊗ Y → TZ :

f ∗ · (1V ⊗ ηX ) = f

(ηX · λX )
∗ = λTX

(д∗ · (1U ⊗ f ) · αU ,V ,X )
∗ = д∗ · (1U ⊗ f ∗) · αU ,V ,TX .

If we relax De�nition 10 replacing −∗ with an operation −†, called Kleisli extension, mapping a C-

morphism f : X → TY to f † : TX → TY subject to the identities (where f : X → TY and д : Y → TZ )

η†X = 1TX

f † · ηX = f

д† · f † = (д† · f )†,

then we obtain the notion of a Kleisli triple. With the exception of Chapter 9 to Chapter 12, throughout

this dissertation we will work with Kleisli triples ony.

We immediately notice that Kleisli triples can be de�ned on arbitrary categories (and not only on

monoidal ones), and that f † can be de�ned in terms of −∗ and the unit object. Moreover, (strong)

Kleisli triples and (strong) monads (MacLane, 1971) are in a bijective correspondence. Each Kleisli triple

〈T ,η,−†〉 yields a monad 〈T ,η, µ〉 by de�ning:

T f , (ηY · f )
†

µX , (1TX )
†
.

Vice versa, for any monad (T ,η, µ ) we de�ne

f † : TX → TY , µY ·T f .

Finally, if 〈T ,η, µ〉 has strength tX ,Y : X ⊗ TY → T (X ⊗ Y ), then we can de�ne f ∗ : V ⊗ TX → TY as

µY ·T f · tV ,X . Vice versa, we can de�ne tX ,Y as η∗X ⊗Y .

In light of these equivalences, we will abuse terminology and simply refer to (strong) monads to

denote both (strong) monads and (strong) Kleisli triples. We also recall that every monad on Set is
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strong. Finally, unless explicitly mentioned, all functors and monads will be on Set. Accordingly, when

speaking of functors and monads we tacitly assume to refer to Set endofunctors and monads on Set,
respectively.

When working with an arbitrary monad, we will use the traditional notation T = 〈T ,η,−†〉 to denote

it. Such a notation, however, is not very handy when dealing with either speci�c monads or with

multiple monads at the same time. To �x this issue, we sometimes use the following notation and

convention. Given a monad T = 〈T ,η,−†〉, we always use capital Latin letter to denote its carrier,

whereas the name of the monad is given by the same letter written in ‘blackboard style’. This might

in principle create confusion with the notation used for sets, i.e. Latin letters X ,Y ,W ,Z ,X ′,Y ′, . . ., but

the context will resolve any ambiguity (either implicitly or explicitly). The unit of T will be denoted

by t — i.e. with same letter used to denote its carrier, but written in small capital style — whereas we

use the notation −T
in place of −†. For instance, when working with two monads T, U we denote them

as T = 〈T , t,−T〉 and U = 〈U ,u,−U〉, respectively. Finally, when unambiguous we omit subscripts. For

instance, for a �xed set X and a monad T we write η(x ) (reps. t(x )) in place of ηX (x ) (resp. tX (x )).

3.1.1 Relevant Examples
Before introducing algebraic operations, we give examples of monads modelling relevant computational

e�ects.

Example 3 (Partiality monad). We model partial computations using the partiality (also called maybe)

monad M = 〈M ,m,−M〉. The carrier MX of M is de�ned as {just x | x ∈ X } ∪ {⊥}, where ⊥ is a special

symbol denoting divergent computations. The unit and Kleisli extension of M are de�ned as follows:

m(x ) , just x

f M (x) ,



f (x ) if x = just x ,

⊥ if x = ⊥.

We notice that we can combine the maybe monad with any other monad T, as an instance of the so-

called sum of e�ects (Hyland et al., 2006), an operation on Lawvere theories (Hyland & Power, 2007;

W. F. Lawvere, 2004) introduced to combine algebraic theories. Since our focus is on monads, a general

treatment of such an operation is outside the scope of this dissertation. Nevertheless, for our purposes

the following result is enough.

Proposition 3. Given a monad T = 〈T , t,−T〉, de�ne the sum TM of T and M as the triple 〈TM , tm,−TM〉

de�ned as follows:

TMX , T (MX )

tmX , tMX · mX

f TM , ( fM )T
,

where, for a function f : X → TMY we de�ne fM : MX → TMY by:

fM (x) ,



tMX (⊥) if x = ⊥
f (x ) if x = just x .

Then TM is a monad.

Proving Proposition 3 is a straightforward exercise (the reader can also consult (Hyland et al., 2006)).

�
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Example 4 (Exception monad). Let E be a set of exception symbols. The exception monad E =
〈E, e,−E〉, over E, has carrier E (X ) , X +E (for simplicity we assume E to be disjoint from X ), whereas

e and −E
are de�ned as follows:

e(x ) , x

f E (x) ,



f (x ) if x = x ,

e if x = e ∈ E.

The exception monad is used to model total computations with exceptions, an element e ∈ E denoting

the exception raised by a computation. It is easy to see that E has the same structure of M, so that we

can replace M with E in Proposition 3. In particular, we can model partial computations with exceptions

using the sum ME.

�

Example 5 (Output monad). Let A be a given alphabet and let A∗ be the set of �nite strings over A.

We denote by ε the empty string, and write uw for the concatenation of the strings u and w The output

monad O = 〈O ,o,−O〉 has carrier O (X ) , A∗ × X , whereas o and −O
are de�ned as follows:

o(x ) , (ε ,x )

f O (u,x ) , (uw ,y),

where (w ,y) = f (x ). The output monad models total computations with outputs. An element (u,x )
represents the result of a computation outputting the string u and returning the element x .

We can extend O to take into account divergent computations. To do so, we have to take into account

divergent computations outputting in�nitely many symbols (such as the recursively de�ned program

e = printc.e). Let A∞ be the set of �nite and in�nite strings over A. We extend the de�nition of

string concatenation to in�nite strings by de�ning uw to be u if u is in�nite. The partial output monad

O∞ = 〈O∞,o
∞

,−O∞〉 has carrier O∞ (X ) , A∞ ×MX , whereas o
∞

and −O∞
are de�ned as follows:

o
∞ (x ) , (ε , just x )

f O∞ (u, x) ,



(u,⊥) if x = ⊥

(uw , y) if x = just x and f (x ) = (w , y).

�

Example 6 (Powerset monad). The non-empty powerset monad F = 〈F , f,−F〉 has carrier FX , {x ⊆
X | x , ∅}, whereas f and −F

are de�ned by:

f(x ) , {x }

f F (X) ,
⋃
x ∈X

f (x ).

The non-empty powerset monad is used to model total nondeterministic computations, with the ra-

tionale that a set X ∈ FX denotes the set of possible (nondeterministic) outcomes of a computation.

In order to model partial computations one can use the full powerset monad P = 〈P, p,−P〉, where p

and −P
are de�ned as for F, or use FM, the sum F and M. In the former case we use the empty set to

model the result of a purely divergent computation, whereas in the latter case we explicitly keep track

of divergence using the symbol ⊥. We prefer the latter alternative, as it provides a �ner analysis of pure

nondeterminism
4
.

4
For instance, consider the programs e , (return v ) orΩ and f , return v , where or is a nondeterministic choice operation.

Modelling nondeterministic computations using the full powerset monad P, we see that both both e and f produce the set {v }
as outcome. However, if we instead model nondeterministic computations using the monad FM, then we see that e produces the

set {just v ,⊥} as outcome, whereas f produces {v }. Both e and f may converge, but, contrary to e , f must also converge.
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�

Example 7 (Distribution monad). The (discrete) distribution monad D = 〈D,d,−D〉 has carrier DX ,
{µ : X → [0, 1] |

∑
x ∈supp(µ ) µ (x ) = 1}, where supp(µ ) , {x ∈ X | µ (x ) > 0} is the support of the

distribution µ). The maps d and −D
are de�ned as follows:

d(x ) (y) ,



1 if x = y

0 if x , y

f D (µ ) (y) ,
∑
x ∈X

µ (x ) · f (x ) (y).

Sometimes it is useful to write a distribution µ as a weighted formal sum. That is, we write µ as the sum
5∑

i ∈I pi · xi such that µ (x ) =
∑

xi=x pi . Accordingly, we can write d(x ) as 1 · x . To improve readability
6
,

for a distribution µ ∈ DX , we will often write

∑
x ∈X µ (x ) in place of

∑
x ∈supp(µ ) µ (x ).

We have already seen that D does not take into account partiality. Probabilistic partial computations

are modelled using the monad DM, the sum of D and M. Another possibility is to work with the subdistri-

bution monad D≤1
, which is de�ned as D but requiring the weaker condition

∑
x ∈X µ (x ) ≤ 1. Although

we will work with DM, we notice that D≤1
is isomorphic to DM, the bijection φ : D≤1X → DMX being

de�ned by:

φ (µ ) (⊥) , 1 − µ (X )

φ (µ ) (just x ) , µ (x )

φ−1 (µ ) (x ) , µ (just x ).

�

Example 8 (Global state monad). L Let L be a set of public location names. For simplicity we assume

locations to store bits (later, we will allow locations to store more general values). A store (or state) is a

function σ : L → {0, 1}. We write S for the set of stores {0, 1}L . The global state monad G = 〈G, g,−G〉

has carrier GX , (X × S )S , whereas g and −G
are de�ned by:

g(x ) (σ ) , (x ,σ )

f G (α ) (σ ) , f (x ′) (σ ′),

where α (σ ) = (x ′,σ ′). An element of GX is thus a function α mapping a state σ to a pair (x ′,σ ′)
according to the following rationale: α represents an imperative computation that when executed in

the initial state σ ends in the �nal state σ ′, returning the result x . We can combine the global state

monad with the partiality monad, obtaining the monad M ⊗G whose carrier is (M ⊗G )X , M (X × S )S .

Actually, the global state monad can be combined with any monad T using the so-called tensor of e�ects

(Hyland et al., 2006). As for the sum of e�ects, the formal de�nition of the tensor operation is de�ned

in terms of Lawvere theories, and thus it is outside the scope of this dissertation. Nonetheless, for our

purposes the following result is enough.

Proposition 4. Given a monad T = 〈T , t,−T〉 the tensor T⊗G of T and G is the triple 〈T ⊗G, t⊗ g,−T⊗G〉

de�ned as follows:

(T ⊗ G )X , T (S × X )S

(t ⊗ g)X = curry tS×X

f T⊗G (α ) (σ ) = (uncurry f )T (α ) (σ ),

5
For simplicity, we write only those pi s such that pi > 0.

6
Additionally, we will mostly work with countable sets (such as the set of values), so that

∑
x∈X µ (x ) will be always de�ned.
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where for f : X → YZ and д : Z × X → Y we have uncurry f : Z × X → Y and curry д : X → YZ . Then
T ⊗ G is a monad.

Tedious calculations show that T ⊗ G is indeed a monad, but we refer to (Hyland et al., 2006) for

a proper treatment. We notice that tensoring G with DM we obtain a monad for probabilistic impera-

tive computations, whereas tensoring G with FM we obtain a monad for nondeterministic imperative

computations. �

Example 9 (Cost monad). The (total) cost (also known as ticking or improvement (Sands, 1998)) monad

C0 = 〈C0, c0,−C
0〉 has carrier C0X , N × X , whereas c0 and −C

0 are de�ned as follows:

c0 (x ) , (0,x )

f C
0 (n,x ) , (n +m,y),

where f (x ) = (m,y). The (total) cost monad is used to model the cost of (total) computations. An

element (n,x ) models the result of a computation outputting the value x with cost n (the latter being

an abstract notion that can be instantiated to e.g. the number of reduction steps performed). In order

to model the cost of partial computations, we consider the monad C = 〈C , c,−C〉 de�ned as:

CX , M (N × X )

c(x ) , just (0,x ),

f C (x) ,



⊥ if x = ⊥ or x = just (n,x ) and f (x ) = ⊥

just (n +m,y) if x = just (n,x ) and f (x ) = just (m,y).

Our design choice can be motivated thus: as the element ⊥ models divergent computations, we can

assume the latter to have all the same cost, so that such information need not be explicitly written (for

instance, measuring the number of reduction steps performed, we would have that divergent computa-

tions all have cost∞). �

3.1.2 Algebraic Operations
Monads provide an elegant way to structure e�ectful computations. However, they do not o�er any

actual e�ect constructor. Following Plotkin and Power (G. D. Plotkin & Power, 2001, 2002, 2003) we use

algebraic operations as e�ect producers. As already remarked, from an operational perspective algebraic

operations are those operations whose behaviour is independent of their continuations, or, equivalently,

of the environment in which they are evaluated. This is re�ected by important operational equivalences

and re�nements, such as the following one that the reader can easily verify to hold in Λp :

let x = (e or f ) in д �ctx (let x = e in д) or (let x = f in д).

We begin giving a formal de�nition of a �nitary algebraic operation on a monad. Let us recall that a

signature Σ consists of a collection of operation symbols op together with their arity, the latter being a

function associating to each operation symbol a natural number representing its number of arguments

(or operands). We sometimes use the notation op : n to indicate that the operation symbol op has arity

n. In the following, given a function f : X → Y we write

∏
n f : Xn → Yn

for f × · · · × f︸       ︷︷       ︸
n

.

De�nition 11. Let Σ be a signature. We say that a monad T = 〈T ,η,−†〉 is Σ-algebraic if associated with
any n-ary operation symbol op in Σ is a set-indexed family of functions JopKT

X : (TX )n → TX such that

JopKT

Y ·
∏
n

f † = f † · JopKT

X (alg op)

holds, for any n-ary operation symbol op ∈ Σ and function f : X → TY .
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Most of the times we will simply write JopK in place of JopKT
. Moreover, when unambiguous we will

omit subscripts, hence writing JopK in place of JopKX . Notice that De�nition 11 is essentially requiring

TX to carry a Σ-algebra structure such that f † is a Σ-algebra homomorphism, for any setX and function

f : X → TY . In fact, when written in pointiwise notation, (alg op) gives:

f † (JopKX (x1, . . . , xn )) = JopKY ( f † (x1), . . . , f † (xn )).

Remark 1. If the monad is strong we straightforwardly generalise De�nition 11 modifying (alg op) as

f ∗ (z, JopKX (x1, . . . , xn )) = JopKY ( f ∗ (v , x1), . . . , f
∗ (v , xn )), (strong alg op)

where now f : Z × X → TY .

Example 10 (Partiality monad). The partiality monad M usually comes with no operation, as the pos-

sibility of divergence is an implicit feature of any Turing complete language. However, it is sometimes

useful to add an explicit divergence operation (for instance, in strongly normalising calculi). For that,

we consider the signature ΣM , {↑: 0}. Having arity zero, the operation ↑ acts as a constant, and has

semantics J↑KM = ⊥. Since f † (⊥) = ⊥, M is ΣM-algebraic. We thus observe that although divergence is

often not considered an e�ect, from a mathematical perspective it certainly behaves as such. �

Example 11 (Exception monad). For the exception monad E (with set of exception symbols E), we

de�ne the signature ΣE , {raisee : 0 | e ∈ E}. Having arity zero, an operation of the form raisee acts as

a constant, and has semantics de�ned as JraiseeKE , e, for any set X . Obviously E is ΣE-algebraic. We

now generalise Proposition 3 to Σ-algebraic monad. We do so for the exception monad (as the maybe

monad might be regard as a trivial case with no operations).

Proposition 5. Let T = 〈T , t,−T〉 be ΣT-algebraic monad. Then the the monad TE is ΣTE-algebraic,
where ΣTE , ΣT ∪ ΣE.

As for Proposition 3, the proof is straightforward (again, the reader can consult (Hyland et al., 2006)

for details). In fact, we can interpret operation symbols in ΣTE as follows:

JopKTE

X , JopKT

EX

JraiseeKTE

X , tEX (JraiseeKE

X ),

where op is an n-ary operation symbol in ΣT. Easy calculations show that (alg op) holds. For instance,

we have:

JopKTE

Y ·
∏
n

f TE = JopKTE

Y ·
∏
n

( fE )
T

[By de�nitions in Proposition 3]

= ( fE )
T · JopKTE

X

[By (alg op) for T]

= ( fE )
T · JopKTE

X ,

[By de�nitions in Proposition 3]

where fE is the obvious modi�cation of fM in Proposition 3 to the exception monad.

�

Example 12 (Output monad). Both for the total (i.e. O) and the partial (i.e. O∞) output monad we de�ne

the signature ΣO , {printc : 1 | c ∈ A}. The intended semantics of a program printc (e ) is to print the

character c and then continue as e . Formally, we interpret printc as JprintcK
O (w , x) , (c ·w , x), where

(w , x) ∈ O∞ (X ) and c ·w denotes the string obtained by appending c tow . Straightforward calculations

show that both for O and O∞ are ΣO-algebraic. �
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Example 13 (Powerset monad). For the non-empty powerset monad F we de�ne the signature ΣF ,
{or : 2}. The semantics of or is de�ned as JorKF (X,Y) , X ∪ Y. Clearly F is ΣFM-algebraic. Moreover,

by Proposition 5 FM is ΣFM-algebraic. �

Example 14 (Distribution monad). For the distribution monad D we de�ne the signature ΣD , {orp :

2 | p ∈ Q∩ [0, 1]}. The intended semantics of a program e orp f is to evaluate to e with probability p, and

to f with probability 1−p. The interpretation of orp is de�ned by JorpKD (µ,ν ) (x ) , p ·µ (x )+ (1−p) ·ν (x ).
We will actually work with the single operation or 1

2

(abbreviated as or). We see that D is ΣD-algebraic,

and that by by Proposition 5 DM is ΣDM-algebraic. �

Example 15 (Cost). For the partial cost monad C we de�ne the signature ΣC , {ti� : 1}. The intended

semantics of ti� is to add a unit to the cost counter:

Jti�KC (x) ,



⊥ if x = ⊥

just (n + 1,x ) if x = just (n,x ).

Clearly C is ΣC-algebraic. �

Example 16 (Global State). For the global state monad G we de�ne a signature containing operations

for reading the content of a location, and from storing bits in a location. Formally, de�ne the signature

ΣG , {set`:=b : 1, get` : 2 | ` ∈ L,b ∈ {0, 1}} whose interpretation is de�ned as follows:

Jset`:=bKG (α ) (σ ) , α (σ [` := b])

Jget`K
G (α , β ) (σ ) ,




α (σ ) if σ (`) = 0

β (σ ) if σ (`) = 1,

where σ [` := b] denotes the function that behaves as σ on locations `′ , ` and that returns b on `. We

can extend Proposition 4 to Σ-algebraic monads.

Proposition 6. Let T = 〈T , t,−T〉 be ΣT-algebraic monad. Then the the monad T ⊗ G is ΣT⊗G-algebraic,
where ΣT⊗G , ΣT ∪ ΣG.

As for Proposition 4, proving Proposition 6 is straightforward (the reader can consult (Hyland et al.,

2006) for details). In fact, we can interpret operation symbols in ΣT⊗G as follows:

JopKT⊗G

X (α1, . . . ,αn ) (σ ) , JopKT

X×S (α1 (σ ), . . . ,αn (σ ))

Jset`:=bKT⊗G

X (α ) (σ ) , α (σ [` := b])

Jget`K
T⊗G

X (α , β ) (σ ) ,



α (σ ) if σ (`) = 1

β (σ ) if σ (`) = 0,

where op is an n-ary operation symbol in ΣT. Easy calculations show that indeed (alg op) holds. For

instance, we have:

f T⊗G (JopKT⊗G
X (α1, . . . ,αn )) (σ ) = (uncurry f )T (JopKT

X×S (α1 (σ ), . . . ,αn (σ )))

[By de�nitions in Proposition 6]

= JopKT
X×S ((uncurry f )T (α1) (σ ), . . . , (uncurry f )T (αn ) (σ ))

[By (alg op) for T]

= JopKT⊗G
X ( f T⊗G (α1), . . . , f

T⊗G (αn )) (σ ).

[By de�nitions in Proposition 6]

�
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Working with global states we see a limit of our framework, namely that operation symbols must

have a �nitary arity. If we allow locations to store arbitrary values (such as representation of natural

numbers), then it is natural to introduce an operation get` whose computational behaviour is as follows:

get` (x .e ) reads the content of the location `, which is a value v , and continues as e[x := v]. In order to

model this kind of operation we introduce generalised operations (G. D. Plotkin & Power, 2003).

De�nition 12. A generalised operation on a set X is a function ω : P × X I → X . The set P is called the
parameter set of the operation, whereas the (index) set I is called the arity of the operation.

A generalised operationω : P ×X I → X thus takes as arguments a parameter p and a map κ : I → X
giving for each index i ∈ I the argument κ (i ) to pass to ω. The notion of an algebraic signature is

modi�ed accordingly.

De�nition 13. 1. A generalised signature Σ consists of a set of operation symbols op together with
their generalised arity. The latter is given by a a parameter set P and an arity/index set I . We write
op : P  I to denote that the operation symbol op has parameter set P and arity set I .

2. Given a generalised signature Σ, we say that a monad T = 〈T ,η,−†〉 is Σ-algebraic if associated
with any generalised operation symbol op : P  I in Σ is a set-indexed family of functions JopKT

X :

P × (TX )I → TX . such that the following identity holds for any map f : X → TY , parameter p ∈ P ,
and map κ : I → TX :

f † (JopKT

X (p,κ)) = JopKT

Y (p, f † · κ). (gen alg op)

It is easy to see by taking the one-element set as parameter set and a �nite set as arity set, gener-

alised operations subsume �nitary operations. We apply the same notational convention introduced for

�nitary operations to generalised operations.

Example 17 (Global states, revised). We consider a variation of the global state monad (which, over-

loading the notation, we still denote by G) in which locations store arbitrary structures which we assume

to be encoded as values (via some standard encoding). The main example the reader may keep in mind

is given by natural numbers and Church numerals. We denote byV the collection of such values, and

assumeV to be countable. Formally, we let S be the setVL , and consider a signature consisting of gen-

eralised operations set` : V  1 and get` : 1 V . From a computational perspective such operations

are used to build programs of the form set` (v , e ) (oftentimes abbreviated as ` := v ; e) and get` (x .e ). The

former stores the value v in the location ` and continues as e , whereas the latter reads the content of

the location `, say it is v , and continue as e[x := v]. Here e is used as the description of a function κe
from values to terms de�ned by κe (v ) , e[x := v]. The interpretation of the new operations on G is

standard:

Jset`KG (v ,α ) (σ ) = α (σ [` := v])

Jget`K
G (κ) (σ ) = κ (σ (`)) (σ ).

�

For simplicity, we work with generalised operation symbols with generalised arity given by sets of

values only. As a convention, we simply refer to operation symbols and signatures to denote gener-

alised operation symbols and generalised signatures, respectively. Moreover, even if standard �nitary

operation symbols can be modelled as generalised operation symbols, it is useful to allow signatures

to distinguish between di�erent kinds of operation symbols. Given a signature Σ and T, we allow Σ to

contain operation symbols of the following kinds:
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1. Finitary operation symbols. We write op : n to denote that the operation symbol op has arity n.

Its interpretation on T is given by a set-indexed family of functions JopKX : (TX )n → TX .

2. Finitary parametric operation symbols. We write op : P  n to denote that the operation symbol

op has arity n and parameter set P . Its interpretation on T is given by a set-indexed family of

functions JopKX : P × (TX )n → TX .

3. Generalised (non-parametric) operation symbols. We write op : V to denote that the operation

symbol op has arity set V . Its interpretation on T is given by a set-indexed family of functions

JopKX : (TX )V → TX .

4. Generalised operation symbols. We write op : P  V to denote that the operation symbol op
has parameter set P and arity set V . Its interpretation on T is given by a set-indexed family of

functions JopKX : P × (TX )V → TX .

Remark 2 (Generalised operations, abstractly.). Our presentation of generalised operations is rather

concrete. Their original formulation in (G. D. Plotkin & Power, 2003) (where they are called algebraic
operations) is given in terms of enriched category theory (Kelly, 2005). Roughly speaking, an algebraic

operation is de�ned as a family of morphisms αx : (Tx )v → (Tx )w on a symmetric monoidal V-category

C parametrically natural in the Kleisli V-category CT. Here V is a complete and cocomplete symmetric

monoidal closed category
7
, T is a strong V-monad on C, and (−)v denotes cotensor with an object v of

V. It is easy to see that taking V = Set we recover our, concrete, notion of generalised operation, the set

v being the arity set and w being the parameter set. Requiring αx to be parametrically natural in CT is

essentially requiring (strong) Kleisli extensions of functions to behave as algebra homomorphisms, and

in the more abstract setting of (G. D. Plotkin & Power, 2003) ensures algebraic operations to commute

with evaluation contexts. The main advantage of the enriched approach is that it allows a uniform

treatment of complex arities as objects of V. Interesting examples are for V instantiated as Set, ω-Cpo
(the category ofω-cppos), the category of posets, and functor categories (working with categories of the

form [W , Set], whereW is a suitable category of worlds, it is possible to model local states as algebraic

e�ects ).

Following the line of our working example Λp , we see that Σ-algebraic monads do not have enough

structure to give operational semantics to e�ectful calculi. In fact, in Chapter 2 we relied on the ω-

cppo structure of D to model the in�nitary operational behaviour of Λp programs. As a consequence,

in order to give a general monadic operational semantics to e�ectful calculi, we need to impose some

domain theoretic properties on monads, whereby we account for in�nitary computational behaviours.

This can be elegantly done using the abstract notion of (ω-cppo)-enrichment (Kelly, 2005). However,

such a level of abstraction is not necessary for our purposes, and thus we prefer the following more

concrete de�nition.

De�nition 14. Given a Σ-algebraic monad T = 〈T ,η,−†〉 we say that T is Σ-continuous
8 if to any set X

is associated an order vX and an element ⊥X ∈ TX such that 〈TX ,vX ,⊥X 〉 is anω-cppo and the following
conditions hold, for any operation symbol op : P  V in Σ.

Monotonicity. For all functions f ,д : X → TY , κ,ν : V → TX , and elements x, y ∈ TX , we have:

κ v ν =⇒ op(p,κ) v op(p,ν )

f v д =⇒ f † v д†

x v y =⇒ f † (x) v f † (y).

7
A concept we will meet again when studying abstract generalised distances.

8
Cf. (Goguen, Thatcher, Wagner, & Wright, 1977).
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Continuity. For all ω-chains (κn )n , ( fn )n , and (xn )n in (TX )V , (TY )X , and TX , respectively, we have:

JopKX (p,

⊔
n

κn ) =
⊔
n

JopKX (p,κn )

(
⊔
n

fn )
† =

⊔
n

f †n

f † (
⊔
n

xn ) =
⊔
n

f † (xn ).

Strictness. For any f : X → TY we have:

f † (⊥) = ⊥.

When clear from the context, we will write ⊥ and v in place of ⊥X and vX , respectively.

Example 18. The monads M, ME, FM, DM, O∞, GM, and C are Σ-continuous. The order on MX , MEX ,

and C is the �at ordering v de�ned by:

x v y⇐⇒
4
x = ⊥ or x = y.

Indeed ⊥ behaves as the bottom element. The order on FM is de�ned by:

x v y⇐⇒
4
∀x ∈ X . just x ∈ x =⇒ just x ∈ y.

Notice that we have {⊥} v y for any set y. Similarly, the order on DMX is de�ned by:

µ v ν ⇐⇒
4
∀x ∈ X . µ (just x ) ≤ ν (just x ).

Notice that we have η(⊥) v µ, for any µ ∈ DMX . The order onGMX is de�ned pointiwise from the �at

ordering on M (X × S ), whereas we order O∞X as follows:

〈u, x〉 v 〈w , y〉 ⇐⇒
4

(x = ⊥ ∧ u ⊆ w ) ∨ (x = just x ∧ y = just x ∧ u = w ),

where ⊆ denotes the pre�x order on A∞. Checking the strictness, monotonicity, and continuity prop-

erties of De�nition 14 is a routine exercise. �

With De�nition 14 we have introduced all the abstract counterparts of the structural properties of

the subdistribution monad we used in Chapter 2 to give operational semantics to Λp . Therefore, it is

time to introduce our vehicle calculus ΛΣ and its monadic operational semantics.

3.2 A Computational Calculus with (Algebraic) Operations
In this section we de�ne the syntax and semantics of ΛΣ, our computational calculus with algebraic

operations. ΛΣ is an untyped call-by-value λ-calculus extending Levy’s �ne-grain call-by-value (P. Levy

et al., 2003) with algebraic operations. The syntax of ΛΣ is parametrised by a (generalised) signature of

operation symbols Σ, and it is given in Figure 3.1, where x ranges over a �xed (countably in�nite) set of

variables, op : P  I (I is countable) ranges over elements of Σ, and p ranges over elements of P .

The rationale behind ΛΣ is the same one behind Λp . We have two disjoint syntactical classes, namely

the class of computations (denoted by e , f , . . .) and the class of values (denoted by v ,w , . . .). We generi-

cally refer to syntactical expressions of ΛΣ (i.e. computations or values) as terms. As for Λp , it is useful

to introduce the ‘hygienic’ convention of keeping track of free variables of computations and values.
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e , f ::= return v (return) v ,w ::= x (variable)

| vw (application) | λx .e (abstraction).

| let x = e in f (sequencing)

| op(p,x .e ) (operation).

Figure 3.1: Syntax of ΛΣ.

Γ,x `v x

Γ,x `Λ e

Γ `v λx .e
Γ `v v Γ `v w

Γ `Λ vw
Γ `v v

Γ `Λ return v
Γ `Λ e Γ,x `Λ f

Γ `Λ let x = e in f

Γ,x `Λ e p ∈ P

Γ `Λ op(p,x .e )

Figure 3.2: Sequents for ΛΣ.

We do that by means of sequents of the form Γ `Λ e and Γ `v v . The letter Γ ranges over �nite sets of

variables, and the intended meaning of a sequent Γ `Λ e is that e is a computation with free variables

among Γ (the sequent Γ `v v has a similar reading). Rules for sequents are given in Figure 3.2, where

we write Γ,x in place of Γ ∪ {x }.
Clearly, provable sequents are closed under weakening, meaning that e.g. if Γ `Λ e is provable, then

so is Γ,x `Λ e . From now on when speaking about sequents we will tacitly mean provable sequents.

Closed terms thus correspond to sequents with empty premises (which we simply denote as e.g. `Λ e).

We also introduce the following notation:

Λ , {e | ∃Γ. Γ `Λ e} ΛΓ , {e | Γ `
Λ e} Λ◦ , {e | `

Λ e}

V , {v | ∃Γ. Γ `v v} VΓ , {v | Γ `
v v} V◦ , {v | `

v v}.

The intuition behind constructors of ΛΣ is the same one given for Λp . Concerning formal details,

we adopt standard syntactical conventions as in (Barendregt, 1984) (notably the so-called variable con-

vention). The notion of a free (resp. bound) variable is de�ned as usual (notice that the variable x is

bound in op(p,x .e )). In particular, the collection FV (e ) (resp. FV (v )) of free variables of a computation

e (resp. value v) is the smallest set Γ such that Γ `Λ e (resp. Γ `v v) is provable. As it is customary, we

identify terms up to renaming of bound variables and say that a term is closed if it has no free variables

(i.e. if `Λ e is provable, and similarity for values).

Oftentimes we refer to closed computations as programs. Moreover, for �nite lists of syntactic ex-

pressions (such as variables, computations, or values) we employ the ‘bar notation’, thus writing ~φ for

a �nite list φ1, . . . ,φn of φs. For instance, we write ~x and ~v for a �nite list of variables and values,

respectively.

Finally, we write e[x := v] (resp. w[v/x]) for the capture-free substitution of the value v for all free

occurrences of x in e (resp. w). Formally, we de�ne e[x := v] and w[v/x] by mutual recursion on e and

56



w as follows:

x[v/x] , v

y[v/x] , x

(λy.e )[v/x] , λy.e[x := v]

(returnw )[x := v] , returnw[v/x]

(wu)[x := v] , w[v/x]u[v/x]

(let y = e in f )[x := v] , let y = e[x := v] in f [x := v]

op(p,y.e )[x := v] , op(p,y.e[x := v]).

Obviously, the very de�nition of substitution gives the following inference rules (recall that we assume

the variable convention):

Γ,x `Λ e ∆ `v v

Γ,∆ `Λ e[x := v]

Γ,x `v w ∆ `v v

Γ,∆ `v w[v/x]

The �ne-grain style has several advantages when studying meta-theoretical properties of calculi:

there is a neat distinction between computations and values (which gives, for instance, a smooth de�ni-

tion of the notion of an applicative (bi)simulation relation), and proofs are more streamlined. However,

calculi in �ne-grain style has the drawback of being cumbersome for writing examples. For instance,

the identity combinator λx .x in �ne-grain style is written as return (λx .(return x )). For this reason, our

examples will be mostly given using the following coarse-grain λ-calculus syntax:

e , f ::= x | λx .e | f e | op(p,x .e ).

It is not hard to convince ourselves that the two presentations are equivalent, as summarised by Table 3.1.

λ-calculus syntax �ne-grain syntax

x return x
λx .e return λx .e
f e let x = f in (e to y.xy)

op(p,x .e ) op(p,x .e )

Table 3.1: Correspondence between �ne-grain and coarse-grain calculi

We now de�ne a call-by-value monadic operational semantics for ΛΣ. In the following, we assume a

Σ-continuous monad T to be �xed.

Remark 3. Since we give semantics to programs, i.e. closed computations, it makes sense to consider

generalised operation symbols whose arity set I is encoded by some subset of V◦. For simplicity, we

ignore the speci�c subset of (closed) values used to encode elements of I , and simply write op : P  V◦
for operation symbols in Σ. As already remarked, the standard example the reader may keep in mind is

given by I = N and the encoding of natural numbers as Church numerals.

Operational semantics is de�ned by means of an evaluation function J−K : Λ◦ → TV◦ mapping a

program to a monadic value, i.e. an element of TV◦.
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De�nition 15. The N-indexed family of functions J−Kn : Λ◦ → TV◦ is inductively de�ned as follows:

JeK0 , ⊥

Jreturn vKn+1 , η(v )

J(λx .e )vKn+1 , Je[x := v]Kn
Jlet x = e in f Kn+1 , Jf [x := −]K†nJeKn

Jop(p,x .e )Kn+1 , JopK(p,v 7→ Je[x := v]Kn ).

Notice that the index n in J−Kn does not actually refer to the number of β-reductions performed.

Moreover, since T is Σ-continuous, (JeKn )n forms an ω-chain in TV◦, and thus has least upper bound⊔
nJeKn .

De�nition 16. The evaluation function J−K : Λ◦ → TV◦ is de�ned as JeK ,
⊔

n<JeKn .

Finally, we notice that Σ-continuity gives the following universal property of the evaluation function.

Lemma 6. The evaluation function J−K is the least function φ : Λ◦ → TV◦ satisfying the following
identities:

φ (return v ) = η(v )
φ ((λx .e )v ) = φ (e[x := v])

φ (let x = e in f ) = (v 7→ φ ( f [x := v]))†φ (e )

φ (op(p,x .e )) = JopK(p,v 7→ φ (e[x := v])).

Before giving examples of concrete instances of ΛΣ we brie�y expand on the operational meaning

of algebraic operations. At the very begging of this chapter, we informally de�ned algebraic operations

as operations whose semantics commutes with evaluation contexts. We can now make such de�nition

a formal result. First of all, we give ΛΣ an operational semantics based on Felleisen’s notion of an

evaluation context (Felleisen & Hieb, 1992). We will extensively use these kinds of semantics in Chapter 6

and Chapter 7. ΛΣ evaluation contexts are de�ned by the following grammar, where e is a computation

with FV (e ) ⊆ {x }:

E ::= [−] | let x = E in e .

The hole [−] in an evaluation context acts as a placeholder for a computation, and we write E[e] for the

computation obtained by replacing the hole [−] in E with the computation e . We immediately notice

that any computation admits the following unique decomposition (see also Lemma 25).

Lemma 7. Any program e can be uniquely decomposed in one of the following (mutually exclusive) forms:

1. return v ;

2. E[let x = (return v ) in e];

3. E[vw];

4. E[op(p,x .e )].

Using Lemma 7 we can give ΛΣ an alternative operational semantics, and prove its equivalence with

the one de�ned in De�nition 15.
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De�nition 17. De�ne the N-indexed family of evaluation function L−Mn : Λ◦ → TΛ◦ as follows:

LeM0 = ⊥

Lreturn vMn+1 = η(v )

LE[let x = (return v ) in e]Mn+1 = LE[e[x := v]]Mn
LE[(λx .e )v]Mn+1 = LE[e[x := v]]Mn

LE[op(p,x .e )]Mn+1 = JopK(p,v 7→ LE[e[x := v]]Mn ).

As for De�nition 15, (LeMn )n forms an ω-chain in TV◦, so that we can de�ne LeM as

⊔
nLeMn . Since

for any op ∈ Σ, JopK is continuous, we see that L−M enjoys the following universal property.

Lemma 8. The evaluation function L−M is the least function φ : Λ◦ → TV◦ satisfying the following
identities:

φ (return v ) = η(v )
φ (E[let x = (return v ) in e]) = φ (E[e[x := v]])

φ (E[(λx .e )v]) = φ (E[e[x := v]])

φ (E[op(p,x .e )]) = JopK(p,v 7→ φ (E[e[x := v]])).

Finally, we can rely on Lemma 6 and Lemma 8 to prove that the two operational semantics given to

ΛΣ are equivalent.

Lemma 9. For any closed computation e , LeM v JeK.

Proof. We �rst prove that J−K satis�es the identities in Lemma 8, for which we will infer LeM v JeK.

1. The �rst identity obviously holds.

2. For the second identity, we proceed by induction on E. Suppose E = [−]. We reason as follows:

Jlet x = (return v ) in eK = Je[x := −]K† (η(v ))
[By Lemma 6]

= Je[x := v]K.

[Since ∀f : X → TY . f † · ηX = f ]

Suppose E to be of the form let y = E ′[−] in f , for some evaluation context E ′. By induction

hypothesis we have JE ′[let x = (return v ) in e]K = JE ′[e[x := v]]K, so that we can calculate:

Jlet y = E ′[let x = (return v ) in e] in f K = Jf [y := −]K† (JE ′[let x = (return v ) in e]K)
[By Lemma 6]

= Jf [y := −]K† (JE ′[e[x := v]]K)
[By induction hypothesis]

= Jlet y = E ′[e[x := v]] in f K.
[By Lemma 6]

3. For the third identity we proceed exactly as for the second one.
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4. We prove the fourth identity by induction on E. The base case is trivial. Suppose now E to be of

the form let y = E ′ in f , and write φ for the function Jf [y := −]K. We have:

Jlet y = (E ′[op(p,x .e )]) in f K = φ† (JE ′[op(p,x .e )]K)
[By Lemma 6]

= φ† (JopK(p,v 7→ J(E ′[e])[y := v]K))
[By induction hypothesis]

= JopK(p,v 7→ φ† (J(E ′[e])[x := v]K))
[By (gen alg op)]

= JopK(p,v 7→ Jlet y = (E ′[e])[x := v] in f K).
[By Lemma 6]

Finally, since x is bound in e we can assume x to fresh in E ′, so to have:

JE[op(p,x .e )]K = JopK(p,v 7→ Jlet y = (E ′[e])[x := v] in f K)
= JopK(p,v 7→ Jlet y = E ′[e[x := v]] in f K)
= JopK(p,v 7→ JE[e[x := v]]K)
= Jop(p,x .E[e])K.

We now have to prove that for any closed computation e , JeK v LeM. That is a direct consequence of

the following result.

Lemma 10. For any closed computation e and evaluation context E we have:

LE[e]M = (v 7→ LE[return v]M)†LeM.

Proof. Let us write φ for the function v 7→ LE[return v]M. By induction on n with a case analysis on the

shape of E[e] according to Lemma 7, we show that for any n ≥ 0 we have

LE[e]Mn v (v 7→ LE[return v]M)†LeM,

from which follows LE[e]M v (v 7→ LE[return v]M)†LeM. The case for n = 0 is trivial. We proceed with

the inductive step.

• If E[e] = return v , then we have

Lreturn vMn+1 = η(v ) = Jreturn vK†.

Suppose now E[e] to be of the form F [let x = (return v ) in f ]. Then we must have E = E[E ′[−]]

and e = E ′[let x = (return v ) in f ], for some evaluation context E ′. We have:

LE[e]Mn+1 = LE[E ′[let x = (return v ) in f ]]Mn+1

= LE[E ′[f [x := v]]]Mn
[By De�nition 17]

v φ†LE ′[f [x := v]]M
[By induction hypothesis]

= φ†LE ′[let x = (return v ) in f ]M
[By Lemma 8]

= φ†LeM.
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• If E[e] = F [(λx .f )v], then we must have F = E[E ′[−]] and e = E ′[(λx .f )v], for some evaluation

context E ′. We proceed exactly as in previous case.

• If E[e] = F [op(p,x .f )], then we have F = E[E ′[−]] and e = E ′[op(p,x .f )], for some evaluation

context E ′. Let us write κ for the map v 7→ Lf [x := v]M. Relying on the induction hypothesis, we

have:

LE[e]Mn+1 = LE[E ′[op(p,x .f )]]Mn+1

= JopK(p,v 7→ LE[E ′[f [x := v]]]Mn )
[By De�nition 17]

v JopK(p,v 7→ (φ†LE ′[f [x := v]]M))
[By induction hypothesis and De�nition 14]

= JopK(p,φ† · κ)

= φ† (JopK(p,κ))

[By (gen alg op)]

= φ†LeM.

In a similar fashion it is possible to show that for any n ≥ 0 we have (v 7→ LE[returnv]M)†LeMn v LE[e]M,
from which we infer (v 7→ LE[return v]M)†LeM v LE[e]M, and thus the wished thesis.

Corollary 1. For any closed computation e we have JeK = LeM.

In particular, from Corollary 1 we infer the equality JE[op(p,x .e )]K = Jop(p,x .E[e])K which states

that the operational semantics of op commutes with evaluation contexts. This is nothing but the oper-

ational behaviour we had in mind for algebraic operations.

We now give examples of concrete instances ofΛΣ and show how our monadic operational semantics

can be instantiated to standard, concrete semantics. In doing so, we also discuss an example of a non-

algebraic – yet natural – operation, namely exception handling. We omit the example of the probabilistic

instance of ΛΣ, as the latter obviously coincides
9

with Λp .

3.2.1 Relevant Examples
Example 19 (Pure λ-calculus). If we consider the empty signature and the partiality monad M we

recover Levy’s �ne-grain call-by-value (P. Levy et al., 2003). We refer to such a calculus as ΛM (we

prefer the latter notation to ΛΣM ). Concretely, the syntax of ΛM is de�ned by the following grammars:

v ,w ::= x | λx .e

e , f ::= return v | vw | let x = e in f .

We give ΛM a standard big-step operational semantics by means of binary convergence relation ⇓ be-

tween programs and closed values inductively de�ned as follows:

return v ⇓v
e[x := v] ⇓w

(λx .e )v ⇓w

e ⇓v f [x := v] ⇓w

let x = e in f ⇓w

9
Notice, however, that Λp models probabilistic computations using the subdistribution monad and thus di�ers from the

instance of ΛΣ based on the partial full distribution monad DM (and the signature ΣDM), which we denote as ΛDM. Nevertheless,

since these two monads are equivalent, we can safely regard Λp and ΛDM as equivalent too.
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Moreover, we can de�ne a coinductive diverge predicate ⇑ on programs as follows
10

:

e[x := v] ⇑

(λx .e )v ⇑

e ⇑

let x = e in f ⇑

e ⇓v f [x := v] ⇑

let x = e in f ⇑
.

It is easy to show that JeK = just v if and only if e ⇓v , and conversely that JeK = ⊥ if and only if e ⇑.
�

Example 20 (Nondeterministic λ-calculus). Instantiating ΛΣ with the the monad FM and its associated

signature ΣFM we obtain the nondeterministic call-by-value λ-calculus ΛFM. Concretely, ΛFM is de�ned

by the follows syntax:

v ,w ::= x | λx .e

e , f ::= return v | vw | let x = e in f | e or f .

We inductively de�ne the may convergence relation ⇓ between programs and closed values as follows:

return v ⇓v
e[x := v] ⇓w

(λx .e )v ⇓w

e ⇓v f [x := v] ⇓w

let x = e in f ⇓w

e ⇓v

e or f ⇓v
f ⇓w

e or f ⇓w

Dually, we coinductively de�ne a may divergence predicate ⇑ as follows:

e[x := v] ⇑

(λx .e )v ⇑

e ⇑

let x = e in f ⇑

e ⇓v f [x := v] ⇑

let x = e in f ⇑

e ⇑

e or f ⇑
f ⇑

e or f ⇑

It is straightforward to prove that e ⇓v if and only if just v ∈ JeK, and dually e ⇑ if and only if ⊥ ∈ JeK.
Moreover, we can recover a must converge semantics by noticing that e must converge if and only if

⊥ < JeK. It follows that JeK = ⊥ if and only if e must diverge. �

Example 21 (λ-calculus with exceptions). We now instantiate ΛΣ with the monad ME and its associated

signature ΣME plus a new operation for handling exceptions. The concrete syntax of the calculus is thus

de�ned:

v ,w ::= x | λx .e

e , f ::= return v | vw | let x = e in f | raisee | handlee (e , f ).

Instead on giving semantics using the monad ME (that is not the purpose of this example) we inductively

de�ne a converge relation ⇓ between programs and closed value and an inductive predicate  e with the

intended meaning that the exception e has been raised (for simplicity we assume only one exception e
to be available). These relations are de�ned as follows:

return v ⇓v
e[x := v] ⇓w

(λx .e )v ⇓w

e ⇓v f [x := v] ⇓w

let x = e in f ⇓w

e ⇓v

handlee (e , f ) ⇓v

e e f ⇓v

handlee (e , f ) ⇓v

raisee e
e[x := v] e
(λx .e )v e

e e
let x = e in f  e

e ⇓v f [x := v] e
let x = e in f  e

e e f  e
handlee (e , f ) e

The evaluation of a computation of the form handlee (e , f ) depends on the evaluation of e . That is,

exception handling cannot be considered as an algebraic operation, as it directly depends on one of its

arguments. To see that, it is su�cient to observe that no reasonable notion of equivalence will equate

10
Throughout this dissertation we use double-lines inference rules for coinductive de�nitions.
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the two terms e and f de�ned as follows (where 0 and 1 denote the the booelan values false and true,

respectively):

E , let x = [−] in (if x then raisee else x )

e , E[handlee (return 1, return 0)]

f , handlee (E[return 1],E[return 0]).

In fact, we have e e, whereas f ⇓ 0.

�

Example 22 (Imperative λ-calculus). InstantiatingΛΣ with the monad M⊗G and its associated signatureΣT⊗G

we obtain the calculus ΛM⊗G. The concrete syntax of the calculus (recall Remark 3) is as follows, where

we use the lighter notation ` := v ; e in place of set` (v , e ):

v ,w ::= x | λx .e

e , f ::= return v | vw | let x = e in f | ` := v ; e | get` (x .e ).

We de�ne a convergence relation ⇓ by means of judgments of the form 〈e ,σ 〉 ⇓ 〈v ,σ ′〉 (where e is a

program and v is a closed value) inductively as follows:

〈return v ,σ 〉 ⇓ 〈v ,σ 〉

〈e[x := v],σ 〉 ⇓ 〈w ,σ ′〉

〈(λx .e )v ,σ 〉 ⇓ 〈w ,σ ′〉

〈e ,σ 〉 ⇓ 〈w ,σ ′′〉 〈f [x := w],σ ′′〉 ⇓ 〈v ,σ ′〉

〈let x = e in f ,σ 〉 ⇓ 〈v ,σ ′〉

〈e[x := w],σ 〉 ⇓ 〈v ,σ ′〉 σ (`) = w

〈get` (x .e ),σ 〉 ⇓ 〈v ,σ ′〉

〈e ,σ [` := w]〉 ⇓ 〈v ,σ ′〉

〈` := w ; e ,σ 〉 ⇓ 〈v ,σ ′〉

Dually, we de�ne a divergence predicate ⇑ coinductively as follows:

〈e[x := v],σ 〉 ⇑

〈(λx .e )v ,σ 〉 ⇑

〈e ,σ 〉 ⇑

〈let x = e in f ,σ 〉 ⇑

〈e ,σ 〉 ⇓ 〈w ,σ ′〉 〈f [x := w],σ ′〉 ⇑

〈let x = e in f ,σ 〉 ⇑

〈e[x := v],σ 〉 ⇑ σ (`) = v

〈get` (x .e ),σ 〉〉 ⇑

〈e ,σ [` := v]〉 ⇑

〈` := v ; e ,σ 〉 ⇑
.

As usual we can show that 〈e ,σ 〉 ⇓ 〈v ,σ ′〉 if and only if JeK(σ ) = just (σ ′,v ), and, dually, 〈e ,σ 〉 ⇑ if and

only if JeK(σ ) = ⊥. Moreover, we see that the semantics given to operation symbols behaves as desired.

For instance, assuming σ (`) = v0, we have:

Jget` (x .e )K(σ ) = Jget`K(v 7→ Je[x := v]K) (σ ) = Je[x := v0]K(σ ).

�

Example 23 (λ-calculus with output). Instantiating ΛΣ with the partial output monad and the associ-

ated signature ΣO∞ , we obtain the calculus ΛO∞ . The concrete syntax of ΛO∞ is de�ned by the following

grammar:

v ,w ::= x | λx .e

e , f ::= return v | vw | let x = e in f | printc.e .

We inductively de�ne a convergence relation ⇓ between programs and pairs of �nite strings over A

(here denoted by letters a,b, . . . to avoid confusion) and values as follows:

return v ⇓ 〈ε ,v〉
e[x := v] ⇓ 〈a,w〉

(λx .e )v ⇓ 〈a,w〉

e ⇓ 〈a,v〉 f [x := v] ⇓ 〈b,w〉

let x = e in f ⇓ 〈ab,w〉

e ⇓ 〈a,v〉

printc.e ⇓ 〈c · a,v〉
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Dually, we coinductively de�ne a divergence relation ⇑ between programs and possibly in�nite strings

over A (again denoted by letter a,b, . . .) as follows:

e[x := v] ⇑ a

(λx .e )v ⇑ a

e ⇑ a

let x = e in f ⇑ a

e ⇓ (a,v ) f [x := v] ⇑ b

let x = e in f ⇑ ab

e ⇑ a

printc.e ⇑ c · a
.

As usual, we can show e ⇓ 〈a,v〉 if and only if JeK = (a, just v ), and e ⇑ a if and only if JeK = (a,⊥). �

Example 24 (λ-calculus with cost). Instantiating ΛΣ with the cost monad C and its associated signature

ΣC, we obtain the calculus ΛC. The concrete syntax of the calculus is as follows:

v ,w ::= x | λx .e

e , f ::= return v | vw | let x = e in f | ti�(e ).

The calculus by itself is not very interesting. However, we can consider its fragment de�ned by the

following grammar:

v ,w ::= x | λx .ti�(e )

e , f ::= v | vw | let x = e in f .

By putting a ticking operation after all λ-abstractions we can count the number of reduction steps

performed during the evaluation of a program. In fact, de�ning the encoding e of a computation of ΛM

as follows

x , x

λx .e , λx .ti�(e )

return v , return v

vw , vw

let x = e in f , let x = e in f ,

we see that JeK = (n, just v ) if and only if e ⇓ v performing n (β-)reduction steps, i.e. steps of the form

(λx .e )v 7→ e[x := v]. �

So far we have only given examples of calculi with just one type of e�ect (provided we do not

consider partiality as an e�ect). We can also instantiate ΛΣ to obtain richer e�ectful calculi, as witnessed

by the following example.

Example 25 (Imperative probabilistic λ-calculus). We instantiate ΛΣ with the monad DM ⊗ G and its

associated signature ΣDM⊗G. The concrete syntax of the calculus is given by:

v ,w ::= x | λx .e

e , f ::= v | vw | let x = e in f | e or f | ` := v ; e | get` (x .e ).

A computation e evaluates to a function JeK mapping an initial state σ to (something equivalent to) a

subdistribution over pairs consisting of a value and a �nal state. The rationale is that JeK(σ ) (v ,σ ′) gives

the probability that the computation e when evaluated in the initial state σ converges to a value v with

�nal state σ ′. �

Example 26 (Imperative λ-calculus with cost). We instantiate ΛΣ with the monad C ⊗ G and its asso-

ciated signature ΣC⊗G. We call the resulting calculus ΛC⊗G. As for ΛC, it is more interesting to work
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with a subset of the calculus rather than with full ΛC⊗G. In particular, we can consider the fragment

de�ned by following grammar, where ` is �xed location and k ranges over locations di�erent from `:

v ,w ::= x | λx .e

e , f ::= return v | vw | let x = e in f | k := v ; e | ti�(` := v ; e ) | get` (x .e ).

The ticking operation is used to count the number of times we store a value in the location ` (obviously

slightly modi�cations of the above grammar allow to work with di�erent subsets of L) during the

evaluation of a program. To see that, let us modify the big-step semantics of ΛM⊗G using judgments of

the form 〈e ,σ 〉⇓ 〈v ,σ ′,n〉, where n is a natural number giving the number of times the location ` is used

to store a value:

〈return v ,σ 〉 ⇓ 〈v ,σ , 0〉

〈e[x := v],σ 〉 ⇓ 〈w ,σ ′,n〉

〈(λx .e )v ,σ 〉 ⇓ 〈w ,σ ′,n〉

〈e ,σ 〉 ⇓ 〈w ,σ ′′,n〉 〈f [x := w],σ ′′〉 ⇓ 〈v ,σ ′,m〉

〈let x = e in f ,σ 〉 ⇓ 〈v ,σ ′,n +m〉

〈e[x := w],σ 〉 ⇓ 〈v ,σ ′,n〉 σ (`) = w

〈get` (x .e ),σ 〉 ⇓ 〈v ,σ ′,n〉

〈e ,σ [` := w]〉 ⇓ 〈v ,σ ′,n〉

〈` := w ; e ,σ 〉 ⇓ 〈v ,σ ′,n + 1〉

〈e ,σ [k := w]〉 ⇓ 〈v ,σ ′,n〉

〈k := w ; e ,σ 〉 ⇓ 〈v ,σ ′,n〉

Let us the consider the translation from terms in ΛM⊗G to the above fragment of ΛC⊗G induced by the

rules:

` := v ; e , ti�(` := v ; e ) k := v ; e , k := v ; e .

Then we see that JeK(σ ) = just (σ ′,n,v ) if and only if 〈e ,σ 〉 ⇓ 〈v ,σ ′,n〉. �

Having de�ned both the syntax and semantics of ΛΣ, it is time to study notions of program equiv-

alence and re�nement for it. As for Λp , we aim to develop a notion of applicative (bi)similarity for ΛΣ,

which we call e�ectful applicative (bi)similarity. As we will see, such a notion can be instantiated to

the calculi of previous examples and allows to recover standard notions of applicative (bi)similarity for

them. However, in order to develop the theory of e�ectful applicative (bi)similarity we need a further

mathematical tool, namely the notion of a relator (Thijs, 1996) or lax extension (Barr, 1970; Hofmann et

al., 2014). Roughly speaking, the latter is an abstraction of the map D̂ we used to de�ne probabilistic

applicative similarity for Λp axiomatising its relevant structural properties.
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Chapter 4

Relators and Relation Lifting

The third branch of science may be

called semiotics, or the doctrine of

signs. Because these are mostly

words, this part of science is aptly

enough termed also logic. The

business of this is to study the nature

of the signs that the mind makes use

of for understanding things and for

conveying its knowledge to others.

None of the things the mind

contemplates is present to the

understanding (except itself); so it

must have present to it something

that functions as a sign or

representation of the thing it is

thinking about; and this is an idea.

John Locke, An Essay Concerning

Human Understanding

In this chapter we introduce what we might say to be the central tool we use in this dissertation,

namely the notion of a relator (Thijs, 1996) or lax extension (Barr, 1970). Broadly speaking, a relator Γ for

a functor T (on Set) describes a possible way to lift a relation R between two sets X and Y to a relation

ΓR between TX and TY . Clearly, there are many ways to perform such a lifting. Relators provide an

axiomatisation of those lifting operations that preserve some natural structural properties.

The notion of a lax extension of a monad has been introduced by Barr (Barr, 1970) in the context

of (categorical) topology. Building on previous works by Manes (E. Manes, 1969), Barr characterised

topological spaces as lax algebras for the ultra�lter monad in Rel, the category of sets and relations. That

is, any topological space can be described as set X together with a (convergence) relation α ⊆ UX × X
(where U denotes the carrier of the ultra�lter monad) satisfying suitable inequalities. The shift from

functions to relations, and from equalities to inequalities, required Barr to solve several di�culties, the

biggest one being to ‘extend’ the ultra�lter monad from Set to Rel in a suitable way.

Barr de�ned an abstract construction that allows to ‘extend’ not only the ultra�lter monad from Set
to Rel, but also any other monad (resp. functor) satisfying some minimal conditions (notably, preserva-

tion of weak pullbacks). Such a construction is nowadays known as Barr extension and (the outcome of)

its application to a monad (resp. functor) is called the lax extension of the monad (resp. functor), as the
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latter is extended from Set to Rel, laxly. Barr extension provides a canonical way to extend monads (resp.

functors) from Set to Rel, laxly, but there are many other possible such extensions, which are arguably

well behaved. The criteria that qualify such extensions as well behaved can be nicely axiomatised, the

resulting notion being the one of a lax extension of a monad (resp. functor) (Ho�man, 2015; Hofmann

et al., 2014).

Years later, Thijs (Thijs, 1996) introduced the notion of a relator (also called relational extension) to

study notions of (bi)simulation relation in the abstract setting of universal coalgebra (J. J. M. M. Rutten,

2000). Roughly speaking, given a relator Γ as above and aT -coalgebra (on Set) γ : X → TX , one de�nes

a relation R on X to be a simulation if x R y =⇒ γ (x ) ΓR γ (y). The de�ning properties of relators

ensure that there exists a largest simulation, and that the latter is a re�exive and transitive relation.

Additionally, it is easy to extract a notion of bisimilarity from the one of similarity and to prove that the

latter is an equivalence relation. Since then, the ‘relator approach’ (as well as related ‘relation lifting’

approaches (Hermida & Jacobs, 1998; Jacobs, 2016; Kurz & Velebil, 2016)) has been extremely in�uent in

the �eld of (universal) coalgebra, as witnessed by the numerous works on the subject (see (Jacobs, 2016;

Kurz & Velebil, 2016) for further references).

In this dissertation we use relators to de�ne several notions of simulation and bisimulation (notably

applicative, monadic, and normal form (bi)simulation) for higher-order e�ectful languages, as well as

other notions of program equivalence and re�nement (notably contextual and CIU approximation and

equivalence). Our main results state that the structural properties of relators ensure precongruence and

congruence properties of the obtained notions of program re�nement and equivalence, respectively.

Therefore, the general theory of relators quali�es as a formal toolkit that deserves a spot in the seman-

ticist’s arsenal.

4.1 Preliminaries
Before de�ning relators formally, it is useful to recall some background notions of relational calculus.

That will allow us to reduce the complexity of some proofs by means of simple, pointfree calculations.

Contrary to standard, set-based presentations of relations, we use an ‘algebraic’ notation for relations

and their algebra. This choice has the advantage of highlighting the connection between relations and

abstract notions of distance (the central theme of the second part of this work).

Throughout the rest of this dissertation, let 2 denote the complete lattice 〈2, ≤〉 of boolean values
1

with 2 , {true, false}. Moreover, we tacitly assume all functors and monads to be functors and monads

on Set, unless di�erently speci�ed.

De�nition 18. The category Rel has sets as objects and relations as morphisms. A relation R between two
sets X and Y , written as R : X +→ Y , is a map R : X × Y → 2. Given elements x ∈ X , y ∈ Y we say that
x is R-related to y, and write x R y, if R (x ,y) = true. For any set X the identity relation IX : X +→ X is
de�ned as equality on X . Moreover, for relations R : X +→ Y and S : Y +→ Z , we de�ne the composition
S · R : X +→ Z of S with R as:

(S · R ) (x , z) ,
∨
y∈Y

R (x ,y) ∧ S (y, z).

Composition of relations is associative, and I is the unit of composition, so that Rel is indeed a category.

Remark 4. Notice that relations are not de�ned as objects of Set (namely as subsets of cartesian prod-

ucts). We keep explicit the distinction between a relation, which is a morphism in Rel, and its graph
2
,

which is an object in Set.

1
The notation for joins and meets is as usual.

2
For R : X → Y de�ne the graph GR of R as GR , {(x ,y ) | R (x ,y ) = true}.
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Rel is a monoidal category with unit given by the one-element set and tensor product given by carte-

sian product of sets, with R ×S : X ×Y +→ X ′ ×Y ′ de�ned pointwise via binary meet. Moreover, for all

sets X ,Y , the hom-set Rel(X ,Y ) inherits a complete lattice structure from 2 pointwise. As it is custom-

ary, we denote the resulting order on Rel(X ,Y ) by ⊆, whereas meets and joins are denoted by

⋂
and⋃

, respectively. The complete lattice structure of hom-sets nicely interacts with the monoid structure

of relation composition, meaning that Rel forms a quantaloid (Hofmann et al., 2014). In particular, for

all relations R : X +→ Y , Si : Y +→ Z (i ∈ I ), and Q : Z +→W the following distributivity laws hold:

Q · (
⋃
i ∈I

Si ) =
⋃
i ∈I

(Q · Si ),

(
⋃
i ∈I

Si ) · R =
⋃
i ∈I

(Si · R ).

Distributivity implies monotonicity of relation composition in both arguments. In fact, assuming R1 ⊆

R2, i.e. R2 =
⋃

i ∈{1,2} Ri we have:

S · R2 = S ·
⋃

i ∈{1,2}

Ri =
⋃

i ∈{1,2}

(S · Ri ) ⊇ S · R1.

In a similar fashion we can prove that S1 ⊆ S2 implies S1 · R ⊆ S2 · R, and thus monotonicity of

composition in both arguments.

We also notice that Rel is self-dual, since for all sets X ,Y there is a bijection −◦ between Rel(X ,Y )
and Rel(Y ,X ) mapping each relation R : X +→ Y to its dual (or opposite) relation R◦ : Y +→ X de�ned

by R◦ (y,x ) , R (x ,y). It is a routine exercise to verify that −◦ is monotone and satis�es the following

identities (the third one stating that −◦ is an involution):

(S · R )◦ = R◦ · S◦

I◦ = I

(R◦)◦ = R.

Additionally, there is a map −◦ from Set to Rel that interprets the graph of a function f : X → Y (the

latter being a morphism in Set) as the relation f◦ : X +→ Y de�ned by

f◦ (x ,y) =



true if f (x ) = y

false otherwise.

The map −◦ de�nes a functor from Set to Rel, so that (д · f )◦ = д◦ · f◦ and 1◦ = I. Moreover, we see

that −◦ is faithful. As a consequence, we write f : X → Y in place of f◦ : X +→ Y , unless we work in Set
and Rel at the same time (that will only happen in Subsection 4.3.1). The notation used for the graph

functor works as reminder for the following inequalities, for f : X → Y :

IX ⊆ f ◦ · f◦

f◦ · f
◦ ⊆ IY .

It is useful to keep in mind the pointwise reading of relations of the form д◦ · S · f , for a relation

S : Z +→W and functions f : X → Z , д : Y →W :

(д◦ · S · f ) (x ,y) = S ( f (x ),д(y)).

Given R : X +→ Y we can thus express a generalised monotonicity condition in pointfree fashion as:

R ⊆ д◦ · S · f .
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Indeed, taking f = д, we obtain standard monotonicity of f . We will make extensively use of the

following adjunction rules (Hofmann et al., 2014), for f : X → Y , д : Y → Z , R : X +→ Y , S : Y +→ Z , and

Q : X +→ Z :

д · R ⊆ Q ⇐⇒ R ⊆ д◦ · Q (adj 1)

Q · f ◦ ⊆ S ⇐⇒ Q ⊆ S · f . (adj 2)

Using (adj 1) and (adj 2) we see that generalised monotonicityR ⊆ д◦ ·S· f can be equivalently expressed

via the following lax commutative diagram:

X

⊆

f //

R_
��

Z

S
_
��

Y д
//W

The diagram acts as a graphical representation of the expression д · R ⊆ S · f , which, by (adj 1), is

equivalent to R ⊆ д◦ · R · f .

Finally, since we are interested in preorder and equivalence relations, we recall that we can de�ne

the notions of a re�exive, a transitive, and a symmetric relation pointfree. In fact, a relation R : X +→ X
is re�exive if IX ⊆ R, transitive if R · R ⊆ R, and symmetric if R ⊆ R◦.

4.2 Relators
The notion of a relator (Barr, 1970; Thijs, 1996) Γ for a functor T is an abstraction meant to capture the

possible ways a relation R : X +→ Y can be lifted to a relation ΓR : TX +→ TY .

De�nition 19. A relator for a functorT is a set-indexed family of maps (R : X +→ Y ) 7→ (ΓR : TX +→ TY )
satisfying conditions (rel 1)-(rel 4). We say that Γ is conversive if it additionally satis�es condition (rel 5).

ITX ⊆ Γ(IX ) (rel 1)

Γ S ·ΓR ⊆ Γ(S · R ) (rel 2)

T f ⊆ Γ f , (T f )◦ ⊆ Γ f ◦ (rel 3)

R ⊆ S =⇒ ΓR ⊆ ΓS (rel 4)

Γ(R◦) = (ΓR )◦. (rel 5)

Conditions (rel 1), (rel 2), and (rel 4) are rather standard
3
. As we will see, condition (rel 4) makes the

de�ning endofunction of (bi)simulation relations monotone, whereas conditions (rel 1) and (rel 2) make

notions of (bi)similarity re�exive and transitive. Similarly, condition (rel 5) makes notions of bisimilarity

symmetric. Condition (rel 3), which actually consists of two conditions, states that relators behave as

expected when acting on (graphs of) functions. In (P. Levy, 2011) a kernel preservation condition is

required in place of (rel 3). Such condition is also known as stability in (Hughes & Jacobs, 2004). Stability

requires the equality

Γ(д◦ · R · f ) = (Tд)◦ · ΓR ·T f (stability)

to hold. It is easy to see that a relator always satis�es stability.

Proposition 7. Conditions (rel 1)-(rel 4) implies (stability).
3
Notice that since I = (1)◦ we can derive condition (rel 1) from condition (rel 3).
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Proof. Proving that (Tд)◦ · ΓR ·T f ⊆ Γ(д◦ · R · f ) is straightforward. Indeed we have:

(Tд)◦ · ΓR ·T f ⊆ Γд◦ · ΓR · Γ f

[By (rel 3)]

⊆ Γ(д◦ · R · f ).

[By (rel 2)]

To prove Γ(д◦ · R · f ) ⊆ (Tд)◦ · ΓR ·T f we reason as follows:

Γ(д◦ · R · f ) ⊆ (Tд)◦ ·Tд · Γ(д◦ · R · f ) · (T f )◦ ·T f

[Since ∀h. I ⊆ h◦ · h]

⊆ (Tд)◦ · Γд · Γ(д◦ · R · f ) · Γ f ◦ ·T f

[By (rel 3)]

⊆ (Tд)◦ · Γ(д · д◦ · R · f · f ◦) ·T f

[By (rel 2)]

⊆ (Tд)◦ · ΓR ·T f .

[Since ∀h. h · h◦ ⊆ I]

We also notice that, since relators are monotone, stability gives the following implication

R ⊆ д◦ · S · f =⇒ ΓR ⊆ (Tд)◦ · ΓS ·T f ,

which can be diagrammatically expressed as:

X

⊆

f //

R_
��

Z

S
_
��

Y д
//W

=⇒

TX

⊆

T f //

ΓR_
��

TZ

ΓS_
��

TY
Tд
// TW

Finally, we observe that any relator Γ forT induces an endomapTΓ on Rel that acts asT on sets and

as Γ on relations. It is easy to check that conditions in De�nition 19 makes TΓ a lax endofunctor. When

TΓ is a functor, we say that Γ is functorial. Concretely, this is the case if conditions (rel 1) and (rel 2) are

equalities, i.e. if the following identities hold:

ITX = Γ(IX ) (rel funct 1)

ΓS · ΓR = Γ(S · R ). (rel funct 2)

Before giving examples of relators it is useful to observe that the collection of relators is closed under

speci�c operations (see (P. Levy, 2011) for a proof of the following proposition).

Proposition 8. Let T ,U be functors, and let UT denote their composition. Moreover, let Γ,∆ be relators
for T andU , respectively, and {Γi }i ∈I be a family of relators for T . Then:

1. The map ∆Γ de�ned by ∆ΓR , ∆(ΓR ) is a relator forUT .

2. The map
∧

i ∈I Γi de�ned by (
∧

i ∈I Γi )R ,
⋂

i ∈I ΓiR is a relator for T .

3. The map Γ◦ de�ned by Γ◦R , (ΓR◦)◦ is a relator for T .
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4. The map Γ ∧ Γ◦ is the greatest conversive relator smaller than Γ, according to the pointwise order.

Relators provide a powerful abstraction of notions of ‘relation lifting’, as witnessed by the numerous

examples of relators we will discuss in Section 4.3. Before discussing such examples, we introduce the

notion of a relator for a monad or lax extension of a monad. In fact, according to De�nition 19 relators

extend functors from Set to Rel, laxly. However, we de�ned notions of computation (and thus modelled

computational e�ects) as monads. Therefore, it seems natural to require relators to extend monads (and

not just functors) from Set to Rel, laxly. Requiring such a condition is exactly what is needed to make

applicative (as well as normal form) similarity a precongruence relation. As the reader will notice, we

already met the de�ning conditions of a lax extension of a monad in our analysis of the precongruence

theorem for probabilistic applicative similarity (Chapter 2). In fact, such conditions provided exactly

those structural properties of D̂ that made the semantics of return and sequencing well behaved with

respect to probabilistic applicative similarity.

De�nition 20. Let T = 〈T ,η,−†〉 be a monad, and Γ be a relator for T . We say that Γ is a relator for T if
it satis�es the following conditions:

R ⊆ η◦Y · ΓR · ηX , (rel unit)

R ⊆ д◦ · ΓS · f =⇒ ΓR ⊆ (д†)◦ · ΓS · f †. (rel bind)

We can express conditions (rel unit) and (rel bind) diagrammatically as follows:

X

⊆

ηX //

R_
��

TX

ΓR_
��

Y ηY
// TY

X

⊆

f //

R_
��

TX

ΓS_
��

Y д
// TY

=⇒

TX

⊆

f † //

ΓR_
��

TX

ΓS_
��

TY
д†
// TY

It is an easy exercise in algebra to verify that a relator for a monad T laxly extends T to Rel, in the sense

that the natural transformations ηX : X → TΓX and µX : TΓTΓX → TΓX are oplax (see e.g. (Hofmann et

al., 2014)).

Proposition 9. Let T = 〈T ,η,−†〉 be a monad, and Γ a relator forT . Then property (rel bind) is equivalent
to the validity of the following set-indexed family of inequalities

µY · ΓΓR ⊆ ΓR · µX , (rel µ)

which express the following (lax) commutative condition:

TTX

⊆

µX //

ΓΓR_
��

TX

ΓR_
��

TTY µY
// TY
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Proof. We show that (rel bind) implies (rel µ)
4
.

µY · ΓΓR ⊆ ΓR · µX ⇐= ΓΓR ⊆ µ◦Y · ΓR · µX

[By (adj 1)]

⇐= ΓΓR ⊆ (1†TY )
◦ · ΓR · (1†TX )

[Since µZ = 1
†

TZ ]

⇐= ΓR ⊆ 1
◦
TY · ΓR · 1TX

[By (rel bind)]

⇐= ΓR ⊆ 1
◦
TY · ΓR · 1TX

[Since 1
◦ = 1]

Vice versa, we prove (rel µ) implies (rel bind). Assume R ⊆ д◦ · ΓS · f . We have:

ΓR ⊆ (д†)◦ · ΓS · f † ⇐= ΓR ⊆ (µ ·Tд)◦ · ΓS · (µ ·T f )

[Since h† = µ ·Th]

⇐= ΓR ⊆ Tд◦ · µ◦ · ΓS · µ ·T f

[Since (k · h)◦ = h◦ · k◦]

⇐= ΓR ⊆ Tд◦ · ΓΓS ·T f

[By (rel µ) and (adj 1)]

⇐= ΓR ⊆ Γ(д◦ · ΓS · f )

[By (stability)]

⇐= R ⊆ д◦ · ΓS · f .

[By (rel 4)]

Finally we remark that Proposition 8 does not generalise to relators for monads, as the composition

of the carriers of two monads does not necessarily carry a monad structure. Nonetheless, we can still

prove that the collection of relators for a given monad is closed under speci�c operations.

Proposition 10. Given a monad T = 〈T ,η,−†〉 and relators Γ,∆ for it, both Γ ∧ ∆ and Γ◦ are relators for
T. In particular, Γ ∧ Γ◦ is the largest conversive relator for T contained in Γ.

Proof. The proof is straightforward. As an example, we show that Λ , Γ ∧ ∆ is a relator for T. We use

Proposition 9 and show that

µy · ΛΛR ⊆ ΛR · µX .

4
Recall that 1◦ = I, so that we write e.g. 1 · R in place of 1◦ · R = I · R.
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We have:

µy · ΛΛR ⊆ ΛR · µX ⇐⇒ ΛΛR ⊆ µ◦Y · ΛR · µX

[By (adj 1)]

⇐⇒ ΓΓR ∩ Γ∆R ∩ ∆ΓR ∩ ∆∆R ⊆ µ◦Y · (ΓR ∩ ∆R ) · µX

[Since Λ = Γ ∧ ∆]

⇐= ΓΓR ∩ ∆∆R ⊆ µ◦Y · (ΓR ∩ ∆R ) · µX

[Since ΓΓR ∩ Γ∆R ∩ ∆ΓR ∩∆∆R ⊆ ΓΓR ∩ ∆∆R]

⇐⇒ µY · (ΓΓR ∩ ∆∆R ) · µ◦X ⊆ ΓR ∩ ∆R.

[By (adj 1) and (adj 2)]

To prove the latter inequality, it is su�cient to prove

µY · (ΓΓR ∩ ∆∆R ) · µ◦X ⊆ ΓR

µY · (ΓΓR ∩ ∆∆R ) · µ◦X ⊆ ∆R.

We prove the �rst one (the second one is proved in the same fashion). We reason as follows:

µY · (ΓΓR ∩ ∆∆R ) · µ◦X ⊆ ΓR ⇐⇒ ΓΓR ∩ ∆∆R ⊆ µ◦Y · ΓR · µX

[By (adj 1) and (adj 2)]

⇐= ΓΓR ⊆ µ◦Y · ΓR · µX

[Since ΓΓR ∩∆∆R ⊆ ΓΓR]

⇐⇒ (rel µ).

[By (adj 1)]

4.3 Relevant Examples
We now examine examples of relators for the monads studied in Chapter 3.

Example 27 (Partiality monad). For the partiality monad M we de�ne the set-indexed families of maps

ˆM,
ˇM : Rel(X ,Y ) → Rel(MX ,MY ) as follows:

x ˆMR y⇐⇒
4

(x = ⊥) ∨ (∃x ∈ X . ∃y ∈ Y . x = just x ∧ y = just y ∧ x R y).

x ˇMR y⇐⇒
4

(y = ⊥) ∨ (∃x ∈ X . ∃y ∈ Y . x = just x ∧ y = just y ∧ x R y).

The mapping
ˆM describes the structure of the usual simulation clause for partial computations, whereas

ˇM describes the corresponding co-simulation clause. It is easy to see that
ˆM is a relator for M and that

ˇM = ˆM◦. By Proposition 10, the map
ˆM ∧ ˇM is a conversive relator for M. It is immediate to see that the

latter relator describes the structure of the usual bisimulation clause for partial computations. �

Example 28 (Exception monad). Proceeding as in Example 27, we de�ne a relator for the exception

monad E as the mapping
ˆE : Rel(X ,Y ) → Rel(EX ,EY ) de�ned by:

x ˆER y⇐⇒
4

(x = e =⇒ y = e) ∧ ∀x ∈ X . (x = x =⇒ ∃y ∈ Y . (y = y ∧ x R y)).

Easy calculations show that indeed
ˆE is a relator for the monad E. As before,

ˆE induces a canonical

conversive relator, namely
ˆE ∧ ˆE◦. We now generalise Proposition 3 and Proposition 5 to take into

account relators.
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Proposition 11. Given a monad T = 〈T , t,−T〉 and a relator ˆT for T, de�ne the sum ˆTE of ˆT and ˆE as
ˆTE , ˆT ˆE. Then ˆTE is a relator for TE.

The proof of Proposition 11 goes as follows. By Proposition 8, we know that
ˆT ˆE is a relator for the

functorTE. Therefore, it remains to show that
ˆT ˆE is also a relator for TE. Proving

ˆT ˆE to satisfy condition

(rel unit) is straightforward. We show that it satis�es condition (rel bind) too. To see that, we observe

that
ˆT ˆE satis�es the following ‘intermediate’ condition:

R ⊆ д◦ · ˆT ˆMS · f =⇒ ˆER ⊆ д◦E · ˆT ˆES · fE , (4.1)

or, diagrammatically:

X

⊆

f //

R_
��

TEX

T̂ÊS
_
��

Y д
// TEY

=⇒

EX

⊆

fE //

ÊR_
��

TEX

T̂ÊS_
��

EY дE
// TEY

In fact, if x ˆER y, then either x = e or x = x , for some x ∈ X . In the �rst case we must have y = e too,

and thus fE (x) = tX+E (e) and дE (y) = tY+E (e). We can conclude the thesis since
ˆT satis�es condition

(rel unit) (and obviously e ˆER e holds). In the second case we have x = x , for some x ∈ X . As a

consequence, since x ˆER y, we also have y = y, for some y ∈ Y such that x R y. Therefore, fE (x) = f (x )
and дE (y) = д(x ), so that the thesis follows by the main hypothesis. Using (4.1) we conclude the main

thesis as follows:

R ⊆ д◦ · ˆT ˆES · f =⇒ ˆER ⊆ д◦E · ˆT ˆES · fE
[By (4.1)]

=⇒ ˆT ˆER ⊆ (дT

E )
◦ · ˆT ˆES · f T

E

[Since
ˆT satis�es (rel bind)]

⇐⇒ ˆTER ⊆ (дTE)◦ · ˆTES · f TE
.

[Since hTE = hT

E ]

�

Example 29 (Nondeterministic monad). For the monad F de�ne maps
ˆF,

ˇF : Rel(X ,Y ) → Rel(FX , FY )
as:

X ˆFR Y⇐⇒
4
∀x ∈ X. ∃y ∈ Y. x R y.

X ˇFR Y⇐⇒
4
∀y ∈ Y. ∃x ∈ X. x R y.

It is not hard to see that the relator
ˆF describes Milner’s simulation clause for (unlabelled) transition

systems. We immediately see that
ˇF = ˆF◦, and that

ˆF∧ ˆF◦ describes the bisimulation clause for transition

systems. Finally, easy calculations show that F is indeed a relator for F.

Since M has essentially the same structure of E, we can sum
ˆF and

ˆM obtaining a relator
ˆFM , ˆFM

for FM. Spelling out the de�nition we obtain:

X ˆFMR Y ⇐⇒ ∀x ∈ X. (x = just x =⇒ ∃y ∈ Y. y = just y ∧ x R y).

Notice that {⊥} ˆFMRY always holds. The relator
ˆFM can be used to test nondeterministic computations

for may convergence, the resulting similarity notion being known as lower similarity (S. Lassen, 1998b;
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C. L. Ong, 1993). Additionally, working with the conversive relator
ˆFM ∧ ˆFM

◦
one recovers the notion

of lower bisimilarity. Another interesting relator for FM is the given by the map FM de�ned as:

X FMR Y⇐⇒
4

(⊥ < X =⇒ ⊥ < Y) ∧ (∀y ∈ Y . just y ∈ Y =⇒ ∃x ∈ X . just x ∈ X ∧ x R y).

It is not hard to see that FM is indeed a relator for FM (the reader can also consult (P. Levy, 2011) for

further details on FM as well as other examples of relators for FM). The relator FM tests nondeterministic

computations for must convergence, the associated notion of similarity being upper similarity (S. Lassen,

1998b; C. L. Ong, 1993). As before, working with the conversive relator FM∧FM
◦

we recover the notion

of upper bisimilarity.

�

Example 30 (Distribution monad). Following our working example Λp , we de�ne a relator for the

monad D relying on the notion of a coupling and results from optimal transport (Villani, 2008).

De�nition 21. Given two distributions µ ∈ D (X ),ν ∈ D (Y ), a coupling for µ and ν is a joint distribution
ω ∈ D (X × Y ) such that:

µ =
∑
y∈Y

ω (−,y)

ν =
∑
x ∈X

ω (x ,−).

We denote the set of couplings of µ and ν by Ω(µ,ν ) and immediately observe that Ω(µ,ν ) is always

non-empty. In fact, the joint distribution ω de�ned by ω (x ,y) , µ (x ) · ν (x ) is a coupling of µ and ν .

Remark 5 (Couplings as transportation plans). Given distributions µ ∈ DX , ν ∈ DY , the notion of a

couplingω ∈ Ω(µ,ν ) formalises the informal notion of a transportation plan. Thinking to a distribution

µ as assigning weight to points inX , then a transportation plan from µ to ν is a mapping specifying how

to move weights fromX toY in such a way that µ is ‘transformed’ into ν . Formally, a transportation plan

from µ to ν is a family of maps πx : Y → [0, 1] specifying for eachy ∈ Y how much weight of the weight

µ (x ) of x has to be moved to y. Accordingly to such a reading, we have to impose πx some constraints.

First of all, πx does not move more weight than the available one: actually, since we want to move the

whole weight mass µ, we require π to transport the whole µ. Formally, we require

∑
y πx (y) = µ (x ), for

all x ∈ X .

Applying π to µ we obtain a new distribution (a new mass, so to speak) on Y , denoted byTπ (µ ), and

de�ned as:

Tπ (µ ) (y) ,
∑
x ∈X

πx (y).

Obviously, since π has to transform µ into ν , we requireTπ (µ ) = ν . At this point it is straightforward to

see that any transportation plan π from µ toν induces a coupling π ∈ Ω(µ,ν ) de�ned by π (x ,y) , πx (y),

and that any coupling ω ∈ Ω(µ,ν ) induces a transportation plan ω de�ned by ωx (y) , ω (x ,y), so that

the notions of a transportation plan and of a coupling are equivalent.

Following Remark 5, we can de�ne a relator for D simply requiring transportation plans to move

weight only between related points (that is, if πx (y) > 0, then x and y must be related). Formally, we

de�ne the (set-indexed) map
ˆD : Rel(X ,Y ) → Rel(DX ,DY ) as follows:

µ ˆDR ν ⇐⇒
4

[∃ω ∈ Ω(µ,ν ). ∀x ,y. ω (x ,y) > 0 =⇒ x R y].
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We will prove that
ˆD is a relator for D in a more abstract setting in Subsection 4.3.1. We conclude our

analysis of couplings stating the already mentioned Strassen’s Theorem5
(Strassen, 1965) which shows

that
ˆD can be de�ned both universally (i.e. using an universal quanti�cation) and existentially (i.e. using

an existential quanti�cation).

Theorem 2 (Strassen’s Theorem). Let µ ∈ DX , ν ∈ DY be distributions, and R : X +→ Y be a relation.
Then:

µ ˆDR ν ⇐⇒ ∀X ⊆ X . µ (X) ≤ ν (R[X]).

Even if we will give an abstract proof that
ˆD is a relator for D, using Theorem 2 it is possible to prove

such a fact directly. Additionally, as a corollary of Theorem 2, we see that
ˆD describes the de�ning clause

of Larsen-Skou bisimulation for Markov chains (based on full distributions) (Larsen & Skou, 1989). Recall

that given a Markov chain c : X → DX , we say that an equivalence relation R on X is a bisimulation if

x R y implies c (x ) (B) = c (y) (B), for any R-equivalence class B. Then, it is easy to see that we have:

∀X ⊆ X . µ (X) ≤ ν (R[X]) ⇐⇒ ∀B ∈ X/ R . µ (B) = ν (B).

Finally, we observe that we can sum
ˆD with

ˆM obtaining a relator
ˆDM , ˆD ˆM for the monad DM (and

thus for the subdistribution monad). �

Example 31 (Output monad). For the (partial) output monad O∞ we de�ne the map
ˆO∞ : Rel(X ,Y ) →

Rel(O∞X ,O∞Y ) as follows:

〈u, x〉 ˆO∞R 〈w , y〉 ⇐⇒
4

(x = ⊥ ∧ u ⊆ w ) ∨ (x = just x ∧ y = just y ∧ u = w ∧ x R y).

Tedious calculations show that
ˆO∞ is a relator for O∞. �

Example 32 (Cost monad). For the total cost monad C0 de�ne the map
ˆC0 : Rel(X ,Y ) → Rel(C0X ,C0Y )

as

ˆC0R , (≥ ×R ),

where we recall that for R : X +→ Y , S : X ′ +→ Y ′, we de�ne R × S : X × X ′ +→ Y × Y ′ as

(R × S) ((x ,x ′), (y,y ′)) , R (x ,y) ∧ S (x ′,y ′),

and ≥ denotes the opposite of the natural ordering on N. It is straightforward to see that
ˆC0 is indeed a

relator for C0. The use of the opposite of the natural order in the de�nition of
ˆC0 captures the idea that

we use C0 to measure complexity. If we think to (n,x ) as the result of a computation (the element x )

together with the cost of the computation (the number n), then (n,x ) ˆC0R (m,y) means that the results

x and y are R-related, and that n ≥ m, meaning that right hand computation is more e�cient than the

left hand one. By taking the sum of
ˆC0 and

ˆM we obtain a relator for C that describes Sands’ simulation

clause for program improvement (Sands, 1998). �

Example 33 (Global states). For the global state monad G we de�ne the map
ˆG : Rel(X ,Y ) → Rel(GX ,GY )

as follows:

α ˆGR β ⇐⇒
4
∀σ ∈ S . α (σ ) (IS × R ) β (σ ).

It is straightforward to see that
ˆG is a relator for G. Moreover, we can generalise Proposition 4 and

Proposition 6 to take into account relators.

5
The original formulation of Strassen’s Theorem is actually more general than Theorem 2 (notably, it does not require distri-

butions to be discrete). This is re�ected by the possibility of giving a proof of Theorem 2 based on the Max-�ow Min-cut Theorem

(Schrijver, 1986).
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Proposition 12. Given a monad T = 〈T , t,−T〉 and relator ˆT for it, de�ne T̂ ⊗ G as:

α ̂(T ⊗ G)R β ⇐⇒
4
∀σ . α (σ ) ˆT(IS × R ) β (σ ).

Then ̂(T ⊗ G) is a relator for T ⊗ G.

Straightforward calculations show that
̂(T ⊗ G) is a relator for T ⊗ G. The most interesting part

of the proof of Proposition 12 is proving that
̂(T ⊗ G) satis�es condition (rel bind). We assume R ⊆

д◦ · ˆ(T ⊗ G)S· f , for relations and functions of appropriate source and target, and prove that α ̂(T ⊗ G)Rβ

implies f T⊗G (α ) ̂(T ⊗ G)S дT⊗G (β ). First of all, we notice that since T satis�es condition (rel bind), we

have:

R ⊆ д◦ · ̂(T ⊗ G)S · f =⇒ IS × R ⊆ (uncurry д)◦ · ˆT(IS × S) · uncurry f

=⇒ ˆT(IS × R ) ⊆ ((uncurry д)T)◦ · ˆT(IS × S) · (uncurry f )T
.

In particular, for any store σ , we have

α (σ ) ˆT(IS × R ) β (σ ) =⇒ (uncurry f )Tα (σ ) ˆT(IS × S) (uncurry д)Tβ (σ )

⇐⇒ f T⊗G (α ) ̂(T ⊗ G)S дT⊗G (β ).

As a consequence, it is su�cient to prove α (σ ) ˆT(IS × R ) β (σ ). But the latter is a direct consequence of

α ̂(T ⊗ G)R β , and thus we are done.

In particular, we can tensor
ˆG with

ˆM,
ˆFM, and

ˆDM obtaining relators for partial, nondeterministic,

and probabilistic imperative computations. Additionally, tensoring
ˆG with

ˆC we obtain a relator for

imperative computations with cost. �

Before continuing our analysis of relators, we make a small digression on the so-called Barr’s con-
struction (the content of such a digression is not needed to follow the rest of this work).

4.3.1 Digression: Barr’s Construction
Most of the conversive relators in previous examples are instances of a general construction known as

Barr construction (see e.g. (Hofmann et al., 2014; Kurz & Velebil, 2016)). Such a construction builds for

any functor T (on Set), a candidate relator T for T , called the Barr extension of T . If T preserves weak

pullbacks, then T indeed de�nes a functorial relator for T , which is also canonical (see Theorem 3).

At the heart of the Barr construction relies the double nature of relations as morphisms in Rel and

objects in Set. To avoid confusion, in this section we will adopt the following notational convention:

for a relation R : X +→ Y we denote by GR ⊆ X × Y the corresponding object in Set. Any relation

GR ⊆ X × Y can be represented as a span (see Appendix B) (X
π1

←−− GR
π2

−−→ Y ), where π1 : GR → X and

π2 : GR → Y are projection maps. In particular, we have the identity R = π2 · π
◦
1

in Rel. We can now

de�ne the Barr extension of T .

De�nition 22. The Barr extension of a functorT (on Set) is the set-indexed family ofmapsT : Rel(X ,Y ) →
Rel(TX ,TY ) de�ned for R = π2 · π

◦
1

: X +→ Y by:

TR , Tπ2 · (Tπ1)
◦
,

where R = π2 · π
◦
1
. Pointwise, T can be characterised as follows:

x T R y ⇐⇒ ∃w ∈ TGR . Tπ1 (w) = x ∧Tπ2 (w) = y,

where x ∈ TX and y ∈ TY
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In general, T is not a relator for T , as it might fail to satisfy property (rel 2). However, T has been

proved to be a a functorial relator exactly whenT preserves weak pullbacks (see Appendix B for insights

on the role of pullbacks in Barr’s construction).

Theorem 3. Let T be a functor. The following hold:

1. T preserves weak pullbacks or, equivalently, transforms pullbacks into weak pullbacks, if and only if
T is a functorial relator for T .

2. T is canonical, in the sense that if Γ is a functorial relator for T , then Γ = T (and thus T preserves
weak pullbacks).

3. If additionallyT is the carrier of a monad T = 〈T ,η,−†〉 andT preserves weak pullbacks, thenT is a
relator for T.

The proof of Theorem 3 is not di�cult, but is rather long. The reader can consult (Hofmann et al.,

2014; Kurz & Velebil, 2016) for a detailed exposition.

Example 34 (The relator
ˆD). We immediately see that

ˆD = D. Since D preserves weak pullbacks,

Theorem 3 implies that
ˆD is indeed a relator for D, and thus

ˆDM is a relator for DM.

In Example 30 we stated that it is possible to give a direct proof that
ˆD is a relator D relying on

Theorem 2 — the discrete version of Strassen’s Theorem — which in turn relies on Max-�ow Min-cut

Theorem. Theorem 3 gives an indirect proof of such a result, and the reader may wondering whether

the complexity of Theorem 2 is still present in this indirect proof. This is indeed the case. In fact, in (de

Vink & Rutten, 1997) it is shown that the distribution functor preserves weak pullbacks (hence inferring

‘good properties’ of probabilistic bisimilarity) by presenting an argument relying on the the Max-�ow

Min-cut Theorem. �

In light of the numerous examples of relators obtained as instances of Barr’s construction, the Barr

extension of a functor can be used to de�ne a somehow canonical de�nition of a notion of bisimulation.

However, begin conversive, the Barr extension of a functor does not provide an adequate tool to de�ne

canonical notions of similarity (and, as we will see, such notions of similarity are of paramount impor-

tance in this work). It is natural to ask whether there exists a canonical way to extract a relator de�ning

notions of simulation from a functor. Unfortunately, the answer appears to be negative.

First of all, we observe that given a functor T carrying an order ≤ (that is, associating to any set X
an order ≤X on TX ) we can de�ne the candidate relator

R 7→ ≤Y ·T · ≤X

for T . For instance, in this way we can recover the relator
ˆFM for FM using the order de�ned in Ex-

ample 18. This observation led to the proposal in (Hughes & Jacobs, 2004) of considering notions of

simulation de�ned in terms of stable orders on functors. Intuitively, a stable order on a functor T (on

Set) is a functor F from Set to Preord (the category of preordered sets and monotone functions) map-

ping a set X to a preordered set (TX , ≤X ) and sending weak pullbacks to preordered weak pullbacks

(see (P. Levy, 2011)).

(Hughes & Jacobs, 2004) showed that given a stable order F on a functor T , the map R 7→ ≤Y ·

T · ≤X indeed de�nes a relator for T . However, in (P. Levy, 2011) it is shown that there is a bijection
6

6
Intuitively, given a relator Γ satisfying (rel funct 2), one de�nes the stable order FΓ on T as follows:

FΓX , (TX , Γ(IX ))

FΓf , T f .
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between relators forT satisfying (rel funct 2) and stable orders onT , meaning that �nding stable orders

is essentially equivalent to �nding speci�c relators.

This essentially concludes our exposition of the general theory of relators. However, there is still

one point missing, namely the connection between relators and the domain structure we imposed on

monads.

4.4 Σ-continuous relators
In order to accommodate in�nitary computational behaviours, we required monads to come with a

suitable domain structure. It is then natural to require relators to properly interact with such a structure.

We have already seen an example of such an interaction in Chapter 2, where we proved precongruence

of probabilistic applicative similarity relying on a suitable induction principle for D̂. Relators allowing

such forms of inductive reasoning are called Σ-continuous relators.

De�nition 23. Let T = 〈T ,η,−†〉 be a Σ-continuous monad and Γ be relator for T. We say that Γ is
Σ-continuous if it satis�es conditions (ind 1), (ind 2), and (ind 3) — called the inductive conditions — for
any ω-chain (xn )n in TX , element y ∈ TY , elements x, x′ ∈ TX , and relation R : X +→ Y .

⊥ ΓR y (ind 1)

x v x′, x′ ΓR y =⇒ x ΓR y (ind 2)

∀n. xn ΓR y =⇒
⊔
n≥0

xn ΓR y. (ind 3)

Condition (ind 2) is actually not needed to prove congruence and precongruence properties of ap-

plicative bisimilarity and similarity, respectively. However, we will need it to prove the same properties

for normal form bisimilarity and similarity, and thus we take it as a de�ning condition of the notion of

a Σ-continuous relator. As a convention, when we want to stress that a property holds in virtue of one

(or more) of the properties (ind 1)-(ind 3), we will simply say that the property follows since the relator

is inductive.

Example 35. The relators
ˆM,

ˆME,
ˆFM,

ˆDM,
ˆO∞,

ˆC, M̂ ⊗ G, F̂M ⊗ G, D̂M ⊗ G, Ĉ ⊗ G are Σ-continuous.

�

Remark 6 (Σ-algebraic relators). The reader might have noticed that up to this point we have not re-

quired speci�c interactions between relators and algebraic operations on monads. That might appeared

wired, since having required relators to properly interact both with the monad and the domain structure

of a Σ-continuous monad T, it seems natural to require relators to properly with its Σ-algebra structure

too.

Formally, we can require the desired interaction by demanding a relators R to satisfy condition

(Σ comp) below, for all operation symbol (op : P  I ) ∈ Σ, maps κ,ν : I → TX , parameter p ∈ P , and

relation R.

∀i ∈ I . κ (i ) ΓR ν (i ) =⇒ JopK(p,κ) ΓR JopK(p,ν ). (Σ comp)

It is a remarkable result that if T is Σ-algebraic, then any relator Γ for T satis�es (Σ comp).

Proposition 13. Let T = 〈T ,η,−†〉 be a Σ-algebraic monad, and let Γ be a relator for T. Then Γ satis�es
condition (Σ comp).

Proof. For simplicity we give the proof for the case of operation symbols without parameters. This is

not a real restriction, as we can assume without loss of generality all operations to be such. In fact,
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we simply replace an operation symbol op : P  I with a P-indexed family of operation symbols

opp : I . The proof proceeds using the correspondence between algebraic operations and generic e�ects
(G. D. Plotkin & Power, 2003). Given an arity set I , an I -ary generic e�ect is an element ofT I . Moreover,

any I -ary generic e�ect д gives an I -ary algebraic operation opд de�ned by JopдK(κ) = κ† (д). Vice

versa, any I -ary algebraic operation de�nes a generic e�ect дop ∈ T I as JopKI (ηI ). Straightforward

calculations show that these transformations give a correspondence between algebraic operations and

generic e�ects. Let us now move to (Σ comp). We wish to prove

∀i ∈ I . κ (i ) ΓR ν (i ) =⇒ JopK(κ) ΓR JopK(ν ).

Let д be the generic e�ect associated with op, and assume κ (i ) ΓR ν (i ) to hold for all i ∈ I . The latter

hypothesis can be rewritten as II ⊆ ν◦ · ΓR · κ, from which we infer ΓII ⊆ (ν†)◦ · ΓR · κ†, by (rel bind).

Therefore, we can conclude κ† (д) ΓR ν† (д) (i.e. our main thesis), provided we prove д ΓII д. The latter

indeed holds, since by condition (rel 1) we have IT I ⊆ ΓII .

Proposition 13 concludes our exposition of the general theory of relators. Having at our disposal

this powerful machinery, we are now going to apply it to de�ne and study e�ectful equivalences and

re�nements for ΛΣ.
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Chapter 5

E�ectful Applicative Similarity and
Bisimilarity

Equality gives rise to challenging

questions which are not altogether

easy to answer . . .

Gottlob Frege, On Sense and

Reference

In this chapter we de�ne three notions of equivalence and three notions of re�nement for the cal-

culus ΛΣ of Chapter 3, namely:

• E�ectful contextual approximation �ctx
and equivalence 'ctx

( Section 5.2).

• E�ectful applicative similarity �A
and bisimilarity 'A

(Section 5.3).

• E�ectful CIU approximation �ciu
and equivalence 'ciu

(Section 5.5).

All these notions are parametrised by a relator Γ, which speci�es the observable properties of compu-

tations.

Our main results state that if Γ is Σ-continuous, then e�ectful applicative similarity is sound for ef-

fectful contextual approximation (Theorem 4), and e�ectful applicative bisimilarity is sound for e�ectful

contextual equivalence (Theorem 5). None of them, however, is fully abstract. That is because e�ect-

ful applicative similarity (resp. bisimilarity) subsumes lower applicative similarity (resp. bisimilarity)

(S. Lassen, 1998b; C. L. Ong, 1993) which is known to be strictly �ner than lower contextual approxi-

mation (resp. equivalence). We will say more about that later. Our soundness results are proved with

a generalisation of Howe’s method (Howe, 1996), which takes advantage of the structural properties of

Σ-continuous relators.

A variation of Howe’s method also allows to prove that e�ectful CIU approximation (resp. equiv-

alence) is fully abstract with respect to e�ectful contextual approximation (resp. equivalence) (Theo-

rem 6). These results are summarised in Table 5.1.

This chapter is structured as follows. In Section 5.1 we introduce λ-term relations and de�ne a simple

relational calculus (as we did in Chapter 2) that we will use throughout the rest of this dissertation. We

will instantiate such a calculus to de�ne the notions of e�ectful contextual approximation and equiva-

lence (Section 5.2) as well as the notions of e�ectful applicative similarity and bisimilarity (Section 5.3).
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�A ( �ciu = �ctx

'A ( 'ciu = 'ctx

Table 5.1: Equivalences and re�nements for ΛΣ, part 1.

Section 5.4 is entirely devoted to Howe’s method and the proof of the precongruence theorem for e�ect-

ful applicative similarity (Theorem 4). Congruence of e�ectful applicative bisimilarity (Theorem 5) is

proved in Subsection 5.4.1. Finally, in Section 5.5 we de�ne the notions of e�ectful CIU approximation

and equivalence, and prove them to be fully abstract (Theorem 6) with respect to e�ectful contextual

approximation and equivalence, respectively.

5.1 Relational Reasoning
In this section we extend the relational calculus developed in Chapter 2 for Λp to ΛΣ. Most of the

de�nitions and results presented in this section are slightly variations of the corresponding ones in

Chapter 2. Therefore, the reader already familiar with such notions can safely jump to the next section.

De�nition 24. 1. A closed λ-term relation is a pair R = (RΛ,RV ) of relations RΛ and RV on Λ◦
and V◦, respectively. We refer to RΛ as the computation component of R, and to RV as the value
component of R.

2. An open λ-term relation R associates to each �nite set of variables Γ a relation Γ `Λ − R − on ΛΓ ,
and a relation Γ `v − R − onVΓ . We require open λ-term relations to be closed under weakening:

Γ `Λ e R f

Γ,x `Λ e R f
Γ `v e R w

Γ,x `v v R w

Example 36. Both the discrete/identity relation I and the indiscrete relation 0 de�ned by the rules

below are open λ-term relations. The empty relation is an open λ-term relation too.

e ∈ ΛΓ

Γ `Λ e I e
v ∈ VΓ

Γ `v v I v
e , f ∈ ΛΓ

Γ `Λ e 0 f

v ,w ∈ VΓ

Γ `v v 0 w

Since e ∈ ΛΓ (resp. v ∈ VΓ) implies e ∈ ΛΓ,∆ (resp. v ∈ VΓ,∆), for any �nite set of variables ∆, both 0

and 1 are closed under weakening. �

We denote by Rel and Relc the collections of open and closed λ-term relations, respectively. For-

mally, we de�ne Rel as

∏
Γ Rel(ΛΓ ,ΛΓ )×Rel(VΓ ,VΓ ). Rel inherits a rich structure from Rel(ΛΓ ,ΛΓ ) and

Rel(VΓ ,VΓ ), as witnessed by the following result.

Proposition 14. Rel is a quantale (see De�nition 61) with an involution. In particular, it is a complete
lattice.

Proof. We notice that Rel inherits a complete lattice structure from Rel(ΛΓ ,ΛΓ ) and Rel(VΓ ,VΓ ) point-

wise. The bottom element is the empty relation, whereas the top element is the indiscrete relation 0.

Monoid multiplication is de�ned as λ-term relation composition: given λ-term relations R and S, we

de�ne the composition of S with R, denoted by S · R, as:

Γ `Λ e R д Γ `Λ д S f

Γ `Λ e (S · R ) f
Γ `v v R u Γ `v u S w

Γ `v v (S · R ) w
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Since both R and S are closed under weakening, then so is S ·R. Moreover, we see that the unit of com-

position is given by the discrete λ-term relation I, and that Rel is indeed a monoid. It is straightforward

to see that composition is monotone in both arguments. This makes Rel an ordered monoid. Finally, we

observe that Rel also has an involution given by the mapping a λ-term relation R to its converse R◦.

The latter is de�ned as follow:

Γ `Λ f R e

Γ `Λ e R◦ f
Γ `v w R v
Γ `v v R◦ w

By Proposition 14 we can de�ne λ-term relations both inductively and coinductively. Concerning

notation, we write R ⊆ S if:

∀Γ, e , f . Γ `Λ e R f =⇒ Γ `Λ e S f

∀Γ,v ,w . Γ `v v R w =⇒ Γ `v v S w .

Moreover, relying on the (complete) lattice structure of Rel we can de�ne the notions of a preorder and

equivalence λ-term relation. In fact, we say that λ-term relation R is re�exive if I ⊆ R, transitive if

R · R ⊆ R, and symmetric if R◦ ⊆ R.

There are maps −c : Rel → Relc and −o : Relc → Rel restring open λ-term relations to closed ones,

and extending closed λ-term relations to open ones. Formally, we de�ne such maps as follows.

De�nition 25. Given a λ-term relation R ∈ Rel, de�ne the closed restriction
1 Rc = (RΛ,RV ) of R by

`Λ e R f

e RΛ f
`v v R w
v RV w

Dually, given a closed λ-term relation R = (RΛ,RV ) we de�ne Ro as its open extension. The latter is
de�ned as follows, where Γ , ~x , x1, . . . ,xn and ~u , u1, . . . ,un :

∀~u ∈ V◦. e[~x := ~u] RΛ f [~x := ~u]

Γ `Λ e Ro f

∀~u ∈ V◦. v[~u/~x] RV u[~u/~x]

Γ `v v Ro w

Taking advantage of De�nition 25, for a closed λ-term relation R = (RΛ,RV ) we will often write

`Λ e R f in place of e RΛ f , and Γ `Λ e R f in place of Γ `Λ e Ro f (and similarity for values). Dually, for

an open λ-term relation S we will use the notations `Λ e S f and e SΛ f interchangeably (and similarity

for values). Next we introduce the notion of a substitutive λ-term relation.

De�nition 26. 1. A λ-term relation R is value-substitutive if the following hold, where u ranges over
closed values:

Γ,x `Λ e R f

Γ `Λ e[x := u] R f [x := u]

Γ,x `v v R w

Γ `v v[u/x] R w[u/x]

2. A λ-term relation R is substitutive if the following hold:

Γ,x `Λ e R f `v v R w

Γ `Λ e[x := v] R f [x := w]

Γ,x `v v R w `v u R u ′

Γ `v v[u/x] R w[u ′/x]

A closed λ-relation is (value) substitutive if its open extension is. Moreover, we notice that the open
extension of a closed λ-term relation is trivially value-substitutive.

1
Notice that the notation RΛ (resp. RV ) is not de�ned for open λ-term relations, so that we can safely use that to denote the

computation (resp. value) component of Rc .
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In order to de�ne the notion of a precongruence λ-term relation, we introduce the notion of com-
patibility. Roughly speaking, a λ-term relation is compatible if it is preserved by all ΛΣ syntactic con-

structors. Formally, we follow (Gordon, 1994; S. Lassen, 1998b) and de�ne compatibility via the notion

of a compatible re�nement of a λ-term relation.

De�nition 27. The compatible re�nement R̂ of an open λ-term relation R is de�ned by the rules in
Figure 5.1. We say R is compatible if R̂ ⊆ R, and that a closed λ-term relation is compatible if its open
extension is.

Γ,x `v x R̂ x
(comp-var)

Γ,x `Λ e R f

Γ `v λx .e R̂ λx .f
(comp-abs) Γ `v v R v ′ Γ `v w R w ′

Γ `Λ vw R̂ v ′w ′
(comp-app)

Γ `v v R w

Γ `Λ return v R̂ returnw
(comp-ret)

Γ `Λ e R e ′ Γ,x `Λ f R f ′

Γ `Λ let x = e in f R̂ let x = e ′ in f ′
(comp-let)

Γ,x `Λ e R f

Γ `Λ op(p,x .e ) R̂ op(p,x .f )
(comp-op)

Figure 5.1: Compatible re�nement ΛΣ.

Notice that R̂ is indeed a λ-term relation (notably, R̂ is closed under weakening). De�nition 27

induces a map R 7→ R̂ on the collection of open λ-term relations which is monotone and satis�es the

following identities (see Subsection 5.4.1):

Ŝ · R = Ŝ · R̂

R̂◦ = (R̂ )◦.

In particular, a λ-term relation is compatible if and only if it is a pre-�xed point of R 7→ R̂. It is not hard

to prove that the discrete open λ-term relation I of Example 36 is a pre-�xed point of R 7→ R̂. Moreover,

it is the least such. As a consequence, any compatible relation is re�exive. Dually, the indiscrete open

λ-term relation 0 is the greatest �xed point of R 7→ R̂.

Remark 7. If Σ consists of �nitary operations only (as in most of the examples studied), then De�-

nition 27 can be slightly simpli�ed by replacing rule (comp-op) with the following one (for any n-ary

operation symbol op in Σ):

Γ `Λ e1 R f1 · · · Γ `Λ en R fn

Γ `Λ op(e1, . . . , en ) R̂ op( f1, . . . , fn )

Easy calculations show that the arbitrary intersection of compatible λ-term relations is compatible

(the empty intersection being 0), whereas their union need not be so. Nonetheless, we can still give to

the collection of compatible λ-term relations a complete lattice structure.

Lemma 11. The collection of compatible λ-term relations forms a complete lattice ordered by ⊆.

Proof. Given a set ρ of compatible relations we de�ne the meet of ρ as

⋂
ρ. We cannot de�ne the join

of ρ as

⋃
ρ, since the union of compatible λ-relations is not necessarily compatible. We get round the
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problem by de�ning the join of ρ as ⋂
{S | Ŝ ⊆ S,

⋃
ρ ⊆ S}.

It is easy to see that the latter indeed satis�es the universal property of the join. Finally, we observe that

the bottom element is given by the discrete λ-term relation I, whereas the top element is the indiscrete

λ-term relation 0.

Lemma 11 allows us to de�ne compatible λ-term relations both inductively and coinductively. More-

over, we can rely on De�nition 27 to de�ne a closure operator mapping a λ-term relation to the least

compatible λ-term relation extending it.

De�nition 28. The compatible closure Rcc of an open λ-term relation is inductively de�ned by the follow-
ing rules.

Γ `Λ e R f

Γ `Λ e Rcc f
Γ `v v R w
Γ `v v Rcc w

Γ `Λ e R̂cc f

Γ `Λ e Rcc f
Γ `v v R̂cc w
Γ `v v Rcc w

It is easy to see that −cc is a closure operator, i.e. it is a monotone and idempotent map extending

the identity function (meaning that R ⊆ Rcc
, for any λ-term relation R). Moreover, Rcc

is the least

compatible λ-term relation containing R.

We now have all the background notions needed to de�ne and study interesting notions of program

equivalence and re�nement for ΛΣ. Although our focus is on e�ectful applicative (bi)similarity, we �rst

introduce e�ectful contextual approximation and equivalence. Most of the de�nitions given in the rest

of this chapter are parametrised by a Σ-continuous monad T = 〈T ,η,−†〉 and a relator Γ for T. As a

consequence, we assume both T and Γ to be �xed, thus oftentimes omitting to mention them explicitly.

5.2 E�ectful Contextual Approximation and Equivalence
The universally accepted notion of operational equivalence (resp. re�nement) for sequential, higher-

order language is Morris’ style contextual equivalence (reps. approximation) (Morris, 1969). The latter

is a syntax directed notion of equivalence (resp. re�nement) equating (resp. ordering) programs ac-

cording to a pre�xed notion of observation (mostly based on notions of convergence). Accordingly, two

programs are deemed as contextually equivalent if there is no context of the language (the latter being

a kind of program with a hole to be �lled in with the tested program) capable of detecting di�erences

in the operational behaviour of the two programs, according to the notion of observation given. That

is, thinking to contexts as speci�c environments or as testing scenarios, contextual equivalence deems

two programs as equivalent, if no environment (resp. testing scenario) is capable of distinguish them.

We have already discussed in Chapter 2 the rationale behind the notions of contextual approximation

and contextual equivalence. Here we simply recall that in most languages, contextual equivalence (resp.

approximation) is characterised by a universal property: contextual equivalence (resp. approximation)

is the largest (i.e. the less discriminating) adequate (resp. preadequate) congruence (resp. precongruence)
λ-term relation. A λ-term relation R is adequate (reps. preadequate) if R relates programs exhibiting

the same operational behaviour (resp. the operational behaviour of the second re�nes the operational

behaviour of the �rst).

In this setting, (pre)adequacy predicates can be used in place of notions of observation. That is, in-

stead of dealing with an explicit notion of observation, we �x a predicateAdeq ⊆ Rel on λ-term relations

according to the rationale that if a λ-term relation R belongs to Adeq, then it does not relate programs

which are observationally distinguishable. For instance, in the pure, untyped λ-calculus one is usu-

ally interested in observing convergence of a term (according to a given reduction strategy (G. Plotkin,

1975)). As a consequence, a relation is said to be adequate if whenever it relates two programs, then one
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of the programs converges if and only so does the other. We will follow a di�erent route in Chapter 6,

where we will work with an explicit notion of observation.

The calculus ΛΣ being untyped, we follow the convention of not observing values, but only e�ects.

As a consequence, our notion of adequacy will be de�ned with respect to a relator Γ only.

De�nition 29. A λ-term relation R is Γ-adequate (just adequate, when Γ is clear from the context) if
`Λ e R f implies JeK Γ0V Jf K, where 0

c = (0Λ, 0V ) is the closed indiscrete λ-term relation.

Example 37. The following examples give a taste of the rationale behind De�nition 29.

• Instantiating De�nition 29 with the relator
ˆM, we see that a λ-term relation R over terms in ΛM

is adequate if whenever `Λ e R f holds, then if e converges, then so does f . Formally:

`Λ e R f =⇒ (JeK , ⊥ =⇒ Jf K , ⊥). (5.1)

Replacing
ˆM with

ˆM∧ ˆM◦, we see that the rightmost implication of (5.1) becomes an equivalence.

• Instantiating De�nition 29 with the relator
ˆFM, we see that a λ-term relation R over terms in ΛFM

is adequate if whenever `Λ e R f holds, then if e may converge, then so does f . Formally:

`Λ e R f =⇒ (JeK , {⊥} =⇒ Jf K , {⊥}). (5.2)

Replacing
ˆFM with

ˆFM ∧ ˆFM
◦
, we see that the rightmost implication of (5.2) becomes an equiva-

lence.

• Instantiating De�nition 29 with the relator
ˆDM, we see that a λ-term relation R over terms in ΛDM

is adequate if whenever `Λ e R f holds, then the probability of convergence of e is less or equal

than the probability of convergence of f . Formally:

`Λ e R f =⇒ JeK(V◦) ≤ Jf K(V◦). (5.3)

Replacing
ˆDM with

ˆDM ∧ ˆDM
◦
, we see that the inequality in (5.3) becomes an equality.

�

Remark 8 (Adequacy vs Preadequacy). De�nition 29 makes redundant the terminological distinction

between adequacy and preadequacy. Accordingly, λ-term relations are just adequate with respect to a

relator Γ. Example 37 suggests that for for the examples studied in Section 4.3, preadequate relations

are captured by
ˆT-adequate relations. Conversely, adequate relations are captured by ( ˆT∧ ˆT◦)-adequate

relations.

In light of De�nition 29 we wish to de�ne e�ectful contextual approximation (reps. equivalence)

as the largest adequate precongruence (resp. congruence). We have already seen that the collection of

compatible λ-term relations forms a complete lattice. However, we soon realise that adequacy is not a

‘monotone property’, and thus we cannot appeal to the Knaster-Tarski Theorem to infer the existence of

the largest adequate precongruence. Following (S. Lassen, 1998b) we prove the existence of the desired

relation explicitly.

Lemma 12. Let α ⊆ Rel be a predicate on open λ-term relations closed under non-empty union and
composition. If I ∈ α , then there exists a largest compatible λ-term relation in α .

Proof. De�ne the λ-term relation S as

S ,
⋃
{R ∈ α | R̂ ⊆ R}.

By hypothesis I ∈ α , so that {R ∈ α | R̂ ⊆ R} is non-empty. As a consequence, since α is closed under

non-empty union, S ∈ α . In order to conclude the thesis it remains to prove Ŝ ⊆ S. Formally, we prove

by simultaneous induction the following statements:
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1. If Γ `Λ e Ŝ f , then Γ `Λ e S f .

2. If Γ `v v Ŝ w , then Γ `v v S w .

We prove a couple cases as illustrative examples.

• Suppose Γ `Λ let x = e in f Ŝ let x = e ′ in f ′, so that we have Γ `Λ e S e ′ and Γ,x `Λ f S f ′.
By very de�nition of S there exist compatible λ-term relations R1,R2 ∈ α such that Γ `Λ e R1 e

′

and Γ,x `Λ f R2 f ′. Since both R1 and R2 are compatible, then so is R2 · R1. Moreover, since α
is closed under composition, then R2 · R1 ∈ α . We also notice that, since compatibility implies

re�exivity, both Γ `Λ e (R2 · R1) e
′

and Γ,x `Λ f (R2 · R1) f
′

hold. In fact, R1 = I · R1 ⊆ R2 · R1.

Therefore

Γ `Λ let x = e in f ̂(R2 · R1) let x = e ′ in f ′,

and thus (by compatibility of R2 · R1)

Γ `Λ let x = e in f (R2 · R1) let x = e ′ in f ′.

We conclude the wished thesis by very de�nition of union of λ-term relations.

• Suppose Γ `Λ op(p,x .e ) Ŝ op(p,x .f ), so that Γ,x `Λ e S f . As a consequence, there exists a

compatible λ-term relation R ∈ α such that Γ,x `Λ e R f . Therefore, we have Γ `Λ op(p,x .e ) R̂
op(p,x .f ) and thus Γ `Λ op(p,x .e ) R op(p,x .f ), by compatibility of R. We can conclude Γ `Λ

op(p,x .e ) S op(p,x .f ).

Lemma 13. The adequacy property AdeqΓ , {R ∈ Rel | `
Λ e R f =⇒ JeK Γ0V Jf K} contains the discrete

open λ-term relation, and it is closed under non-empty union and composition.

Proof. We show that the open λ-term relation I is in AdeqΓ . We �rst notice that `Λ eIf implies e IΛ f , and

thus e = f . By property (rel 1) we have that JeKΓIV JeK, and thus JeKΓ0V JeK, since Γ is monotone. Let us

now prove closure under relation composition. Given two open λ-term relations R,S ∈ AdeqΓ , assume

`Λ e (S ·R ) f . We show JeKΓ0V Jf K. Since both R and S belong to AdeqΓ , we obtain JeK (Γ0V · Γ0V ) Jf K.
We conclude the thesis by property (rel 2). Finally, given a non-empty set ρ ⊆ AdeqΓ of λ-term relations,

we see that if `Λ e (
⋃
ρ) f , there there existsR ∈ ρ (and thusR ∈ AdeqΓ) such that `Λ eR f . We conclude

Jf K Γ0V Jf K.

De�nition 30. De�ne the λ-term relation �ctx, called e�ectful contextual approximation with respect to

Γ (e�ectful contextual approximation or even contextual approximation, for short) as the largest compatible
and Γ-adequate relation.

Remark 9. The notion �ctx
used to denote contextual approximation does not give any information

about the relator de�ning the relevant notion of adequacy. For that reason, a better notation for con-

textual approximation would be �ctx
Γ . Since most of the times Γ will be clear from the context, we will

write �ctx
in place of �ctx

Γ where possible. We also apply this convention to the rest of the equivalences

and re�nements we will study in this dissertation.

The reader might have noticed that the de�nition of the property AdeqΓ involves only the behaviour

of λ-term relations on computations, and does not say anything about their behaviour on values. This

is rather obvious, as adequacy is an operational notion based on the evaluation semantics of a program.

Formally, this does not mean that on values �ctx
coincides with the indiscrete relation. In fact, compati-

bility forces �ctx
to relate only those values that behave appropriately when used inside computations.
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For instance, if v �ctx
V
v ′, then by compatibility (and re�exivity) of �ctx

we have vw �ctx
Λ v ′w too, which

gives JvwK Γ0V Jv ′wK. Obviously, this cannot be the case for all pairs of values v ,v ′.
De�nition 30 comes with an associated proof technique resembling a coinduction proof principle.

In order to prove that a program e contextually approximates a program f , it is su�cient to exhibit a

compatible and adequate λ-relation relating e and f . Symbolically:

R̂ ⊆ R R ∈ AdeqΓ
R ⊆ �ctx (�ctx

-UMP)

We can use this proof technique to prove that �ctx
is actually a precongruence relation.

Corollary 2. The relation �ctx is a precongruence relation.

Proof. Since the discrete λ-term relation I is the least �xed point of R 7→ R̂ and belongs to AdeqΓ , it is

su�cient to show that �ctx
is transitive. We use the proof technique associated with the de�nition of

�ctx
showing that

̂(�ctx · �ctx) ⊆ (�ctx · �ctx) and (�ctx · �ctx) ∈ AdeqΓ . The former obviously holds, since

the composition of compatible λ-term relations is compatible. For the latter, we simply observe that in

Lemma 13 we show AdeqΓ to be closed under composition.

Finally, we notice that we can extend Corollary 2 showing that if Γ is conversive, then �ctx
is sym-

metric. In light of this observation we give the following de�nition of e�ectful contextual equivalence.

De�nition 31. The λ-term relation'ctx, called e�ectful contextual equivalence with respect to Γ (e�ectful
contextual equivalence or even contextual equivalence, for short) is de�ned as �ctx

Γ∧Γ◦ . In particular, 'ctx is
the largest compatible relation in AdeqΓ∧Γ◦ .

Notice that we are applying the convention of Remark 9 in the notation employed for e�ectful

contextual equivalence. It is straightforward to see that 'ctx
is a congruence relation. Additionally, we

can characterise 'ctx
as follows.

Proposition 15. 'ctx = �ctx ∩ (�ctx)◦.

Proof. The proof uses the proof techniques associated with �ctx
and 'ctx

, and is rather straightforward.

The only relevant points to notice are the following: (�ctx
Γ )◦ = �ctx

Γ◦ and AdeqΓ∧Γ◦ = AdeqΓ ∩AdeqΓ◦ .

5.3 E�ectful Applicative Similarity and Bisimilarity
We now introduce e�ectful applicative similarity and bisimilarity with respect to a relator Γ. As usual,

we assume a Σ-continuous monad T and relator Γ for it to be �xed. We begin our analysis de�ning

the notion of an e�ectful applicative simulation relation with respect to a relator Γ (e�ectful applicative

similarity, for short). Contrary to e�ectful contextual approximation, e�ectful applicative similarity is

de�ned as a closed λ-term relation, and then extended to an open λ-term relation by means of its open

extension.

De�nition 32. Given a closed λ-term relation R = (RΛ,RV ) we de�ne the closed λ-term relation [R] =

([R]Λ, [R]V ) as follows:

`Λ e [R] f ⇐⇒
4 JeK ΓRV Jf K

`v v [R]w ⇐⇒
4
∀u ∈ V◦. `

Λ vu RΛ wu.

A λ-term relationR is an e�ectful applicative simulation with respect to Γ (e�ectful applicative simulation
or even applicative simulation, for short) if R ⊆ [R].
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De�nition 32 can be equivalently stated by saying that a closed λ-term relation R = (RΛ,RV ) is an

applicative simulation is the following conditions hold:

`Λ e R f =⇒ JeK ΓRV Jf K (app comp)

`v v R w =⇒ ∀u ∈ V◦. `
Λ vu R wu. (app val)

De�nition 32 induces a map R 7→ [R] on the complete lattice of closed λ-term relations. Since Γ is

monotone, then so is R 7→ [R].

Lemma 14. The map R 7→ [R] is monotone.

Proof. Suppose R ⊆ S. We �rst prove that `Λ e [R] f implies `Λ e [S] f , i.e. JeK ΓSV Jf K. By hypothesis

we have JeK ΓRV Jf K. Moreover, since R ⊆ S and Γ is monotone, we can conclude ΓR ⊆ ΓS, and thus

the wished implication. We now prove that `v v [R]w implies `Λ v [S]w , i.e. `Λ vuSwu, for any closed

value u. Since `v v [R]w , we have `Λ vu R wu, and thus `Λ vu S wu, because R ⊆ S.

By Lemma 14 we can de�ne e�ectful applicative similarity with respect to Γ, denoted by �A
, as

the greatest �xed point of R 7→ [R]. Obviously, �A
is the largest closed λ-term relations satisfying

conditions (app comp) and (app val).

De�nition 33. De�ne the closed λ-term relation �A, called e�ectful applicative similarity with respect

to Γ (e�ectful applicative similarity or even applicative similarity, for short), as the greatest �xed point of
R 7→ [R] (which exists by the Knaster-Tarski Theorem).

Again, notice that we are tacitly applying the notational convention of Remark 9. Additionally, since

in this chapter we will deal with applicative similarity only, oftentimes we will use the lighter notation

� in place of �A
(the latter will be useful in later chapters, where other notions of similarity will be

studied).

Applicative similarity comes with an associated coinduction proof principle: in order to prove that a

program f applicatively re�nes a program e , it is su�cient to exhibit an applicative simulation relating

them. Symbolically:

R ⊆ [R]

R ⊆ �A (�A
-coind.)

Example 38. Instantiating De�nition 33 with relators of the form
ˆT as de�ned in Section 4.3, we obtain

well known notions of applicative similarity. Notably, taking Γ to be
ˆM,

ˆFM,
ˆDM, and

ˆC we recover (call-

by-value) Abramsky’s applicative similarity (Abramsky, 1990a), (lower) nondeterministic applicative

similarity (S. Lassen, 1998b; C. L. Ong, 1993), probabilistic applicative similarity (Crubillé & Dal Lago,

2014; Dal Lago et al., 2014), and Sands’ improvement similarity (Sands, 1998), respectively. �

We now give an example of how we can use the coinduction proof principle to prove behavioural

re�nements between programs. Our example is given in Λp .

Example 39. Instantiating De�nition 33 with the partial distribution monad DM and its associated

relator
ˆDM we recover probabilistic applicative similarity for Λp . Let us consider computations e ,

(return I ) or Ω, and f , return I , where Ω is the purely divergent program (λx .xx ) (λx .xx ) and I ,
λx .return x . We show that e �Λ f . Let us consider the λ-term relation R = (RΛ,RV ) whose graph is

GRΛ , {((return I ) or Ω, return I )}

GRV , {(I , I )}.
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In order to prove that R is an applicative simulation, we have to show JeK ˆDMRV Jf K, that is:(
1

2

· just I +
1

2

· ⊥
)

ˆDMRV
(
1 · I

)
.

De�ne the distribution ω over MV◦ × MV◦ as follows:

ω (just I , just I ) ,
1

2

ω (⊥, just I ) ,
1

2

and zero on all other elements. Clearly ω ∈ Ω(JeK, Jf K). We have to prove that for all v,w ∈ MV◦,
ω (v,w) > 0, implies v ˆMRV w. The only cases to consider are for v = just v and v = ⊥. In the latter case

we are trivially done by very de�nition of
ˆM. In the former case we have w = just I too, and thus we

are done since I RV I . �

We now analyse the metatheoretical properties of applicative similarity. First of all, we see that the

coinduction proof principle allows for an handy proof of re�exivity and transitivity of �.

Proposition 16. Applicative similarity � is a re�exive and transitive (closed) λ-term relation.

Proof. The proof is by coinduction. In order to prove re�exivity we show that the closed λ-term relation

Ic = (IΛ, IV ) is an applicative simulation. Clause (app val) is obviously satis�ed, so that it remains to

prove clause (app comp). That amounts to show JeK ΓIV JeK. This is indeed the case, since by condition

(rel 1) we have

ITV◦ ⊆ Γ(IV◦ ) = ΓIV

and obviously JeK ITV◦ JeK holds. We prove transitivity of � by showing that � · � is an applicative

simulation. Again, the clause (app val) is obviously satis�ed. Let us move to (app comp). We have to

show that `Λ e (� · �) f implies JeK Γ(�V · �V ) Jf K. By very de�nition of transitivity we have:

`Λ e (� · �) f =⇒ JeK (Γ�V · Γ�V ) Jf K
[By (app comp) and De�nition 33]

=⇒ JeK Γ(�V · �V ) Jf K.
[By (rel 2)]

Next, we notice that since Γ is monotone, � ∈ AdeqΓ . For:

`Λ e � f =⇒ JeK Γ�V Jf K
[By (app comp)]

=⇒ JeK Γ0V Jf K.
[By (rel 4) since �V ⊆ 0V]

The last (but certainly not least) property we wish to prove about applicative similarity is compatibility,

meaning that e�ectful applicative similarity is a (pre)adequate precongruence relation, and thus a sound

proof technique for e�ectful contextual approximation. However, as we saw in Chapter 2, proving � to

be compatible from �rst principles is bound to be hard, due to substitutivity. We prove a compatibility

theorem for applicative similarity using a generalisation of Howe’s method (Howe, 1996). Before that,

let us introduce e�ectful applicative bisimilarity.

De�nition 34. De�ne the closed λ-term relation 'A, called e�ectful applicative bisimilarity with respect

to Γ (e�ectful applicative bisimilarity or even applicative bisimilarity, for short), as e�ectful applicative
similarity with respect to Γ ∧ Γ◦.
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We apply the same notational and terminological conventions introduced for e�ectful applicative

similarity to e�ectful applicative bisimilarity. In particular, throughout this chapter, we oftentimes write

' in place of 'A
.

A �rst consequence of De�nition 34 is that ' is the largest applicative simulation with respect to

Γ ∧ Γ◦. Additionally, a straightforward proof by coinduction shows that ' is indeed symmetric (since

Γ ∧ Γ◦ is conversive) and contained in � (since Γ ∧ Γ◦ ≤ Γ). Finally, we give the following alternative

characterisation of ', which will be useful when proving applicative bisimilarity to be a congruence

relation.

Proposition 17. E�ectful applicative bisimilarity is the largest symmetric applicative simulation with
respect to Γ.

Proof. De�ne the closed λ-term relation S as

S ,
⋃
{R | R = R◦,R ⊆ [R]}.

Obviously S is a symmetric applicative simulation with respect to Γ, and actually the largest such. We

prove ' ⊆ S using the coinduction proof principle associated with S. To do so, it is su�cient to show

that ' is a symmetric applicative simulation with respect to Γ, which is indeed the case. Conversely,

we prove S ⊆ ' using the coinduction proof principle associated with '. Doing so amounts to show

that `Λ e S f implies JeK ΓSV Jf K and Jf K Γ◦ (SV ) JeK. Since S is symmetric, the latter is equivalent to

Jf K ΓSV JeK, and thus we can conclude the thesis since S is a symmetric applicative simulation with

respect to Γ.

It is now time to introduce the main results of this chapter, namely a precongruence theorem for

e�ectful applicative similarity, and a congruence theorem for e�ectful applicative bisimilarity.

5.4 Howe’s Method
Having observed the di�culties one encounters when trying to prove � to be compatible from �rst

principles, in this section we develop a generalisation of Howe’s method (Howe, 1996; Pitts, 2011) and

use it to prove a precongruence theorem for �, and a congruence theorem for '.

At the heart of Howe’s method is a relational construction (called precongruence candidate in (Howe,

1996)) extending � to a substitutive and compatible relation �H
. The key ingredient to make such a

method work is the so-called Key Lemma. The latter essentially states that �H
is an applicative simu-

lation, and thus coincide with �. Proving the Key Lemma is notoriously hard in presence of speci�c

e�ects, the case of probabilistic calculi being a prime example (Dal Lago et al., 2014). Perhaps surpris-

ingly, our proof of the Key Lemma is rather easy, and relies on structural properties of Σ-continuous

relators only. This allows to separate the core of Howe’s method, viewed as a syntactical construc-

tion, from its soundness, which instead is based on semantical and operational properties of the e�ects

considered. Let us now enter the details of Howe’s method.

De�nition 35 (Howe extension, 1). Given a closed λ-term relation R, de�ne the open λ-term relation RH ,
called the Howe extension of R, as the least �xed point of the map X 7→ Ro · X̂.

Since both X 7→ X̂ and X 7→ Xo
are monotone, then so is X 7→ Ro · X̂, meaning that, by the

Knaster-Tarski Theorem, De�nition 35 indeed de�nes λ-term relation. In particular, RH
is the least λ-

term relation satisfying Ro · RH ⊆ RH
(see (S. Lassen, 1998b; P. Levy, 2006) and Lemma 15 below). An

equivalent, more concrete characterisation of RH
is given by the following de�nition.
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De�nition 36 (Howe extension, 2). Given a closed λ-term relation R, the Howe extension RH of R is
the open λ-term relation inductively de�ned as follows:

Γ `Λ e R̂H д Γ `Λ д R f

Γ `Λ e RH f
Γ `v v R̂H u Γ `v u R w

Γ `v v RH w

Additionally, unfolding the de�nition of R̂, we see that RH
is inductively de�ned by the rules in

Figure 5.2.

Γ,x `v x R v

Γ,x `v x RH v
(H-var)

Γ,x `Λ e RH f Γ `v λx .f R v

Γ `v λx .e R̂ v
(H-abs) Γ `v v RH v ′ Γ `v w RH w ′ Γ `Λ v ′w ′ R e

Γ `Λ vw RH e
(H-app)

Γ `v v RH w Γ `Λ returnw R e
Γ `Λ return v RH e

(H-val)

Γ `Λ e RH e ′ Γ,x `Λ f RH f ′ Γ `Λ let x = e ′ in f ′ R д

Γ `Λ let x = e in f RH д
(H-let)

Γ,x `Λ e RH f Γ `Λ op(p,x .f ) R д

Γ `Λ op(p,x .e ) RH д
(H-op)

Figure 5.2: Howe extension of R.

The Howe extension of preorder λ-term relation satis�es many nice properties. These are sum-

marised by the following result.

Lemma 15. Let R be re�exive and transitive closed λ-term relation. Then the following hold:

1. Ro ⊆ RH .

2. Ro · RH ⊆ RH

3. RH is compatible, and thus re�exive.

4. RH is substitutive.

Proof. The proof of Lemma 15 is standard (this comes with no surprise as the Lemma 15 focuses on syn-

tactical, rather than semantical, properties of Howe’s construction). The reader is referred to (S. Lassen,

1998b; Pitts, 2011) for detailed proofs. Here we sketch a proof of substitutivity of RH
. We prove by

simultaneous induction on Γ, z `Λ e RH f and Γ, z `v v RH w the admissibility of the following rules:

Γ, z `Λ e R f `v v R w

Γ `Λ e[x := v] R f [x := w]

Γ, z `v v R w `v u R u ′

Γ `v v[u/x] R w[u ′/x]

The key point is to observe that the de�nition of RH
involves the open extension of R, which is value-

substitutive by construction. As an illustrative example, we show how to handle the case corresponding
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to rule (H-let). Concretely, we prove we prove Γ `Λ let x = e[z := v] in f [z := v] RH д[z := w] given

the derivation

Γ, z `Λ e RH e ′ Γ, z,x `Λ f RH f ′ Γ, z `Λ let x = e ′ in f ′ R д

Γ, z `Λ let x = e in f RH д
(H-let)

(notice that in the third premise, we are actually referring to the open extension of R, which is trivially

value substitutive). We apply the induction hypothesis on the �rst and second premise, obtaining:

Γ `Λ e[z := v] RH e ′[z := w] Γ,x `Λ f [z := v] RH f ′[z := w].

Since the open extension of R is value-substitutive, from the third premise we obtain

Γ `Λ let x = e ′[z := w] in f ′[z := w] R д[z := w],

and thus an application of rule (H-let) gives the desired thesis.

Since � is re�exive and transitive we can apply Lemma 15 on �H
. We obtain a compatible and

substitutive relation extending �H
. In particular, by property (rel 2), Lemma 15 gives the following

inequality, which we refer to as pseudo-transitivity of �H
:

Γ� · Γ�H ⊆ Γ�. (pseudo-trans)

We now prove the Key Lemma. Before entering the proof, the reader is invited to observe that so far

none of our proofs and de�nitions rely on the relator Γ being inductive nor on Γ being a relator for T
(we only relied on Γ being a relator forT only). This will not be the case for the Key Lemma, as its proof

requires Γ to be Σ-continuous.

Lemma 16 (Key Lemma). Let Γ be Σ-continuous. Then the (�H )c is an applicative simulation.

Proof. We �rst notice that `v v �H w implies `Λ vu �H vu, for any closed value u. In fact, �H
is re�exive

(meaning that `v u �H u holds) and compatible. This shows that (�H )c satis�es condition (app val).

Next, we show (�H )c satis�es condition (app comp) too. That amounts to prove that `Λ e �H f implies

JeKΓ�H
V
Jf K. Since JeK =

⊔
nJeKn and Γ is inductive, we can appeal to property (ind 3). As a consequence,

it is su�cient to prove the following statement:

`Λ e �H f =⇒ ∀n ≥ 0. JeKn Γ�H
V
Jf K.

We assume `Λ e �H f and proceed by induction on n. The case for n = 0 requires to prove ⊥ Γ�H
V
Jf K,

which indeed holds since Γ is inductive. Let us not look at the (n+ 1)-case. We proceed by case analysis

according to the de�nition of J−Kn .

• Suppose e = return v , so that JeKn+1 = η(v ). We have to show:

`Λ return v �H f =⇒ η(v ) Γ�H
V
Jf K.

Assume the antecedent of the above implication. By very de�nition of Howe extension, the latter

must be the conclusion of a derivation of the form:

`v v �H w `Λ returnw � f

`Λ return v �H f
(H-val)

By (app comp), we see that `Λ return w � f implies η(w ) Γ�V Jf K, whereas `v v �H w implies

η(v ) Γ�H
V
η(w ), by (rel unit). As a consequence, we have η(v ) (Γ�V · Γ(�

H )V ) Jf K and thus we

conclude the thesis by (pseudo-trans).

93



• Suppose e = (λx .д)v , so that JeKn+1 = Jд[x := v]Kn . We have to show:

`Λ (λx .д)v �H f =⇒ Jд[x := v]Kn Γ�H
V

.

Assume the antecedent of the above implication. By very de�nition of Howe extension, the latter

must be the conclusion of a derivation of the form:

x `Λ д �H h `v λx .h � u

`v λx .д �H u
(H-abs)

`v v �H w `Λ uw � f

`Λ (λx .д)v �H f
(H-app)

We have:

x `Λ д �H h, `v v �H w =⇒ `Λ д[x := v] �H h[x := w]

[By Lemma 15 (substitutivity)]

=⇒ Jд[x := v]Kn Γ�H
V
Jh[x := w]K.

[By induction hypothesis]

Additionally:

`v λx .h � u =⇒ `v (λx .h)w � uw

[By (app val)]

=⇒ Jh[x := w]K Γ�V JuwK.
[By (app comp)]

As a consequence, we conclude Jд[x := v]Kn Γ�H
V JuwK, by (pseudo-trans). Finally, since `Λ uw �

f implies JuwK Γ�V Jf K, by (app comp), we conclude the wished thesis, by (pseudo-trans).

• Suppose e = (let x = д in h), so that JeKn+1 = Jh[x := −]K†nJдKn . We have to show:

`Λ let x = д in h �H f =⇒ Jh[x := −]K†nJдKn Γ�H
V
Jf K.

Assume the antecedent of the above implication. By very de�nition of Howe extension, the latter

must be the conclusion of a derivation of the form:

`Λ д �H д′ x `Λ h �H h′ `Λ let x = д′ in h′ � f

`Λ let x = д in h �H f
(H-let)

First of all we notice that in order to prove the thesis, it is su�cient to prove:

Jh[x := −]K†nJдKn Γ�H
V
Jh′[x := −]K†Jд′K. (5.4)

For, we have:

`Λ let x = д′ in h′ � f =⇒ Jh′[x := −]K†Jд′K Γ�V Jf K
[By (app comp)]

=⇒ Jh[x := −]K†nJдKn Γ�H
V
Jf K.

[By (5.4) and (pseudo-trans)]

Let us prove (5.4). Applying the induction hypothesis on `Λ д �H д′ we obtain JдKn Γ�H
V
Jд′K. As

a consequence, by condition (rel bind), in order to prove (5.4) it is su�cient to prove:

`v v �H w =⇒ Jh[x := v]Kn Γ�H
V
Jh′[x := w]K.
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The latter is a direct consequence of substitutivity of �H
and of the induction hypothesis. More

precisely:

`v v �H w =⇒ `Λ h[x := v] �H h′[x := w]

[By Lemma 15 (substitutivity) and x `Λ h �H h′]

=⇒ Jh[x := v]Kn Γ�H
V
Jh′[x := w]K.

[By induction hypothesis]

• Suppose e = op(p,x .д), so that JeKn+1 = JopK(p,v 7→ Jд[x := v]Kn ). We have to to show:

`Λ op(p,x .д) �H f =⇒ JopK(p,v 7→ Jд[x := v]Kn ) Γ�H
V
Jf K.

Assume the antecedent of the above implication. By very de�nition of Howe extension, the latter

must be the conclusion of a derivation of the form:

x `Λ д �H h `Λ op(p,x .h) � f

`Λ op(p,x .д) �H f
(H-op)

As for previous cases, by (pseudo-trans) in order to prove the thesis it is su�cient to show:

JopK(p,v 7→ Jд[x := v]Kn ) Γ�H
V
JopK(p,v 7→ Jh[x := v]K). (5.5)

To see that the latter holds we appeal to condition (Σ comp):

(5.5) ⇐= ∀v ∈ V◦. Jд[x := v]Kn Γ�H
V
Jh[x := v]K

[By (Σ comp)]

⇐= `Λ д[x := v] �H h[x := v]

[By induction hypothesis]

⇐= x `Λ д �H h.

[ By Lemma 15 (substitutivity and re�exivity)]

Theorem 4. If Γ is Σ-continuous, then the open extension of e�ectful applicative similarity is a precon-
gruence relation.

Proof. We already know that � is a preorder, and thus �o is a preorder too. To prove it is compatible

(and thus a precongruence relation), it is su�cient to prove that �H = �o . By Lemma 15 we already

know that the open extension of � is included in �H
, so that it is su�cient to prove:

Γ `Λ e �H f =⇒ Γ `Λ e � f .

For that, it is su�cient to show that (�H )c ⊆ �. In fact, if that is the case, then we have (where Γ = ~x ):

Γ `Λ e �H f =⇒ ∀~v ∈ V◦. `
Λ e[~x := ~v] �H f [~x := ~v]

[Since �H
is value-substitutive]

=⇒ ∀~v ∈ V◦. `
Λ e[~x := ~v] � f [~x := ~v]

[Since (�H )c ⊆� ]

=⇒ ∀~v ∈ V◦. `
Λ e � f .

[By de�nition of open extension]

Finally, to see that (�H )c is contained in � we proceed by coinduction, showing that (�H )c is an ap-

plicative simulation. The latter is exactly the content of the Key Lemma.
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An immediate corollary of Theorem 4 is that the open extension of applicative similarity is contained

in contextual approximation (recall that � is adequate), meaning that it quali�es as a sound proof tech-

nique for the latter. The reverse inclusion, which would give full abstraction of �o does not hold in

general. A counterexample is given by ΛFM, where applicative similarity is well known to be strictly

�ner than contextual approximation (see Example 6.4.4 in (S. Lassen, 1998b)).

The next result we wish to prove is a congruence theorem for applicative bisimilarity. Since we

already know applicative bisimilarity to be an equivalence relation, what we have to do is to prove that

it is also compatible. It is not hard to realise that compatibility of ' would easily follow if ' coincides

with � ∩ �◦. This is the case in e.g. ΛM and ΛDM, but it is not the case in ΛFM. Abstractly, the failure of

such a property is re�ected by the non-validity of the identity Γ(R ∩ S) = ΓR ∩ ΓS.

Applying Howe’s construction to ' also raises some problems. In fact, the Howe extension of a

relation is built from relational re�nement and postcomposition with the original relation, thus making

the construction intrinsically asymmetric. As a consequence, RH
is in general not symmetric, meaning

that there is little hope to prove the coincidence of 'H with '. Howe (Howe, 1996) �xed this problem by

observing that the transitive closure of 'H is indeed symmetric. The adaption of Howe’s construction

based on this observation goes under the name of transitive closure trick (S. Lassen, 1998b; Pitts, 2011).

5.4.1 The Transitive Closure Trick
In this section we adapt Howe’s original formulation of the so-called transitive closure trick to prove a

congruence theorem for applicative bisimilarity. Following (Howe, 1996), we begin by noticing that the

transitive closure of the Howe extension of an equivalence λ-term relation is a compatible symmetric

λ-term relation. Recall that the transitive closure RT
of a relation R is de�ned as follows:

R (0) , I

R (n+1) , R (n) · R

RT ,
⋃
n

R (n)
.

Equivalently, we inductively de�ne RT
as follows:

Γ `Λ e R f

Γ `Λ e RT f

Γ `Λ e R д Γ `Λ д RT f

Γ `Λ e RT f
Γ `v v R w
Γ `v v RT w

Γ `v v R u Γ `v u RT w
Γ `v v RT w

Lemma 17. Let R be a re�exive and transitive λ-term relation. Then (RH )T is compatible. If additionally
R is symmetric, then (RH )T is symmetric as well.

Proof. We begin by showing that (RH )T is compatible, i.e. (̂RH )T ⊆ (RH )T . Since the composition of

compatible relations is compatible, obviously (RH )T is compatible. However, since we did not give an

explicit proof of the above fact, we sketch a proof of compatibility of (RH )T from �rst principles. The

proof is by induction on the de�nition of (̂RH )T . We show how to handle the case for sequencing (the

remaining cases are proved in a similar, but easier way). Suppose to have:

`Λ e (RH )T e ′ x `Λ f (RH )T f ′

`Λ let x = e in f (̂RH )T let x = e ′ in f ′
(comp-let)

We show `Λ let x = e in f (RH )T let x = e ′ in f ′. By very de�nition of transitive closure, there exist

natural numbers n,m such that `Λ e (RH ) (n) e ′ and x `Λ f (RH ) (m) f ′ hold. Since RH
is re�exive and
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transitive, without loss of generality we can assume n = m. In fact, if e.g. n = m + l , then we can

‘complete’ (RH ) (m)
as follows:

(RH ) (m) = (RH ) (m) ·I · · · · I︸  ︷︷  ︸
l -times

⊆ (RH ) (m) · RH · · · · RH︸          ︷︷          ︸
l -times

= (RH ) (n) .

We now prove the thesis by induction on n. The base case is trivial. Let us now prove the case for n + 1.

By very de�nition of transitive closure, we obtain the existence of computations e ′′ and f ′′ such that

the following hold:

`Λ e RH e ′′ x `Λ f RH f ′′

`Λ e ′′ (RH ) (n) e ′ x `Λ f ′′ (RH ) (n) f ′.

We apply the induction hypothesis on `Λ e ′′ (RH ) (n) e ′ and x `Λ f ′′ (RH ) (n) f ′, obtaining `Λ let x =
e ′′ in f ′′ (RH )T let x = e ′ in f ′. Moreover, since RH

is compatible, from `Λ e RH e ′′ and x `Λ f RH f ′′

we infer `Λ let x = e in f RH let x = e ′′ in f ′′. We thus have

`Λ let x = e in f ((RH )T · RH ) let x = e ′ in f ′,

from which the thesis follows, since (RH )T · RH = (RH )T .

We now show that if R is an equivalence λ-term relation, then (RH )T is symmetric. That amounts

to show (RH )T ⊆ ((RH )T )◦, which in turn is a direct consequence of RH ⊆ ((RH )T )◦. Concretely, we

simultaneously prove by induction on their premise the following implications:

Γ `Λ e RH f =⇒ Γ `Λ f (RH )T e

Γ `v v RH w =⇒ Γ `v w (RH )T v .

The proof is straightforward, and thus we show how to handle a couple of cases as illustrative examples

only.

• Suppose Γ `v vRHw is the conclusion of an instance of rule (H-var), so that we have the following

derivation:

Γ′,x `v x R w

Γ′,x `v x RH w
(H-var)

Since R is symmetric (and thus so is its open extension), Γ′,x `v x R w implies Γ′,x `v w R x .

By Lemma 15 we know that the open extension of R is contained in RH
, and thus we conclude

Γ′,x `v w RH x .

• Suppose Γ `v e RH f is the conclusion of an instance of rule (H-let), so that we have the following

derivation:

Γ `Λ e ′ RH e ′′ Γ,x `Λ f ′ RH f ′′ Γ `Λ let x = e ′′ in f ′′ R f

Γ `Λ let x = e ′ in f ′ RH f
(H-let)

Since R is symmetric (and thus so is its open extension), Γ `Λ let x = e ′′ in f ′′ R f implies

Γ `Λ f R let x = e ′′ in f ′′, and thus Γ `Λ f RH let x = e ′′ in f ′′, by Lemma 15. Moreover, we can

apply the induction hypothesis on Γ `Λ e ′RH e ′′ and Γ,x `Λ f ′RH f ′′, obtaining Γ `Λ e ′′ (RH )T e ′

and Γ,x `Λ f ′′ (RH )T f ′. By compatibility of (RH )T we obtain

Γ `Λ let x = e ′′ in e ′′ (RH )T let x = e ′ in f ′′.

We conclude Γ `Λ f ((RH )T · RH ) let x = e ′ in f ′, and thus the desired thesis.
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We can now state and prove our congruence theorem for applicative bisimilarity. Before doing

so, let us remark that our proof of the Key Lemma does not depend on applicative similarity being

the largest applicative simulation. Rather, it makes use only of � being re�exive, transitive, and an

applicative simulation. As a consequence, we can generalise the Key Lemma over all re�exive and

transitive applicative simulation.

Theorem 5. If Γ is Σ-continuous, then the open extension of e�ectful applicative bisimilarity is a congru-
ence relation.

Proof. We already know ' to be an equivalence relation (and thus 'o is). We prove that 'o is compatible

by showing that ' coincides with the restriction of ('H )T on closed terms. As for Theorem 4, from that

follows �o = ('H )T , noticing that if a λ-term relation R is value substitutive, then so is RT
.

Let us show ' = (('H )T )c . Since 'o ⊆ 'H ⊆ ('H )T , it is su�cient to show that the restriction of

('H )T on closed terms is contained in '. We prove that by coinduction, relying on the characterisation

of ' as the largest symmetric applicative simulation. As a consequence, we have to show that the

restriction of ('H )T on closed terms is a symmetric applicative simulation (with respect to Γ). Symmetry

follows by Lemma 17. Moreover, since ' is a re�exive and transitive applicative simulation, by Key

Lemma it follows that 'H is an applicative simulation too. Notice that the characterisation of ' in terms

of symmetric applicative simulations is central here. In fact, working with ' de�ned as applicative

similarity with respect to Γ ∧ Γ◦ does not allow us to apply the Key Lemma, since Γ ∧ Γ◦ is in general

not inductive. Finally, since the composition of applicative simulations is an applicative simulation, we

see that ('H )T is an applicative simulation too, and thus conclude that ' coincides with the restriction

of ('H )T on closed terms. Since by Lemma 17 the latter is compatible, ' is compatible too, and thus a

congruence relation.

It is straightforward to see that applicative bisimilarity is adequate, with adequacy being de�ned

by the predicate AdeqΓ∧Γ◦ . Therefore, Theorem 5 implies that ' is included in e�ectful contextual

equivalence, and thus that it provides a sound proof technique for the latter. As for applicative similarity,

the opposite inclusion does not hold in general (again, see (S. Lassen, 1998b)), meaning that e�ectful

applicative bisimilarity is not fully abstract for e�ectful contextual equivalence.

5.5 CIU Approximation and Equivalence
In previous section we showed that e�ectful applicative similarity (resp. bisimilarity) is sound for ef-

fectful contextual approximation (resp. equivalence), but not fully abstract. Following (Pitts, 2011), here

we show how to apply Howe’s method as developed in Section 12.2 to prove a generalisation of Mason-

Talcott CIU Theorem (Mason & Talcott, 1991), thus providing a handier characterisation of contextual

approximation (resp. equivalence).

Roughly speaking, CIU-like theorems are a family of context lemmas (Milner, 1977) stating that two

programs are contextually equivalent if no evaluation context can distinguish them. The acronymous

CIU stands for Closed Instantiation of Use, since the original theorem in (Mason & Talcott, 1991) states

that two terms are contextually equivalent if any closed instantiation of a use of the �rst is indistin-

guishable from the closed instantiation of a use of the second. Therefore, a use is simply an evaluation

context, i.e. an environment that uses its input program. We will say more about ideas behind CIU

approximation and equivalence in the next chapter, where such notions will be central themes.

Recall from Section 3.2 that ΛΣ evaluation contexts are de�ned by the grammar:

E ::= [−] | let x = E in e .
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The �rst requirement we have to make in order to de�ne a meaningful notion of CIU approximation

(and thus equivalence) is that whenever a term e CIU-approximates a term f , then no use, i.e. no

evaluation context, can produce an observable behaviour using e that it is not able to produce using

f . As for contextual approximation, we model approximation under (ground) observations (such us

convergence, may convergence, or probability of convergence), as the relation Γ0V . Accordingly, we

said that a λ-term relation R is adequate with respect to Γ if R ∈ AdeqΓ . Therefore, we require CIU

approximation �ciu
to satisfy the following property:

e �ciu
Λ f ⇐⇒ ∀E. JE[e]K Γ0V JE[f ]K.

That, however, does not take into account values, as evaluation contexts take computations as in-

put and produce new computations. As a consequence, we give the following de�nition inspired by

(P. B. Levy, 2007).

De�nition 37. Let Γ be a relator. De�ne e�ectful CIU approximation �ciu with respect to Γ as the largest
closed λ-relation R such that:

`Λ e R f =⇒ JeK Γ0V Je ′K (ciu 1)

`Λ e R e ′ =⇒ ∀f ∈ Λx . `Λ let x = e in f R let x = e ′ in f . (ciu 2)

`v v R v ′ =⇒ ∀e ∈ Λx . `Λ e[x := v] R e[x := v ′]. (ciu 3)

De�nition 37 indeed de�nes a λ-term relation, since

⋃
{R | R satis�es (ciu 1), (ciu 2), (ciu 3)} itself

satis�es (ciu 1), (ciu 2), and (ciu 3). Finally, we de�ne e�ectful CIU equivalence 'ciu
with respect to Γ as

�ciu ∩ (�ciu)◦.
As usual, we apply the notation and terminological conventions of Remark 9. Accordingly, we refer

to e�ectful CIU approximation (resp. equivalence) with respect to Γ simply as CIU approximation (resp.

equivalence). It is a straightforward exercise to verify that �ciu
is a preorder (and 'ciu

an equivalence)

relation.

Lemma 18. CIU approximation �ciu is a re�exive and transitive λ-term relation, whereas CIU equivalence
'ciu is a re�exive, symmetric, and transitive λ-term relation.

We also notice that (the closed restriction of) �ctx
satis�es conditions (ciu 1), (ciu 2), and (ciu 3),

meaning that (�ctx)c ⊆ �ciu
(similarity, one easily sees that ('ctx)c is included in 'ciu

). Actually, proving

that (�ctx)c satis�es condition (ciu 3) requires to show substitutivity of �ctx
. Although we did not give

any proof of that, the reader should notice that we can modify the theory of Section 5.2 working with

the complete lattice of compatible and substitutive relations, rather than with the complete lattice of

compatible relations only. In particular, an analogue of Lemma 12 can be easily proved for the space

of compatible and substitutive relations, meaning that there exists a largest compatible and substitutive

adequate λ-term relation. This change does not a�ect our soundness results, as e�ectful applicative

(bi)similarity, as well as the other notions of equivalence and re�nement studied in the next chapters,

are substitutive.

Another, more direct proof of substitutivity of �ctx
is obtained by showing that the (generalised)

β-equivalence relation =β , de�ned by:

Γ,x `Λ e Γ `v v

Γ `Λ (λx .e )v =β e[x := v]

is valid for �ctx
. An elegant way to prove such a result is by showing that the open extension of e�ectful

Kleene approximation, de�ned by

`Λ e �kle f ⇐⇒
4 JeK Γ0V Jf K,
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is contained in �ctx
. We do not prove such a result here (although that can be easily done). The reader

can consult e.g. Section 4.3 and Section 6.3 in (S. Lassen, 1998b) for details (although instantiated for ΛM

and ΛFM only).

Lemma 19. E�ectful contextual approximation is contained in the open extension of CIU approximation.

Proof. We have to show

Γ `Λ e �ctx f =⇒ Γ `Λ e �ciu f .

Let Γ = ~x . Then we have:

Γ `Λ e �ctx f =⇒ ∀~v ∈ V◦. `
Λ e[~x := ~v] �ctx f [~x := ~v]

[Since �ctx
is value-substitutive]

=⇒ ∀~v ∈ V◦. `
Λ e[~x := ~v] �ciu f [~x := ~v]

[Since (�ctx)c ⊆�ciu
]

=⇒ ∀~v ∈ V◦. `
Λ e �ciu f .

[By de�nition of open extension]

Next, we wish to prove that actually (�ciu)o provides an alternative characterisation of �ctx
, and thus

that it is fully abstract for it. For that it is su�cient to show compatibility of (�ciu)o . We prove such a

compatibility result using Howe’s method. In fact, by Lemma 18 �ciu
is a preorder, and thus by Lemma 15

we see that (�ciu)H is re�exive, compatible, and substitutive open λ-term relation. Therefore, we wish

to show that the closed restriction of (�ciu)H is contained in �ciu
. Mimicking the proof of Lemma 19, we

see that we can then conclude (�ciu)o = (�ciu)H .

Let us show ((�ciu)H )c ⊆ �ciu
. Since (�ciu)H is compatible and substitutive, ((�ciu)H )c obviously

satis�es conditions (ciu 2) and (ciu 3). The next lemma, which plays the same role played by Lemma 16

for applicative similarity, shows that (�ciu)H is adequate.

Lemma 20. Let Γ be a Σ-continuous relator. If `Λ e (�ciu)H f , then JeK Γ0V Jf K.

Proof. The proof goes as for Lemma 16. Since Γ is inductive, it is su�cient to prove that for any n ≥ 0

we have:

`Λ e �ciu f =⇒ JeKn Γ0V Jf K.

The case for n = 0 is trivial, as Γ is inductive. For the inductive step, we proceed by case analysis on e .

• If e is of the form return v , then `Λ return v (�ciu)H f must be the conclusion of a derivation of

the form:

`v v (�ciu)H v ′ `Λ return v ′ �ciu f

`Λ return v (�ciu)H f
(H-val)

In particular, by condition (rel unit), `v v (�ciu)H v ′ implies η(v ) Γ(�ciu
V
)H η(v ′), and thus η(v ) Γ0V

η(v ′). Since `Λ return v ′ �ciu f , we have

Jreturn vK = η(v ) Γ0V η(v
′) = Jreturn v ′K Γ0V Jf K,

from which we conclude the desired thesis.
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• If e = (λx .e ′)v , then `Λ (λx .e ′)v (�ciu)H f must be the conclusion of a derivation of the form:

x `Λ e ′ (�ciu)H д `v λx .д �ciu u

`v λx .e ′ (�ciu)H u
(H-abs)

`v v (�ciu)H v ′ `Λ uv ′ �ciu f

`Λ (λx .e ′)v (�ciu)H f
(H-app)

From x `Λ e ′ (�ciu)H д and `v v (�ciu)H v ′, by substitutivity, we infer `Λ e ′[x := v] (�ciu)H д[x := v ′],
and thus Je ′[x := v]Kn Γ0V Jд[x := v ′]K. We now reason as follows. First of all we observe that

we have the following closure properties for �ciu
.

∀v ,v ′. `v v �ciu v ′ =⇒ `Λ return v �ciu return v ′

∀v ,v ′. `v v �ciu v ′ =⇒ ∀w ∈ V◦. `
Λ let x = (return v ) in (xw ) �ciu let x = (return v ′) in (xw ).

In fact, the �rst implication follows by (ciu 3) taking the open computation x `Λ return x , whereas

the second implication follows from the �rst one and property (ciu 3) taking the open computation

y `Λ let x = y in xw . As a consequence, we have:

`v λx .д �ciu u =⇒ `Λ let y = (return λx .д) in (yv ′) �ciu let y = (return u) in (yv ′)

=⇒ `Λ Jlet y = (return λx .д) in (yv ′)K Γ0V Jlet y = (return u) in (yv ′)K
[By (ciu 1)]

=⇒ Jд[x := v ′]K Γ0V Juv ′K
=⇒ Je ′[x := v]Kn Γ0V Juv ′K
[Since Je ′[x := v]Kn Γ0V Jд[x := v ′]K]
=⇒ Je ′[x := v]Kn Γ0V Jf K
[Since `Λ uv ′ �ciu f ].

We are done since J(λx .e ′)v )Kn+1 = Je ′[x := v]Kn .

• If e = (let x = д in д′), then the thesis directly follows from condition (rel bind) as in Lemma 16.

In fact `Λ let x = д in д′ (�ciu)H f must be the conclusion of a derivation of the form:

`Λ д (�ciu)H h x `Λ д′ (�ciu)H h′ `Λ let x = h′ in h′ �ciu f

`Λ let x = д in д′ (�ciu)H f
(H-let)

By induction hypothesis, from `Λ д (�ciu)H h we infer JдKn Γ0V JhK. Moreover, using substitutivity

of (�ciu)H and the induction hypothesis, we see that x `Λ д′ (�ciu)H h′ implies:

∀v ,v ′ ∈ V◦. `
v v (�ciu)H v ′ =⇒ Jд′[x := v]Kn Γ0V Jh′[x := v ′]K.

By condition (rel bind) we thus conclude

Jlet x = д in д′Kn+1 = Jд′[x := −]K†nJдKn Γ0V Jh′[x := −]K†JhK = Jlet x = h in h′K

and thus the wished thesis, since let x = h′ in h′ �ciu f .

• If e = op(p,x .д), then `Λ op(p,д) (�ciu)H f must be the conclusion of a derivation of the form:

x `Λ д (�ciu)H д′ `Λ op(p,x .д′) �ciu f

`Λ op(p,x .д) (�ciu)H f
(H-op)
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We have:

x `Λ д (�ciu)H д′ =⇒ ∀v ∈ V◦. `
Λ д[x := v] (�ciu)H д′[x := v]

[By substitutivity and re�exivity of (�ciu)H ]

=⇒ ∀v ∈ V◦. Jд[x := v]Kn Γ0V Jд′[x := v]K
[By induction hypothesis]

=⇒ JopK(p,v 7→ Jд[x := v]Kn ) Γ0V JopK(p,v 7→ Jд′[x := v]K)
[By (Σ comp)]

=⇒ Jop(p,x .д)Kn+1 Γ0V Jop(p,x .д′)K
=⇒ Jop(p,x .д)Kn+1 Γ0V Jf K
[Since `Λ op(p,x .д′) �ciu f ]

Theorem 6. (The open extension of) e�ectful CIU approximation and e�ectful CIU equivalence coincide
with e�ectful contextual approximation and e�ectful contextual equivalence, respectively.

Proof. By Lemma 20 (and previous discussion) (�ciu)H restricted to closed values is contained in �ciu
, and

thus (�ciu)H coincides with (�ciu)o . Therefore (�ciu)o is compatible, substitutive, and preadequate, and

thus contained in �ctx
. By Lemma 19 �ctx

is included in (�ciu)o , and thus we have (�ciu)o = �ctx
. Finally,

by Proposition 15 we have ('ciu)o = 'ctx
too.
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Chapter 6

Monadic Applicative Similarity and
Bisimilarity

Language is the house of the truth of

Being.

Martin Heidegger, Letter on

Humanism

In Chapter 5 we have de�ned e�ectful applicative similarity and bisimilarity for ΛΣ, a call-by-value
calculus with algebraic e�ects. It is not hard to see that the theory developed there can be rephrased

in a call-by-name setting with minimal e�orts. Theorem 4 and Theorem 5 show that e�ectful applica-

tive similarity and bisimilarity are sound proof techniques for e�ectful contextual approximation and

equivalence, respectively, although they are not fully abstract. For instance, when instantiated with

the nondeterministic monad FM, e�ectful applicative similarity can be shown to be strictly �ner than

contextual approximation (S. Lassen, 1998b).

In a call-by-name setting similar results hold. However, due to the simpler nature of call-by-name

calculi, whose programs can only test their inputs in functional position, it is possible to characterise

e�ectful contextual equivalence and approximation coinductively using a notion of e�ectful applicative-

like (bi)similarity. The de�nition and analysis of such a notion of (bi)similarity, which we call monadic
applicative (bi)similarity, constitute the main subject of this chapter.

Monadic applicative (bi)similarity builds on the idea of de�ning program equivalences not (directly)

on programs, but on their semantics (i.e. on monadic values), which is something simply unsound in a

call-by-value setting, as we will see. This way, the interaction between a program and the environment

can be modeled by an ordinary, deterministic, transition system and, with minimal side conditions, the

resulting notion of (bi)similarity can be proved to be sound and fully abstract with respect to contextual

approximation and equivalence.

Before entering technicalities, we outline the main ideas behind this chapter by means of a semi-

formal discussion. Before that, however, it is convenient to introduce the calculus used in this chapter

in full generality.

6.1 A Computational Call-by-name Calculus
First of all we notice that in a call-by-name setting, the distinction between values and computations

has a minimal importance. For that reason we will work with the coarse-grain version of ΛΣ, denoted
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by Λ(n)
Σ , whose syntax is de�ned by the following grammar:

v ,w ::= x | λx .e

e , f ::= v | e f | op(p,x .e )

All syntactical and notational conventions are the same given for ΛΣ
1
, with the exception that in Λ(n)

Σ
we allow the substitution of a (generic) term inside another (generic) term: we write f [x := e] for the

term obtained by simultaneous substitution of all free occurrences of x in f with e . Since in this chapter

we will work with Λ(n)
Σ only, for readability we will omit superscripts, and simply refer to it as ΛΣ.

Operational semantics of ΛΣ is de�ned with respect to a Σ-continuous monad T = 〈T ,η,−†〉 which,

from now on, we assume to be �xed. Additionally, it is convenient to de�ne the operational semantics

of ΛΣ relying on Felleisen’s notion of a call-by-name evaluation context (Felleisen & Hieb, 1992). Call-

by-name evaluation contexts are terms with a single hole [−] de�ned by the following grammar, where

e is a closed term:

E, F ::= [−] | Ee .

We write E[e] for the term obtained by substituting the term e for the hole [−] in E. Notice that a call-

by-name evaluation context (evaluation context, hereafter) is just an expression of the form [−]e1 · · · en .

Redexes are expressions of the form (λx .f )e or op(p,x .e ), the former producing a computation step,

the latter producing the e�ect described by the operation op. We notice that any term is either a value

or an expression of the form E[r ], for a redex r . More explicitly, any term e is either a value v or can be

uniquely decomposed as either E[(λx .f )e] or E[op(p,x .e )] (see also Lemma 25 and Lemma 29).

As usual, operational semantics is de�ned by means of an evaluation function J−K : Λ◦ → TV◦
mapping each closed term e ∈ Λ◦ to a monadic values JeK ∈ TV◦.

De�nition 38. De�ne the N-indexed family of maps J−Kn : Λ◦ → TV◦ as follows:

JeK0 , ⊥

JvKn+1 , η(v )

JE[(λx .f )e]Kn+1 , JE[f [x := e]]Kn
JE[op(p,x .e )Kn+1 , JopK(p,v 7→ JE[e[x := v]]Kn )

The sequence (JeKn )n forms an ω-chain in TV◦, so that we can de�ne JeK as
⊔

nJeKn .

As usual, monotonicity and continuity of operations JopK and Kleisli extension ensure the evaluation

function of De�nition 38 to be the least map φ : Λ◦ → TV◦ such that the following identities:

φ (v ) = η(v )

φ (E[(λx .e ) f ]) = φ (E[e[f := x]])

φ (E[op(p,x .e )) , JopK(p,v 7→ φ (E[e[x := v]])).

Finally, we observe that we can rephrase the notion of an e�ectful applicative (bi)simulation to the

call-by-name setting. Even if we do not syntactically distinguish between values and computations, it

is still useful to work with (closed) λ-term relations.

1
In particular, Λ denotes the collection of all terms, whereas V ⊆ Λ denotes the collection of all values. Closed terms and

closed values are denoted by Λ◦ and V◦, respectively.
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De�nition 39. A closed λ-term relation R = (RΛ,RV ) is an e�ectful applicative simulation with respect
to a relator Γ for T (applicative simulation, for short) if:

e RΛ f =⇒ JeK ΓRV Jf K
v RV w =⇒ ∀e ∈ Λ◦. ve RΛ we .

Notice that we do not require RV ⊆ RΛ. However, by condition (rel unit) we can assume that to be

the case without loss of generality. In fact, any applicative simulation R = (RΛ,RV ) can be extended to

(RΛ∪RV ,RV ), and the latter is still an applicative simulation (notice thatvRVv
′
implies η(v ) ΓRVη(v

′),
by condition (rel unit)).

The notions of e�ectful applicative bisimulation, e�ectful applicative similarity, and e�ectful ap-

plicative bisimilarity are de�ned building on De�nition 39 as in Chapter 5. In particular, we denote

e�ectful applicative similarity and e�ectful applicative bisimilarity by �A
and 'A

, respectively.

6.2 Lift Transition Systems, Not Relations
To illustrate the rationale behind monadic applicative (bi)similarity, we �rst of all give a more explicit

characterisation of e�ectful contextual equivalence and approximation. In fact, although in Chapter 5

we gave an elegant de�nition of e�ectful contextual approximation and equivalence (with respect to a

relator Γ), here it is convenient to be a bit sloppy. We notice that, intuitively, e contextually approximates

f if and only for any context C, JC[e]KΓ0VJC[f ]K. Here a context is a syntax tree with a unique hole

de�ned by the following grammar:

C ::= [−] | λx .C | eC | Ce | op(p,x .C).

As usual, we write C[e] for the term obtained by the replacing the hole [−] with e in C. We say that a

context C closes e , if C[e] is a closed term. We denote by Cl(e ) the collection of context that closes e .

Remark 10. Contrary to terms, contexts cannot be identi�ed modulo renaming of bound variables. In

fact, given a context C, free variables of a term e may become bound in C[e] (e.g. consider the context

λx .[−] and the term x ). Equating contexts that di�er only for the name of their bound variables can lead

to undesired behaviours. For instance, the two contexts λx .[−] and λy.[−] are equal modulo renaming

of bound variables, but give di�erent terms when �lled in with e.g. the term x .

As a consequence, working with contexts usually involves to deal with a lot of ‘syntactic bureau-

cracy’, which is the reason why in Chapter 5 we gave a ‘context-free’ de�nition of contextual equivalence

and approximation. The reader can refer to (S. Lassen, 1998b; Pitts, 2011) for further details.

We can then rephrase the notion of e�ectful contextual approximation �ctx
with respect to a relator

Γ as follows:

e �ctx f ⇐⇒
4
∀C ∈ Cl(e ) ∩ Cl( f ). JC[e]K Γ0V JC[f ]K.

It is straightforward to see that by slightly modifying proofs of Chapter 5 we can prove soundness of

(the open extension of) �A
and 'A

with respect to �ctx
and 'ctx

(the latter being de�ned as �ctx ∩ (�ctx)◦),
respectively. That is, we have the inclusions:

(�A)o ⊆ �ctx

('A)o ⊆ 'ctx
.

Moreover, the inclusion is strict. To see that let us consider the calculus ΛFM. It is not hard to convince

ourselves that all terms of the form e , λx .( f or д) and e ′ , (λx .f )or (λx .д) are contextually equivalent.
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An informal argument for their equivalence is the following (a formal proof of their equivalence will

be given later in full generality). Since in call-by-name calculi terms can only be tested in functional

position, any context C will either not test e and e ′ at all, so that trivially no operational di�erence

between C[e] and C[e ′] will be detected, or it will test them in functional position. That means that

the evaluation of C[e] and C[e ′] will reach a state in which the terms eд and e ′д′ have to be evaluated.

Here д and д′ are terms produced during the evaluation of C[e] and C[e ′] that may ‘contain’ other

occurrences of e , e ′, respectively. In particular, we see that the only way for C to test e and e ′ is to test

them against arbitrary input arguments. We thus reach the following conclusion: testing a program e
in a context C is equivalent to testing e in functional position against �nite sequences of inputs. This is

nothing but the call-by-name version of the CIU Theorem in Section 5.5, which we can state as follows.

Theorem 7 (CIU). The following hold for all closed terms e , f :

e �ctx f ⇐⇒ ∀д1, . . . ,дn . Jeд1 · · ·дnK Γ0V Jf д1 · · ·дnK.

Notice that Theorem 7 states that �ctx
(and thus and 'ctx

) is a form of trace approximation, and thus

it is intrinsically deterministic. Using Theorem 7 we can now easily show that the terms e ans e ′ are

indeed contextually equivalent. This comes with no surprise: contextual equivalence being a form of

trace equivalence it is not sensitive to ‘branching behaviours’, and thus by no means it can tell e and e ′

apart.

This is not the case for applicative bisimilarity which, instead, is sensitive to forms of branching.

From a bisimulation perspective, the di�erence between e and e ′ is clear: e postpones the nondeter-

ministic choice to the moment it receives an input, whereas e ′ �rst makes the choice, and then waits to

receive an input. Accordingly, it is su�cient to instantiate
2 e as xΩI and e ′ as xIΩ to observe that e and

e ′ cannot be applicatively bisimilar. In fact, the reader might have recognised that e and e ′ are nothing

more than the encoding on ΛFM of the labelled transition systems below, which are standard examples

in concurrency theory to show that bisimilarity is strictly �ner than trace equivalence.

•

a
��
•

b

zz
b

$$
• •

•
a

zz
a

$$
•

b ��

•

b��
• •

Summing up, we observed that in a nondeterministic setting, applicative bisimilarity is sensitive

to branching, whereas contextual approximation is not. This is because, in full generality, contextual

approximation is a form of trace approximation, and thus intrinsically deterministic. This last obser-

vation suggests an easy way to make applicative similarity fully abstract with respect to contextual

approximation, namely to determinise our notion of e�ectful applicative similarity.

Recall that in Chapter 2 we argued the the operational semantics of Λp induces a ‘kind of’ Markov

chain. With a similar analogy, we can claim that the operational semantics of ΛFM induces a ‘kind of’

transition system with divergence, where a labelled transition system with divergence consists of a set

X (the state space) together with a transition function c : X → (FMX )A (the setA being the set of labels

or actions).

There are at least two natural notions of approximation for such systems. The �rst one is given by

‘Milner style’ similarity (Milner, 1989; Park, 1981), and can be de�ned using a suitable variation of the

relator
ˆFM. The second one is given by trace approximation, and can be elegantly de�ned using the

2
As usual, I denotes the identity combinator λx .x whereas Ω denotes the purely divergent term (λx .xx ) (λx .xx ).
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so-called powerset construction from automata theory
3

(Rabin & Scott, 1959). Roughly speaking, the

powerset construction lifts a transition system c : X → (FMX )A to a deterministic transition system

c ′ : FMX → (FMX )A, whose state space is now (morally) given by sets of elements of the original state

space. Writing Y for FMX , we see that c ′ : Y → YA
is a deterministic labelled transition system, on

which a notion of similarity can be easily de�ned. Remarkably, similarity in c ′ : Y → YA
coincides with

trace approximation in c : X → (FMX )A.

Taking inspiration from the powerset construction we aim to de�ne notions of applicative similarity

and bisimilarity on monadic values, rather than on terms, so to obtain a coinductive characterisation of

contextual approximation and equivalence.

Remark 11 (The labelled transition system of λ-terms). We already claim twice that the operational se-

mantics of the calculi considered so far induce ‘kind of’ transition systems. We now make such intuition

a formal observation, de�ning the labelled transition system (lts, hereafter) of λ-terms. Although we

will not work with the lts of λ-term explicitly, the reader might �nd such a notion useful for intuitions

and informal arguments.

The lts of λ-terms is a generalisation of Abramsky’s applicative transition systems (Abramsky,

1990a), and it is de�ned as the pair 〈eval : Λ◦ → TV◦, apply : V◦ → (Λ◦)
Λ◦〉, where the evaluation

function eval and the application function apply are de�ned as:

eval(e ) , JeK

apply(v , e ) , ve .

Looking at the lts of λ-terms we see how the key ingredient to de�ne the notion of an e�ectful

applicative (bi)simulation is a notion of lifting (a relator) that allows to lift relations over values to

relations over monadic values. In fact, using the lts of λ-terms we see that the proof obligations of

De�nition 39 can be expressed by the following lax commutative diagrams (the right hand side diagrams

is actually a family of diagrams, as e ranges over arbitrary closed terms):

Λ◦

⊆

eval //

RΛ
_
��

TV◦

ΓRV_
��

Λ◦ eval
// TV◦

V◦

⊆

apply(−,e ) //

RV_
��

Λ◦

RΛ
_
��

V◦ apply(−,e )
// Λ◦

However, the lts of λ-terms also suggests another route to de�ne notions of program equivalence

and approximation. Instead of focusing on lifting relations, we can use the strong monad structure ofT
to lift the whole lts to 〈eval′ : TΛ◦ → TV◦, apply′ : TV◦ → (TΛ◦)

Λ◦〉 where

eval′ , eval†

apply′ , curry(ηΛ◦ · uncurry(apply))
∗
.

Using the new lts we can de�ne monadic applicative simulation as a pair of relations (R : TΛ◦ +→

TΛ◦,S : TV◦ +→ TV◦) such that:

E R F =⇒ eval′(E ) Γ0V eval′(F )

V S W =⇒ ∀e ∈ Λ◦. apply′(V , e ) R apply′(W , e ).

As usual, we de�ne monadic applicative similarity as the largest applicative simulation. We will ex-

plain the rationale behind monadic applicative similarity in the next section. For now, it is su�cient

to observe that although coinductively de�ned, this new notion of applicative similarity is a trace-like

approximation.

3
Such a construction has been extended to a large class of coalgebras in e.g. (Hasuo, Jacobs, & Sokolova, 2007; Jacobs, Silva, &

Sokolova, 2012).
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6.3 Monadic Applicative Similarity and Bisimilarity
In this section we de�ne the core notions of this chapter, namely the notions of a monadic applicative

simulation and bisimulation.

We start by noticing that in previous section, oftentimes we compared programs using the relation

Γ0V . In Chapter 5 we proved such a relation to induce an interesting adequacy predicate, as it captures

the idea of ground observation indistinguishability. For instance, we see that JeK ( ˆDM ∧ ˆDM
◦
)0V Jf K

holds if and only if e and f have the same probability of convergence. As a consequence, if we let our

ground observation to be the probability of convergence of a program, then JeK ( ˆDM ∧ ˆDM
◦
)0V Jf K states

exactly that no ground observation can distinguish e and f .

The drawback of this approach is that the notion of ground observation remains implicit. Even if it

is possible to develop the theory of monadic applicative (bi)similarity using the relation Γ0V only, it is

useful and instructive to introduce an explicit notion of ground observation, and to work with the latter.

Intuitively, a ground observation is a function that takes a monadic value (representing the result of

an e�ectful computation) and returns what is observable of it. Following standard practice, we assume

that the observable part of a computation consists of the side e�ects happened during such a compu-

tation only. As a consequence, the observable part of a computation is uniquely determined by the

semantics of the (algebraic) operations involved.

De�nition 40. Let 1 = {∗} be the one element set and !X : X → 1 be the unique function mapping
each element in X to ∗. De�ne the observation function obs : TV◦ → T1 as T (!V◦ ). Observations trivially
extends to terms by de�ning obs (e ) , obs (JeK).

We can immediately prove basic algebraic properties of the observation function.

Lemma 21. The following identities hold for any closed value v and ω-chain (vn )n in TV◦.

obs (⊥) = ⊥1

obs (ηV◦ (v )) = η1 (∗)

obs (JopKV◦ (p,κ)) = JopK1 (p,obs · κ)

obs (
⊔
n<ω

vn ) =
⊔
n<ω

obs (vn ).

Proof. We �rst observe that by very de�nition of monad we have obs = (η1· !)
†
. As a consequence, we

can rely both on strictness and continuity of −† to prove the �rst and last identities above. The second

identity can be easily proved using standard monad equalities, whereas the third identity one is a direct

consequence of algebraicity of operation symbols.

Remark 12. Notice that the function obs is uniquely determined by the signature Σ. This is because of

our choice of not distinguishing between values. Nevertheless, it is easy to see that our de�nition of obs
can be extended to any function γ : V◦ → O, where O represents a set of observables and γ encodes a

ground observation on values. In fact, we would just de�ne obs as η · γ .

The following result links the map obs with the relation Γ0V . Intuitively, it states that depending on

whether we are dealing with relators for simulation or bisimulation, if JeK and Jf K are related by Γ0V ,

i.e. JeK Γ0V Jf K holds, then either the ground observation of f re�nes the ground observation of e , or e
and f have the same ground observation.

Lemma 22. We say that a relator Γ for a functor T is �at if Γ satis�es (rel funct 1)
4, and that a relator is

quasi-�at if ΓIX = vX (recall that vX is an ω-pointed complete partial order on TX ). The following hold:
4
I.e. ΓIX = ITX
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1. If Γ is �at, then Γ0V = obs
◦ · IT1 · obs .

2. If Γ is quasi-�at, then Γ0V = obs
◦· v1 ·obs .

Proof. Suppose Γ to be �at. Then calculate:

obs◦· v ·obs = (T !V◦ )
◦ · ΓI1 ·T !V◦

[By (rel funct 1)]

= Γ(!◦
V◦
· I1·!V◦ )

[By (stability)]

= Γ 0V .

Similarly, we see that if Γ is quasi-�at, then Γ0V = obs
◦· v1 ·obs .

Finally, we notice that most of the relators of the form
ˆT∧ ˆT◦ in Section 4.3 are �at, and that most of

the relators of the form
ˆT in Section 4.3 are quasi-�at. In fact, it is easy to see that since vX ∩ v

◦
X= ITX ,

if Γ is quasi-�at, then Γ ∧ Γ◦ is �at.

From now on we assume relators to be quasi-�at. This is a convenient assumption, as otherwise the

following notions of contextual approximation and equivalence would be di�erent than the one de�ned

in terms of relators. In fact, we rephrase the notions of contextual equivalence and approximation in

terms of obs , as well as the notion of e�ectful CIU equivalence and approximation, as follows.

De�nition 41. Contextual approximation �ctx
: Λ +→ Λ is de�ned as follows:

e �ctx f ⇐⇒
4
∀C ∈ Cl(e ) ∩ Cl( f ). obs (C[e]) v obs (C[f ]).

CIU approximation �ciu
: Λ◦ +→ Λ◦ is de�ned as follows, where e , f are closed terms:

e �ciu f ⇐⇒
4
∀E. obs (E[e]) v obs (E[f ]).

As usual, we de�ne contextual 'ctx and CIU equivalence 'ciu as �ctx ∩ (�ctx)◦ and �ciu ∩ (�ciu)◦, respectively.

Finally, we de�ne monadic applicative simulation and monadic applicative bisimulation. These are

relations over monadic values that test the latter applicatively. In order for that to make sense, we have

to lift the notion of application from terms to monadic values.

De�nition 42. For v ∈ TV◦ and e ∈ Λ◦ de�ne the monadic application v ∗ e ∈ TV◦ of e to v as

v ∗ e , (v 7→ Jv f K)† (v).

We immediately notice that Je f K = JeK ∗ f and that straightforward calculations give the following

identities:

⊥ ∗ e = ⊥;

η(λx .f ) ∗ e = Jf [e := x]K;
JopK(p,κ) ∗ e = JopK(p, i 7→ κ (i ) ∗ e ).

De�nition 43. A relation R : TV◦ +→ TV◦ is a monadic applicative simulation (monadic simulation,
hereafter) if

v R w =⇒ obs (v) v obs (w) ∧ ∀e ∈ Λ◦. v ∗ e R w ∗ e .

Monadic applicative similarity (monadic similarity, hereafter) �M is de�ned as the largest monadic simu-
lation. We say that f is monadic similar to e , and write e �M f , if JeK �M Jf K.
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In particular, De�nition 43 induced a monotone endofunction R 7→ [R] (monotonicity being a

consequence of monotonicity of obs) on the complete lattice Rel(TV◦,TV◦) such that R is a monadic

simulation if and only if R ⊆ [R]. As a consequence, we can de�ne monadic applicative similarity as

the greatest �xed point of R 7→ [R]. As usual, �M
comes with as associated coinduction proof principle:

R ⊆�M

R ⊆ [R]

(�M
-coind.)

Using the coinduction proof principle of monadic similarity we can prove �M
to be preorder.

Proposition 18. Monadic similarity is re�exive and transitive.

Proof. The proof is by coinduction. First we notice that ITV◦ is a monadic simulation. Secondly, we

observe that if R and S are applicative simulation, then so is S · R (from which follows �M · �M ⊆ �M
).

In fact, if both v R w and w S u hold, then we have obs (v) v obs (u), as v is transitive. Moreover,

since R and S are simulation, for any closed term e we have v ∗ e R w ∗ e and w ∗ e S u ∗ e , and thus

v ∗ e (S · R ) u ∗ e .

We also notice that monadic similarity is deterministic, so that we can de�ne monadic applicative
bisimilarity (monadic bisimilarity, hereafter) as �M∩ (�M)◦. Since we have 'ciu = �ciu ∩ (�ciu)◦ and 'ctx =

�ctx ∩ (�ctx)◦, our metatheoretical results on program re�nement will straightforwardly generalises to

the associated notions of program equivalence. Additionally, as a further consequence of determinism,

we see that monadic similarity is a trace-like approximation, and that it actually coincides with CIU

approximation.

Proposition 19. Monadic similarity �M coincides with CIU approximation �ciu.

Proof. We �rst prove �M ⊆ �ciu
. We notice that by very de�nition of monadic simulation, e �M f implies

eд �M f д, for any term д. As a consequence, for any evaluation context E, e �M f implies E[e] �M E[f ],

and thus obs (E[e]) v obs (E[f ]). To prove �ciu ⊆ �M
we proceed by coinduction showing that

R , {(JE[e]K, JE[f ]K) | e �ciu f }

is a monadic simulation. Clearly R is closed under the lifting of application, since JE[e]K∗ f = JE[e]f K =
JE ′[e]K, for E ′ , E f . To conclude the thesis, we have to show obs (E[e]) v obs (E[f ]). This is obviously

the case since e �ciu f .

Corollary 3. Monadic bisimilarity 'M coincides with CIU equivalence 'ciu.

Example 40. We show that if JopK1 (p, i 7→ η(∗)) = η(∗), then λs distribute over operations. I.e.

op(p,x .λy.e ) 'M λy.op(p,x .e ).

By Corollary 3, it is su�cient to show op (p,x .λy.e ) 'ciu λy.op(p,x .e ). Let E , [−]f1 · · · en . We show by

induction on n

obs (E[op (p,x .λy.e )]) = obs (E[λy.op(p,x .e )]).

The case forn ≥ 1 is trivial. Supposen = 0, so that we have to showobs (op(p,x .λy.e )) = obs (λy.op(p,x .e )).
We calculate:

obs (op(p,x .λy.e )) = obs (JopKV◦ (p,v 7→ Jλy.e[x := v]K))
= JopK1 (p,v 7→ obs (η(λy.e[x := v])))

= JopK1 (p,v 7→ η(∗))

= η(∗)

= obs (λy.op(p,x .e )).
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The condition JopK1 (p, i 7→ η(∗)) = η(∗) holds both for the partial nondeterministic monad FM (with

signature ΣFM) and the partial distribution monad DM (with signature ΣDM), but fails, for instance, for

the output monad O∞ (with signature ΣO∞ ). �

6.4 Full Abstraction
In this section we prove a CIU theorem (cf. Theorem 8) stating that �ciu

coincides with �ctx
. In virtue of

Proposition 19, we will also obtain full abstraction of �M
with respect to �ctx

. Our proof of Theorem 8

follows (Pitts, 2011) and employs a variation of Howe’s technique as de�ned in Chapter 5. First of all,

we adapt the notion of Howe extension of a λ-term relation de�ned in Chapter 5 to Λ(n)
Σ . In order to

deal with evaluation contexts, we also de�ne a suitable extension RE
of a λ-term relation R to closed

evaluation contexts (i.e. evaluation contexts built using closed terms only).

Remark 13. The calculus Λ(n)
Σ being coarse-grain, we work with λ-term relations de�ned on the whole

set of terms. As a consequence, for a λ-term relation R we simply write Γ ` e R f to say the the open

terms e , f with free variables in Γ are related by R. As usual, we use the notion ` e R f and e R f ,

interchangeably. All the basic relational constructions (such as open extension and closed restriction)

of Chapter 5 are modi�ed accordingly.

De�nition 44. Given a closed λ-term relation R, the Howe extension RH of R is the open λ-term relation
inductively de�ned by rules (H-var)-(H-op) in Figure 6.1. The evaluation context extension RE of R is the
relation over closed evaluation contexts de�ned by rules (E-nil) and (E-nil) in Figure 6.1.

Γ ` x R e
Γ ` x RH e

(H-var)

Γ,x ` e RH д Γ ` λx .д R f

Γ ` λx .e RH f
(H-abs)

Γ ` e RH e ′ Γ ` h RH д′ Γ ` e ′д′ R f

Γ ` eд RH f
(H-app)

Γ,x ` e RH д Γ ` op(p,x .д) R f

Γ ` op(p,x .e ) RH f
(H-op)

[−] RE
[−]

(E-nil) ` e RH e ′ E RE E ′

Ee RE E ′e ′
(E-app)

Figure 6.1: Howe and evaluation context extension of R for Λ(n)
Σ .

We observe that if R is a re�exive λ-term relation, then RE
nicely interacts with RH

, in the sense

that the following holds (the proof is a straightforward induction on the derivation of E RE E ′):

E RE E ′ Γ ` e RH e ′

Γ ` E[e] RH E ′[E ′]

Moreover, it is a straightforward exercise to show that the analogous of Lemma 15 holds in the context

of Λ(n)
Σ . In particular, �ciu

being a preorder we see that (�ciu)H is compatible, substitutive (obviously

(�ciu)o is value substitutive), and contains (�ciu)o .
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The main technical part of our variation of the Howe’s method is Lemma 24, which is nothing but a

suitable variation of Lemma 20 of Chapter 5. In order to prove it, it is useful to �rst prove the following

auxiliary result.

Lemma 23. If ` E[e] (�ciu)H д, then there exist an evaluation context F and a term f such that E (�ciu)E F ,
` e (�ciu)H f , and ` F [f ] �ciu д.

Proof. We proceed by induction on E. If E = [−], then we take F , [−] and f , д. The thesis follows

since �ciu
is re�exive. If E is of the form E ′e ′, then ` E ′[e]e ′ (�ciu)H д must be the conclusion of an

instance of rule (H-app), i.e. of a derivation of the form

` E ′[e] (�ciu)H c ` e ′ (�ciu)H f ′ ` c f ′ �ciu д

` E ′[e]e ′ (�ciu)H д
(H-app)

for some terms c , f ′. By induction hypothesis, from ` E ′[e] (�ciu)H c we infer the existence of an eval-

uation context F ′ and a term f such that E ′ (�ciu)E F ′, ` e (�ciu)H f , and ` F ′[f ] �ciu c . From the latter

we infer ` F ′[f ]f ′ �ciu c f ′, and thus ` F ′[f ]f ′ �ciu д, since ` c f ′ �ciu д and �ciu
is transitive. Finally, by

rule (E-app) we see that ` e ′ (�ciu)H f ′ and E ′ (�ciu)E F ′ implies ` E ′e ′ (�ciu)E F ′ f ′, and thus we are done

taking F , F ′ f ′.

Lemma 24. For all closed evaluation contexts E, F and closed terms e , f , if E (�ciu)E F and ` e (�ciu)H f ,
then obs (E[e]) v obs (F [f ]).

Proof. Since obs is continuous to prove the thesis it is su�cient to prove:

∀n ≥ 0. obs (JE[e]Kn ) v obs (JF [f ]K).

We proceed by induction on n. The case for n = 0 is trivial. Let n > 0 and suppose the thesis holds for

allm < n. We proceed by case analysis on the form of e .

• Suppose e to be a value λx .e ′. Then ` e (�ciu)H f must be the conclusion of an derivation of the

form

x ` e (�ciu)H c ` λx .c �ciu f

` λx .e ′ (�ciu)H f
(H-abs)

We now make a further case analysis on the shape of E. If E = [−], then, since E (�ciu)E F , we must

have F = [−] too. Therefore, since ` λx .c �ciu f (meaning that obs (Jλx .cK) v obs (Jf K)), we have:

obs (JeKn ) = obs (η(λx .e ′))

= η1 (∗)

= obs (Jλx .cK)
v obs (Jf K).

Suppose now E to be of the form [−]д~д, for some terms д, ~д. Since E (�ciu)E F , there exists terms

h,
~h such that F = [−]h~h, ` д (�ciu)H h, and ` ~д (�ciu)H ~h. Moreover, we have:

JE[e]Kn = J(λx .e )д~дKn = Je ′[x := д]~дKn−1.

By substitutivity of (�ciu)H , x ` e ′ (�ciu)H c and ` д (�ciu)H h imply ` e ′[x := д] (�ciu)H c[x := h],

and thus ` e ′[x := д]~д (�ciu)H c[x := h]
~h, since (�ciu)H is compatible and ` ~д (�ciu)H ~h. We obtain
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the wished thesis as follows:

obs (JE[e]Kn ) = obs (Je ′[x := д]~дKn−1)

v obs (Jc[x := h]
~hK)

[By induction hypothesis]

= obs (JF [λx .c]K)
v obs (JF [f ]K).

[Since λx .c �ciu f ]

• Suppose e to be of the form E ′[(λx .e ′)c], so that we have ` E ′[(λx .e ′)c] (�ciu)H f . By Lemma 23

there exists an evaluation context F ′ and a term f ′ such that E ′ (�ciu)E F ′, ` (λx .e ′)c (�ciu)H f , and

` F ′[f ′] �ciu f . In particular, ` (λx .e ′)c (�ciu)H f must be the conclusion of a derivation of the

form:

x ` e ′ (�ciu)H h ` λx .h �ciu д

` λx .e ′ (�ciu)H д
(H-abs)

` c (�ciu)H д′ ` дд′ �ciu f ′

` (λx .e ′)c (�ciu)H f
(H-app)

In particular, we now have the following CIU-approximations:

` λx .h �ciu д (6.1)

` дд′ �ciu f ′ (6.2)

` F ′[f ′] �ciu f . (6.3)

From x ` e ′ (�ciu)H h and ` c (�ciu)H д′, by substitutivity, we obtain ` e ′[x := c] (�ciu)H h[x := д′],
whereas from E (�ciu)E F and E ′ (�ciu)E F ′ we infer E[E ′[−]] (�ciu)E F [F ′[−]]. Denoting by G and

G ′ the evaluation contexts E[E ′[−]] and F [F ′[−]], respectively, we see that we thus have:

` G[e ′[x := c]] (�ciu)H G ′[h[x := д′]]. (6.4)

We obtain the wished thesis as follows:

obs (JE[e]Kn ) = obs (JG[(λx .e ′)c]Kn )
= obs (JG[e ′[x := c]]Kn−1)

v obs (JG ′[h[x := д′]]K)
[By (6.4) and the induction hypothesis]

= obs (JG ′[(λx .h)д′]K)
v obs (JG ′[дд′K])

[By (6.1)]

v obs (JG ′[f ′]K)
[By (6.2)]

= obs (JF [F ′[f ′]]K)
v obs (JF [f ]K)

[By (6.3)]

• Suppose e to be of the form E ′[op(p,x .e ′)], so that we have ` E ′[op(p,x .e ′)] (�ciu)H f . We proceed

exactly as in previous case. By Lemma 23 there exists an evaluation context F ′ and a term f ′ such
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that E ′ (�ciu)E F ′, ` op(p,x .e ′) (�ciu)H f ′, and ` F ′[f ′] �ciu f . In particular, ` op(p,x .e ′) (�ciu)H f ′

must be the conclusion of a derivation of the form:

x ` e ′ (�ciu)H c ` op(p,x .c ) �ciu f ′

` op(p,x .e ′) (�ciu)H f ′
(H-op)

We thus have the following CIU-approximations:

` op(p,x .c ) �ciu f ′ (6.5)

` F ′[f ′] �ciu f . (6.6)

From x ` e ′ (�ciu)H c , by substitutivity, we obtain ` e ′[x := v] (�ciu)H c[x := v], for any closed

value v , whereas from E (�ciu)E F and E ′ (�ciu)E F ′ we infer E[E ′[−]] (�ciu)E F [F ′[−]]. Denoting by

G and G ′ the evaluation contexts E[E ′[−]] and F [F ′[−]], respectively, we see that we have:

` G[e ′[x := v]] (�ciu)H G ′[c[x := v]]. (6.7)

We obtain the wished thesis as follows:

obs (JE[e]Kn ) = obs (JG[op(p,x .e ′)]Kn )
= obs (JopKV◦ (p,v 7→ JG[e ′[x := v]]Kn−1)

= JopK1 (p,v 7→ obs (JG[e ′[x := v]]Kn−1))

[By Lemma 21]

v JopK1 (p,v 7→ obs (JG ′[c[x := v]]K))
[By (6.7) and induction hypothesis]

= obs (JopKV◦ (p,v 7→ JG ′[c[x := v]]K))
[By Lemma 21]

= obs (JG ′[op(p,x .c )]K)
v obs (JG ′[f ′]K)

[By (6.5)]

= obs (JF [F ′[f ′]]K)
v obs (JF [f ]K).

[By (6.6)]

An immediate consequence of Lemma 24 is compatibility of �ciu
and thus its equivalence with �ctx

.

Theorem 8 (CIU equivalence). CIU approximation �ciu is compatible and thus coincide with �ctx.

Proof. We know by very de�nition of Howe extension that (�ciu)H is compatible. Therefore, to prove

compatibility of �ciu
it is su�cient to show that the open extension of �ciu

coincides with (�ciu)H . As

usual, that follows if the closed restriction of (�ciu)H is included in �ciu
. That is, if for all closed terms

e , f :

` e (�ciu)H f =⇒ ∀E. obs (E[e]) v obs (E[f ]).

The latter is direct consequence of Lemma 24, since E (�ciu)E E always holds. Finally, we observe that, as

in Lemma 19, we can show that �ctx
is included in the open extension �ciu

, and thus conclude (�ciu)o =
�ctx

.
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In virtue of Corollary 3 we obtain full abstraction of (the open extension of) �M
with respect to �ctx

.

Corollary 4 (Full abstraction 1). The open extension of monadic applicative similarity �M is fully abstract
with respect to �ctx.

Finally, since 'M = �M ∩ (�M)◦, 'ciu = �ciu ∩ (�ciu)◦, and 'ctx = �ctx ∩ (�ctx)◦, we see that Theorem 8

and Corollary 4 give the following full abstraction result.

Corollary 5 (Full abstraction 2). The open extension of monadic applicative bisimilarity'M coincides with
the open extension of CIU equivalence 'ciu which coincides with contextual equivalence 'ctx.

We conclude this chapter stressing that at the hearth of full abstraction of �M
and 'M

is the simpler

nature of call-by-name calculi compared to call-by-value calculi. In the latter, a context can test its input

both in functional and argument position, thus obtaining a stronger testing power than call-by-name

contexts, where, instead, terms can only be tested in functional position. For instance, the call-by-value

context (λx .C)[−] forces the evaluation of its input, and then pass the result obtained to C.

This is indeed the reason why monadic applicative (bi)similarity works for call-by-name calculi only.

In fact, extending monadic applicative bisimilarity to the call-by-value case (which is straightforward)

would be simply unsound. For instance, the call-by-value probabilistic terms λx .(xorΩ), (λx .x )or(λx .Ω)
are not contextually equivalent, as witnessed by the context (λx .x (x (λy.y)))[−]. However, we see that

obs (λx .(x or Ω)) = obs ((λx .x ) or (λx .Ω)) and that

Jλx .(x or Ω)K ∗v = (1 · just (λx .(x or Ω))) ∗v

=
1

2

· just v +
1

2

· ⊥

J(λx .x ) or (λx .Ω)K ∗v =
(

1

2

· just (λx .x ) +
1

2

· just (λx .Ω)
)
∗v

=
1

2

· just v +
1

2

· ⊥,

meaning that λx .(x or Ω) 'M (λx .x ) or (λx .Ω).
Having studied applicative notions of program approximation and equivalence, in the next chapter

we apply our framework to design more intensional notions of re�nement and equivalence, which we

call e�ectful normal form similarity and e�ectful normal form bisimilarity.
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Chapter 7

Normal Form Similarity and
Bisimilarity

The world is my world: this is

manifest in the fact that the limits of

language (of that language which

alone I understand) mean the limits

of my world

Ludwig Wittgenstein, Tractatus

Logico-Philosophicus

The notion of an applicative (bi)simulation is rooted in the idea that programs should be compared

extensionally, i.e. according to their input-output behaviour. This is re�ected in the (bi)simulation clause

for values: if R is an applicative (bi)simulation and `v v R w holds, then so does `Λ vu R wu, for any

closed valueu. Sincev ,w are closed values, they must be λ-abstractions, i.e. terms of the form λx .e , λx .f ,

respectively. Instead of testing v and w extensionally, one could test them intensionally, looking at the

open subterms e and f . The notion of equivalence and re�nement obtained in this way, are called normal
form (bi)similarity (S. B. Lassen, 1999, 2005; Sangiorgi, 1994).

Starting from the pioneering work by Böhm, the notion of a Böhm tree (Barendregt, 1984), and the

associated notion of Böhm tree equality, has been proved extremely useful in reasoning about program

behaviour. Roughly speaking, the Böhm tree BT (e ) of a λ-term e is a possibly in�nite tree representing

the in�nitary head-normal form of e . The celebrated Böhm Theorem, also known as Separation Theo-

rem (Böhm, 1968), stipulates that two terms are contextually equivalent if and only if their respective

(appropriately η-equated) Böhm trees are the same.

Böhm Trees can also be de�ned when terms are not evaluated to their head normal form, like in

the classic theory of λ-calculus, but to their weak-head normal form (S. B. Lassen, 1999; Sangiorgi,

1994), or to their eager normal form (S. B. Lassen, 2005). In both cases, satisfactory notions of program

equivalence can be given, although tree equivalence turns out not to coincide with context equivalence

(full abstraction can be recovered if the discriminating power of contexts is somehow increased, e.g.

through concurrency features (Sangiorgi, 1994), or when the whole calculus is more expressive, e.g.

by adding control and states (Støvring & Lassen, 2007)). Due to the in�nitary nature of these ‘normal

form trees’, tree-like equivalences can be expressed in a pure coinductive way, without any reference to

trees, as �rst shown in (Sangiorgi, 1992, 1994). For that reason people often refer to them normal-form
bisimilarity relations.
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Contrary to applicative bisimilarity, contextual equivalence, and logical relations, normal form bisim-

ilarity is completely independent on how the environment behaves, and focus on the syntactical struc-

ture of the terms at hand. That is, when checking whether two terms e and f are normal form bisimilar,

only the syntactic structure of e and f is inspected. This is radically di�erent from what happens for

e.g. applicative bisimilarity where in order to see whether e and f are applicatively bisimilar we have

to test them against arbitrary ‘external’ input values.

In this chapter we de�ne e�ectful normal form similarity and bisimilarity for (variations of) ΛΣ, and

study their main metatheoretical properties. As for applicative (bi)similarity, we will prove congruence

and precongruence theorems for normal form bisimilarity and similarity, respectively. Additionally,

normal form bisimilarity allows for the of so-called up-to enhancements of the bisimulation method

(Pous & Sangiorgi, 2012).

Remarkably, the very same notions of Σ-continuous monad and Σ-continuous relator that we used

in Chapter 5 to prove (pre)congruence of e�ectful applicative (bi)similarity, guarantee similar results

for normal form (bi)similarity. As usual, we begin our analysis with some informal considerations on

the nature of the notions we aim to investigate.

7.1 From Applicative to Normal Form Bisimulation
In this section we informally introduce normal form bisimulation by studying some examples of (pairs

of) programs whose equivalence cannot be readily established using the techniques developed in pre-

vious chapters, but that can be easily proved to be normal form bisimilar (and thus contextually equiv-

alent). This gives evidence on the �exibility and strength of the proposed technique. We will focus on

examples drawn from �xed point theory, simply because these, being in�nitary in nature, are quite hard

to be dealt with with “�nitary” techniques like contextual equivalence. For simplicity, our examples are

given in coarse-grain style.

Example 41. Our �rst example comes from the ordinary theory of pure, untyped λ-calculus. Let us

consider Curry and Turing call-by-value �xed point combinators Y and Z :

Y , λy.∆∆ Z , ΘΘ

∆ , λx .y (λz.xxz) Θ , λx .λy.y (λz.xxyz).

It is well known that Y and Z are contextually equivalent, and thus applicatively bisimilar (recall that

in the pure untyped λ-calculus applicative bisimilarity and contextual equivalence coincide). However,

provingY andZ to be applicatively bisimilar is almost as hard as proving them to be contextually equiv-

alent from �rst principles. In fact, as already remarked in previous chapters, applicative bisimilarity is

an extensional notion of program equivalence, as it tests programs for their input-output behaviour. This

is re�ected by its proof obligation, which is based on a universal quanti�cation on function arguments.

A major drawback of extensionality is that proving Y 'A Z turns out to be extremely di�cult.

To have a taste of that, let us try to construct an applicative bisimulation relating Y and Z . Let

R = (RΛ,RV ) be our candidate relation. Clearly we need to have (Y ,Z ) ∈ RΛ. Since JY K = just (λy.∆∆)
and JZK = just (λy.y (λz.ΘΘyz)), in order for R to be an applicative bisimulation, we need

∆[y := v]∆[y := v] RΛ v (λz.ΘΘvz)

to hold for any value v . If that is the case, then we would need

J∆[y := v]∆[y := v]K = Jv (λz.∆[y := v]∆[y := v]z)K ˆMRV Jv (λz.ΘΘvz)K

too. Assuming v = λx .e , we can rewrite the above requirement as:

Je[x := λz.∆[y := v]∆[y := v]z]K ˆMRV Je[x := λz.ΘΘvz]K.
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At this point we are stuck, as no information is available about the term e . That is, we have no informa-

tion on how e tests its input program. In particular, given any context C[−], we can consider the value

λx .C[x] (so that e ≡ C[x]), meaning that satisfying the above proof obligation (which is required in

order for R to be an applicative bisimulation) is morally equivalent to prove Y and Z to be contextually

equivalent directly. �

Example 42. Our next example is a re�nement of Example 41 to a probabilistic setting, as proposed

in (Sangiorgi & Vignudelli, 2016) (although there it is formulated in its, slightly simpler, call-by-name

version). We consider a variation of Turing’s call-by-value �xed point combinator which at any iteration

can probabilistically decide whether to start another iteration (following the pattern of the standard

Turing �xed point combinator) or to turn for good into Y , where Y and ∆ are de�ned as in Example 41:

Z , ΘΘ

Θ , λx .λy.(y (λz.∆∆z) or y (λz.xxyz)).

It is natural to ask whether these new version of Y and Z are still equivalent. However, following

insights from previous example, it is not hard to see the equivalence between Y and Z is an example

of an equivalence that cannot be readily proved by means of standard operational methods such as

(probabilistic) contextual equivalence, (probabilistic) CIU equivalence, and (probabilistic) applicative

bisimilarity. All the aforementioned techniques require to test programs in a given environment (such

as a whole context or an input argument), and are thus ine�ective in handling �xed point combinators

such as Y and Z .

We will give an elementary proof of the equivalence between Y and Z in Example 45, and a more el-

egant proof relying on a suitable up-to context technique in Subsection 7.4.2. In (Sangiorgi & Vignudelli,

2016) the call-by-name counterparts of Y and Z are proved to be equivalent using probabilistic envi-

ronmental bisimilarity (Sangiorgi & Vignudelli, 2016). The notion of an environmental bisimulation

(Sangiorgi et al., 2011) involves both an environment storing pairs of terms played during the bisimu-

lation game, and a clause universally quantifying over pairs of terms in the evaluation context closure

of such an environment
1
, thus making environmental bisimilarity a rather heavy technique to use. Our

proof of the equivalence of Y and Z is simpler: in fact, our notion of e�ectful normal form bisimu-

lation does not involve any universal quanti�cation over all possible closed function arguments (like

applicative bisimilarity), or their evaluation context closure (like environmental bisimilarity), or ‘closed

instantiations’ or ‘uses’ (like CIU equivalence). �

Example 43. Our third example concerns call-by-name calculi and shows how our notion of normal

form bisimilarity can handle even intricate recursion schemes. We consider the following argument-

switching probabilistic �xed point combinators:

P , AA Q , BB

A , λx .λy.λz.(y (xxyz) or z (xxzy)) B , λx .λy.λz.(y (xxzy) or z (xxyz)).

We easily see that P and Q satisfy the following (informal) program equations:

Pe f = e (Pe f ) or f (P f e ) Qe f = e (Q f e ) or f (Qe f ).

Again, proving the equivalence between P and Q using applicative bisimilarity is problematic. In fact,

testing the applicative behaviour of P and Q requires to reason about the behaviour of e.g. e (Pe f ),
which in turn requires to reason about the (arbitrary) term e , of which no information is provided. The

1
Meaning that two terms e , f are tested for their applicative behaviour against all terms of the form E[д], E[h], for any pair

of terms (д,h) stored in the environment.
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(essentially in�nitary) normal forms of P and Q , however, can be proved to be essentially the same by

reasoning about the syntactical structure of P and Q , as we will do in Section 7.4. Moreover, as we will

see, our up-to context technique ( De�nition 55) enables an elegant and concise proof of the equivalence

between P and Q . �

Example 44. Our last example discuss the use of the cost monad as an instrument to facilitate a more

intensional analysis of programs. In fact, as already remarked in Example 24, we can use the ticking

operation ti� to perform cost analysis. For instance, we can consider the following variation of Curry

and Turing �xed point combinator of Example 41 obtained by adding the operation symbol ti� after

every λ-abstraction.

Y , λy.ti�(∆∆) Z , ΘΘ

∆ , λx .ti�(y (λz.ti�(xxz))) Θ , λx .ti�(λy.ti�(y (λz.ti�(xxyz)))).

Following Example 24, we see that every time a β-redex (λx .ti�(e ))v is reduced, the ticking operation

ti� increases an imaginary cost counter of a unit. Using ticking, we can provide a more intensional

analysis of the relationship between Y and Z , along the lines of Sands’ improvement theory (Sands,

1998). �

7.2 Computational Calculi Revisited
Contrary to Chapter 3 and Chapter 5, here we will work with the coarse-grain version of ΛΣ, which for

simplicity we keep denoting as ΛΣ. As already remarked, �ne-grain calculi are in general better suited

for metatheoretical purposes, but are a bit cumbersome for writing and studying examples. Given the

emphasis we gave to examples and the link we will make with Böhm tree-like equalities, we prefer to

work with a pure untyped λ-calculus as in e.g. (Barendregt, 1984) enriched with algebraic operations.

The syntax of the calculus is standard, and it is de�ned in Figure 7.1, where x ranges over a �xed

(countably in�nite) set of variables, op : P  V ranges over elements
2

of Σ, and p ranges over elements

of P . Notational and syntactical conventions of Chapter 3 are left unchanged. In particular, we denote

by Λ andV ⊆ Λ the collections of (open and closed) terms and values of ΛΣ, respectively.

e , f ::= v (value) v ,w ::= x (variable)

| f e (application) | λx .e . (abstraction)

| op(p,x .e ). (operation)

Figure 7.1: Syntax of coarse-grain ΛΣ.

The operational semantics of ΛΣ is de�ned as in Chapter 3, with some minor di�erences. Before

de�ning such a semantics, we a make couple of useful remarks.

Remark 14. 1. Testing terms according to the their (possibly in�nitary) normal forms obviously

requires to work with open terms. Indeed, in order to inspect the intensional behaviour of a value

λx .e , one has to inspect the intensional behaviour of e , which is an open term. As a consequence,

contrary to all previous chapters, here we give operational semantics to both open and closed

terms. Actually, the very distinction between open and closed terms is not that meaningful in

this context, and thus we simply refer to terms. As a consequence, also the relational apparatus

developed in Chapter 5 collapses to simple relations over terms.

2
We tacitly apply Remark 3, here properly modi�ed to open values.
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2. According to point 1, we notice that values constitute a syntactic notion de�ned independently

of the operational semantics of the calculus: values are just variables and λ-abstractions. How-

ever, giving operational semantics to arbitrary terms (and not just closed ones) we are interested in

richer collections of irreducible expressions, i.e. expressions that cannot be simpli�ed any further.

Such collections, whose members we call eager normal forms in a call-by-value setting, and weak
head normal forms in a call-by-name setting, will be di�erent accordingly to the operational se-

mantics adopted. For instance, in a call-by-name setting it is natural to regard the term x ((λx .x )v )
as a terminal expression, whereas in a call-by-value setting x ((λx .x )v ) can be further simpli�ed

to xv , which in turn should be regarded as a terminal expression.

7.2.1 Call-by-Value Operational Semantics
We begin by de�ning a monadic operational semantics for ΛΣ relying on Felleisen’s notion of a call-

by-value evaluation context (Felleisen & Hieb, 1992) (recall Lemma 7 and Corollary 1). Call-by-value

evaluation contexts are terms with a single hole [−] de�ned by the following grammar:

E ::= [−] | Ee | vE.

Notice that, contrary to Chapter 3 and Chapter 6 here evaluation contexts are built using open terms.

We write E[e] for the term obtained by substituting the term e for the hole [−] in E. Redexes are expres-

sions of the form (λx .e )v or op(p,x .e ), the former producing a computation step, the latter producing

an e�ect. Following (S. B. Lassen, 2005) we de�ne a stuck term as a term of the form E[xv]. Finally, we

de�ne the collection E of eager normal forms (enfs hereafter) as the collection of values and stuck terms.

We let letters s , t , . . . to range over elements in E. In particular, enfs are generated by the following

grammar:

s ::= x | λx .e | E[xv].

We notice that any term is either a value, a stuck term, or an expression of the form E[r ], for a redex r
(cf. Lemma 7).

Lemma 25. Any term e can be uniquely decomposed in one of the following (mutually exclusive) forms:

1. v ;

2. E[vw];

3. E[op(p,x .f )].

Proof. By induction on e we show that e can be decomposed in one of the above forms. If e is a value,

then we are trivially done. If e is a term of the form f д, then by induction hypothesis we have two cases

to consider.

1. Suppose f is a value v . We apply the induction hypothesis on д. If the latter is a value w , then

f д = vw and we are done (consider the empty evaluation context). Otherwise д is a term of the

form E[r ], for a redex r . We are done since f д = vE[r ] and vE is an evaluation context.

2. Suppose f is a term of the form E[r ], for a redex r . Then f д = E[r ]д. We are done since Eд is an

evaluation context.

We now prove uniqueness of such composition. This is indeed the case if e is a value. Suppose now e
to be of the form E[vw] and to admit another decomposition as above. Such a decomposition cannot be

a value. Say it is of the form E ′[v ′w ′]. We show that then it must be the case that v = v ′, w = w ′, and

E = E ′. We proceed by induction on E.
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If E is the empty context, we proceed by contradiction and assume E , E ′. Then either E ′ = F f or

E ′ = uF , for an evaluation context F . In the former case we would havev = F [v ′w ′], which is impossible

(F [v ′w ′] cannot be a value). Similarly, in the latter case we would have w = F [v ′w ′] which, again, is

not possible. We are done. Suppose now E to be of the form F f . We immediately notice that E ′ , [−]:

for we would have F [vw] = v ′, which is impossible. Similarly we see that E ′ cannot be of the form uE ′.
We conclude E ′ = F ′ f ′. The thesis now follows by induction hypothesis. The case for E of the form uF
is handled similarity.

In a similar fashion we can prove that if e = E[op(p,x .f )] and e = E ′[r ], then r = op(p,x .f ) and

E = E ′.

Operational semantics of ΛΣ is de�ned with respect to a Σ-continuous monad T = 〈T ,η,−†〉 relying

on Lemma 25. More precisely, we de�ne a call-by-value evaluation function J−K mapping each term to

an element in TE.

De�nition 45. De�ne the N-indexed family of maps J−Kn : Λ→ TE as follows:

JeK0 , ⊥

JvKn+1 , η(v )

JE[xv]Kn+1 , η(E[xv])

JE[(λx .e )v]Kn+1 , JE[e[x := v]]Kn
JE[op(p,x .e )Kn+1 , JopKE (p,v 7→ JE[e[x := v]]Kn ).

The monad T being Σ-continuous, we see that the sequence (JeKn )n forms an ω-chain inTE, so that we can
de�ne JeK as

⊔
nJeKn .

As usual, Σ-continuity of T ensures continuity of the evaluation function.

Lemma 26. The map J−K is the least function φ : Λ→ TE satisfying the following identities:

φ (v ) = η(v )

φ (E[xv]) = η(E[xv])

φ (E[(λx .e )v]) = φ (E[e[x := v]])

φ (E[op(p,x .e )) = JopKE (p,v 7→ φ (E[e[x := v]])).

In order to improve readability, in the rest of this chapter, for a monad T, an element x ∈ TX and a

function f : X → TY , we will sometimes write x >>= f in place of f † (x). In general, the bind operator

>>= : TX × (X → TY ) → TY is not equivalent to −†. However, if T is strong, then we can de�ne >>= as

the strong Kleisli lifting of the evaluation map ev : (X → TY ) × X → TY (modulo isomorphisms of the

form X ×Y � Y ×X ). Since every monad on Set is strong, we can always assume monads to come with

a bind operator >>=. Moreover, we will occasionally use the notation Λ(v)
Σ when we want to emphasise

that we are working with ΛΣ equipped with the call-by-value operational semantics.

Before giving ΛΣ a call-by-name operational semantics, let us spell out some useful syntactical prop-

erties of Λ(v)
Σ . Working with call-by-value e�ectful languages we are interested in substituting values

for variables in terms, rather than terms themselves. In order to improve readability, we will sometimes

denote a substitution −[x := v] as a map σ and write eσ in place of e[x := v]. We also notice that for

any valuew ,wσ
is a value. The notion of substitution is extended to evaluation contexts in the obvious

way (de�ning [−]
σ , [−]). Notice that for any evaluation context E, Eσ is an evaluation context as well.

Finally, we notice that we can always decompose the evaluation of a term of the form e[x := v] as

follows: we �rst evaluate e obtaining an element JeK ∈ TE, and then use monadic binding to apply the

substitution −[x := v] to enfs in JeK and evaluate the results obtained (this way composing the e�ects

produced during the evaluation process).
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Lemma 27 (Substitution Lemma for Λ(v)
Σ ). Let σ be the substitution −[y := w], and let us write JσK for

J−[y := w]K. The following hold:

Jeσ Kn v JeKn >>= JσKn (7.1)

JeKn >>= JσK v Jeσ K (7.2)

Jeσ K = (JeK >>= JσK). (7.3)

Proof. We immediately notice that (7.3) is a corollary of (7.1) and (7.2). Both (7.1) and (7.2) are proved

by induction on n proceeding by case analysis according to Lemma 25. We prove (7.1) by induction on

n. The case for n = 0 is trivial. Assume n > 0 and proceed by case analysis according to Lemma 25.

• Suppose e = v . We have:

Jvσ Kn = η(vσ )
[By De�nition 45 since vσ is a value]

= η(v ) >>= JσKn .

[By De�nition 45 since ∀x ∈ X .∀f : X → TY . η(x ) >>= f = f (x )]

• Suppose e = E[xv]. We have:

JeKn >>= JσKn = η(E[xv]) >>= JσKn
[By De�nition 45]

= J(E[xv])σ Kn
[Since ∀x ∈ X .∀f : X → TY . η(x ) >>= f = f (x )]

= Jeσ Kn .

• Suppose e = E[(λx .f )v]. First of all notice that for any term e , and all values v ,w such that x , y
and x < FV (w ), we have (cf. Substitution Lemma in (Barendregt, 1984)):

e[x := v][y := w] = e[y := w][x := v[y := w]]. (pure subst)

Therefore, we can reason as follows:

J(E[(λx .f )v])σ Kn = JEσ [(λx .f σ )vσ ]Kn
[By de�nition of substitution]

= JEσ [f σ [x := vσ ]]Kn−1

[By De�nition 45]

= JEσ [( f [x := v])σ ]Kn−1

[By (pure subst). See also below.]

= J(E[f [x := v]])σ Kn−1

[By de�nition of substitution]

v JE[f [x := v]]Kn−1 >>= JσKn−1

[By induction hypothesis]

v JE[f [x := v]]Kn−1 >>= JσKn
[By monotonicity of >>=]

= JE[(λx .f )v]Kn >>= JσKn .

[By De�nition 45]
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In particular, we notice that the equality f σ [x := vσ ] = ( f [x := v])σ follows by (pure subst),

since f σ [x := vσ ] = f [y := w][x := v[y := w]] and we can assume x < FV (w ) as the former is

bound by a λ-abstraction.

• Suppose e = E[op(p,x .f )]. We have

J(E[op(p,x .f )])σ Kn = JEσ [op(p,x .f σ )]Kn
[By de�nition of substitution]

= JopK(p,v 7→ JEσ [f σ [x := v]]Kn−1).

[By De�nition 45]

We now observe that since x is bound in x .f , without loss of generality we can assume x < FV (w ),
and thus w[x := v] = w . As a consequence, we have:

f σ [x := v] = f [y := w][x := v]

= f [x := v][y := w[v/x]]

[By (pure subst)]

= f [x := v][y := w]

[Since w[v/x] = w]

= ( f [x := v])σ .

We can thus conclude our argument as follows:

J(E[op(p,x .f )])σ Kn = JopK(p,v 7→ JEσ [f σ [x := v]]K.n − 1)

[By previous argument]

= JopK(p,v 7→ J(E[f [x := v]])σ Kn−1)

[By de�nition of substitution, since f σ [x := v] = ( f [x := v])σ ]

v JopK(p,v 7→ (JE[f [x := v]]Kn−1 >>= JσKn−1))

[By induction hypothesis]

v JopK(p,v 7→ JE[f [x := v]]Kn−1) >>= JσKn−1

[By (gen alg op)]

v JopK(p,v 7→ JE[f [x := v]]Kn−1) >>= JσKn
[By monotonicity of >>=]

= JE[op(p,x .f )]Kn >>= JσKn .

[By De�nition 45]

Before giving ΛΣ a call-by-name operational semantics, we make the following easy but useful ob-

servation.

Lemma 28. If e[x := v] is a value, then e is a value. Similarly, if e[x := v] is a enf, then e is a enf.
Moreover, if e[x := v] is a λ-free enf (i.e. not an abstraction), then so is e .

Proof. We immediately notice that if e is a variable, then we trivially have the thesis. Suppose e is not

a variable. We proceed by induction on eσ = e[x := v]. If eσ = λy.f , then since e is not a variable we

must have e = λy.д with дσ = f , and we are trivially done. If eσ = E[yw], then we proceed by case

analysis on E.
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• Suppose E = [−]. Then e must be of the form e1e2 with eσ
1
= y and eσ

2
= w . By induction

hypothesis we have that e2 is a value. Moreover, eσ
1
= y implies that e1 must be a variable. We are

done.

• Suppose E = F f . Then e is of the form e1e2 with eσ
1
= F [yw] and eσ

2
= f . By induction hypothesis

e1 is a λ-free enf. Moreover, e1 cannot be a variable, and thus it must be of the form F ′[zu]. We

conclude e1e2 = F ′[zu]e2, and thus we are done.

• Suppose E ≡ wF . As above.

7.2.2 Call-by-Name Operational Semantics
We now give ΛΣ call-by-name monadic operational semantics. In order to do so, we �rst need to change

our notion of evaluation context. As in Chapter 6, call-by-name evaluation contexts are de�ned by the

following grammar, but contrary to Chapter 6 here we do not require e to be closed:

E ::= [−] | Ee .

As usual, we write E[e] for the term obtained by substituting the term e for the hole [−] in E. Redexes

are expressions of the form (λx .e ) f or op(p,x .e ), whereas a stuck term is a term of the form E[xe]. In

particular, stuck terms are expressions of the form xe0 · · · ek . Following (S. B. Lassen, 1999; Sangiorgi,

1994) we de�ne the collection W of weak head normal forms (whnfs hereafter) as the collection of

values and stuck terms, and let letters s , t , . . . to range over whnfs. Notice that whnfs are generated by

the following grammar:

s ::= x | λx .e | xe1 · · · en .

As for the call-by-value case, we can easily prove the following unique decomposition lemma.

Lemma 29. Any term e can be uniquely decomposed in one of the following (mutually exclusive) forms:

1. v ;

2. E[ve];

3. E[op(p,x .f )];

Call-by-name operational semantics is de�ned with respect to a Σ-continuous monad T = 〈T ,η,−†〉

relying on Lemma 29. More precisely, we de�ne a call-by-name evaluation function J−K mapping each

term to an element in TW .

De�nition 46. De�ne the N-indexed family of maps J−Kn : Λ→ TW as follows:

JeK0 , ⊥

JvKn+1 , η(v )

JE[xe]Kn+1 , η(E[xe])

JE[(λx .f )e]Kn+1 , JE[f [x := e]]Kn
JE[op(p,x .e )Kn+1 , JopKW (p,v 7→ Je[x := v]Kn ).

The monad T being Σ-continuous, we see that the sequence (JeKn )n forms an ω-chain in TW , so that we
can de�ne JeK as

⊔
nJeKn .
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As usual, Σ-continuity of T ensures continuity of the evaluation function.

Lemma 30. The map J−K is the least function φ : Λ→ TW satisfying the following identities:

φ (v ) = η(v )

φ (E[xe]) = η(E[xe])

φ (E[(λx .f )e]) = φ (E[f [x := e]])

φ (E[op(p,x .e )) = JopKW (p,v 7→ φ (E[e[x := v]])).

Following the convention introduced in previous section, we occasionally use the notation Λ(n)
Σ

when we want to emphasise that we are working with ΛΣ equipped with the call-by-name operational

semantics. It is a routine exercise to show that the analogue of Lemma 27 holds for Λ(n)
Σ .

Lemma 31 (Substitution Lemma for Λ(n)
Σ ). Let σ be the substitution −[y := e ′], and let us write JσK for

J−[y := e ′]K. The following hold:

Jeσ Kn v JeKn >>= JσKn
JeKn >>= JσK v Jeσ K

Jeσ K = (JeK >>= JσK).

The proof of Lemma 31 closely follows the one of Lemma 27, but it is easier due to simpler form of

call-by-name evaluation contexts, and thus it is omitted.

In order to compare the behaviour of terms of ΛΣ we now introduce e�ectful normal form similar-
ity and bisimilarity. The expression normal form (bi)similarity actually denotes two distinct notions,

namely eager normal form (bi)similarity (S. B. Lassen, 2005) and weak head normal form (bi)similarity
(also known as open (bi)similarity) (S. B. Lassen, 1999; Sangiorgi, 1994). As the names suggest, ea-

ger normal form (bi)similarity is nothing but the instantiation of the (informal) notion of normal form

(bi)similarity to call-by-value calculi, whereas weak head normal form (bi)similarity is the instantiation

of the (informal) notion of normal form (bi)similarity to call-by-name calculi.

As for monadic and e�ectful applicative (bi)similarity, our notion of e�ectful normal form (bi)similarity

is parametrised by a relator, whereby computational e�ects are taken into account.

7.3 E�ecful Normal Form Similarity and Bisimilarity
In the rest of this section, let a Σ-continuous monad T = 〈T ,η,−†〉 and a Σ-continuous relator Γ for it

be �xed. As usual, Σ-continuity of Γ is not required for de�ning e�ectful normal form (bi)simulation,

but it is central to prove that the induced notion of similarity and bisimilarity are precongruence and

congruence relations, respectively. We begin with eager normal form (bi)similarity.

7.3.1 Eager Normal Form Similarity and Bisimilarity

In the rest of this subsection, we tacitly assume to work with the calculus Λ(v)
Σ . Although we are working

with a coarse-grain calculus, in an e�ectful setting it is important to distinguish between relations over

terms and relation over eager normal forms. For that reason we we will work with a variation of λ-term

relations.

De�nition 47. A λ-term relation (term relation, for short) R is a pair (RΛ : Λ +→ Λ,RE : E +→ E).
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The collection of λ-term relations is the set Rel(Λ,Λ) × Rel(E, E) which inherits a complete lattice

structure from Rel(Λ,Λ) and Rel(E, E) pointwise, hence allowing λ-term relations to be de�ned both

inductively and coinductively. We use these properties to de�ne our notion of e�ectful eager normal

form similarity.

De�nition 48. A term relation R = (RΛ : Λ +→ Λ,RE : E +→ E) is an e�ectful eager normal form

simulation with respect to Γ (hereafter enf-simulation, as Γ will be clear from the context) if the following
hold.

e RΛ f =⇒ JeK ΓRE Jf K (enf comp)

x RE s =⇒ s = x (enf var)

λx .e RE s =⇒ ∃f . s = λx .f ∧ e RΛ f (enf abs)

E[xv] RE s =⇒ ∃E ′,v ′. s = E ′[xv ′] ∧v RE v
′ ∧ ∃z < FV (E) ∪ FV (E ′). E[z] RΛ E

′
[z]. (enf stuck)

We say that relation R respects enfs if it satis�es conditions (enf var), (enf abs), and (enf stuck).

De�nition 48 is quite standard. Clause (enf comp) is essentially as (app comp). Clauses (enf var)-

(enf stuck) state that whenever two enfs are related by RE then they must have the same syntactic

structure. For instance, if λx .e RE s holds, then s must the a λ-abstraction, i.e. an expression of the form

λx .f . Additionally, e and f must be related by RΛ.

Clause (enf stuck) is the most interesting one. It states that whenever E[xv] RE s , then s must be a

stuck term E ′[xv ′], for some evaluation context E ′ and value v ′. Notice that E[xv] and s must have the

same ‘stuck variable’ x . Additionally, v and v ′ must be related by RE , and E and E ′ must be properly

related too. The idea is that to see whether E and E ′ are related, we replace the stuck expressions xv ,

xv ′ with a fresh variable z, and test E[z] and E ′[z] (thus resuming the evaluation process). We require

E[z] RE E
′
[z] to hold, for some fresh variable z. The choice of the variable does not really matter,

provided it is fresh. In fact, as we will see, enf-similarity �E
is substitutive and re�exive. In particular, if

E[z] �E
E
E ′[z] holds, then E[y] �E

E
E ′[y] holds as well, for any fresh variable y < FV (E) ∪ FV (E ′).

Notice that De�nition 48 does not involve any universal quanti�cation. In particular, enfs are tested

by inspecting their syntactic structure, thus making the de�nition of an enf-simulation somehow ‘local’:

terms are tested in isolation and not via their interaction with the environment
3
.

Remark 15. De�nition 48 does not require for an enf-simulation R to have RE ⊆ RΛ. Nonetheless,

thanks to condition (rel unit) we can assume the latter to be case, without loss of generality. In fact, we

can always extend RΛ to a relation SΛ such that (SΛ,RE ) is an enf-simulation. For that, it is su�cient

to de�ne SΛ , RΛ ∪ {(s , s
′) | s RE s

′}. To see that we indeed obtain an enf-simulation it is su�cient to

prove (enf comp), which amounts to show η(s ) ΓRE η(s
′). That is indeed the case by condition (rel unit),

since s RE s
′
.

De�nition 48 induces an endofunction R 7→ [R] on the complete lattice Rel(Λ,Λ)×Rel(E, E), where

[R] = ([R]Λ, [R]E ) is de�ned as follows (here IX denotes the identity relation on variables, i.e. the set

of pairs of the form (x ,x )):

[R]Λ , {(e , f ) | JeK ΓRE Jf K}

[R]E , IX ∪ {(λx .e , λx .f ) | e RΛ f } ∪ {(E[xv],E ′[xv ′]) | v RE v
′ ∧ ∃z < FV (E) ∪ FV (E ′). E[z] RΛ E

′
[z]}.

It is easy to see that a term relation R is an enf-simulation if and only if R ⊆ [R]. Notice also

that although [R]E always contains the identity relation on variables, RE does not have to: the empty

relation (∅, ∅) is an enf-simulation.

3
In the case of applicative simulation such interaction is expressed by clause (app val) in De�nition 32: the environment

interacts with tested values by passing them arbitrary closed values as arguments.
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Lemma 32. The mapping R 7→ [R] is monotone.

Proof. Suppose R ⊆ S. If e [R]Λ e
′
, then we have JeK ΓRE Je ′K. Since R ⊆ S and Γ is monotone, we

conclude JeK ΓSE Je ′K. If s [R]E s
′
, then we have three possible cases to consider.

• If (s , s ′) = (x ,x ), for some variable x , then we trivially have s [R]E s
′
.

• If (s , s ′) = (λx .e , λx .e ′) with e RΛ e
′
, then since R ⊆ S we infer e SΛ e

′
, and thus λx .e [S]E λx .e ′.

• If (s , s ′) = (E[xv ′],E ′[xv ′]) with v RE v
′

and E[z] RΛ E[z], for some fresh variable z, then R ⊆ S

implies v SE v
′

and E[z] SΛ E
′
[z ′]. We conclude E[xv] [S]E E

′
[xv ′].

By Knaster-Tarski Theorem, R 7→ [R] has a greatest �xed point which we call e�ectful eager normal
form similarity with respect to Γ (hereafter enf-similarity) and denote by �E = (�E

Λ, �E
E
). Notice that, as

usual, we are applying the notational convention of Remark 9.

Enf-similarity is thus the largest enf-simulation with respect to Γ. Moreover, �E
being de�ned coin-

ductively, it comes with an associated coinduction proof principle:

R ⊆ [R]

R ⊆ �E (�E
-coind.)

Example 45. Recall the probabilistic call-by-value �xed point combinators of Example 42:

Y , λy.∆∆ Z , ΘΘ

∆ , λx .y (λz.xxz) Θ , λx .λy.(y (λz.∆∆z) or y (λz.xxyz)).

Let us consider the relator
ˆDM for probabilistic partial computations. We show Y �E Z by coinduction,

proving that the term relation R = (RΛ,RE ) whose graph is de�ned as follows
4

is an enf-simulation

(where IΛ and IE denote the identity relations on terms and enfs, respectively):

RΛ , {(Y ,Z ), (∆∆z,Zyz), (∆∆,y (λz.∆∆z) or y (λz.Zyz))} ∪ IΛ

RE , {(y (λz.∆∆z),y (λz.Zyz)), (λz.∆∆z, λz.Zyz),

(λy.∆∆, λy.(y (λz.∆∆z) or y (λz.Zyz))), (y (λz.∆∆z)z,y (λz.Zyz)z)}

∪ IE

The term relation R is obtained by starting with the relation {(Y ,Z )} and progressively adding terms

and eager normal forms going through clauses (enf comp)-(enf stuck) in De�nition 48. Checking that

R is an enf-simulation is straightforward. We show a couple of cases as illustrative examples.

1. We prove that ∆∆z RΛ Zyz implies J∆∆zK ˆDM(RE ) JZyzK. The latter amounts to show:(
1 · just y (λz.∆∆z)z

)
ˆDM(RE )

(
1

2

· just y (λz.∆∆z)z +
1

2

· just y (λz.Zyz)z
)
, (7.4)

where, as usual, we write distributions as weighted formal sums. To prove (7.4), is is su�cient to

�nd a suitable coupling of J∆∆zK and JZyzK. De�ne the distributionω ∈ D (ME ×ME) as follows:

ω (just y (λz.∆∆z)z, just y (λz.∆∆z)z) =
1

2

ω (just y (λz.∆∆z)z, just y (λz.Zyz)z) =
1

2

,

4
For readability we write R in place of GR .
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and assigning zero to all other pairs in ME ×ME. Obviously ω is a coupling of J∆∆zK and JZyzK.
Additionally, we see that ω (x, y) implies x ˆMRE y, since

y (λz.∆∆z)z RE y (λz.∆∆z)z

y (λz.∆∆z)z RE y (λz.Zyz)z

hold.

2. We prove that y (λz.∆∆z)z RE y (λz.Zyz)z implies λz.∆∆z RE λz.Zyz and z0z RΛ z0z, where z0 is a

(fresh) variable. The former holds by very de�nition of RE , whereas the latter holds since IΛ ⊆ RΛ.

As already discussed in Example 42, the re�nement Y �E Z is an example of a re�nement that can-

not be readily established using e.g. the operational methods developed in Chapter 5 (notably CIU

approximation and applicative similarity), but whose proof is straightforward using enf-similarity. Ad-

ditionally, considering the symmetric closure of R we can convince ourselves that Y and Z are actually

enf-bisimilar, although such a notion has not been formally de�ned yet (see De�nition 49).

Finally, in Subsection 7.4.2 we will prove an up-to context technique which will allow to reduce

the size of R, thus minimising the task of checking that our relation is indeed an enf-simulation. To

the best of the author’s knowledge, the probabilistic instance of enf-similarity is the �rst example of a

probabilistic normal form similarity in the literature. �

We conclude this subsection de�ning e�ectful eager normal form bisimilarity with respect to a re-

lator Γ following the same patter of De�nition 34.

De�nition 49. A term relation R is an e�ectful eager normal form bisimulation with respect to Γ (enf-
bisimulation, for short) if it is an enf-simulation with respect to Γ ∧ Γ◦. Eager normal bisimilarity with

respect to Γ (hereafter enf-bisimilarity) 'E is de�ned as eager normal similarity with respect to Γ ∧ Γ◦.

As usual, a routine proof by coinduction gives us the following characterisation of enf-bisimilarity.

Proposition 20. Enf-bisimilarity 'E is the largest symmetric enf-simulation with respect to Γ.

Before proving our main result, namely that �E
is a precongrunce (and that 'E

is a congruence), we

introduce the notions of e�ectful weak head normal form similarity and e�ectful weak head normal form
bisimilarity.

7.3.2 Weak Head Normal Form Similarly and Bisimilarity
E�ectful weak head normal form (bi)similarity is the call-by-name counterpart of e�ectful eager normal

form (bi)similarity. In the rest of this subsection we work with Λ(n)
Σ . We start by de�ning the notion of

λ-term relation for Λ(n)
Σ

De�nition 50. A λ-term relation (term relation, for short) is a pair R = (RΛ : Λ +→ Λ,RW :W +→W ).

De�nition 51. A term relation R = (RΛ : Λ +→ Λ,RW : W +→ W ) is a weak head normal form

simulation with respect to Γ (hereafter whnf-simulation) if:

e RΛ f =⇒ JeK ΓRW Jf K (whnf comp)

λx .e RW s =⇒ ∃f . s = λx .f ∧ e RΛ f (whnf abs)

xe0 · · · en RW s =⇒ ∃f0, . . . , fk . s = x f0 · · · fk ∧ ∀i . ei RΛ fi . (whnf stuck)

We say that R respects whnfs if it satis�es clauses (whnf abs) and (whnf stuck).
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As for eager normal form similarity, De�nition 51 induces a monotone endofunctionR 7→ [R] on the

complete lattice Rel(Λ,Λ) × Rel(W ,W ). We can characterise whnf-simulations as post-�xed points of

R 7→ [R] and thus de�ne weak head normal form similarity with respect to Γ (whnf-similarity, for short)

�W
as the greatest �xed point of R 7→ [R].

Example 46. Recall Example 43. We prove P �W Q by coinduction, showing that the term relation

R = (RΛ,RW ) (whose graph is) de�ned as follows is a whnf-simulation:

RΛ , {(P ,Q ), (y (Pyz) or z (Pzy),y (Qzy) or z (Qyz)), (Pyz,Qzy), (Pzy,Qyz)}

RW , {(λy.λz.y (Pyz) or z (Pzy), λy.λz.y (Qzy) or z (Qyz)), (λz.y (Pyz) or z (Pzy), λz.y (Qzy) or z (Qyz))
(y (Pyz),y (Qzy)), (z (Pzy), z (Qyz))}.

The relation R is built starting from {(P ,Q )} by progressively adding terms and whnfs going through

clauses (whnf comp)-(whnf stuck) in De�nition 51. Although straightforward, checking that the rela-

tion R is indeed a whnf simulation is an annoying work. In Subsection 7.4.2 we will use an up-to context

technique to prove that P �W Q with minimum e�ort. Finally, we notice that we can show that P and

Q are actually equivalent by taking the symmetric closure of R. �

Following De�nition 49, we de�neweak head normal bisimilarity with respect to Γ (whnf-bisimilarity,

for short), denoted by 'W
, as weak head normal form similarity with respect to Γ∧Γ◦. Without surprise,

�W
can be characterised as the largest symmetric whnf-simulation with respect to Γ.

Proposition 21. Weak head normal form bisimilarity with respect to Γ is the largest weak head normal
form simulation with respect to Γ.

Previous examples give evidences that normal form similarity and bisimilarity are interesting no-

tions of program approximation and equivalence, respectively, even in presence of e�ects. However, in

order to qualify as such, we �rst have to prove precongruence and congruence theorems for them. The

next section is dedicated to such a task.

7.4 Meta-theoretical Properties
In this section we prove congruence and precongruence theorems for normal form bisimilarity and

similarity, respectively. Our proofs are based on a generalisation of Lassen’s relational construction for

the pure call-by-name λ-calculus (S. B. Lassen, 1999) to both Λ(n)
Σ and Λ(v)

Σ . Such a construction has

been previously adapted to the pure call-by-value λ-calculus (and its extension with delimited control

operators) in (Biernacki, Lenglet, & Polesiuk, 2018), whereas Lassen has proved compatibility of pure

eager normal form bisimilarity via a CPS translation (S. B. Lassen, 2005). Both those proofs rely on

syntactical properties of the calculus (mostly expressed using a suitable small-step semantics), and thus

seem to be hardly adaptable to e�ectful calculi
5
. On the contrary, our proofs rely on the properties of

relators, thereby making our results and techniques more modular and thus valid for a large class of

e�ects.

7.4.1 Congruence and Precongruence Theorems
We begin proving precongruence of enf-similarity, as proving the latter is much harder than proving

precongruence of whnf-similarity. As a consequence, unless explicitly stated, in the rest of this section

5
Lassen (S. B. Lassen, 2006b) studied weak head normal form (bi)similarity for a nondeterministic call-by-name λ-calculus.

However, his treatment uses speci�c features of nondeterminism and, to the best of the author’s knowledge, is not extended to

the call-by-value case.
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we work with the calculusΛ(v)
Σ . As usual, we tacitly assume a Σ-continuous monad T and a Σ-continuous

relator Γ for T to be �xed. Moreover, in order to have a lighter notation, we reintroduce our sequent-like

notation for term relations. In particular, for a term relation R = (RΛ,RE ) and arbitrary terms e , f and

values v ,w , we use the notations `Λ e R f and e RΛ e , as well as `E e R f and e RE f , interchangeably.

Notice, however, that in writing e.g. `Λ e R f we are not requiring e and f to be closed terms.

The main (new) tool we will use to prove the wished precongruence theorem is the so-called substi-
tutive and compatible closure of a term relation (S. B. Lassen, 1999).

De�nition 52. Let R be a term relation. The substitutive and compatible closure (sc-closure, for short)
of R is the term relation RSC de�ned inductively according to the rules in Figure 7.2, where in rules (E-sc.E)
and (Λ-sc.E) z is a fresh variable.

`Λ e R e ′

`Λ e RSC e ′
(Λ-sc.R)

`E s R s ′

`E s RSC s ′
(E-sc.R)

`E s RSC s ′

`Λ s RSC s ′
(E-Λ-sc)

`E x RSC x
(E-sc.var)

`Λ E[z] RSC E ′[z] `E v RSC v ′

`E E[xv] RSC E[xv ′]
(E-sc.E)

`Λ E[z] RSC E ′[z] `Λ e RSC e ′

`Λ E[e] RSC E ′[e ′]
(Λ-sc.E)

`Λ e RSC f

`E λx .e RSC λx .f
(Λ-sc.abs)

`Λ e RSC e ′ `Λ f RSC f ′

`Λ e f RSC e ′ f ′
(Λ-sc.app)

`E v RSC v ′ `E w RSC w ′

`E v[x := w] RSC v ′[x := w ′]
(E-sc.subst)

`Λ e RSC e ′ `E v RSC v ′

`Λ e[x := v] RSC e ′[x := v ′]
(Λ-sc.subst)

`Λ e RSC f

`Λ op(p,x .e ) RSC op(p,x .f )
(Λ-sc.op)

Figure 7.2: Compatible and substitutive closure construction for Λ(v)
Σ .

We say that term relation R is compatible and substitutive if R = RSC
. This de�nition obviously

agrees with the de�nitions of substitutivity and compatibility given in Chapter 5.

We immediately notice that thanks to rules (Λ-sc.R) and (E-sc.R), for any term relation R, we have

R ⊆ RSC
, and that the latter is always re�exive. As a consequence, in order to show that a term relationR

is compatible it is su�cient to prove RSC ⊆ R. We are now going to prove that if R is a enf-simulation,

then so is RSC
. In particular, we will infer that (�E)SC is a enf-simulation, and thus it is contained in

�E
, by coinduction. That allows us to conclude that enf-similarity is compatible and substitutive. For

readability, we split the proof in two parts.

Lemma 33. If R respects enfs, then so does RSC.

Proof. SupposeR respects enfs. We prove thatRSC
satis�es conditions (enf var), (enf abs), and (enf stuck)

in De�nition 48.

• We show that RSC
satis�es (enf var). That is, we prove:

`E x RSC s =⇒ s = x .

We proceed by induction on the derivation of `E x RSC s . The only relevant cases to consider

are those relatives to rules (E-sc.R), (E-sc.var), and (E-sc.subst). The �rst two are trivial. For the
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latter, suppose `E x RSC s to be the conclusion of a derivation of the form:

`E w RSC w ′ `E v RSC v ′

`E w[y := v] RSC w ′[y := v ′]
(E-sc.subst)

so that we have x = w[y := v] and s = w ′[y := v ′]. As a consequence, w must be a variable.

If w , y, then we must have w = x and we conclude the thesis by induction hypothesis on

`E w RSCw ′. Ifw = y, then we must have v = x . By induction hypothesis on `E w RSCw ′ we infer

w ′ = y too, whereas from induction hypothesis on `E v RSC v ′ we infer v ′ = x , and thus we are

done.

• We show that RSC
satis�es (enf abs), i.e.

λx .e RSC
E s =⇒ s = λx .f ∧ `E e RSC f .

We proceed by induction on the derivation of `E λx .e RSC s . The only relevant cases to consider

are those for rules (E-sc.R), (Λ-sc.abs), and (E-sc.subst). The �rst two are trivial. For the latter,

suppose `E λx .e RSC s to be the conclusion of derivation of the form

`E w RSC w ′ `E v RSC v ′

`E w[y := v] RSC w ′[y := v ′]
(E-sc.subst)

so that λx .e = w[y := v] and s = w ′[y := v ′]. We do case analysis on the structure of w . The

following are the relevant cases.

– Suppose w = y. Then we have v = λx .f . From `E y RSC w ′, since by previous point RSC

satis�es (enf var), it follows w ′ = y. We conclude the thesis by induction hypothesis on

sv RSC v ′.

– Suppose w = λx .д. Then we have e = д[y := v]. By induction hypothesis on `E w RSC w ′

we have w ′ = λx .д′ with д RSC
Λ д
′
, and thus s = λx .д′[y := v ′]. Since sv RSC v ′ by rule

(Λ-sc.subst) we conclude `Λ д[x := v] RSC д′[x := v ′], and thus we are done.

• We show that RSC
satis�es (enf stuck), i.e.

`E E[xv] RSC
E s =⇒ ∃E ′,v ′. s = E ′[xv ′] ∧ `E v RSC v ′ ∧ ∃z < FV (E) ∪ FV (E ′). `Λ E[z] RSC E ′[z].

As before, we proceed by induction on the derivation of `E E[xv]RSC s . Since E[xv] is not a value,

`E E[xv] RSC s cannot be the conclusion of an instance of rule (E-sc.subst) (as the substitution

of value for a variable in a value is itself a value). As a consequence, the only relevant cases are

those for rules (E-sc.R) and (E-sc.E), which are both straightforward.

Lemma 34 (Main Lemma.). Let R = (RΛ,RE ) be a λ-term relation. If R is a enf-simulation, then so is
RSC.

Proof. The proof is long and non-trivial. First, we immediately notice that RSC
respects enfs. This

directly follows from Lemma 33, since R is a enf-simulation (and thus respects enfs). As a consequence,

it remains to prove that e RSC
Λ f implies JeK ΓRSC

E Jf K. Since Γ is inductive, the latter follows if

∀n. `Λ e RSC f =⇒ JeKn ΓRSC
E
Jf K.

We proceed by lexicographic induction on (1) the natural number n and (2) the derivation `Λ e RSC f .

The case for n = 0 is trivial (since Γ is inductive). The remaining cases are nontrivial, and we handle

131



them either using Lemma 27 or observing that JE[e]K = JeK >>= (s 7→ JE[s]K) (cf. Lemma 10). Both

these observations allow us to apply condition (rel bind) to simplify proof obligations (usually relying

on part (2) of the induction hypothesis as well). This scheme is iterated until we reach either an enf (in

which case we rely on condition (rel unit)) or a pair of expression on which we can apply part (1) of the

induction hypothesis. We now give technical details. Assume n > 0. We proceed by cases on the last

inference rule in the derivation of e RSC
Λ f .

Case (Λ-sc.R). We have e RΛ f . Since R is a simulation we have JeKn v JeK ΓRE Jf K. We conclude the

thesis by condition (ind 2) since RE ⊆ R
SC
E and Γ is monotone.

Case (E-Λ-sc). We have to prove η(s ) ΓRSC
E η(t ) given s RSC

E t . This directly follows by condition

(rel unit).

Case (Λ-sc.app). We have to prove JeдKn ΓRSC
E Jf hK, given e RSC

Λ f and д RSC
Λ h. We notice that

JeдKn v JeKn >>= (s 7→ JsдKn )
Jf hK = Jf K >>= (s 7→ JshK),

where s 7→ JshKn denotes the function taking as argument an enf s and giving as result JshKn (and

similarity for s 7→ JshK). By condition (ind 2), it is su�cient to prove

JeKn >>= (s 7→ JsдKn ) ΓRSC
E Jf K >>= (s 7→ JshK).

which in turn, by condition (rel bind), amounts to show JeKn ΓRSC
E Jf K and that s RSC

E s
′

implies

JsдKn ΓRSC
E Js ′hK. The former directly follows by part (2) of the induction hypothesis, whereas

for the latter we assume s RSC
E s
′

and proceed by case analysis on s .

Case s = x . Then by Lemma 33 we have s ′ = x too. As before, we have JxдKn v JдKn >>= (t 7→
JxtKn ) and JxhK = JhK >>= (t 7→ JxtK). Therefore it is su�cient to prove

JдKn >>= (t 7→ JxtKn ) ΓRSC
E JhK >>= (t 7→ JxtK).

By condition (rel bind) it is su�cient to show JдKn ΓRSC
E JhK and that t RSC

E t
′

implies

JxtKn ΓRSC
E Jxt ′K. The former follows from part (2) of the induction hypothesis, whereas

the latter amounts to prove η(xt ) ΓRSC
E η(xt

′) for all enfs t , t ′ such that t RSC
E t
′

holds. By

condition (rel unit) it is su�cient to show xt RSC
E xt

′
which can be easily seen to be the case

by case analysis on t . If t is a value v , then by Lemma 33 t ′ is a value v ′ too. But then both

xt = xv and xt ′ = xv ′ are stuck terms. We conclude the thesis by rule (E-sc.E). If t is a stuck

term, say E[yv], then by Lemma 33 t ′ is a stuck term too, say E ′[yv ′] with v RSC
E v
′

and

E[z] RSC
Λ E
′
[z]. But then xE[z] RSC

Λ xE
′
[z] holds too, and thus we can conclude the desired

thesis by rule (E-sc.E), since both xE and xE ′ are evaluation contexts.

Case s = λx .c. By Lemma 33 we have s = λx .c ′ with c RSC
Λ c
′
. Proceeding as in previous case, we

reduce the proof to showing that t RSC
E t
′

implies J(λx .c )tKn ΓRSC
E J(λx .c ′)t ′K. We assume

t RSC
E t
′

and prove the thesis by case analysis on t .

Case t = v. Then by Lemma 33 we have that t ′ is a value v ′ too. We have to prove

J(λx .c )vKn = Jc[x := v]Kn−1 ΓR
SC
E Jc ′[x := v ′]K = J(λx .c ′)v ′K.

The latter follows by part (1) of induction hypothesis, since c RSC
Λ c
′
, v RSC

E v
′

imply

c[x := v] RSC
Λ c
′
[x := v ′] by rule (Λ-sc.subst).
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Case t = E[yv]. By Lemma 33 we have t ′ = E ′[yv ′] with v RSC
E v
′

and E[z] RSC
Λ E
′
[z], for

some fresh variable z. We have to prove:

J(λx .c )E[yv]Kn = η((λx .c )E[yv]) ΓRSC
E η((λx .c ′)E ′[yv ′]) = J(λx .c ′)E ′[yv ′]K.

By condition (rel unit) it is su�cient to show (λx .c )E[yv] RSC
E (λx .c ′)E ′[yv ′], which

holds by rule (E-sc.E).

Case s = E[xv]. By Lemma 33 we have s ′ = E ′[xv ′] with v RSC
E v
′

and E[z] RSC
Λ E
′
[z] for some

fresh variable z. We have to prove:

JE[xv]дKn = η(E[xv]д) ΓRSC
E η(E

′
[xv ′]h) = JE ′[xv ′]hK.

By condition (rel unit) it is su�cient to show E[xv]д RSC
E E
′
[xv ′]h. This is indeed the case

since both v RSC
E v
′

and E[z]д RSC
Λ E
′
[z]h hold, the latter being implied by д RSC

Λ h and

E[z] RSC
Λ E
′
[z] (notice that without loss of generality we can assume z to be fresh in д and

h since by rule (Λ-sc.subst) E[z] RSC
Λ E
′
[z] implies E[z ′] RSC

Λ E
′
[z ′] for any variable z fresh

for д, h, E[z], and E ′[z]).

Case (Λ-sc.subst). We have to prove Je[x := u]Kn ΓRSC
E Jf [x := u ′]K, given e RSC

Λ f and u RSC
E u
′
.

Let σ , −[x := u], τ , −[x := u ′]. By Lemma 27 and condition (ind 2) to prove the thesis it is

su�cient to show:

JeKn >>= (s 7→ Jsσ Kn ) ΓRSC
E Jf K >>= (s 7→ Jsτ K).

Relying on condition (rel bind) we claim that JeKn ΓRSC
E Jf K and that Jsσ Kn ΓRSC

E Jtτ K hold for

all enfs s , t such that s RSC
E t . The former directly follows by part (2) of the induction hypothesis,

whereas for the latter we assume s RSC
E t and proceed by case analysis on s .

Case s = v. By Lemma 33 we have t = w for some value w . Since both vσ and wτ
are values, we

have to show η(vσ ) ΓRSC
E η(w

τ ). By condition (rel unit) it is su�cient to prove vσ RSC
E w

τ
,

which follows by rule (E-sc.subst).

Case s = E[yv],y , x . We proceed as in previous case.

Case s = E[xv]. By Lemma 33 we have t = F [xw] with v RSC
E w and E[z] RSC

Λ F [z] for some

fresh variable z. We have to prove

JEσ [uvσ ]Kn ΓRSC
E JF τ [u ′wτ

]K.

We proceed by case analysis on u. If u is a variable, the we proceed as in previous case.

Otherwise u is a λ-abstraction λy.д. By Lemma 33 we have u ′ = λy.h with д RSC
Λ h. By very

de�nition of operational semantics, we have to prove:

JEσ [д[y := vσ ]]Kn−1 ΓR
SC
E JF τ [h[y := wτ

]]K.

The latter follows by part (1) of the induction hypothesis, provided Eσ [д[y := vσ ]] RSC
Λ

F τ [h[y := wτ
]]. This is indeed the case since E[z] RSC

Λ F [z] and u RSC
E u
′

imply Eσ [z] RSC
Λ

F τ [z] (without loss of generality we can assume x , z). By rule (E-sc.subst), from u RSC
E u
′

and v RSC
E w we infer vσ RSC

E w
τ
, and thus д[x := vσ ] and h[x := wτ

] by rule (Λ-sc.subst).

We conclude Eσ [д[y := vσ ]] RSC
Λ F

τ
[h[y := wτ

]] by rule (Λ-sc.E).

Case (Λ-sc.op). We have to prove Jop(p,x .e )KnΓRE SCJop(p,x .f )K, given eRSC
Λ f . For that, it is su�cient

to show

JopK(p,v 7→ Je[x := v]Kn−1) ΓRE
SC JopK(p,v 7→ Jf [x := v]K).

Since RE
SC

is re�exive, from e RSC
Λ f we infer e[x := v] RSC

Λ f [x := v], for any v . We can thus

conclude the wished thesis using condition (Σ comp) and part (1) of the induction hypothesis.
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Case (Λ-sc.E). We have to prove JE[e]Kn ΓRSC
E JF [f ]K given e RSC

Λ f and E[z]RSC
Λ F [z], for some fresh

variable z. As usual, it is su�cient to show:

JeKn >>= (s 7→ JE[s]Kn ) ΓRSC
E Jf K >>= (s 7→ JF [s]K).

By condition (rel bind) it is su�cient to prove JeKn ΓRSC
E Jf K and that sRSC

E t implies JE[s]Kn ΓRSC
E

JF [t]K. The former follows by part (2) of the induction hypothesis since e RSC
Λ f , whereas for the

latter we assume s RSC
E t and proceed by case analysis on s .

Case 1. If s is a stuck term, say A[xv], then by Lemma 33 we have t = B[xw] with A[y] RSC
Λ

B[y] and v RSC
E w . As a consequence, proving JE[s]Kn ΓRSC

E JF [t]K amounts to prove

η(E[A[xv]]) ΓRSC
E η(F [B[xw]]). By condition (rel unit) to prove the latter it is su�cient

to show E[A[xv]] RSC
E F [B[xw]]. This is indeed the case thanks to rule (E-sc.E) since both

E[A[−]] and F [B[−]] are evaluation contexts and we have E[A[y]] RSC
Λ F [B[y]].

Case 2. If s is a valuev , then t must be a valuew too, and we have to show JE[v]Kn ΓRSC
E JF [w]K.

Since z is fresh in E[−] and F [−] we notice that E[v] = (E[z])σ and F [w] = (F [z])τ , where

σ , −[z := v] and τ , −[z := w]. By Lemma 27 to prove the thesis it is thus su�cient to

show

JE[z]Kn >>= (r 7→ Jrσ Kn ) ΓRSC
E JF [z]K >>= (r 7→ Jrτ K).

By condition (rel bind) to prove the latter it is su�cient to prove JE[z]KnΓRSC
EJF [z]K and that

r1 R
SC
E r2 implies Jrσ

1
Kn ΓRSC

E Jrτ
2
K. As usual the former follows by part (2) of the induction

hypothesis since E[z] RSC
Λ F [z], whereas for the latter we assume r1 R

SC
E r2 and proceed by

case analysis on r1. If r1 is a value, then so is r2 (by Lemma 33) and proving the thesis is

straightforward. If r1 is a stuck term A1[xv1], then r2 must be a stuck term too, say A2[xv2],

with A1[y] RSC
Λ A2[y] and v1 R

SC
E v2. If x , z, then we have to show

JAσ
1

[xvσ
1

]Kn ΓRSC
E JAτ2 [xvτ

2
]K.

By condition (rel unit) the latter follows from Aσ
1

[xvσ
1

]RSC
E A

τ
2
[xvτ

2
] which indeed holds. If

x = z, then we have to show

JAσ
1

[vvσ
1

]Kn ΓRSC
E JAτ2 [wvτ

2
]K.

Ifv is a variable, then so must bew (sincevRSC
Ew) and we proceed as above. Ifv ≡ λy.д, then

by Lemma 33 we have w ≡ λy.h with д RSC
Λ h. By very de�nition of operational semantics

we have to show

JAσ
1

[д[y := vσ
1

]]Kn−1 ΓR
SC
E JAτ2 [h[y := vτ

2
]]K.

The latter follows by part (1) of the induction hypothesis, since we haveAσ
1

[д[y := vσ
1

]]RSC
Λ

Aτ
2
[h[y := vτ

2
]].

Theorem 9. Enf-similarity is a precongruence relation.

Proof. From Lemma 34 we know that �E
is a compatible, re�exive, and substitutive term relation. It

remains to prove that it is also transitive. By coinduction, it is su�cient to show that �E · �E
is an enf-

simulation, which is a routine exercise (notice, however, that to handle condition (enf stuck) we rely on

substitutivity of �E
).
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Finally, we can rely on Proposition 20 to prove that enf-bisimilarity is a congruence. In fact, as dis-

cussed in Subsection 5.4.1, our proof of Lemma 34 requires the relator Γ to be inductive, a condition

which is not satis�ed by conversive relators, in general. However, by Proposition 20 we can keep work-

ing with the Σ-continuous relator Γ and show that ('E)SC is a enf-simulation with respect to Γ. In order

to conclude ('E)SC = 'E
we need to show that ('E)SC is symmetric. An easy inspection of the rules in

Figure 7.2 reveals that for any term relation R, RSC
is symmetric whenever R is. We have thus proved

the following result.

Theorem 10. Enf-bisimilarity is a congruence relation.

We conclude this section with a short discussion on congruence and precongruence properties of

whnf-(bi)similarity. We can prove that whnf-similarity is a precongruence by mimicking the proof given

for enf-similarity. The substitutive and compatible closure of a term relation R = (RΛ,RW ) is de�ned

according to the rules in Figure 7.3. Due to the simpler form of evaluation contexts (and thus of whnfs)

of Λ(n)
Σ , the de�nition of substitutive and compatible closure for Λ(n)

Σ is easier than the one for Λ(v)
Σ . Such

simplicity is re�ected in the proof of the analogous of Lemma 34 which closely follows the one for Λ(v)
Σ

but which is substantially easier.

Theorem 11. Whnf-similarity is a precongruence relation, and whnf-bisimilarity is a congruence relation.

`Λ e R f
(Λ-sc.R)

`Λ e RSC f

`W s R t
(W-sc.R)

`W s RSC t
`W s RSC t

(W-Λ-sc)

`Λ s RSC t

(W-sc.var)

`W x RSC x

`W E[z] RSC F [z] `Λ e RSC f
(W-sc.E)

`W E[xe] RSC F [x f ]

`Λ e RSC f
(W-sc.abs)

`W λx .e RSC λx .f

`Λ e RSC f `Λ д RSC h
(Λ-sc.app)

`Λ eд RSC f h

`Λ e RSC f `Λ д RSC h
(Λ-sc.subst)

`Λ e[x := д] RSC f [x := h]

`Λ e RSC f
(Λ-sc.op)

`Λ op(p,x .e ) RSC op(p,x .f )

Figure 7.3: Compatible and substitutive closure construction for Λ(n)
Σ .

Theorem 9, Theorem 10, and Theorem 11 qualify e�ectful normal form similarity and bisimilarity as

good candidate notions for program equivalence and re�nement, at least from a structural perspective.

Additionally, such notions have been introduced looking at specif examples aimed to show limitations

of e�ectful applicative (bi)similarity. It is then natural to ask what is the relationship between all such

notions.

We now present a formal comparison between e�ectful enf-(bi)similarity and e�ectful applicative

(bi)similarity, as de�ned in Chapter 5. It is a straightforward exercise to rephrase such a comparison

for whnf-bisimilarity and the call-by-name e�ectful variation of applicative (bi)similarity as sketched at

the beginning of Chapter 6. We will say more about that below, and present a summary of the results

obtained in Chapter 8.

First of all, we cannot rely on the notation used in Chapter 5, as there would be some inconsistencies.

We thus use the following notational convention. Let Λ0,V0 denote the collections of closed terms
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and closed values, respectively. We keep using the notation J−K to denote the evaluation function of

De�nition 45. We notice that if e ∈ Λ0, then JeK ∈ TV0. Formally, we express that by saying that the

evaluation map J−K factors as follows, where ι : V0 ↪→ E is the obvious inclusion map:

Λ0

|− | //
� _

��

TV0� _

T ι
��

Λ
J−K
// TE

In particular, the map | − | is nothing but the evaluation function of De�nition 15. We can thus phrase

the de�nition of e�ectful applicative similarity (with respect to a relator Γ) as follows.

De�nition 53. A term relation R = (RΛ : Λ0
+→ Λ0,RV : V0

+→V0) is an e�ectful applicative simulation
with respect to a relator Γ (applicative simulation, for short) if:

`Λ e R f =⇒ |e | ΓRV | f | (app comp
′
)

`v λx .e R λx .f =⇒ ∀v ∈ V0. `Λ e[x := v] R f [x := v]. (app val
′
)

Let �A = (�A
Λ, �A

V
) denote applicative similarity, and �c= (�Λ

c
, �E

c ) denote the restriction of enf-

similarity �E
to closed terms and closed eager normal forms. Obviously �A

describes e�ectful applicative

similarity as de�ned in Chapter 5, but adapted to the coarse-grain version of ΛΣ.

Proposition 22. Enf-similarity restricted to closed term and enfs is contained in applicative similarity.

Proof. We show �c ⊆ �A
by coinduction, proving that �c satis�es conditions (app val

′
) and (app comp

′
).

• We show:

`E λx .e �c λx .f =⇒ ∀v ∈ V◦. `
Λ e[x := v] �c f [x := v].

We have:

`E λx .e �c λx .f =⇒ `E λx .e �E λx .f

[Since �c ⊆ �E
]

=⇒ `Λ e � f

[By (enf abs)]

=⇒ ∀v ∈ V◦. `
Λ e[x := v] �E f [x := v]

[Since �E
is re�exive and substitutive]

=⇒ `Λ e[x := v] �c f [x := v].

[Since e[x := v], f [x := v] are closed]

• We prove (app comp
′
). We have:

`Λ e �c f =⇒ `Λ e �E f

[Since �c ⊆ �E
]

=⇒ JeK Γ�E
E
Jf K

[By (enf comp)]

=⇒ T ι |e | Γ�E
E
T ι | f |.

[Since ∀e ∈ Λ◦. JeK = T ι |e |]
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We conclude the thesis observing that since �E
c = ι◦ · �E

E
· ι, we can use (stability) to calculate:(

(T ι · | − |)◦ · Γ�E ·T ι · | − |

)
=

(
| − |◦ · (T ι)◦ · Γ�E ·T ι · | − |

)
=

(
| − |◦ · Γ(ι◦ · �E · ι) · | − |

)
,

and thus conclude |e | Γ�E
c | f |.

By De�nition 49 it follows that enf-bisimilarity restricted on closed terms and enfs is contained in

applicative bisimilarity (the latter being de�ned as the largest symmetric applicative simulation). This

means that e�ectful enf-similarity is a sound proof technique for e�ectful applicative bisimilarity and

thus for e�ectful contextual equivalence, in virtue of the results of Chapter 5. Moreover, Proposition 22

extends to enf-similarity and open applicative bisimilarity (i.e. the open extension of �A
). For, let e , f

be open terms with free variables ~x . Then for all closed values ~v we have:

e �E
Λ f =⇒ e[~x := ~v] �E

Λ f [~x := ~v]

[By substitutivity of � ]

=⇒ e[~x := ~v]�A
Λ, f [~x := ~v]

[By Proposition 22]

where in applying substitutivity we use the fact that ~v consisting of closed values only, sequential

substitution coincide with simultaneous substitution. An analogous result holds for values.

Although enf-(bi)similarity is sound for applicative (bi)similarity, it is not fully-abstract. In fact,

already in the pure λ-calculus enf-bisimilarity is strictly �ner than applicative bisimilarity (and thus

strictly �ner than contextual equivalence too), as observed in (S. B. Lassen, 2005). To see that, let us

consider Example 1.4 in (Durier, Hirschko�, & Sangiorgi, 2018): the terms xv and (λy.xv ) (xv ) are obvi-

ously applicatively bisimilar but not enf-bisimilar.

Proposition 22 can also be easily adapted to whnf-(bi)similarity and the call-by-name version of

applicative (bi)similarity. Again, full abstraction fails. To see that, we can consider Example 2.3.10 in

(Abramsky & Ong, 1993), where it is observed that the (open) terms xx and x (λy.xy) are applicatively

bisimilar, but not whnf-bisimilar.

7.4.2 Normal Form (Bi)simulation Up-to Context
The up-to context technique (S. B. Lassen, 1999; Pous & Sangiorgi, 2012) is a re�nement of the coin-

duction proof principle of normal form (bi)similarity that allows for handier proofs of equivalence and

re�nement between terms. When exhibiting a candidate (bi)simulation relation R, it is desirable for R

to be as small as possible, so to minimise the task of verifying that R is indeed a (bi)simulation.

The motivation behind such a technique can be easily seen by looking at Example 45 and Example 46,

where we showed the equivalence between probabilistic �xed point combinators working with relations

containing several administrative pairs of terms. The presence of such administrative pairs was forced

by De�nition 49 and De�nition 51, although they appear somehow unnecessary in order to convince

that e.g. Y and Z exhibit the same behaviour.

Normal form (bi)simulation up-to context is a re�nement of normal form (bi)simulation that allows

to check that a relation R behaves as a (bi)simulation relation up to its substitutive and compatible

closure. We �rst de�ne the notion of an enf-simulation up-to context.

De�nition 54. A term relation R = (RΛ : Λ +→ Λ,RE : E +→ E) is an e�ectful eager normal form

simulation up-to context with respect to Γ (hereafter enf-simulation up-to context) if satis�es the following
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conditions.

`Λ e R f =⇒ JeK ΓRSC
E
Jf K (enf up-to ctx comp)

`E x R s =⇒ s = x (enf up-to ctx var)

`E λx .e R s =⇒ ∃f . s = λx .f ∧ `Λ e RSC f (enf up-to ctx abs)

`E E[xv] R s =⇒ ∃E ′,v ′. s = E ′[xv ′] ∧ `E v RSC v ′ ∧ ∃z < FV (E) ∪ FV (E ′). `Λ E[z] RSC E ′[z].

(enf up-to ctx stuck)

In order for the up-to context technique to be sound, we need to show that every enf-simulation

up-to context is contained in enf-similarity. This is a direct consequence of the following variation of

Lemma 34.

Lemma 35. If R is a enf-simulation up-to context, then RSC is a enf-simulation.

Proof. The proof is structurally identical to the one of Lemma 34, where we simply observe that wher-

ever we use the assumption that R is an enf-simulation, we can use the weaker assumption that R is an

enf-simulation up-to context.

In particular, since by Lemma 34 we have that �E = (�E)SC, we see that enf-similarity is an enf-

simulation up-to context. Additionally, by Lemma 35 it is the largest such. Since the same result holds

for enf-bisimilarity and enf-bisimilarity up-to context, we have the following result.

Theorem 12. Enf-similarity is the largest enf-simulation up-to context, and enf-bisimilarity is the largest
enf-bisimulation up-to context.

Example 47. We apply Theorem 12 to simply the proof of the equivalence between Y and Z given in

Example 45. In fact, it is su�cient to show that the symmetric closure of term relation R de�ned as

follows is an enf-bisimulation up-to context.

RΛ , {(Y ,Z ), (∆∆z,Zyz), (∆∆,y (λz.∆∆z) or y (λz.Zyz))}

RE , IE .

�

It is not hard to see that the above results can be rephrased in terms of whnf-similarity and whnf-

bisimilarity.

De�nition 55. A term relation R = (RΛ : Λ +→ Λ,RW : W +→ W ) is a weak head normal form

simulation up-to context with respect to Γ (whnf-simulation up-to context, for short) if:

`Λ e R f =⇒ JeK ΓRSC
W
Jf K (whnf up-to ctx var)

`W λx .e R s =⇒ ∃f . s = λx .f ∧ `Λ e RSC f (whnf up-to ctx abs)

`W xe0 · · · en R s =⇒ ∃f0, . . . , fk . s = x f0 · · · fk ∧ ∀i . `
Λ ei R

SC fi . (whnf up-to ctx stuck)

Theorem 13. Whnf-similarity is the largest whnf-simulation up-to context, and whnf-bisimilarity is the
largest whnf-bisimulation up-to context.

Example 48. We can use Theorem 13 to show the equivalence between the combinators P and Q of

Example 46. The reader is invited to compare the (considerably larger) size of the whnf-simulation

exhibited in Example 46 with the one de�ned below.

RΛ , {(P ,Q ), (Pyz,Qzy), (Pzy,Qyz)}

RW , ∅.
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It is a straightforward exercise to show that R is indeed a whnf-simulation up to-context, so that we

have P �W Q . Moreover, the symmetric closure of R is whnf-bisimulation up to-context, and thus we

have P 'W Q . �

We conclude this section spending a couple of words on up-to techniques. In this chapter we focused

on normal form (bi)similarity up-to context, as for our purpose the latter is probably the most powerful

technique. There are several other up-to techniques, such as (bi)simulation up-to similarity (Milner,

1989) or (bi)simulation up-to improvement (S. Lassen, 1998a). For instance, it is not hard to see the

up-to similarity technique to be valid for e�ectful applicative similarity (the proof is straightforward),

where the mapping R 7→ [R] is the one de�ned in De�nition 32.

Proposition 23. The following law holds for any closed λ-term relation R:

R ⊆ [(�A)o · Ro · (�A)o]

R ⊆ �A (up-to �A)

Proving an up-to similarity technique for normal form similarity requires to deal with some tech-

nicalities, as normal form similarity is de�ned on open terms. Nevertheless, if R is closed under the

substitution rule below, where x < FV (E) ∪ FV (F ), then we can easily prove the validity of an up-to

similarity technique.

`Λ E[x] R F [x] z < FV (E) ∪ FV (F )

`Λ E[z] R F [z]

In (S. Lassen, 1998a) several up-to techniques are proved to be sound for pure applicative (bi)similarity.

Among those, there are applicative similarity up-to similarity and applicative similarity up-to improve-

ment (Sands, 1998), as well as combinations thereof. In particular, the following restricted form of

the up-to context technique is proved to be valid for pure applicative similarity (again, the mapping

R 7→ [R] is the one de�ned in De�nition 32):

R ⊆ [R̂]

R ⊆ �A
(up-to-ctx-closed)

The soundness of the ‘full’ up-to context technique

R ⊆ [
E(Ro )]

R ⊆ �A
(up-to-ctx)

is, to the best of author’s knowledge, still an open problem.

7.5 E�ectful Lévy-Longo Trees
At the very beginning of this chapter, we made several references to Böhm-tree like equivalences. That

was rather informal, as there is no precise de�nition of such equivalences. In this section we study

the formal connection between normal form similarity and Böhm-tree like approximation. Notably,

we de�ne and analyse suitable generalisation of Lévy-Longo trees for e�ectful calculi as well as the

equivalence and approximation they induce on terms. As we will see, the latter coincide with whnf

bisimilarity and similarity, respectively. Finally, we brie�y discuss tree-like equivalences associated

with enf-(bi)similarity.

Böhm trees (Barendregt, 1984) are in�nitary tree-like structures used as mathematical descriptions

of the behaviour of pure, untyped λ-terms when evaluated according to the so-called head normal form
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reduction (Barendregt, 1984). Lévy-Longo trees (Lévy, 1975; Longo, 1983; C. Ong, 1988) have been in-

troduced as the natural counterpart of Böhm trees in the context of the so-called lazy or weak head

normal form reduction, i.e. a call-by-name reduction strategy reducing terms to weak head normal

forms (Abramsky, 1990a).

The original formulation of both Böhm and Lévy-Longo trees is of an inductive nature, as witnessed

by e.g. (Barendregt, 1984). Moving from ideas developed in concurrency theory
6
, in (Sangiorgi, 1992,

1994) Lévy-Longo tree equality has been characterised coinductively, introducing the notion of open
bisimilarity, the latter being nothing but whnf-bisimilarity for ΛM. The study of Lévy-Longo tree equal-

ity as a suitable notion of bisimulation opened the door to the analysis of tree like equivalences using

coinductive techniques, as witnessed by the numerous works on the subject (see e.g. (Biernacki, Lenglet,

& Polesiuk, 2018; De Liguoro & Piperno, 1995; S. B. Lassen, 1999, 2005), just to mention a few).

In this section we introduce e�ectful Lévy-Longo trees as an extension of Lévy-Longo trees to Λ(n)
Σ

and show that we can de�ne a suitable preorder (resp. equivalence) on such trees which coincides with

whnf-similarity (resp. whnf-bisimilarity). Speci�c notions of e�ecful Böhm trees have been introduced

in the context of nondeterministic (De Liguoro & Piperno, 1995) and probabilistic (Leventis, 2016) λ-

calculi, and it is not hard to see that our notion of e�ectful Lévy-Longo tree is deeply related to such

proposals. The major di�erences are the following.

1. Di�erently from (De Liguoro & Piperno, 1995) and (Leventis, 2016) we work with lazy calculi,

meaning that we do not evaluate under lambdas, and thus we work with generalisations of Lévy-

Longo trees rather than Böhm trees.

2. Our approach is parametric over a large class of e�ects, and not tailored to speci�c ones.

3. Our de�nitions and results are mostly of a coinductive nature, whereas both (De Liguoro &

Piperno, 1995) and (Leventis, 2016) seem to be more inductively-oriented.

In the rest of this section we work with the calculus Λ(n)
Σ and �x both a Σ-continuous monad T and

a Σ-continuous relator Γ for it. For convenience, we use a compact notation to represent trees.

De�nition 56. The collectionVT (T) of e�ectful value Lévy-Longo trees (with respect to T) is coinduc-
tively de�ned as follows:

1. If E ∈ T (VT (T)), then λx .E ∈ VT (T).

2. If E1, . . . , En ∈ T (VT (T)), then x〈E1, . . . , En〉 ∈ VT (T).

The collection of e�ectful Lévy-Longo trees (with respect to T) is de�ned as T (VT (T)).

As usual, where no confusion arises we will omit references to the monad T and refer to e�ectful

value trees and e�ectful trees as value trees and trees, respectively. Intuitively, a value tree of the form

λx .E represent a tree with root λx . and with the single child E . Similarly, x〈E1, . . . , En〉 represents a

tree with root x and children E1, . . . , En . Pictorially, we can present such trees as:

λx

E

x

E1 · · · En

The elements E1, . . . , Em are, for instance, subdistributions of value trees when T is DM, sets of value

trees when T is PM, or simply trees (including the unde�ned tree ⊥) when T is M. As for usual λ-terms,

we work with (value) trees up to renaming of bound variables.

6
Notably from the theory of open bisimulation for the π -calculus (Sangiorgi, 1993).
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Example 49. We immediately notice that for any monad T we have ⊥ ∈ T (VT (T)), so that λx .⊥ is a

value tree. Moreover, we can de�ne the tree > as the solution to the equation ξ = λx .η(ξ ). Therefore,

we have > = λx .η(λx .η(λx .η(. . .)))). Since we work up to renaming of bound variable, > intuitively

captures the behaviour of terms of order ω without side e�ects (see (C. Ong, 1988; Sangiorgi, 1994) for

details). �

De�nition 57. The e�ectful Lévy-Longo tree (hereafter tree or Lévy-Longo tree) LT (e ) of a term e is
de�ned as T (φ)JeK, where the map φ :W →VT (T) is de�ned by:

φ (λx .e ) = λx .LT (e )

φ (xe1 . . . en ) , x〈LT (e1) . . . LT (en )〉.

Pictorially:

LT (e ) , T (φ)JeK φ (λx .e ) , λx

LT (e )

φ (xe1 . . . en ) , x

LT (e1) . . . LT (en )

Example 50. Let T be the partiality monad M. We immediately observe that LT (Ω) = ⊥, where as

usual Ω , (λx .xx ) (λx .xx ). Similarly, we can calculate the Lévy-Longo tree LT (λx .xIΩ), for I , λx .x ,

as follows:

LT (λx .xIΩ) = just (λx .LT (xIΩ))

= just (λx .just (x〈LT (I ),LT (Ω)〉))

= just (λx .just (x〈just (φ (λx .x )),⊥〉))

= just (λx .just (x〈just (λx .LT (x )),⊥〉))

= just (λx .just (x〈just (λx .just x ),⊥〉)).

Omitting just annotations, we can represent LT (λx .xIΩ) as:

λx

x

λx ⊥

x

Let us now consider the ogre combinator O ≡ YK , where K , λx .λy.x and Y is Curry �xed point

combinator. Let us write ∆K for λx .K (xx ). Since JOK = just λy.∆K∆K and J∆K∆K K = just λy.∆K∆K ,

we see that LT (O ) is given as the solution to the equation ξ = just (λy.ξ ). Omitting just annotations,

we can represent LT (O ) as the following tree, and thus see that LT (O ) coincides with >.

λy

λy

λy

.

.

.
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Example 51. Let T be the partial powerset monad FT. We have:

LT (λx .(x or Ω)) = {just (φ (λx .(x or Ω)))}

= {just (λx .LT (x or Ω))}

= {just (λx .{just x ,⊥})}

LT ((λx .x ) or (λx .Ω)) = {just (φ (λx .x )), just (φ (λx .Ω))}

= {just (λx .{just x }), just (λx .{⊥})}.

Omitting just annotations, we can represent LT (λx .(x or Ω)) and LT ((λx .x ) or (λx .Ω)) as follows:

LT (λx .(x or Ω)) =




λx

{x ,⊥}




LT ((λx .x ) or (λx .Ω)) =




λx

{x }

,

λx

{⊥}




Similarly, considering the partial distribution monad DM (and mitting just annotations) we can represent

LT (λx .(x or Ω)) and LT ((λx .x ) or (λx .Ω)) as follows:

LT (λx .(x or Ω)) = 1 ·

*....
,

λx

(
1

2
· x + 1

2
· ⊥

) +////
-

LT ((λx .x ) or (λx .Ω)) =
1

2

·
*..
,

λx

1 · x

+//
-
+

1

2

*..
,

λx

1 · ⊥

+//
-

�

Comparing e�ectful Lévy-Longo tree with plain equality can be easily seen to be too discriminating.

For instance, λx .(x or Ω) and λx .x have di�erent Lévy-Longo trees, but can be easily seen to be whnf-

bisimilar. As a consequence, our notions of e�ectful Lévy-Longo tree equivalence and approximation

are de�ned with respect to a relator Γ.

De�nition 58. Lévy-Longo value tree approximation with respect to Γ (Lévy-Longo value tree approxi-
mation, for short) �VLT

: VT (T) +→ VT (T) is de�ned as the largest relation R : VT (T) +→ VT (T) such
that:

λx .E R F =⇒ ∃F ∈ T (VT (T)). F = λx .F ∧ E ΓR F

x〈E1, . . . , En〉 R F =⇒ ∃G1, . . . , Gn ∈ T (VT (T)). F = x〈G1, . . . , Gn〉 ∧ ∀i ≤ n. Ei ΓR Gi .

As usual, De�nition 58 induces a monotone endofunction R 7→ [R] (monotonicity being a conse-

quence of monotonicity of Γ) on the complete lattice of binary relations on value trees. As a consequence,

we see that �VLT
is nothing but the greatest �xed point of R 7→ [R]. We can �nally extract a λ-term

relation from �VLT
that provides an alternative characterisation of whnf-similarity.

De�nition 59. De�ne e�ectful Lévy-Longo tree approximation with respect to Γ (Lévy-Longo tree ap-
proximation, for short) as the λ-term relation �LT= (�LT

Λ , �LT
W
), de�ned by:

�LT
Λ , LT ◦ · Γ�VLT · LT ,

�LT
W
, φ◦· �VLT ·φ.

That is:

e �LT
Λ f ⇐⇒ LT (e ) Γ�VLT LT ( f )

s �LT
W
t ⇐⇒ φ (s ) �VLT φ (t ).
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Theorem 14. Lévy-Longo tree approximation �LT coincide with whnf-similarity �W.

Proof. The proof is entirely by coinduction and relies on stability of Γ. Let us start by showing �W ⊆ �LT
,

i.e. that the following implications hold:

e �W
Λ f =⇒ LT (e ) Γ�VLT LT ( f )

s �W
W
t =⇒ φ (s ) �VLT φ (t ).

Since �VLT
is de�ned coinductively, to prove the above implications it is su�cient to exhibit a relation

R : VT (T) +→VT (T) satisfying proof obligations in De�nition 58 and such that

�W
Λ ⊆ LT ◦ · ΓR · LT

�W
W
⊆ φ◦ · R · φ.

In fact, since R satis�es proof obligations in De�nition 58, by coinduction we have have R ⊆ �VLT
and

thus ΓR ⊆ Γ�VLT
, as Γ is monotone. De�ne R as (φ × φ) (�W

W
), i.e.

R , {(φ (s ),φ (t )) | s �W t }.

We claim that R satis�es proof obligations in De�nition 58.

1. Suppose λx .E R φ (t ). We prove that there exists F ∈ T (VT (T)) such that φ (t ) = λx .F and

E ΓR F . By very de�nition of φ, there exists a term e such that E = LT (e ) and λx .E = φ (λx .e ).
By very de�nition of R we have λx .e �W

W
t , and thus t = λx .f , for some term f such that e �W

Λ f .

In order to conclude the desired thesis we have to show LT (e ) ΓR LT ( f ). We have:

LT (e ) ΓR LT ( f ) ⇐⇒ T (φ)JeK ΓR T (φ)Jf K
[By De�nition 57]

⇐⇒ JeK Γ(φ◦ · R · φ) Jf K
[By (stability)]

⇐⇒ JeK Γ�W
W
Jf K

[φ◦ · R · φ = �W
W

]

⇐= e �W
Λ f .

2. We can prove that x〈E1, . . . , En〉 implies that there exist F1, . . . , Fn ∈ T (VT (T)) such that

φ (t ) = x〈F1, . . . , Fn〉 and Ei ΓR Fi , for any i ≤ n, as we did in point 1.

Obviously �W
W
⊆ φ◦ ·R ·φ. It remains to prove that e �Λ f implies LT (e ) ΓRLT ( f ), but that is exactly

what we showed in point 1 above. We now show that �LT
is a whnf-simulation, from which �LT ⊆ �W

will follow. Proving that �LT
respects whnfs is straightforward. It remains to show that e �LT

Λ f implies

JeK Γ�LT
W
Jf K. We have:

e �LT
Λ f ⇐⇒ LT (e ) Γ�VLT LT ( f )

[By De�nition 59]

⇐⇒ T (φ)JeK Γ�VLT T (φ)Jf K
[By De�nition 57]

⇐⇒ JeK Γ(φ◦· �VLT φ) Jf K
[By (stability)]

⇐⇒ JeK Γ�LT
W
Jf K.

[By De�nition 59]
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Finally, we de�ne e�ectful Lévy-Longo value tree equivalence with respect to Γ, denoted as 'VLT
, as the

largest symmetric e�ectful Lévy-Longo tree approximation. The relation 'VLT
induces a λ-term relation

'LT
as in De�nition 59. Moreover, a slightly modi�cation of Theorem 14 allows us to conclude the

following result.

Theorem 15. E�ectful Lévy-Longo tree equivalence 'LT coincides with whnf-bisimilarity 'W.

We conclude this section as well as this chapter, with a short discussion on the analogous of e�ectful

Lévy-Longo tree equivalence for enf-bisimilarity. As we remarked above, Lévy-Longo trees have been

introduced as the analogous of Böhm trees for the so-called lazy λ-calculus, where one works with

weak head normal forms, rather than with head normal forms. To the best of the author’s knowledge,

the notion of a Böhm tree has not been adapted to the eager λ-calculus of (S. B. Lassen, 2005), where

weak head normal forms are replaced by eager normal forms. The reason why this has not been done is

rather evident: because such trees would faithfully mimic the bisimulation game associated with eager

normal form bisimulation. To see that, let us de�ne the eager tree ET (e ) of a pure λ-term e .

De�nition 60. The eager tree ET (e ) of a pure term e is the (possibly) in�nitary tree with edges possibly
labelled by variables coinductively de�ned as follows:

ET (e ) ,



⊥ if JeK = ⊥
φ (s ) if JeK = just s

where the function φ is de�ned as follows, where z < FV (E):

φ (x ) , x φ (λx .e ) , λx

ET (e )

φ (E[xv]) , x
z

ET (E[z]) φ (v )

De�nition 60 has been proposed by Ronchi della Rocca to Sangiorgi and Durier
7
, and by the latter

to the author in a private communication.

Example 52. We can use De�nition 60 to see that the applicatively bisimilar terms xv and (λy.xv ) (xv )
previously discussed have di�erent eager trees.

ET (xv ) =
*..
,

x
z

z φ (v )

+//
-

ET (λy.xv ) (xv ) =

*........
,

x
z

x
z′

φ (v )

z ′ φ (v )

+////////
-

In a similar fashion, we can prove the equivalence between the (pure) �xed point combinators Y and Z

7
They refer to ET (e ) as the Lassen tree of e .
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of Examplex 41, observing that they have the same eager tree.

LT (Y ) =

*..................................
,

λy

y
y′

y ′ λz

y
z′

z ′
z′′

λz

z ′′ z y
z′

z ′
z′′

λz

z ′′ z
.
.
.

+//////////////////////////////////
-

= LT (Z )

�

Finally, it is straightforward to see that we can generalise De�nition 60 to full Λ(v)
Σ simply de�ning

ET (e ) asT (φ)JeK. It comes with no surprise that we can de�ne notions of eager tree approximation and

equivalence, and that the latter coincide with �E
and 'E

, respectively.
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Chapter 8

Midterm Discussion

µέσoν τε καὶ άριστoν

Aristotle, Nicomachean Ethics

Chapter 7 is the last chapter of this dissertation that deals with notions of program equivalence

and program re�nement. Chapter 9 to Chapter 12 are entirely dedicated to the study of the so-called

program metrics or program distances.
Here we summarise the main results proved so far, and their relationship. In fact, we studied several

notions of program equivalence and approximation, and, although several soundness and completeness

(i.e. full abstraction) theorems have been proved, it is useful for the reader to have a conceptual map of

the results obtained.

Concerning program equivalence and re�nements for call-by-value calculi, we introduced:

• E�ectful applicative similarity �A
and bisimilarity 'A

.

• E�ectful contextual approximation �ctx
and equivalence 'ctx

.

• E�ectful CIU approximation �ciu
and equivalence 'ciu

.

• E�ectful eager normal form similarity �E
and bisimilarity 'E

.

With the exception of CIU approximation (resp. equivalence) and contextual approximation (resp.

equivalence), these relations do not coincide, in general. In particular, we have:

• (The open extension of) e�ectful applicative similarity (resp. bisimilarity) is strictly included in ef-

fectful contextual approximation (resp. equivalence). Inclusion follows from Theorem 4 and The-

orem 5, whereas strictness has been proved for the nondeterministic calculus ΛFM in (S. Lassen,

1998b) (Example 6.4.4).

• E�ectful eager normal form similarity (resp. bisimilarity) is strictly included in (the open exten-

sion of) e�ectful applicative similarity (resp. bisimilarity). Inclusion follows by Proposition 22,

whereas strictness has been in shown in (S. B. Lassen, 2005) for the pure, untyped λ-calculus (see

also the discussion after Proposition 22).

• (The open extension of) e�ectful CIU approximation (resp. equivalence) coincides with contextual

approximation (resp. equivalence). This follows from Theorem 6.

These results are summarised in Table 8.1. Concerning program equivalence and re�nements for

call-by-name calculi, we introduced:
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�E ( (�A)o ( (�ciu)o = �ctx

'E ( ('A)o ( ('ciu)o = 'ctx

Table 8.1: Call-by-value re�nement/equivalence spectrum.

• E�ectful applicative similarity �A
and bisimilarity 'A

(we only sketched the de�nition).

• Monadic applicative similarity �M
and bisimilarity 'M

.

• E�ectful contextual approximation �ctx
and equivalence 'ctx

.

• E�ectful CIU approximation �ciu
and equivalence 'ciu

.

• E�ectful weak head normal form similarity �W
and bisimilarity 'W

.

• E�ectful Lévy-Longo tree approximation �LT
and equivalence 'LT

.

The relationship between these equivalences and re�nements is the following, where we assume relators

to be quasi-�at.

• (The open extension of) monadic applicative similarity (resp. bisimilarity), e�ectful contextual

approximation (resp. equivalence), and (the open extension of) CIU approximation (resp. equiv-

alence) coincide. This follows from Theorem 8, Corollary 4, and Corollary 5.

• E�ectful applicative similarity (resp. bisimilarity) is strictly included in monadic applicative sim-

ilarity (resp. bisimilarity), and thus in e�ectful contextual approximation (resp. equivalence), and

CIU approximation (resp. equivalence). Strictness has been showed for ΛFM at the beginning of

Chapter 6.

• E�ectful weak head normal form similarity (resp. bisimilarity) is strictly included in (the open ex-

tension of) e�ectful applicative similarity (resp. bisimilarity). Inclusion follows by mimicking the

proof of Proposition 22, whereas strictness has been proved in (Abramsky & Ong, 1993), Example

2.3.10.

• E�ectful Lévy-Longo tree approximation (resp. equivalence) coincides with e�ectful weak head

normal form similarity (resp. bisimilarity).

These results are summarised in table 8.2.

�LT = �W ( (�A)o ( (�M)o = (�ciu)o = �ctx

'LT = 'W ( ('A)o ( ('M)o = ('ciu)o = 'ctx

Table 8.2: Call-by-name re�nement/equivalence spectrum.
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Chapter 9

A Theory of Abstract Behavioural
Metrics

Algebra is the intellectual instrument

which has been created for rendering

clear the quantitative aspects of the

world.

Alfred North Whitehead, The Aims

of Education

The rest of this dissertation is devoted to the study of e�ectful applicative (bi)similarity distance,

the quantitative-like re�nement of e�ectful applicative (bi)similarity, as de�ned in Chapter 5. Roughly

speaking, such a re�nement is obtained by moving from ordinary boolean-valued relations to relations

taking values over arbitrary quantitative domains (such as the real extended half-line [0,∞] or the unit

interval [0, 1]). Accordingly, the theory of e�ectful applicative (bi)similarity distance builds on three

major improvements of the theory of e�ectful applicative (bi)similarity of Chapter 5.

1. The �rst improvement is to move from boolean-valued relations to relations taking values on

quantitative domains, such as [0,∞] or [0, 1], in such a way that restricting these domains to the

(carrier of the) boolean algebra 2 makes the theory collapse to the usual theory of applicative

(bi)similarity. For that, we rely on Lawvere’s analysis (F. Lawvere, 1973) of generalised metric

spaces and preordered sets as enriched categories. Accordingly, we replace boolean-valued rela-

tions with relations taking values over quantales (Rosenthal, 1990) (see De�nition 61) (V, ≤, ⊗,k ),
i.e. algebraic structures (notably complete lattices equipped with a monoid structure) that play

the role of sets of abstract quantities. Examples of quantales include the extended real half-line

([0,∞], ≥, 0,+) ordered by the “greater or equal” relation ≥ and with monoid structure given by

addition (and its restriction to the unit interval [0, 1]), and the extended real half-line ([0,∞], ≥

, 0, max) with monoid structure given by binary maximum (in place of addition), as well as any

complete Boolean and Heyting algebra. This allows to develop an algebra of quantale-valued re-

lations, V-relations for short, which provides a general framework for studying both behavioural

relations and behavioural distances (for instance, an equivalence V-relation instantiates to an ordi-

nary equivalence relation on the boolean quantale ({false, true}, ≤,∧, true), and to a pseudometric

on the quantale ([0,∞], ≥, 0,+)).

2. The second improvement is the generalisation of the notion of relator to quantale-valued rela-

tors, i.e. relators acting on relations taking values over quantales. Perhaps surprisingly, such
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generalisation is at the heart of the �led of monoidal topology (Hofmann et al., 2014), a sub�eld of

categorical topology aiming to unify ordered, metric, and topological spaces in categorical terms.

Central to the development of monoidal topology is the notion of a V-relator or V-lax extension

of a monad T (with carrierT ) which, analogously to the notion of relator, is a construction lifting

V-relations on a set X to V-relations on TX . Notable examples of V-relators are obtained from

the Hausdor� distance (for the powerset monad) and from the Wasserstein-Kantorovich distance

(Villani, 2008) (for the distribution monad).

3. The third improvement (on which we will expand more in Section 9.2) is the development of a

compositional theory of behavioural V-relations (and thus of behavioural distances). As we are

going to see, ensuring compositionality in an higher-order setting is particularly challenging due

to the ability of higher-order programs to copy their input several times, a feature that allows

them to amplify distances between their inputs ad libitum.

The result is an abstract theory of behavioural V-relations that allows to de�ne notions of quantale-

valued applicative similarity and bisimilarity parametrised by a quantale-valued relator. The notions

obtained, which we refer to as e�ectful applicative similarity and bisimilarity, respectively, generalise

the existing notions of real-valued applicative (bi)similarity and can be instantiated to concrete cal-

culi to provide new notions of applicative (bi)similarity distance. A remarkable example is the case of

probabilistic λ-calculi, where to the best of the author’s knowledge a (non-trivial) applicative distance

for a universal (i.e. Turing complete) probabilistic λ-calculus is still lacking in the literature (but see

Section 13.1).

As for Chapter 5, the main theorem we prove states that under suitable conditions on monads and

quantale-valued relators, the abstract notion of e�ectful applicative similarity distance is a compatible —

i.e. compositional — re�exive and transitive V-relation. Under mild conditions such a result extends to

e�ectful applicative bisimilarity distance, which is thus proved to be a compatible, re�exive, symmetric,

and transitive V-relation (i.e. a compatible pseudometric).

This chapter aims to provide an extensive, informal introduction to Chapter 10, Chapter 11, and

Chapter 12, which, instead, are devoted to the technical exposition of the theory of e�ectful applicative

(bi)similarity distance.

9.1 An Abstract Theory of Distances
The observation that ordered and metric spaces share a common structure dates back at least to Haus-

dor� (Hausdor�, 1949). In fact, Hausdor� observed that an order on a setX can be described as a function

f : X × X → {<,=,>}. Accordingly, Hausdor� presented metric spaces as a direct generalisation of

ordered sets where now the map f associates to each pair of points in X the distance between them.

Decades later, this simple analogy has been extended by Lawvere (F. Lawvere, 1973) to a formal cor-

respondence. Metric and ordered spaces not only share the same structure, but also the same axioms.

Moreover, such axioms are nothing but a concrete instance of the de�nition of an enriched category
(Kelly, 2005).

In ordinary category theory, each category C comes with a map, the so-called hom-map C(−,−), that

associates to each pair of objects X ,Y of C a set, namely the set of morphism from X to Y . Such hom-

sets must satisfy speci�c conditions; for any object X there is an identity morphism 1X belonging to

C(X ,X ). Additionally, for all objects X , Y , and Z there is a binary operation ◦ associating to morphisms

д ∈ C(Y ,Z ) and f ∈ C(X ,Y ) a morphism д ◦ f ∈ C(X ,Z ), called the composition of f with д. Enriched

category theory moves from the observation that there is no formal reason to require hom-sets to be sets.

Hom-sets are then replaced by objects in another category V. In that case, we say that C is enriched

over V. However, the category V needs to have enough structure to allow the de�nition of identity
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morphisms and composition operations. For that, it is su�cient to require V to be a monoidal category.

The existence of a composition operation can be then formalised as a family of morphisms

mX ,Y ,Z : C(Y ,Z ) ⊗ C(X ,Y ) → C(X ,Z )

in V , whereas identity is given by morphisms

iX : I → C(X ,X ).

The coherence conditions of V ensuresm and i to behave as composition and identity, respectively. For

instance, the category Set being monoidal, it is easy to see that a locally small category is nothing but

a category enriched over Set.
A more interesting example of an enriched category is provided by preorders. Recall that the two-

element boolean algebra 2 can be seen as a category with two objects (0 and 1, or false and true), and a

single morphism x → y if x ≤ y. Moreover, 2 is monoidal, with tensor product given by binary meet ∧

and unit given by true. A preorder is thus a categoryX enriched over2. The hom-setX (x ,y) ∈ 2 denotes

the truth value of the dominance of y over x . Accordingly, identity and composition are modelled by

the 2-morphisms:

true ≤ X (x ,x )

X (y, z) ∧ X (x ,y) ≤ X (x , z),

which are nothing but the usual axioms stating that the order X (−,−) is transitive and re�exive.

Lawvere’s key insight is that another example of an enriched category is provided by what he called

generalised metric spaces, i.e. pairs of the form (X , µ ), with µ : X × X → [0,∞], satisfying the following

subset of the usual metric axioms (where x ,y, z are universally quanti�ed):

0 ≥ µ (x ,x )

µ (x ,y) + µ (y, z) ≥ µ (x , z).

In order to see the enriched nature of generalised metric spaces, we �rst observe that the extended

non-negative real line [0,∞] carries a monoidal category structure. Arrows are given according to the

opposite of the natural ordering ≥ (so that 0 is the terminal object, and ∞ is the initial one), whereas

the tensor product is given by addition, so that the unit is 0. In a category X enriched over [0,∞], the

hom-set X (x ,y) ∈ [0,∞] gives the ‘distance’ between x and y. Identity and composition are thus given

as the morphisms:

0 ≥ X (x ,x )

X (y, z) + X (x ,y) ≥ X (x , z),

which are nothing but the usual axioms for identity and triangle inequality. We can also notice that there

is another natural way to give the set [0,∞] a monoidal category structure, namely replacing addition

(i.e. the tensor product) with the binary maximum operator max. Composition now gives

max(X (y, z),X (x ,y)) ≥ X (x , z)

which is nothing but the usual strong triangle inequality axiom characterising ultrametric spaces.

Moving form these observations Lawvere built a beautiful theory of categories enriched over com-

plete and cocomplete monoidal categories that uni�es the theory of locally small categories, preroder

spaces, and generalised metric spaces (as well as the logic(s) associated with those structures). Here, we

will be more concrete and work with relations taking values over quantales (Rosenthal, 1990), the latter

being the decategori�cation of complete and cocomplete monoaidal categories.
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More precisely, a quantale is a structure V = (V, ≤, ⊗,k ) such that (V, ≤) is a complete lattice and

(V, ⊗,k ) is a monoid. We require the complete lattice and monoid structure of quantale to nicely interact,

meaning that some suitable distributivity laws has to be satis�ed (see De�nition 61 for details). For

the moment, we simply observe that the structures 2 = (2, ≤,∧, true), L = ([0,∞], ≥,+, 0), and SL =
([0,∞], ≥, max, 0) are quantales. We refer to them as the boolean, Lawvere, and strong Lawevere quantale,

respectively. Finally, for a quantale V as above, we de�ne a V-relation between X and Y to be a map

α : X × Y → V.

Intuitively quantales model abstract quantities, and thus quantale-valued relations can be used as

models of abstract distances. On a formal level, the structure of a quantale V allows to generalise the

usual algebra of boolean-valued relations to V-relations.

The correspondence between 2, L, SL, and an arbitrary quantale V = (V, ≤, ⊗,k ) is summarised in

Table 9.1.

2 (boolean) L (Lawvere) L (strong Lawvere) V (quantale)

Carrier 2 [0,∞] [0,∞] V
Order ≤ ≥ ≥ ≤

Join ∃ inf inf

∨
Meet ∀ sup sup

∧
Tensor ∧ + max ⊗

Unit true 0 0 k

Table 9.1: Correspondence 2-[0,∞]-V.

We can use Table 9.1 as a recipe to lift the algebra of boolean-valued relations to V-relations, as well

as to translate standard relational constructions into their quantitative counterparts.

For instance, it is straightforward to generalise the usual notion of relation composition. In fact, the

latter is de�ned using only the join (∃) and binary meet (∧) of 2, and both these notions are de�ned in

any quantale. Applying Table 9.1 to the de�nition of relation composition we thus obtain the following

de�nitions of (generalised) composition, where R,S are 2-relations, µ,ν are L-relations, p, s are SL-

relations, and α , β are V-relations we have:

(S · R ) (x , z) , ∃y. R (x ,y) ∧ S (y, z)

(ν · µ ) (x , z) , inf

y
µ (x ,y) + ν (y, z)

(p · s ) (x , z) , inf

y
max(s (x ,y),p (y, z))

(β · α ) (x , z) ,
∨
y

α (x ,y) ⊗ β (y, z).

As a consequence, we can say that a V-relation α is transitive if α · α ≤ α . It is straightforward to

see that V-relation transitivity generalises the usual notion of transitivity of boolean-valued relations

as well as the well-known triangle and strong triangle inequality formulas.

Extending this line of reasoning to the notions of symmetry and re�exivity, we come up with pre-

order and equivalence V-relations (oftentimes abbreviated as V-preorders and V-equivalences). These

generalise standard preorder and equivalence relations, as well as generalised (ultra)metrics, and their

symmetric extensions (known as (ultra-)pseudometrics (Steen & Seebach, 1995)). As a consequence, our

notions of quantale-valued program equivalence and re�nement provide abstract notions of program

distance, the latter subsuming both standard, boolean-valued program equivalence and re�nement, and

program metric (the latter, as it is customary, denoting both program generalised (ultra)metrics and

program (ultra-)pseudometrics).

151



Having clari�ed the basic intuitions behind the abstract approach to relations and distances used in

this work, we now discuss the so-called distance ampli�cation phenomena.

9.2 Compositionality, DistanceAmpli�cation, andLinearTypes
As usual, we begin our analysis with an informal example giving some insights on the nature of the

notions we aim to investigate. The informal example we study here is the calculus Λp of Chapter 2 (and

actually is equivalent formulation ΛDM). Our goal is to de�ne a notion of program distance δ between

terms of Λp re�ning probabilistic applicative bisimilarity. Intuitively, δ (e , e ′) quanti�es the observable

di�erences between (the operational behaviour of) e and (the operational behaviour of) e ′. Since we

postulated the probability of convergence to be the only observable property of a program, it is natural

to let δ (e , e ′) be a non-negative real number between 0 and 1. Following Section 9.1, we see that [0, 1]

carries the same quantale structure of L, the only di�erence being that the tensor product on [0, 1] is

de�ned as truncated addition1
. We call the quantale thus obtained unit interval quantale, and denote it

as I. We have thus obtained our �rst assumption.

Assumption 1. A program distance δ in Λp is a pair of functions (δΛ
,δV ), where δΛ

: Λ◦ × Λ◦ → [0, 1]

and δV : V◦ ×V◦ → [0, 1].

We now look at some minimal desiderata a candidate distance δ should satisfy. First of all, since we

observe the probability of convergence of programs, it is natural to require δΛ (e , e ′) to be at least as big

as the absolute value of the di�erence between the probability of convergence of e and of e ′. In fact, the

latter is somehow the minimal distance an external observer can detect, even without interacting with

e and e ′. We are thus requiring δ to be adequate with respect to the observable (operational) behaviour

of programs in Λp .

Assumption 2. Writing
∑
JeK for

∑
v ∈V◦JeK(just v ), we say that a program distance δ = (δΛ

,δV ) is
adequate if:

|
∑

JeK −
∑

Je ′K| ≤ δ (e , e ′).

Next, we ask if and how much the distance δΛ (e , e ′) is modi�ed when e and e ′ are used inside

a context C. Indeed we would like to reason about the distance δΛ (C[e],C[e ′]) compositionally, i.e.

in terms of the distance δΛ (e , e ′). As we have already remarked, compositionality is at the heart of

relational reasoning about program behaviour, and most of the main results proved in previous chapters

are concerned with showing compositionality of several forms of (bi)simulation-based equivalence and

re�nement relations. Formally, we modelled compositionality via the notion of compatibility, a relation

being compatible if it is preserved by all language constructors.

Analogous to the idea that compatible relations are preserved by language constructors, we are

tempted to de�ne as compatible those distances that are not increased by language constructors. That is,

we would like to say that a behavioural distance δ is compatible if the distance δ (C[e],C[e ′]) between

C[e] and C[e ′] is always bounded by the distance δ (e , e ′), no matter how C[−] uses e and e ′. This

intuition gives our third assumption.

Assumption 3. A program distance δ = (δΛ
,δV ) is compatible if for all programs e , e ′ and any context

C, we have:

δΛ (C[e],C[e ′]) ≤ δΛ (e , e ′).

1
Truncated addition is de�ned as min(x + y , 1): we overload the notation and denote by + both ordinary and truncated

addition.

152



Equivalently, δ is compatible if for all programs e , e ′ we have:

sup

C

δΛ (C[e],C[e ′]) ≤ δΛ (e , e ′).

Notice that Assumption 3 requires δ to be non-expansive with respect to all language constructors.

At this point we encounter a serious problem: as noticed in (Crubillé & Dal Lago, 2015, 2017), requiring

Assumption 1, Assumption 2, and Assumption 3 can lead to some distance trivialisation phenomena.

Roughly speaking, we say that a program distance δ trivialises if for all programs e , e ′, either δΛ (e , e ′) = 0

or δΛ (e , e ′) = 1. That is, interpreting 0 as true and 1 as false, δ trivialises if it behaves as a (boolean-

valued) relation.

Distance trivialisation is a consequence of higher-features of calculi. In fact, higher-order programs

can freely copy and duplicate their input several times, thus having the testing power to amplify dis-

tances between their inputs ad libitum. Here we are not concerned with distance trivialisation in full

generality (the interested reader can refer to (Crubillé & Dal Lago, 2017) for a formal analysis of dis-

tance trivialisation). For our purposes, it is su�cient to notice that Assumption 1, Assumption 2, and

Assumption 3 make any candidate distance not satisfactory. We clarify this point with the following

example taken from (Crubillé & Dal Lago, 2017), and here (re)formulated in the calculus Λp .

Example 53. Let δ be a program distance satisfying Assumption 1, Assumption 2, and Assumption 3.

Let I be the identity combinator λx .return x and Ω be the purely divergent computation (λx .xx ) (λx .xx ).
As usual, we see that (return I ) or Ω evaluates to I with probability

1

2
, and diverges with probability

1

2
.

Since we observe the probability of convergence of a program, it speaks by itself that we would expect

δΛ (return I , (return I ) or Ω) = 1

2
. However, we can easily prove δΛ (return I , (return I ) or Ω) = 1.

Consider the family of contexts {Cn }n≥0 de�ned by:

Cn , λx .((xI ) . . . (xI )︸        ︷︷        ︸
n

) (λy.[−]).

Each context Cn duplicates its input n times, meaning that the distance δΛ (return I , (return I ) or Ω) is

detected n times in Cn . Therefore, the resulting distance δΛ (Cn[return I ],Cn[(return I ) or Ω]) is the

observed (ground) distance between return I and (return I ) or Ω ampli�ed of a factor n. In fact, as n
grows, the probability of convergence of Cn[(return I ) orΩ] tends to 0, whereas the one of Cn[return I ]
remains always equal to 1. Formally, we have:

Assumption 2 =⇒ ∀n ≥ 0. |
∑

JCn[e]K −
∑

JCn[e ′]K| ≤ δΛ (Cn[e],Cn[e ′])

=⇒ sup

n
|
∑

JCn[e]K −
∑

JCn[e ′]K| ≤ sup

n
δΛ (Cn[e],Cn[e ′])

[By de�nition of sup ]

=⇒ 1 ≤ sup

n
δΛ (Cn[e],Cn[e ′])

[Since sup

n
|
∑

JCn[e]K −
∑

JCn[e ′]K| = 1]

=⇒ 1 ≤ sup

C

δΛ (C[e],C[e ′])

[Since sup

n
δΛ (Cn[e],Cn[e ′]) ≤ sup

C

δΛ (C[e],C[e ′])]

=⇒ 1 ≤ δΛ (e , e ′).

[By Assumption 3]

During its evaluation, every time the context Cn evaluates its inputs the detected distance between

the latter is somehow accumulated to the distances previously observed, thus exploiting the linear —
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as opposed to classical — nature of the act of measuring. Such linearity naturally re�ects the monoidal

closed structure of categories of metric spaces, in opposition with the cartesian closed structure char-

acterising ‘classical’ (i.e. boolean-valued) observations. �

The moral of Example 53 is that not only how a context uses a program matters, but also how much
it uses the program does. As a consequence, if we want to reason compositionally about behavioural

distances, we have to take into account how much programs can access their inputs.

We can give a precise meaning to the expression how much above through the notion of program
sensitivity (de Amorim et al., 2017; Reed & Pierce, 2010). Intuitively, the sensitivity of program is the

law describing how much di�erences in the output are a�ected by di�erences in the input. We thus

use the notion of sensitivity to formalise the testing power of contexts. For instance, we can de�ne the

sensitivity of a context C in Λp as a non-negative real number s , and re�ne our notion of compatibility

accordingly: we now allow a context C with sensitivity s to increase the distance δ (e , e ′) between e and

e ′, but of a factor at most s . That is, the distance δ (C[e],C[e ′]) must be bounded by s · δ (e , e ′).

Remark 16. It is important to stress that the sensitivity of a program in Λp is not the number of times

the program accesses its input. For instance, we obviously expect the single-hole context [−] to have

sensitivity 1, and the zero-hole context v , for a closed value v , to have sensitivity 0. Up to this point

indeed program sensitivity can be identi�ed with the number of times inputs are used. However, it is

reasonable to expect the context [−] or v to have sensitivity
1

2
, since with probability

1

2
it will test its

input (once), and with probability
1

2
it will not.

We can thus formulate a new notion of compatibility.

Assumption 4. A program distance δ is compatible if for all programs e , e ′ and context C with sensitivity
s ,

δ (C[e],C[e ′]) ≤ s · δ (e , e ′).

We also remark that there are other reasonable notions of program sensitivity: for instance, we could

have de�ned the sensitivity of a context as a polynomial p bounding the testing power of the context.

Our approach will be more abstract, allowing the sensitivity of a program to be any function satisfying

some minimal structural properties, and thus leaving the freedom to choose the concrete notion of

sensitivity that �ts best the concrete calculus at hand. In fact, it turned out that program sensitivity

can be seen as an instance of a more general notion, namely the one of a coe�ect2
(Brunel, Gaboardi,

Mazza, & Zdancewic, 2014; Gaboardi, Katsumata, Orchard, Breuvart, & Uustalu, 2016; Petricek, Orchard,

& Mycroft, 2014).

The introduction of the notion of program sensitivity seems to allow to resolve many issues related to

the notion of compositionality as de�ned in Assumption 3. However, it also raises an important question:

how can we track program sensitivity? To answer this question, we follow (Reed & Pierce, 2010) and

re�nes Λp in a linear-like calculus. The resulting calculus has a powerful type systems inspired by

bounded linear logic (Girard, Scedrov, & Scott, 1992) and, compared to other linear type systems, has the

novelty of introducing types of the form !sσ , where s is a non-negative real number modelling program

sensitivity. Moreover, allowing the sensitivity of a program to be ∞, meaning that we are working

with non-negative extended real numbers, we can model programs testing their input ad libitum. As a

consequence, we can recover the full bang type !σ as !∞σ .

2
Unfortunately, the author was not aware of the connection between program sensitivity and coe�ects until the moment of

writing the present dissertation. As a consequence, a proper treatment of such a connection is not treated in this work.
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9.3 Structure of the Analysis
At this point the reader should have enough intuitions and motivations to follow the rest of this disser-

tation. The latter is structured as follows. In Chapter 10 we introduce V-relations and their algebra, as

well as the notion of a change of base functor (Kelly, 2005; F. Lawvere, 1973). We will use the latter to

de�ne our abstract notion of program sensitivity. Having de�ned a notion of program sensitivity, we

de�ne our vehicle calculus V-Fuzz. The latter is a generalisation of Reed’s and Pierce’s Fuzz (Reed &

Pierce, 2010), a PCF-like language with a powerful linear type system enriched with sensitivity-indexed

‘bang types’ that allow to track program sensitivity. V-Fuzz has two major di�erences compared to

Fuzz. First, V-Fuzz is parametrised by an arbitrary quantale and a signature of change of base functors.

This allows V-Fuzz to model several concrete calculi as well as several notions of program sensitivity.

Secondly, and most importantly, V-Fuzz is an e�ectful calculus parametrised by a monad and a signa-

ture of (algebraic) operation symbols. As a consequence, V-Fuzz quali�es as a re�nement of ΛΣ, which

we already argued by means of several examples to be good model for several e�ectful calculi. For

instance, V-Fuzz subsumes imperative, nondeterministic, and probabilistic versions of Fuzz, as well as

combinations thereof.

Next, in Chapter 11 we introduce relators on V-relations, which we call V-relators. The resulting

theory is the generalisation of the usual theory of relators as exposed in Chapter 4. We give examples

of relevant relators, notably relators associated with the Hausdor� (Munkres, 2000) and Wasserstein

(Villani, 2008) distance.

Finally, in Chapter 12 we de�ne a notion of e�ectful applicative (bi)similarity distance for V-Fuzz,
i.e. a V-relation (parametric with respect to a V-relator) generalising the notion of e�ectful applicative

(bi)similarity of Chapter 5. Our main theorem (Theorem 16) states that under suitable conditions on V-

relators, e�ectful applicative similarity distance is a compatible (according to a suitable generalisation

of Assumption 4), re�exive, and transitive V-relation, and thus gives a compatible generalised metric

in the sense of (F. Lawvere, 1973). Similarly, we show that under mild conditions on change of base

functors, e�ectful applicative bisimilarity distance is a compatible equivalence V-relation (Theorem 17),

and thus gives a compatible pseudometric.
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Chapter 10

An E�ectful Calculus with Program
Sensitivity

In language there are only di�erences

Ferdinand de Saussure, Course in

General Linguistics

In this chapter we introduce V-relations and their algebra, as well as the notion of a change of base
functor (Kelly, 2005; F. Lawvere, 1973). The latter provides the mathematical instrument we use to de�ne

our abstract notion of program sensitivity.

We use change of base functors to de�ne our vehicle calculus V-Fuzz. The latter is a generalisation

of Reed’s and Pierce’s Fuzz (Reed & Pierce, 2010), a PCF-like language with a powerful linear type

system enriched with sensitivity-indexed ‘bang types’ that allow to track program sensitivity. V-Fuzz
has two major di�erences compared to Fuzz. First, V-Fuzz is parametrised by an arbitrary quantale and

a signature of change of base functors. This allows V-Fuzz to model several concrete calculi as well as

several notions of program sensitivity. Secondly, and most importantly, V-Fuzz is an e�ectful calculus

parametrised by a monad and a signature of (algebraic) operation symbols. As a consequence, V-Fuzz
quali�es as a re�nement of ΛΣ, which we already argued by means of several examples to be good model

for several e�ectful calculi. Finally, following Chapter 3, we give V-Fuzz monadic operational semantics.

10.1 Quantales and Quantale-valued Relations
In this section we recall some necessary background notions on quantales (Rosenthal, 1990) and quantale-

valued relations (V-relations) along the lines of (F. Lawvere, 1973). The reader is referred to the mono-

graph (Hofmann et al., 2014) for a comprehensive introduction.

De�nition 61. A (unital) quantale V = (V, ≤, ⊗,k ) consists of a monoid (V, ⊗,k ) and a sup-lattice (V, ≤)
satisfying the following distributivity laws:

b ⊗
∨
i ∈I

ai =
∨
i ∈I

(b ⊗ ai )

(
∨
i ∈I

ai ) ⊗ b =
∨
i ∈I

(ai ⊗ b).
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The element k is called unit of the quantale, whereas ⊗ is called multiplication or tensor of the quantale.
Given quantales V, W, a quantale lax morphism is a monotone map h : V → W satisfying the following
inequalities:

` ≤ h(k ),

h(a) ⊗ h(b) ≤ h(a ⊗ b),

where ` is the unit ofW.

It is easy to see that ⊗ is monotone in both arguments. We denote the top and bottom element of a

quantale by

y

and y, respectively (notice that we use the symbol y to denote the bottom element of a

quantale V, and the symbol ⊥ to denote the bottom element of a Σ-continuous monad). Moreover, we

say that a quantale is commutative if its underlying monoid is such, and that it is non-trivial if k , y.

Finally, we observe that for any a ∈ V, the map a ⊗ (−) : V → V has a right adjoint a � (−) : V → V
which is uniquely determined by the law:

a ⊗ b ≤ c ⇐⇒ b ≤ a � c .

From now on we tacitly assume quantales to be commutative and non-trivial.

Example 54. The following are examples of quantales.

1. The boolean quantale 2 = (2, ≤,∧, true) where 2 = {true, false} and false ≤ true.

2. The Lawvere quantale L = ([0,∞], ≥,+, 0) consists of the extended real half-line ordered by the

“greater or equal” relation ≥ and extended
1

addition as monoid multiplication. Notice that in the

Lawvere quantale the bottom element is∞, the top element is 0, whereas in�mum and supremum

are de�ned as sup and inf , respectively. Notice also that � is truncated subtraction.

3. Replacing addition with maximum in the Lawvere quantale we obtain the strong Lawvere quantale
SL = ([0,∞], ≥, max, 0), which has been used to study generalised ultrametric spaces (J. Rutten,

1996). In fact, in the strong Lawvere quantale tensor and meet coincide.

4. The unit interval quantale I = ([0, 1], ≥,+, 0) is obtained by restricting the Lawvere quantale to

the unit interval [0, 1] and addition to truncated addition.

5. A left continuous triangular norm (t-norm for short) is a binary operator ∗ : [0, 1] × [0, 1] →

[0, 1] that induces a quantale structure over the complete lattice ([0, 1], ≤) in such a way that the

quantale is commutative. Examples of t-norms are:

(a) The product t-norm: x ∗p y , x · y.

(b) The Łukasiewicz t-norm: x ∗l y , max{x + y − 1, 0}.

(c) The Gödel t-norm: x ∗д y , min{x ,y}.

6. The collection Rel(X ,X ) of binary relations on a set X forms a quantale with monoid structure

given by relation composition and the identity relation.

7. The structure (τ , ⊆,∩,X ), where τ is a collection of open sets on a set X is a quantale. Here the

join is de�ned as

⋃
, from which we can de�ne arbitrary meets (notice that these are, in general,

1
We extend ordinary as follows: x +∞ , ∞ , ∞ + x .
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di�erent from arbitrary intersections). More generally, recall that a frame (Vickers, 1996) consists

of a sup lattice (V , ≤,

∨
) satisfying the following distributivity laws:

b ∧
∨
i ∈I

ai =
∨
i ∈I

(b ∧ ai )

(
∨
i ∈I

ai ) ∧ b =
∨
i ∈I

(ai ∧ b).

We see that any frame is a quantale. More speci�cally, a frame is nothing but a quantale V with

monoid structure given by the poset structure (V,

∧
,

y

).

8. All complete boolean and Heyting algebras are (trivially) quantales.

9. The three-element chain 3 = {y,k ,

y

} is a quantale, with y ≤ k ≤

y

. We can use 3 to model

scenarios like the following one. Suppose we have a family of contexts C acting as experiments.

Given two programs e , e ′ we can test them against contexts in C. The output of the experiment

performed by a context C is, as usual, an observation obs (C[e]). Each test can take only a given

amount of time, after which the test fails (meaning that we were not able to prove neither the

equivalence nor to discriminate between e and e ′). In such a case we write obs (C[e]) ↑. We de�ne

the distance δ (e , e ′) between e and e ′ as the result of the whole experiment:

δ (e , e ′) ,




y if ∃C ∈ C. obs (C[e]) , obs (C[e ′])

y

if ∀C ∈ C. obs (C[e]) = obs (C[e ′])

k if ¬∃C ∈ C. obs (C[e]) , obs (C[e ′]) ∧ ∃C ∈ C.(obs (C[e]) ↑ ∨obs (C[e ′]) ↑).

Obviously there are cases where performing the same experiment twice gives di�erent results

(e.g. consider the program (returnv ) orΩ), or we can extend old experiments with new ones (for

instance by enlarging C). It thus makes sense to introduce an operation ⊗ to collect and update

the results of experiments. Obviously, we expect y ⊗ x = y, as once we �nd an experiment

discriminating between e and e ′, we can tell them apart. Moreover, if an experiment gives result

k at �rst, but once repeated a second time gives a conclusive result x , k , then it is desirable to

have k ⊗ x = x . We can summarise these desiderata in the following multiplication table:

⊗ y k

y

y y y y

k y k

y

y

y

y y

It is a straightforward exercise to verify that (3, ≤, ⊗,k ) is a quantale.

�

With the exception of Rel(X ,X ) and the three-element 3, all quantales mentioned in Examplex 54

have unit k coinciding with the top element

y

. Quantales with such property are called integral quan-
tales, and are particularly well-behaved. For instance, in an integral quantale a ⊗ b is a lower bound of

a and b (and thus a ⊗ y = y, for any a ∈ V). For instance, by monotonicity of tensor products we have:

a ⊗ b ≤ a ⊗

y

= a ⊗ k = a.

Due to their nice properties, we will work with integral quantales only. In particular, from now on we

tacitly assume all quantales to be integral.
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Having de�ned quantales, we can now de�ne quantale-valued relations. As we have already stressed,

the notion of a V-relation, for a quantale V, provides an abstraction of the notion of a relation that sub-

sumes both the qualitative (i.e. boolean valued) and the quantitative (i.e. real valued) notion of a relation.

Moreover, sets and V-relations form a category which, thanks to the quantale structure of V, behaves

essentially like Rel. That allows to develop an algebra of V-relations on the same line of the usual algebra

of relations.

Formally, for a quantale V = (V, ≤, ⊗,k ), a V-relation α : X +→ Y between sets X and Y is a function

α : X × Y → V. For any set X we can de�ne the identity V-relation IX : X +→ X mapping diagonal

elements (x ,x ) to k , and all other elements to y. Moreover, for V-relations α : X +→ Y and β : Y +→ Z ,

we can de�ne the composition β · α : X +→ Z by the so-called ‘matrix multiplication formula’:

(β · α ) (x , z) ,
∨
y∈Y

α (x ,y) ⊗ β (y, z).

Composition of V-relations is associative, and I is the unit of composition. As a consequence, we have

that sets and V-relations form a category, called V-Rel. V-Rel is a monoidal category with unit given by

the one-element set and tensor product given by cartesian product of sets with α ⊗ β : X ×Y +→ X ′×Y ′,
for α : X +→ X ′ and β : Y → Y ′, de�ned pointwise. Moreover, for all sets X ,Y , the hom-set V-Rel(X ,Y )
inherits a complete lattice structure from V according to the pointwise ordering. Actually, the whole

quantale structure of V is inherited, in the sense that V-Rel is a quantaloid (Hofmann et al., 2014). In

particular, for all V-relations α : X +→ Y , βi : Y +→ Z (i ∈ I ), and γ : Z +→ W we have the following

distributivity laws:

γ · (
∨
i ∈I

βi ) =
∨
i ∈I

(γ · βi ),

(
∨
i ∈I

βi ) · α =
∨
i ∈I

(βi · α ).

There is a bijection−◦ : V-Rel(X ,Y ) → V-Rel(Y ,X ) that maps each V-relationα to its dualα◦ de�ned

by α◦ (y,x ) , α (x ,y). It is straightforward to see that −◦ is monotone (i.e. α ≤ β implies α◦ ≤ β◦),
idempotent (i.e. (α◦)◦ = α ), and preserves the identity V-relation (i.e. I◦ = I). Moreover, since V is

commutative we also have the equality (β · α )◦ = α◦ · β◦.
Finally, we de�ne the graph functor G from Set to V-Rel acting as the identity on sets and mapping

each function f to its graph (so that G ( f ) (x ,y) is equal to k if y = f (x ), and y otherwise). It is easy to

see that sinceV is non-trivialG is faithful. In light of this observation we will use the notation f : X → Y
in place of G ( f ) : X +→ Y in V-Rel.

A direct application of the de�nition of composition gives the equality:

(д◦ · α · f ) (x ,w ) = α ( f (x ),д(w ))

for f : X → Y , α : Y +→ Z , and д : W → Z . Moreover, it is useful to keep in mind the following

adjunction rules (Hofmann et al., 2014) (forα , β ,γ V-relations, and f ,д functions with appropriate source

and target):

д · α ≤ β ⇐⇒ α ≤ д◦ · β ,

β · f ◦ ≤ γ ⇐⇒ β ≤ γ · f .

The above inequalities turned out to be useful in making pointfree calculations with V-relations. In

particular, we can use lax commutative diagrams of the form
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X

≤

f //

α_
��

Z

β_
��

Y д
//W

as diagrammatic representation for the inequalityд·α ≤ β · f . By adjunction rules, the latter is equivalent

to α ≤ д◦ · β · f , which, pointwise, gives the following generalised non-expansiveness condition
2
:

∀(x ,y) ∈ X × Y . α (x ,y) ≤ β ( f (x ),д(y)). Among V-relations we are interested in those generalising

equivalences and pseudometrics.

De�nition 62. A V-relation α : X +→ X is re�exive if IX ≤ α , transitive if α · α ≤ α , and symmetric if
α ≤ α◦.

When read pointwise, re�exivity, transitivity, and symmetry give the following inequalities:

k ≤ α (x ,x )

α (x ,y) ⊗ α (y, z) ≤ α (x , z)

α (x ,y) ≤ α (y,x ),

for all x ,y, z ∈ X . We call a re�exive and transitive V-relation a preorder V-relation (V-preorder, for

short), and a re�exive, symmetric, and transitive V-relation an equivalence V-relation (V-equivalence,
for short).

Example 55. We have already seen that instantiating the transitivity formula on the boolean, Lawvere,

and strong Lawvere quantale we recover the notion of (boolean) transitivity, triangle inequality, and

strong triangle inequality, respectively. Proceeding in a similar fashion with re�exivity (resp. re�exivity

and symmetry), we see that V-preorders (resp. V-equivalences) generalise preorder (resp. equivalence),

generalised metric (resp. pseudometric), and generealised ultrametric (resp. ultra-pseudometric) spaces,

respectively. These correspondences are summarised in Table 10.1, where R : X +→ X is a 2-relation,

µ : X +→ X is a L-relation, and p : X +→ X is a SL-relation �

Boolean Lawvere Strong Lawvere

true ≤ R (x ,x ) 0 ≥ µ (x ,x ) 0 ≥ p (x ,x )
R (x ,y) ≤ R (y,x ) µ (x ,y) ≥ µ (y,x ) p (x ,y) ≥ p (y,x )

R (x ,y) ∧ R (y, z) ≤ R (x , z) µ (x ,y) + µ (y, z) ≥ µ (x , z) max(p (x ,y),p (y, z)) ≥ p (x , z)

Table 10.1: Correspondences re�exivity-symmetry-transitivity.

Remark 17 (V-categories). In his seminal paper (F. Lawvere, 1973) Lawvere introduced generalised

metric spaces as L-preorder spaces, i.e. pairs (X ,α ) consisting of a set X and an L-preorder α : X +→ X .

Generalising from the Lawvere quantale to an arbitrary quantale V we obtain the so-called V-categories

(Hofmann et al., 2014). In fact, a V-category (X ,α ) is nothing but a category enriched over V regarded

as a bicomplete monoidal category. The notion of a V-enriched functor instantiates to the notion of a

non-expansive map between V-categories, so that one can consider the category V-Cat of V-categories

2
Taking f = д generalised non-expansiveness expresses monotonicity of f in the boolean quantale, and non-expansiveness

of f in the Lawvere quantale and its variants (recall that when we instantiate V as e.g. the Lawvere quantale we have to reverse
inequalities).
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and V-functors. The category V-Cat has a rich structure. In particular, it is a (symmetric) monoidal

closed category. Given V-categories (X ,α ), (Y , β ), their exponential (YX
, [α , β]) is de�ned by

[α , β]( f ,д) ,
∧
x ∈X

β ( f (x ),д(x )),

whereas their tensor product (X ×Y ,α ⊗ β ) is de�ned pointwise. Instantiating V-Cat with the boolean,

Lawvere, and strong Lawvere quantale we obtain the category of preorders and monotone function,

the category of generalised metric spaces and non-expansive maps, and the category of generalised

ultrametric spaces and non-expansive maps, respectively. In particular, given monotone/non-expansive

functions f ,д : X → Y , relations R : X +→ X , S : Y +→ Y , and generalised (ultra)metrics µ : X +→ X ,

ν : Y +→ Y , we see that we have:

[R,S]( f ,д) ⇐⇒ ∀x . f (x ) S д(x )

[µ,ν]( f ,д) = sup

x
ν ( f (x ),д(x )).

Finally, we observed that given V-categories (X ,α ), (Y , β ) and V-enriched functors we can equivalently

express [α , β]( f ,д) as ∧
x ,x ′∈X

α (x ,x ′) � β ( f (x ),д(x ′)).

In fact, since α is re�exive, for all x ∈ X we have:

α (x ,x ) � β ( f (x ),д(x )) = (α (x ,x ) � β ( f (x ),д(x ))) ⊗ k

≤ (α (x ,x ) � β ( f (x ),д(x ))) ⊗ α (x ,x )

≤ β ( f (x ),д(x )),

from which we conclude

∧
x ,x ′ α (x ,x ′) � β ( f (x ),д(x ′)) ≤

∧
x β ( f (x ),д(x )). Dually, since f is a V-

enriched functor and β is transitive, for all x ,x ′ we have:

α (x ,x ′) ⊗
∧
x

β ( f (x ),д(x )) ≤ α (x ,x ′) ⊗ β ( f (x ′),д(x ′))

≤ β ( f (x ), f (x ′)) ⊗ β ( f (x ′),д(x ′))

≤ β ( f (x ),д(x ′)).

By adjunction, we can infer

∧
x β ( f (x ),д(x )) ≤ α (x ,x ′) � β ( f (x ),д(x ′)), and thus

∧
x β ( f (x ),д(x )) ≤∧

x ,x ′ α (x ,x ′) � β ( f (x ),д(x ′)).

Although here we do not work with V-categories (we work in V-Rel only), it is sometimes useful to

think in terms of V-categories for ‘semantical intuitions’.

10.1.1 Operations and Change of Base Functors
Since e�ects in V-Fuzz will be speci�ed by means of a signature Σ of operation symbols, we need to

specify how operations in Σ interact with V-relations (e.g. how they modify distances), and thus how

they interact with quantales. For simplicity, we will consider only �nitary operation symbols. Although

we conjecture our results to hold also for generalised operations, the latter are not very natural in V-

Fuzz, as they would require to work in an in�nitary type system. Nonetheless, we will give some hints

on how to extend our de�nitions to generalised operations too.
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De�nition 63. Let Σ be a signature consisting of �nitary operation symbols only. A Σ-quantale is a
quantale V equipped with monotone operations JopKV : Vn → V, for each n-ary operation op ∈ Σ,
satisfying the following inequalities:

k ≤ JopKV (k , . . . ,k ),

JopKV (a1, . . . ,an ) ⊗ JopKV (b1, . . . ,bn ) ≤ JopKV (a1 ⊗ b1, . . . ,an ⊗ bn ).

Example 56. Both in the Lawvere quantale and in the unit interval quantale we can interpret the fair

probabilistic choice operation symbol or as: x JorKW y , 1

2
·x+ 1

2
·y, whereW ranges over {[0,∞], [0, 1]}.

More generally, we can interpret the (unfair) p-probabilistic choice operation symbol orp , where p is a

rational number in [0, 1], as x JorpKW y , p · x + (1 − p) · y.

In general, for a quantale V we can always interpret JopKV (a1, . . . ,an ) both as a1 ⊗ . . . ⊗ an and as

a1 ∧ . . .∧an . In order to have a clear intuition about the above interpretation of operation symbols, it is

useful to look at the result of the evaluation of a program as a computation tree. Recall from Chapter 2

that each node in a computation tree is labelled by an operation symbol op which corresponds to the

evaluation of a computation of the form op(e1, . . . , en ). Each subtree of the node represents the result

of the evaluation of one of the continuations e1, . . . , en . As a consequence, the interpretation of op as a

tensor product corresponds to the view that all distances observed in each possible continuation should

be accumulated, whereas the interpretation of op as binary meet states that the observed distance is

obtained by taking the maximal distance observed in each possible continuation. �

It is easy to see that we can extend De�nition 63 to generalised operation symbols as follows. Given

an operation op : P  I , let
¯k : I → V be the constant function mapping each i ∈ I to k . Then we

require JopKV to satisfy the following inequalities:

k ≤ JopKV (p,
¯k )

JopKV (p,κ) ⊗ JopKV (p,ν ) ≤ JopKV (p,κ ⊗ ν ),

where κ ⊗ ν is de�ned pointwise. We also require JopKV to be monotone in its second argument, where

the order on VI
is de�ned pointwise.

Finally, we introduce the notion of a change of base functor (Hofmann et al., 2014; Kelly, 2005; F. Law-

vere, 1973). As stressed in Chapter 9, we model program sensitivity as a function giving the ‘law’ de-

scribing how much distances between inputs are modi�ed by the program. The notion of a change

of base functor provides a mathematical abstraction to model the concept of program sensitivity with

respect to an arbitrary quantale.

De�nition 64. A change of base functor, CBF for short, between quantalesV, W is a lax quantale morphism
h : V → W (see De�nition 61). If V = W we speak of change of base endofunctors (CBEs, for short), and
denote them by s , r . . .. Clearly, every CBE s is also a CBF.

The action h ◦α of a CBF h : V→W on a V-relation α : X +→ Y is de�ned by h ◦α (x ,y) , h(α (x ,y))
(to improve readability we omit brackets). Notice that since V is integral, CBFs preserve the unit k .

Example 57. 1. We de�ne (extended) multiplication by a constant c ∈ [0,∞] as the function c · (−) :

[0,∞]→ [0,∞] de�ned as follows, where x < ∞:

0 · ∞ , 0

∞ · 0 , 0

∞ · x , ∞

x · ∞ , ∞.
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Extended multiplication by a constant is a CBE on the Lawvere quantale. Moreover, it also acts

as a CBE on the unit interval quantale, where multiplication is meant to be truncated.

Our de�nition of extended multiplication is di�erent from the one given in (de Amorim et al.,

2017), where extended multiplication is de�ned as follows (with y , 0):

x · ∞ , ∞

∞ · 0 , 0

∞ · y , ∞.

Despite making extended multiplication non-commutative, the above de�nition does not �t with

our intuition about program sensitivity. In fact, according to our informal reading, the equality

0 · ∞ = 0 expresses the principle that if we test observationally distinguishable objects zero times

(i.e. we do not test them at all), then we are not able to tell them apart. Dually, the equality

∞·0 = 0 states that observationally indistinguishable objects cannot be told apart, no matter how

many times are tested.

We should also remark that although our de�nition of extended multiplication agrees with our

intuition of program sensitivity, it has the drawback of being non-continuous. For instance, con-

sider the set X = {ε | ε > 0}. Continuity requires ∞ · inf X = inf (∞ · X ), which is obviously not

the case since∞ · inf X = ∞ · 0 = 0 and inf {∞ · ε | ε > 0} = inf∞ = ∞.

2. Another interesting example of a CBE both on the Lawvere and the unit interval quantale is

provided by polynomials P such that P (0) = 0. Such polynomials can be used to express sensitivity

of context having only polynomial testing power (meaning that contexts are required to be able

to discriminate programs e�ciently).

3. More generally, given a quantale V we can de�ne CBEs n,∞ : V→ V, for n < ω as follows:

0(a) , k

(n + 1) (a) , a ⊗ n(a)

∞(a) , y.

Notice that 1 acts as the identity function, and that on the Lawvere and unit interval quantale we

have n(c ) = n · c and∞(c ) = ∞.

4. An important example of CBFs is given by the map ψ : 2 → V and its right adjoint φ : V → 2

de�ned by:

φ (k ) , true ψ (true) ,

φ (a) , false ψ (false) , y.

Intuitively, the map φ is used to collapse distances into relations, whereasψ is used to translate a

relation into a (trivial) distance.

�

Finally, we observe that the action of CBFs on a V-relation obeys the following laws:

(h · h′) (α ) = h ◦ (h′ ◦ α ),

(h ◦ α ) · (h ◦ β ) ≤ h ◦ (α · β ).
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Remark 18. We saw that V-categories generalise both generalised metric spaces and preorders, and

that V-functors generalise both monotone and non-expansive functions. However, when dealing with

metric-like spaces, besides non-expansive functions a prominent role is played by Lipshitz-continuous
functions (Searcóid, 2006).

Given metric-like spaces (X , µ ) and (Y ,ν ), a function f : X → Y is said to be c-continuous, for

c ∈ R≥0, if the inequality

c · µ (x ,x ′) ≥ ν ( f (x ), f (x ′))

holds, for all x ,x ′ ∈ X . Example 57 shows that multiplication by a (possibly extended) non-negative

real number c is a change of base endofunctor on the Lawvere quantale, meaning that using CBEs we

can generalise the notion of Lipshitz-continuity to V-categories. In fact, easy calculations show that

for any V-category (X ,α ) and any CBE s on V, (X , s ◦ α ) is a V-category. Moreover, since CBEs are

monotone, such an operation is functorial (with morphism left unchanged). In particular, we can de�ne

s-continuous functions from (X ,α ) to (Y , β ) as V-functors from (X , s ◦ α ) to (Y , β ). That is, we say that

a function f : X → Y is s-continuous if

s ◦ α (x ,x ′) ≤ β ( f (x ), f (x ′))

holds, for all x ,x ′ ∈ X .

We conclude this section with the following useful result on the algebra of CBEs.

Lemma 36. Let V be a Σ-quantale. CBEs are closed under the following operations (where op is an n-ary
operation symbol in Σ):

(s ⊗ r ) (a) , s (a) ⊗ r (a)

(r · s ) (a) , r (s (a))

(s ∧ r ) (a) = s (a) ∧ s (b)

JopKV (s1, . . . , sn ) (a) , JopKV (s1 (a), . . . , sn (a)).

The proof of Lemma 36 is straightforward. Moreover, we can extend its content to generalised

operations as follows. Let op : P  I be a generalised operation, and let κ be a function mapping each

i ∈ I to a CBE κ (i ). We de�ne the CBE JopKV (p,κ) by:

JopKV (p,κ) (a) , JopKV (p, i 7→ κi (a)).

It is easy to see that JopKV (p,κ) is indeed a CBE. For instance, suppose a ≤ b. Since κi is a CBE, we

have κi (a) ≤ κi (b), for any i ∈ I . It follows that i 7→ κi (a) ≤ i 7→ κi (b), and thus JopKV (p, i 7→ κi (a)) ≤
JopKV (p, i 7→ κi (b)), since JopKV is monotone.

10.2 The V-Fuzz Language
As already observed in Chapter 9, when dealing with behavioural V-relations a crucial parameter in

distance trivialisation is program sensitivity. To deal with such parameter we now introduce V-Fuzz, a

higher-order �ne-grain λ-calculus extending Fuzz (Reed & Pierce, 2010) with algebraic operations. As

Fuzz, V-Fuzz is characterised by a powerful linear type system with sum and recursive types inspired

by bounded linear logic (Girard et al., 1992) giving syntactic information on program sensitivity.

The syntax of V-Fuzz is parametrised by a signature Σ of operation symbols, a Σ-quantale V, and a

family Π of CBEs. From now on we assume Σ, V, and Π to be �xed. Moreover, we assume Π to contain
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Types σ ,τ ::= t Values v ,w ::= x Computations e , f ::= return v

|
∑

i ∈I
σi | λx .e | vw

| σ ( τ | 〈ı̂,v〉 | case v of {〈i ,x〉 → ei }

| µt .σ | fold v | let x = e in f

| !sσ | !v | case v of {!x → e}

| case v of {fold x → e}

| op(e , . . . , e ).

Figure 10.1: Types, values, and computations of V-Fuzz.

at least CBEs n,∞ in Example 57 and to be closed under operations in Lemma 36. Types, (raw) values,

and (raw) computations of V-Fuzz are de�ned in Figure 10.1, where t denotes a type variable, I is a �nite
set (whose elements are denoted by ı̂, ̂, . . .), and s belongs to Π.

Free and bound variables in computations and values are de�ned as usual, and we adopt the same

syntactical conventions de�ned in Chapter 3. We extend such conventions to types. In particular, we

denote by σ [τ/t] the result of capture-avoiding substitution of type τ for the type variable t in σ . We

also write 0 for the empty sum type, 1 for 0( 0, and nat for µt .1 + t .
In order to de�ne the class of well-de�ned V-Fuzz terms we equip V-Fuzzwith a suitable type system.

Intuitively, the latter is based on judgments of the form x1 :s1
σ1, . . . ,xn :sn σn ` e : σ , where s1, . . . , sn

are CBEs. The informal meaning of such judgment is that on input xi (i ≤ n), the computation e has

sensitivity si . That is, e ampli�es the (behavioural) distance between two input values vi ,v
′
i of at most

a factor si . Symbolically, we have:

si ◦ α (vi ,v
′
i ) ≤ α (e[xi := v ′i ], e[xi := v ′i ]).

In order to de�ne typing judgments formally, we need the notion of an environment. An environment

Γ is a �nite sequence x1 :s1
σ1, . . . ,xn :sn σn of distinct variables with associated closed types and CBEs

(we denote the empty environment by ∅ and oftentimes writes ` e : σ in place of ∅ ` e : σ ). We can lift

operations on CBEs in Lemma 36 to environments as follows, where op in an m-ary operation symbol

in Σ:

r · Γ = x1 :r ·s1
σ1, . . . ,xn :r ·sn σn ,

Γ ⊗ ∆ = x1 :s1⊗r1
σ1, . . . ,xn :sn ⊗rn σn ,

JopKV (Γ1
, . . . , Γm ) = x1 :JopKV (s1

1
,...,sm

1
) σ1, . . . ,xn :JopKV (s1

n ,...,smn ) σn ,

for Γ = x1 :s1
σ1, . . . ,xn :sn σn , ∆ = x1 :r1

σ1, . . . ,xn :rn σn , and Γi = x1 :s i
1

σ1, . . . ,xn :s in σn . Notice

that the above operations are de�ned for environments having the same structure (i.e. di�ering only on

CBEs). This is not a real restriction, since we can always add the missing variables y : ¯k σ , where
¯k is

the constant function returning the unit of the quantale.

Having at our disposal operations on environments we can de�ne a type system for V-Fuzz. Such

a type system is based on two kinds of judgment (exploiting the �ne-grained style of the calculus):

judgments of the form Γ `v v : σ for values and judgments of the form Γ `Λ e : σ for computations. The

system is de�ned in Figure 10.2.

As for ΛΣ, we denote by Vσ
◦ and Λσ◦ for the set of closed values and terms of type σ , respectively.

Accordingly, we will also use the notation ΛΓ`Λσ for the set {e ∈ Λ | Γ `Λ e : σ } (and similarity for

values).
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s ≤ 1

Γ,x :s σ `
v x : σ

Γ,x :1 σ `
Λ e : τ

Γ `v λx .e : σ ( τ
Γ `v v : σ ( τ ∆ `v w : σ

Γ ⊗ ∆ `Λ vw : τ

Γ `v v : σı̂
Γ `v 〈ı̂,v〉 :

∑
i ∈I σi

Γ `v v :

∑
i ∈I σi ∆,x :s σi `

Λ ei : τ (∀i ∈ I )

s · Γ ⊗ ∆ `Λ case v of {〈i ,x〉 → ei } : τ

Γ `v v : σ
Γ `Λ return v : σ

Γ `Λ e : σ ∆,x :s σ `
Λ f : τ

(s ∧ 1) · Γ ⊗ ∆ `Λ let x = e in f : τ

Γ `v v : σ
s · Γ `v !v : !sσ

Γ `v v : !rσ ∆,x :s ·r σ `
Λ e : τ

s · Γ ⊗ ∆ `Λ case v of {!x → e} : τ

Γ `v v : σ [µt .σ/t]

Γ `v fold v : µt .σ

Γ `v v : µt .σ ∆,x :s σ [µt .σ/t] `Λ e : τ

s · Γ ⊗ ∆ `Λ case v of {fold x → e} : τ

Γ1 `
Λ e1 : σ · · · Γn `

Λ en : σ

JopKV (Γ1, . . . , Γn ) `
Λ op(e1, . . . , en ) : σ

Figure 10.2: Typing rules for V-Fuzz.



Before giving examples of concrete instances of V-Fuzz, let us comment some of the typing rules in

Figure 10.2. Most of these rules are similar to those of Fuzz (e.g. in the variable rule we require s ≤ 1,

meaning that the open value x can access x at least once) with the exception of the rule for sequencing

and the rule for operation symbols (which is just not present in Fuzz, the latter not having algebraic

operations). Concerning the former, let us consider the following instance of the sequencing rule on the

unit interval quantale:

x :1 σ `
Λ e : σ y :0 σ `

Λ f : τ

x :max(0,1) ·1 σ `
Λ let y = e in f : τ

where f is a closed term of type τ , so that we can assume it to have sensitivity 0 on all variables.

According to our informal intuition, e has sensitivity 1 on input x , meaning that (i ) e can possibly

detect (behavioural) di�erences between input values v ,w , and (ii ) e cannot amplify their behavioural

distance of a factor bigger than 1. Formally, point (ii ) states that we have the inequality α (v ,w ) ≥
α (e[x := v], e[x := w]), where α denotes a suitable behavioural I-relation. On the contrary, f is a closed

term and thus has sensitivity 0 on any input, meaning that it cannot detect any observable di�erence

between input values. In particular, for all values v ,w we have α ( f [y := v], f [y := w]) = α ( f , f ) = 0

(provided that α is re�exive). Replacing max(0, 1) with 0 in the above rule (i.e. s ∧ 1 with s in the

general case) would allow to infer the judgment x :0 σ `Λ let y = e in f : τ , and thus to conclude

α (let y = e[x := v] in f , let y = e[x := w] in f ) = 0. The latter equality is unsound as evaluating

let y = e[x := v] in f (resp. let y = e[x := w] in f ) requires to �rst evaluate e[x := v] (resp.

e[x := w]) thus making observable di�erences between v and w detectable (see also Section 12.1 for a

formal explanation).

10.2.1 Relevant Examples
Example 58. Instantiating V-Fuzz with the empty signature, the Lawvere quantale, and CBEs Π =
{c · (−) | c ∈ [0,∞]} we obtain the original Fuzz of (Reed & Pierce, 2010). Actually, to recover full Fuzz
we should add a basic type for real numbers, as well as primitive operations on its inhabitant. We can

also add nondeterminism considering the signature ΣFM. �

Example 59. A more interesting calculus is obtained by instantiating V-Fuzz with the signature ΣDM,

the unit interval quantale, and CBEs Π = {c · (−) | c ∈ [0,∞]} ] (as usual we are actually referring to

truncated multiplication). We refer to the calculus those obtained as P-Fuzz. The interpretation of the

operation symbol or on [0, 1] is de�ned as in Example 56. In particular, we have the following typing

rule:

Γ `Λ e : σ ∆ `Λ f : σ
1

2
· Γ + 1

2
· ∆ `Λ e or f : σ

As a consequence, we see that we have

x :1 σ `
v x : σ

x :1 σ `
Λ return x : σ

x :0 σ `
v v : σ

x :0 σ `
Λ return v : σ

x : 1

2

σ `Λ (return x ) or (return v )

for any value v ∈ Vσ
◦ . This witnesses that the notion of program sensitivity cannot be identi�ed with

the number of times programs access their inputs, as already (informally) remarked in Chapter 9. �

Example 60. Let V be a frame, i.e. a quantale such that ∧ and ⊗ coincide. Taking the empty signature,

we see that V-Fuzz gives a linear-like λ-calculus as follows. We take Π , {0, 1,∞}. Since V is a frame,

obviously Π is closed under operations of Lemma 36. The type !0 has as inhabitants those values that

cannot be used, whereas the types !1 and !∞ have as inhabitants those values that can be use linearly

and as libitum, respectively. �
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Example 61. Another interesting example is obtained by instantiating V-Fuzz with the signature ΣO∞

and the strong Lawvere quantale. The latter is a frame, and thus we obtain a linear-like λ-calculus. We

interpret the operation symbol printc as the identity function on [0,∞]. We will come back on this

example later. �

The typing system of Figure 10.2 makes V-Fuzz a re�nement of the linear λ-calculus (Maraist et al.,

1999). For instance, for any type σ we have the term I , return (λx .return x ) of type σ ( σ . Moreover,

as the above examples suggest, V-Fuzz is a Turing complete language. In fact, we can encode the linear

λ-calculus in V-Fuzz by translating the type !σ into !∞σ . For instance, for any type σ we have the purely

divergent program Ω , ω!(fold ω) of type σ , where ω ∈ Λ!∞ (µt .!∞t(σ )(σ is de�ned by:

ω , λx .case x of {!y → case y of {fold z → z!(fold z)}}.

Finally, we remark that the syntactic distinction between terms and values gives the following (ob-

vious) result.

Lemma 37. The following equalities hold:

Vσ(τ
◦ = {λx .e | x :1 σ `

Λ e : τ }

V
∑
i∈I σi

◦ =
⋃
ı̂∈I

{〈ı̂,v〉 | v ∈ Vσı̂
◦ }

V
!sσ
◦ = {!v | v ∈ Vσ

◦ }.

Remark 19. Before de�ning the operational semantics of V-Fuzz, we brie�y expand on the possibility

of considering generalised operation symbols. First, given a generalised operation symbol op : P  I
with interpretation JopKV on a quantale V (extended to CBEs according to Lemma 36), we extend JopKV
to environments as follows. Given a map γ associating to each i ∈ I an environment Γi = x1 :s i

1

σ1, . . . ,xn :s in σn , we de�ne

JopKV (p,γ ) , x1 :JopKV (p ,i 7→s i
1
) σ1, . . . ,xn :JopKV (p ,i 7→s in ) σn .

We then extend the typing system of Figure 10.2 with the in�nitary rule:

∀i ∈ I . Γi ,x :s τ `
Λ ei : σ

JopKV (p, i 7→ s · Γi ) `
Λ op(p, i 7→ ei ) : σ

We can now de�ne an operational semantics for V-Fuzz.

10.2.2 Operational Semantics
We give V-Fuzz monadic operational semantics in the style of Chapter 3. Let Σ be an algebraic signature

for a Σ-continuous monad T = 〈T ,η,−†〉. Operational semantics is de�ned by means of an evaluation

function J−Kσ indexed over closed types, associating to any computation inΛσ◦ a monadic value inTVσ
◦ .

The evaluation function J−Kσ is itself de�ned by means of the N-indexed family of functions J−Kσn .
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De�nition 65. The N-indexed family of functions J−Kσn : Λσ◦ → TVσ
◦ is inductively de�ned as follows:

JeKσ
0
, ⊥Vσ

Jreturn vKσn+1
, ηVσ (v )

J(λx .e )vKσn+1
, Je[x := v]Kσn

Jcase 〈ı̂,v〉 of {〈i ,x〉 → ei }Kσn+1
, Jeı̂[x := v]Kσn

Jcase (fold v ) of {fold x → e}Kσn+1
, Je[x := v]Kσn

Jcase !v of {!x → e}Kσn+1
, Je[x := v]Kσn

Jlet x = e in f Kσn+1
, (Jf [x := −]Kτ ,σ

n )†JeKτn
Jop(e1, . . . , ej )Kσn+1

, JopKVσ (Je1Kσn , . . . , JejKσn ).

The de�nition of J−Kσn is rather standard and closely resembles De�nition 15. Moreover, it is straight-

forward to observe that indeed J−Kσn a function from Λσ◦ to TVσ
◦ .

Let us expand on the de�nition of Jlet x = e in f Kσn+1
. Since let x = e in f ∈ Λσ◦ , the judgment

`Λ let x = e in f : σ must be the conclusion of a derivation of the form:

`Λ e : τ x :s τ `
Λ f : σ

`Λ let x = e in f : σ

As a consequence, for any v ∈ Vτ
◦ , we have Jf [x := v]Kσn ∈ TVσ

◦ . This induces a map Jf [x := −]Kτ ,σ
n

fromVτ
◦ to TVσ

◦ whose Kleisli extension can be applied to JeKτn ∈ TVτ
◦ .

Finally, it is easy to see that (JeKn )n forms an ω-chain in TVσ
◦ . As for ΛΣ, we can thus de�ne the

evaluation map J−Kσ : Λσ◦ → TVσ
◦ as JeKσ ,

⊔
nJeKσn . In order to improve readability we oftentimes

omit type superscripts in JeKσ . We also notice that because T is Σ-continuous, J−Kσ is itself continuous.

Proposition 24. The following identities hold:

Jreturn vK = η(v )
J(λx .e )vK = Je[x := v]K

Jcase 〈ı̂,v〉 of {〈i ,x〉 → ei }K = Jeı̂[x := v]K
Jcase (fold v ) of {fold x → e}K = Je[x := v]K

Jcase !v of {!x → e}K = Je[x := v]K

Jlet x = e in f K = Jf [x := −]K† (JeK)
Jop(e1, . . . , ej )K = JopKVσ (Je1K, . . . , JejK).

Having de�ned the syntax and semantics of V-Fuzz, it is time to look at program distances for it. In

order to do so, we �rst have to generalise the theory of relators of Chapter 4 to V-relations. We refer to

relators for V-relations as V-relators.
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Chapter 11

Barr Meets Lawvere

It is indi�erent to me where I am to

begin, for there shall I return again

Parmenides

In this chapter we de�ne the notion of a V-relator (Hofmann et al., 2014) for a quantale V. The

latter is somehow the ‘quantitative’ generalisation of the concept of a relator. Analogously to ordinary

relators, V-relators for a set endofunctor T are abstractions meant to capture the possible ways a V-

relation on a set X can be turned into a V-relation on TX , and thus provide ways to lift a behavioural

distance between programs to a (behavioural) distance between monadic values. On a formal level, we

say that a V-relator extends T from Set to V-Rel, laxly.

V-valued relators have been introduced in the context of monoidal topology (Hofmann et al., 2014)

(where are usually called lax extension (Ho�man, 2015)), in order to provide a unifying account of Law-

vere’s theory of generalised metric spaces (F. Lawvere, 1973) and Barr’s categorical analysis of topo-

logical spaces (Barr, 1970). Using the notion of V-relator (which leads to the notion of lax V-algebra

(Hofmann et al., 2014)), it is possible to unify the notion of a (generalised) metric, preorder, topological,

and approach space, in purely categorical terms.

According to (Hofmann et al., 2014), the observation that a similar uni�cation should have been

possible dates back to Lawvere. The reader can also consult (Hofmann & Reis, 2018) for an historical

introduction to the subject.

11.1 Quantale-valued Relators
In this section we introduce the notion of a V-relator for a (strong) monad, which will be a central tool for

our analysis of e�ectful program distance. After having introduced some basic notions and de�nitions,

we focus on some speci�c examples of V-relators, giving special attention to the so-called Wasserstein-

Kantorovich lifting (Villani, 2008). As usual, in the rest of this chapter we assume all functors (and thus

monads) to be on Set, unless explicitly stated.

De�nition 66. For a fucunctor T a V-relator for T is a mapping (α : X +→ Y ) 7→ (Γα : TX +→ TY )
satisfying conditions (V-rel 1)-(V-rel 4). We say that Γ is conversive if it additionally satis�es condition
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(V-rel 5).

ITX ≤ Γ(1X ) (V-rel 1)

Γβ · Γα ≤ Γ(β · α ) (V-rel 2)

T f ≤ Γ f , (T f )◦ ≤ Γ f ◦ (V-rel 3)

α ≤ β =⇒ Γα ≤ Γβ (V-rel 4)

Γ(α◦) = (Γα )◦. (V-rel 5)

It is immediate to see that when instantiated with V = 2, the above de�nition gives the usual notion

of relator as de�ned in Chapter 4. We also observe that any V-relator Γ for T induces an endomap TΓ
on V-Rel that acts asT on sets and as Γ as V-relation. It is easy to check that conditions in De�nition 66

makes TΓ a lax endofunctor.
Before giving examples of V-relators it is useful to observe that the collection of V-relators is closed

under speci�c operations.

Proposition 25. Let T ,U be functors, UT be their composition, Γ,∆ be relators for T and U , respectively,
and {Γi }i ∈I be a family of relators for T . Then:

1. The map ∆ · Γ de�ned by (∆ · Γ)α , ∆Γα is a V-relator forUT .

2. The map
∧

i ∈I Γi de�ned by (
∧

i ∈I Γi )α ,
∧

i ∈I Γiα is a V-relator for T .

3. The map Γ◦ de�ned by Γ◦α , (Γα◦)◦ is a V-relator for T .

4. The map Γ ∧ Γ◦ is the greatest conversive V-relator smaller than Γ.

Proof. The proof consists of a number of straightforward calculations. As an example, we show that∧
i ∈I Γi in point 2 satis�es condition (V-rel 2). Concretely, we have to prove∧

i ∈I

Γiβ ·
∧
i ∈I

Γiα ≤
∧
i ∈I

Γi (β · α ).

For that it is su�cient to prove that for any j ∈ I we have:∧
i ∈I

Γiβ ·
∧
i ∈I

Γiα ≤ Γj (β · α ).

Observe that we have

∧
i ∈I Γiβ ≤ Γjβ and

∧
i ∈I Γiα ≤ Γjα , so that by monotonicity of composition

(recall that V-Rel is a quantaloid) we infer

∧
i ∈I Γiβ ·

∧
i ∈I Γiα ≤ Γjβ · Γjα . The thesis now follows from

(V-rel 2).

As we have already seen working with ΛΣ, relators for a functor do not have enough structure to

guarantee e�ectful applicative (bi)similarity to be compatible, so that we worked with the richer notion

of a relator for a monad. This essentially holds for V-Fuzz too. However, what we need in order to prove

applicative distance(s) to be compatible are not relators for monads, but relators for strong monads.

The reason behind such requirement can be intuitively understood as follows. Recall that by Propo-

sition 24 we have (for readability we omit types) Jlet x = e in f K = Jf [x := −]K†JeK. This operation can

be described using the bind operator >>=: TX × (X → TY ) → TY , so that we have Jlet x = e in f K =
JeK >>= Jf [x := −]K. Let now f ,д : X → Y be functions, α : X +→ X , β : Y +→ Y be V-relations, and Γ be a

V-relator forT . Considering the compound V relation [α , Γβ] ⊗ Γα (see Remark 17) and ignoring issues

about sensitivity, it is then natural to require >>= to be non-expansive. That is, we require the inequality

[α , Γβ]( f ,д) ⊗ Γα (x, y) ≤ Γβ (x >>= f , y >>= д)
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i.e. ∧
x ∈X

Γβ ( f (x ),д(x )) ⊗ Γα (x, y) ≤ Γβ (x >>= f , y >>= д).

Informally, we are requiring the behavioural distance between sequential compositions of programs

to be bounded by the behavioural distances between their components (this is of course a too strong

requirement, but at this point it should be clear to the reader that it is su�cient to require >>= to be

Lipshitz-continuous, rather than non-expansive). Since >>= is nothing but the strong Kleisli extension

apply∗ of the application function apply : (X → TY )×X → TY (which is de�ned by apply( f ,x ) , f (x )),
what we need to do is indeed to extend strong monads from Set to V-Rel, laxly.

De�nition 67. Let T = 〈T ,η,−∗〉 be a strong monad, and Γ be a V-relator for T . We say that Γ is an
L-continuous V-relator for T if it satis�es the following conditions for any CBE s ≤ 1.

s ◦ Γα = Γ(s ◦ α ) (L-dist)

α ≤ η◦Y · Γα · ηX (Lax unit)

γ ⊗ (s ◦ α ) ≤ д◦ · Γβ · f =⇒ γ ⊗ (s ◦ Γα ) ≤ (д∗)◦ · Γβ · f ∗ (Strong lax bind)

We can represent conditions (Lax unit) and (Strong lax bind)with the following lax commutative diagrams:

X

≤

ηX //

α_
��

TX

Γα_
��

Y ηY
// TY

Z × X

≤

f //

γ ⊗α_
��

TY

Γβ_
��

Z ′ × X ′ д
// TY ′

=⇒

Z ×TX

≤

f ∗ //

γ ⊗Γα_
��

TY

Γβ .
_
��

Z ′ ×TX ′
д∗
// TY ′

The condition s ≤ 1 re�ects the presence of s ∧ 1 in the typing rule for sequencing and it will

be fundamental for our distances to be sound. Conditions (Lax unit) and (Strong lax bind) state non-

expansiveness of unit and strong Kleisli extension (this is particularly clear when instantiated on the

Lawvere quantale). Condition (L-dist) makes strong Kleisli extension Lipshitz-continuous with respect

to CBEs. In fact, we can replace conditions (L-dist) and (Strong lax bind) with the following condition:

γ ⊗ (s ◦ α ) ≤ д◦ · Γ(r ◦ β ) · f =⇒ γ ⊗ (s ◦ Γα ) ≤ (д∗)◦ · (r ◦ Γβ ) · f ∗ (L-Strong lax bind)

where s , r ≤ 1. Diagrammatically, we can express (L-Strong lax bind) as follows:

Z × X

≤

f //

γ ⊗s◦α_
��

TY

Γ(r◦β )_
��

Z ′ × X ′ д
// TY ′

=⇒

Z ×TX

≤

f ∗ //

γ ⊗(s◦Γα )_
��

TY

r◦Γβ .
_
��

Z ′ ×TX ′
д∗
// TY ′

We immediately see that (L-dist) and (Strong lax bind) implies (L-Strong lax bind):

γ ⊗ (s ◦ α ) ≤ д◦ · Γ(r ◦ β ) · f =⇒ γ ⊗ Γ(s ◦ α ) ≤ (д∗)◦ · Γ(r ◦ β ) · f ∗

[By (Strong lax bind)]

=⇒ γ ⊗ (s ◦ Γα ) ≤ (д∗)◦ · (r ◦ Γβ ) · f ∗

[By (L-dist)].
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Dually, we can decompose (L-Strong lax bind) in the following two conditions, where s ≤ 1:

γ ⊗ (s ◦ α ) ≤ д◦ · Γβ · f =⇒ γ ⊗ (s ◦ Γα ) ≤ (д∗)◦ · Γβ · f ∗ (L-Strong lax bind 1)

γ ⊗ α ≤ д◦ · Γ(s ◦ β ) · f =⇒ γ ⊗ Γα ≤ (д∗)◦ · (s ◦ Γβ ) · f ∗ (L-Strong lax bind 2)

Instantiating (L-Strong lax bind 1) with Kleisli extension (rather than strong Kleisli extension) we ob-

tain:

(Lax unit) =⇒ s ◦ α ≤ η◦Y · Γ(s ◦ α ) · ηX

=⇒ Γ(s ◦ α ) ≤ (η†Y )
◦ · (s ◦ Γα ) · η†X

[By (L-Strong lax bind 1)]

=⇒ Γ(s ◦ α ) ≤ s ◦ Γα .

In a similar fashion, using condition (L-Strong lax bind 2) we can prove Γ(s ◦ α ) ≤ s ◦ Γα , and thus

conclude (L-dist).

Before giving some relevant examples of V-relator, we observe that we can extend Proposition 10

to V-relators, provided that the CBEs are lattice morphisms, i.e. provided that the equality s (a ∧ b) =
s (a) ∧ s (b) (and thus s ◦ (α ∧ β ) = (s ◦ α ) ∧ (s ◦ β )) holds, for any CBE s and elements a,b ∈ V. In fact,

if that is the case, then Γ(s ◦ α ) = s ◦ Γα and ∆(s ◦ α ) = s ◦ ∆α imply:

(Γ ∧ ∆) (s ◦ α ) = Γ(s ◦ α ) ∧ ∆(s ◦ α )

= (s ◦ Γα ) ∧ (s ◦ ∆α )

= s ◦ (Γα ∧ ∆α )

= s ◦ ((Γ ∧ ∆)α ).

To see that s ◦ Γ◦α = Γ◦ (s ◦α ) it is su�cient to observe that s ◦α◦ = (s ◦α )◦. This shows that if Γ,∆ are

relators (for a functor T ) satisfying condition (L-dist), then so are Γ ∧ ∆ and Γ◦. A similar result can be

proved for conditions (Lax unit) and (Strong lax bind) along the lines of the proof of Proposition 10.

11.1.1 Relevant Examples

Example 62. For the partiality monad M we de�ne the V-relator M̃ as:

M̃α (x, y) ,




α (x ,y) if x = just x , y = just y

k if x = ⊥

y otherwise.

It is easy to see that M̃ de�nes a relator for M satisfying conditions (Lax unit) and (Strong lax bind). We

also see that M̃ satis�es condition (L-dist), where the condition s ≤ 1 turns out to be crucial. In fact, we

see that M̃(s ◦ α ) (just x ,⊥) = y and (s ◦ M̃α ) (just x ,⊥) = s (y). Since s ≤ 1, we have s (y) ≤ y, and

thus s (y) = y, as desired.

To see the problem related with CBEs greater than 1, let us consider the Lawvere quantale with

CBEs given by extended multiplication by a constant. Let us consider a convergent program e (meaning

that JeK = just v , for some value v) and a divergent program f (meaning that Jf K = ⊥). Given a [0,∞]-

relation α , we have 0 · M̃α (e , f ) = 0 · ∞ = 0, although M̃(0 · α ) (e , f ) = ∞, which is a rather undesired

behaviour. Finally, we also have the conversive relator M̃ ∧ M̃◦.
In Chapter 4 we showed how to sum monads and relators. It is immediate to see that the sum of

monads extends to strong monads (we simply replace Kleisli extensions with strong Kleisli extensions).

Similarly, we can also de�ne the sum of V-relators.
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Proposition 26. Given a strong monad T = 〈T , ε ,−T〉 with a V-relator Γ for it, if Γ satis�es condition
(indV 1) in De�nition 69, then ΓM̃ is a relator for TM = 〈TM ,η,−TM〉.

Proving Proposition 26 is rather straightforward. For instance, we have:

s ◦ ΓM̃α = s ◦ Γ(M̃α )

= Γ(s ◦ M̃α )

= Γ(M̃(s ◦ α ))

= ΓM̃(s ◦ α ).

In order to show that ΓM̃ satis�es condition (Strong lax bind), however, we need Γ to satisfy condition

(indV 1). Let us assume such a condition and show that ΓM̃ satis�es (Strong lax bind). For that, we

assume γ ⊗ α ≤ д◦ · ΓM̃β · f , and show γ ⊗ ΓM̃α ≤ д◦ · ΓM̃β · f , where f ,д are functions with suitable

source and target. As for the case of (boolean-valued) relators, we can easily derive the conclusion once

we prove

γ (z, z ′) ⊗ M̃α (x, x′) ≤ ΓM̃β ( f⊥ (z, x),д⊥ (z
′
, x
′)), (11.1)

where for any function h : Z × X → TMY we de�ne h⊥ : Z ×MX → TMY by:

h⊥ (z, x) ,



h(z,x ) if x = just x

εMY (⊥) otherwise.

Again, proving (11.1) is mostly trivial, except for x = ⊥, in which case we have to prove γ (z, z ′) ⊗ k ≤

Γ(M̃β ) (⊥,д⊥ (z
′
, x′)). This is the case exactly if condition (indV 1) holds. �

Example 63. For the monad F we de�ne the V-relator F̃ (called generalised Hausdor� lifting) as

F̃α (X,Y) ,
∧
x ∈X

∨
y∈Y

α (x ,y).

If we instantiate V as the Lawvere quantale, then F̃ gives the (non-symmetric) Hausdor� lifting (Searcóid,

2006) whereas F̃∧ F̃◦ gives the usual Hausdor� lifting. Similarly, when instantiating V as 2, F̃ gives the

(2-)relator
ˆF of Chapter 4. It is easy to verify that F̃ is a relator for F that satis�es conditions (Lax unit)

and (Strong lax bind). However, F̃ does not satisfy (L-dist), in general. In fact, for that to be the case we

need CBEs to be continuous. �

Example 64. We now introduce one of the most interesting V-relators we will deal with. Let as in-

stantiate V as the unit interval quantale I. We de�ne the map D̃ as the Wasserstein-Kantorovich lifting
(Villani, 2008). Recall that for µ ∈ D (X ),ν ∈ D (Y ), we denote by Ω(µ,ν ) the set of couplings of µ and ν .

De�ne D̃α , for α : X +→ Y as follows:

D̃α (µ,ν ) , infω ∈Ω(µ ,ν )

∑
x ,y

α (x ,y) · ω (x ,y).

Remarkably, D̃α (µ,ν ) attains its in�mum and has a dual characterisation.

Proposition 27. Let µ ∈ D (X ),ν ∈ D (Y ) be countable distributions and α : X +→ Y be a I-relation. Then:

D̃α (µ,ν ) = min{
∑

x ,y
α (x ,y) · ω (x ,y) | ω ∈ Ω(µ,ν )}

= max{
∑

x
ax · µ (x ) +

∑
y
by · ν (y) | ax + by ≤ α (x ,y),ax ,by bounded},

where ax ,by bounded means that there exist ā,
¯b ∈ R such that ∀x . ax ≤ ā, and ∀y. by ≤ ¯b.
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Proof. The proof is a direct consequence of the following duality theorem for countable transportation

problems (Kortanek & Yamasaki, 1995) (Theorem 2.1 and 2.2).

Fact 1. Let i , j, . . . range over natural numbers. Let mi ,nj , ci j be non-negative real numbers, for all i , j.
De�ne

M , inf {
∑
i ,j

ci jxi j | xi j ≥ 0,

∑
j

xi j =mi ,
∑
i

xi j = nj , }

M∗ , sup{
∑
i

miai +
∑
j

njbj | ai + bj ≤ ci j ,ai ,bj bounded}.

Then the following hold:

1. M = M∗.
2. The linear problem P induced by M has optimal solution.

3. The linear problem P∗ induced by M∗ has optimal solution.

First of all we notice that D̃α (µ,ν ) is nothing but

inf {
∑
x ,y

α (x ,y) · ω (x ,y) | ω (x ,y) ≥ 0,

∑
y

ω (x ,y) = µ (x ),
∑
x

ω (x ,y) = ν (y)}.

In fact, ω (x ,y) ≥ 0,

∑
y ω (x ,y) = µ (x ) and

∑
x ω (x ,y) = ν (y) imply ω ∈ D (X × Y ). Moreover, since

α is a I-relation, α (x ,y) ∈ [0, 1] (recall that Fact 1 requires ci j to be a non-negative real number). We

conclude the thesis by Fact 1. In particular, it follows that there exists ω ∈ Ω(µ,ν ) such that:

D̃α (µ,ν ) =
∑
x ,y

α (x ,y) · ω (x ,y).

Since α (x ,y),ω (x ,y) ∈ [0, 1] we have α (x ,y) · ω (x ,y) ≤ ω (x ,y), for all x ,y. It follows

0 ≤
∑
x ,y

α (x ,y) · ω (x ,y) ≤
∑
x ,y

ω (x ,y) = 1

so that D̃α is indeed a [0, 1]-relation. �

Using Proposition 27 we can show that D̃ indeed de�nes a relator for D (but see Remark 20). We

now prove that D̃ is also a relator for D.

Proposition 28. Wasserstein lifting D̃ satis�es all conditions in De�nition 67.

Proof. We start by showing that D̃ satis�es condition (Lax unit). It is convenient to work with the

following notation: given an element x ∈ X we denote by |x〉 the Dirac distribution on x , i.e. ηX (x ),

where η is the unit of D. We have to show that for any z ∈ X ,w ∈ Y , α (z,w ) ≥ D̃α ( |z〉, |w〉) holds. By

duality (Proposition 27) we have:

D̃α ( |z〉, |w〉) = max{
∑
x

ax · |z〉(x ) +
∑
y

by · |w〉(y) | ax + by ≤ α (x ,y)},

where ax ,by are bounded. Clearly D̃α ( |z〉, |w〉) = ax +by , for suitable x ∈ X and y ∈ Y . Since ax +by ≤
α (x ,y) we are done.
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We now show that D̃ satis�es condition (Strong lax bind). Concretely, that amounts to prove the

following implication:

U × X

≥

f //

γ+α_
��

DZ

D̃β_
��

V × Y д
// DW

=⇒

U × DX

≥

f ∗ //

γ+D̃α_
��

DZ

D̃β .
_
��

V × DY
д∗
// DW

We show that for any u ∈ U ,v ∈ V , µ ∈ DX ,ν ∈ DY we have:

D̃β ( f ∗ (u, µ ),д∗ (v ,ν )) ≤ γ (u,v ) + D̃α (µ,ν )

(notice that in the right hand side of the above equations we can assume without loss of generality to

have ordinary addition in place of truncated sum). By very de�nition of strong Kleisli extension we

have:

f ∗ (u, µ ) (z) =
∑
x

µ (x ) · f (u,x ) (z)

д∗ (v ,ν ) (w ) =
∑
y

ν (y) · д(v ,y) (w ).

Let m̄ , D̃β ( f ∗ (u, µ ),д∗ (v ,ν )). By duality we have:

m̄ = max{
∑
z

az ·
∑
x

µ (x ) · f (u,x ) (z) +
∑
w

bw ·
∑
y

ν (y) · д(v ,y) (w ) | az + bw ≤ β (z,w )},

where az and bw are bounded. By Proposition 27, there exists ω ∈ Ω(µ,ν ) such that D̃α (µ,ν ) =∑
x ,y ω (x ,y) · α (x ,y). We have to prove:

m̄ ≤ γ (u,v ) +
∑
x ,y

ω (x ,y) · α (x ,y).

From ω ∈ Ω(µ,ν ) we obtain µ (x ) =
∑
y ω (x ,y), ν (y) =

∑
x ω (x ,y). We apply the above equalities to m̄,

obtaining (for readability we omit the constraint az + bw ≤ β (z,w )):

m̄ = max{
∑
z

az ·
∑
x

µ (x ) · f (u,x ) (z) +
∑
w

bw ·
∑
y

ν (y) · д(v ,y) (w )}

= max{
∑
z

az ·
∑
x ,y

ω (x ,y) · f (u,x ) (z) +
∑
w

bw ·
∑
x ,y

ω (x ,y) · д(v ,y) (w )}

= max{
∑
x ,y

ω (x ,y) (
∑
z

az · f (u,x ) (z) +
∑
w

bw · д(v ,y) (w ))}

=
∑
x ,y

ω (x ,y) ·max{
∑
z

az · f (u,x ) (z) +
∑
w

bw · д(v ,y) (w )}

=
∑
x ,y

ω (x ,y) · D̃β ( f (u,x ),д(v ,y)).

We are now in position to use our hypothesis, namely the inequality:

D̃β ( f (u,x ),д(v ,y)) ≤ γ (u,v ) + α ( f (u,x ),д(v ,y))
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(notice that we actually have a stronger hypothesis, as the latter gives an inequality for truncated addi-

tion). We conclude:

m̄ ≤
∑
x ,y

ω (x ,y) · (γ (u,v ) + α (x ,y))

=
∑
x ,y

ω (x ,y) · γ (u,v ) +
∑
x ,y

ω (x ,y) · α (x ,y)

= γ (u,v ) +
∑
x ,y

ω (x ,y) · α (x ,y)

(where in the last equality we used the fact that ω (x ,y) ∈ Ω(µ,ν ) implies

∑
x ,y ω (x ,y) = 1). We are

done.

Proving that D̃ satis�es condition (L-dist) is straightforward. In fact, given c ∈ [0, 1] we have:

c · D̃α (µ,ν ) = c ·min{
∑

x ,y
α (x ,y) · ω (x ,y) | ω ∈ Ω(µ,ν )}

= min{
∑

x ,y
c · α (x ,y) · ω (x ,y) | ω ∈ Ω(µ,ν )}

= D̃(c · α ) (µ,ν ).

�

Finally, we sum D̃ and M̃ obtaining a new relator D̃M for DM. �

Example 65. Let us instantiate V as the strong Lawvere quantale. Given an alphabet A, de�ne the

SL-relation λ : A∞ +→ A∞ by:

λ(w ,u) ,



0 if u = w

2
lcp(w ,u )

otherwise,

where lcp(w ,u) is the length of the longest common pre�x of u and w . We then de�ne the map Õ∞ as

follows, where α : X +→ Y :

Õ∞α (〈w , x〉, 〈u, y〉) , max(λ(u,w ), (M̃ ∧ M̃◦)α (x, y)).

It is not hard to see that Õ∞ is a conversive [0,∞]-relator for O∞. �

Remark 20. Following Subsection 4.3.1 we might ask whether there exist canonical V-relators for a

monad. This is only partially the case. In fact, recall that De�nition 22 crucially relies on the double

nature of a relation, which can be viewed both as a morphism in Rel and as an object in Set. This

is no longer the case for a V-relation, and thus it is not clear how to de�ne the Barr extension of a

functor T from Set to V-Rel. However, the Barr extension of T can be characterised in an alternative

way if we assumeT to preserves weak pullback diagrams (although the reader can see (Hofmann, 2007;

E. G. Manes, 2002) for more general conditions). Let ξ : T 2 → 2 be the map de�ned by ξ (x) = true if

and only if x ∈ T {true}, where T {true} is the image of the map T ι for the inclusion ι : {true} → 2. That

is, ξ (x) = true if and only if there exists an element y ∈ T {true} such that T ι (y) = x. Notice that this

makes sense since T preserves monomorphisms (recall that we can describe monomorphism as weak

pullbacks) and thus T ι : T {true} → T 2 is a monomorphism. We can now characterise TR without

mentioning the graph of R:

T R (x, y) = true ⇐⇒ ∃w ∈ T (X × Y ).




Tπ1 (w) = x,

Tπ2 (w) = y,

ξ ·T R (w) = true.
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Since the existential quanti�cation is nothing but the join of the boolean quantale 2, the above charac-

terisation of T can be turned into a de�nition of an extension of T to V-Rel parametric with respect to

an map ξ : TV→ V.

De�nition 68. For a set endofunctor T and a map ξ : TV → V de�ne the V-Barr extension T ξ of T to
V-Rel with respect to ξ as follows:

T ξα (x, y) ,
∨

w∈Ω(x,y)

ξ ·Tα (w),

for x ∈ TX , y ∈ TY , where the set Ω(x, y) of generalised couplings of x, y is de�ned by:

Ω(x, y) , {w ∈ T (X × Y ) | Tπ1 (w) = x, Tπ2 (w) = y}.

We refer to ξ as the structure map, since it gives V the structure of a T -algebra. For instance, taking

ξ : FV → V de�ned by ξ (X) ,
∧
X we recover the Hausdor� lifting F̃ ∧ F̃◦. Similarly, taking ξ as the

expectation function, so that ξ : D[0, 1]→ [0, 1] is de�ned by ξ (µ ) ,
∑

x x · µ (x ), we recover D̃.

Using the map ξ : TV → V we can de�ne an extension of T to V-Rel. However, such extension is

in general not a V-relator. Nonetheless, under mild conditions on ξ and assuming T to preserve weak

pullback, it is possible to show thatT ξ is indeed a V-relator. The following proposition has been proved

in (Clementino & Tholen, 2014; Hofmann, 2007) (a similar result for real-valued pseudometric spaces

has been proved in (Baldan, Bonchi, Kerstan, & König, 2014, 2015)).

Proposition 29. Let T be a monad with carrier T preserving weak pullbacks, and ξ : TV → V be a
structure map. If ξ satis�es the following conditions, then T ξ is a conversive V-relator for T. Moreover, if
conditions 1 and 2 belows are equalities, then T ξ is functorial.

1. ξ respect quantale multiplication:

T (V × V)

≤

T ⊗ //

〈ξ ·T π1 ,ξ ·T π2〉

��

TV

ξ .

��
V × V

⊗
// V

2. ξ respects the unit of the quantale:

T 1

≤

Tk //

!

��

TV

ξ .

��
1

k
// V

3. ξ respects the order of the quantale. That is, the map φ 7→ ξ ·Tφ, for φ : X → V, is monotone.

Finally, an open question (which the author has not yet investigated) concerns whether non-conversive

V-relators can be de�ned along the lines of Subsection 4.3.1. This is conjectured to be the case, provided

that we replace stable preorders with stable generalised metrics, i.e. with functors F mapping each set

X to a V-category (FX ,αX ) such that for each map f : X → Y in Set, F f : (FX ,αX ) → (FY ,αy ) is a

V-enriched functor.
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At this point it should be clear to the reader that most of the relators studied in Section 4.3 are

instances of more general V-relators when V = 2. We now make this observation formal. Recall the

change of base functorψ : 2→ V and its right adjoint φ : V→ 2 of Example 57:

ψ (true) , k φ (k ) , true

ψ (false) , y φ (a) , false

Using φ and ψ we associate to every V-relation α its kernel 2-relation φ ◦ α and to any 2-relation R

the V-relation ψ ◦ R. Similarly, we can associate to each V-relator Γ the 2-relator ∆ΓR , φ ◦ Γ(ψ ◦ R ).
Moreover, since φ is the right adjoint ofψ we have the inequalities:

ψ ◦ ∆ΓR ≤ Γ(ψ ◦ R )

∆Γ (φ ◦ α ) ≤ φ ◦ Γα .

If ∆Γ (φ ◦ α ) = φ ◦ Γα , we say that Γ is compatible with φ.

Example 66. For T ∈ {M, F, D} we see that ∆T̃ =
ˆT and ∆T̃∧T̃◦ =

ˆT ∧ ˆT◦. Moreover, straightforward

calculations show that ∆T̃ (φ ◦ α ) = φ ◦ T̃α . �

Finally, we see that if Γ is compatible with φ, then we have the following inequalities.

Lemma 38. Let Γ be V-relator compatible with φ. Then the following hold:

X

≤

f //

α_
��

TZ

Γβ_
��

Y д
// TW

=⇒

X

≤

f //

φ◦α_
��

TZ

∆Γ (φ◦β )_
��

Y д
// TW

,

X

≤

f //

R
_
��

TZ

∆ΓS
_
��

Y д
// TW

=⇒

X

≤

f //

ψ ◦R_
��

TZ

Γ(ψ ◦S)_
��

Y д
// TW

.

Proof. The proof is straightforward. As an illustrative example, we show

α ≤ д◦ · Γβ · f =⇒ φ ◦ α ≤ д◦ · ∆Γ (φ ◦ β ) · f .

We have:

α ≤ д◦ · Γβ · f =⇒ φ ◦ α ≤ д◦ · (φ ◦ Γβ ) · f

[By monotonicity of φ]

=⇒ φ ◦ α ≤ д◦ · ∆Γ (φ ◦ β ) · f

[By compatibility of Γ with φ].

As for ordinary, boolean-valued relators we required some compatibility conditions with the Σ-

continuous structure of monads, we do the same for V-relators.

De�nition 69. Let T be a Σ-continuous monad, V be a Σ-quantale, and Γ be a V-relator for T.
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1. We say that Γ is inductive if the following inequalities hold:

k ≤ Γα (⊥X , y) (indV 1)∧
n
Γα (xn , y) ≤ Γα (

⊔
n
xn , y) (indV 2)

for any ω-chain (xn )n in TX , element y ∈ TY , and V-relation α : X +→ Y .

2. We say that Γ is Σ-compatible if it satis�es the following condition, for all elements u1, . . . , un ∈ TX ,
y1, . . . , yn ∈ TY , and n-ary operation symbol op ∈ Σ.

JopKV (Γα (u1, y1), . . . Γα (un , yn )) ≤ Γα (JopKX (u1, . . . , un ), JopKY (y1, . . . , yn )) (Σ compV)

Notice that if Γ is inductive then we have the following ‘induction-like’ principle:

∀n ≥ 0. a ≤ Γα (
⊔
n

xn , y) =⇒ a ≤ Γα (xn , y).

We refer to inductive and Σ-compatible V-relators for a monad T as Σ-continuous V-relators.

Example 67. Easy calculations show that M̃ and F̃M are inductive and Σ-compatible. Using results

from (Villani, 2008) and (Clément & Desch, 2008) (notably Lemma 5.2) it is possible to show that D̃M is

inductive, the relevant inequality being D̃Mα (supn µn ,ν ) ≤ supn D̃Mα (µn ,ν ). Proving Σ-compatibility

of D̃ and D̃M is straightforward, as it amounts to show Γα (µ1 ⊕ ν1, µ2 ⊕ ν2) ≤ Γα (µ1, µ2) ⊕ Γα (ν1,ν2), for

Γ ∈ {D̃, D̃M}. �

This concludes our exposition of the general theory of V-relators. We are now going to apply such

a theory to de�ne abstract notions of program distance for V-Fuzz.
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Chapter 12

E�ectful Applicative Distances

Là onde, come sarebe male la

abolizione ed il non essere di questo

mondo, cossì’ non sarebe buono il

non essere de innumerabili altri.

Giordano Bruno, De l’in�nito,

universo e mondi

In this chapter we de�ne e�ectful applicative similarity and bisimilarity distance and prove pre-

congruence and congruence results for them, respectively. In order to achieve these results, we �rst

generalise the relational framework of Chapter 5 to V-Fuzz and V-relations, and the instantiate it to

de�ne our notions of e�ectful distance.

E�ectful applicative similarity and bisimilarity distance being de�ned coinductively, we easily prove

them to be preorder and equivalence V-relations, respectively. Additionally, relying on Lemma 38 we

prove that the kernel of e�ectful applicative (bi)similarity distance coincides with a re�nement of ef-

fectful applicative (bi)similarity (Proposition 31).

(Pre)congruence results are proved using a re�nement of abstract Howe’s method as developed in

Chapter 5, taking inspiration from (Crubillé & Dal Lago, 2015). As for the proof of Lemma 16, the proof

of Lemma 43 relies on the axioms of V-relators.

In the rest of this chapter we assume a signature Σ, a Σ-quantale V, a collection of CBEs Π (according

to Section 10.2), a Σ-continuous (strong) monad T, and a Σ-continuous relator for T to be �xed.

12.1 Behavioural V-relations
We begin our analysis extending the relational framework developed in Chapter 5 to V-Fuzz and V-

relations. Since the development of this section closely follows Section 5.1, we will be rather succinct,

not commenting routine de�nitions and results (the reader should already be familiar with them from

Chapter 5).

De�nition 70. A closed λ-termV-relationα = (αΛ
,αV ) associates to each closed typeσ , binaryV-relations

αVσ ,αΛ
σ on closed values and computations inhabiting it, respectively.

Since the syntactic shape of expressions determines whether we are dealing with computations or

values, oftentimes we will write ασ (e , f ) (resp. ασ (v ,w )) in place of αΛ
σ (e , f ) (resp. αVσ (v ,w )).
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De�nition 71. An open λ-termV-relationα associates to each sequent Γ `Λ σ aV-relation Γ `Λ α (−,−) : σ
on computations inhabiting it, and to each sequent Γ `v σ a V-relation Γ `v α (−,−) : σ on values inhabiting
it. We require open λ-term V-relations to be closed under weakening, i.e. for any environment ∆ we require:

(Γ `Λ α (e , f ) : σ ) ≤ (Γ ⊗ ∆ `Λ α (e , f ) : σ )

(Γ `v α (v ,w ) : σ ) ≤ (Γ ⊗ ∆ `v α (v ,w ) : σ ).

As for closed λ-term V-relations, we will often write Γ ` α (v ,w ) : σ in place of Γ `v α (v ,w ) : σ
(and similarity for computations) and simply refer to open λ-term V-relations as λ-term V-relations

(whenever relevant we will explicitly mention whether we are dealing with open or closed λ-term V-

relations).

We notice that the collection of open λ-term V-relations carries a complete lattice structure (ordered

pointwise), meaning that we can de�ne λ-term V-relations both inductively and coinductively. More-

over, we can always extend a closed λ-term V-relation α = (αΛ
,αV ) to an open one (as well as restricting

an open λ-term V-relation to a closed one).

De�nition 72. Let Γ , x1 :s1
σ1, . . . ,xn :sn σn be an environment. For values ~v , v1, . . . ,vn we write

~v : Γ if for any i ≤ n, `v vi : σi holds. Given a closed λ-term V-relation α = (αΛ
,αV ) we de�ne its open

extension αo as follows:

Γ `Λ αo (e , f ) : τ ,
∧

~v :Γ
αΛ
τ (e[~x := ~v], f [~x := ~v])

Γ `v αo (v ,w ) : τ ,
∧

ū :Γ
αVτ (v[~u/~x],w[~u/~x]).

In the following we will adopt the notational conventions introduced in Chapter 5. We now de�ne

the notions of substitutivity and compatibility for λ-term V-relations. Due to the presence of program

sensitivity annotations in V-Fuzz, these notions are quite di�erent than their boolean-valued counter-

parts for ΛΣ.

De�nition 73. We say that an open λ-term V-relation α is value substitutive if for all values Γ,x :s σ `
v

v ,w : τ and computations Γ,x :s σ `
Λ e , f : τ we have:

(Γ,x :s σ `
v α (v ,w ) : τ ) ≤ (Γ `v α (v[u/x],w[u/x]) : τ )

(Γ,x :s σ `
Λ α (e , f ) : τ ) ≤ (Γ `Λ α (e[x := u], f [x := u]) : τ )

for any closed value u ∈ Vσ
◦ . We say that α is substitutive if for all values Γ,x :s σ `v v ,w : τ and

computations Γ,x :s σ `
Λ e , f : τ we have:

(Γ,x :s σ `
v α (v ,w ) : τ ) ⊗ (s ◦ αVσ (u,u ′)) ≤ Γ `v α (v[u/x],w[u ′/x]) : τ

(Γ,x :s σ `
Λ α (e , f ) : τ ) ⊗ (s ◦ αVσ (u,u ′)) ≤ Γ `Λ α (e[x := u], f [x := u ′]) : τ

for all closed values u,u ′ of type σ .

The notion of compatibility captures an abstract form of Lipshitz-continuity with respect to V-Fuzz
constructors. Formally, we de�ne the notion of a compatible λ-term V-relation by means of the compat-
ible re�nement operator.

De�nition 74. The compatible re�nement α̂ of an open λ-term V-relation α is de�ned by:

(Γ ` α̂ (e , f ) : σ ) ,
∨
{a | Γ |=Λ a ≤ α̂ (e , f ) : σ }

(Γ `v α̂ (v ,w ) : σ ) ,
∨
{a | Γ |=v a ≤ α̂ (v ,w ) : σ }

where judgments Γ |=Λ a ≤ α̂ (e , f ) : σ and Γ |=v a ≤ α̂ (v ,w ) : σ are inductively de�ned for a ∈ V,
Γ `Λ e , f : σ , and Γ `v v ,w : σ by rules in Figure 12.1. We say that α is compatible if α̂ ≤ α .
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Γ,x :s σ |=
Λ k ≤ α̂ (x ,x ) : σ

(compV-var)

a ≤ Γ,x :1 σ ` α (e , f ) : τ

Γ |=v a ≤ α̂ (λx .e , λx .f ) : σ ( τ
(compV-abs)

a ≤ Γ `v α (v ,v ′) : σ ( τ b ≤ ∆ `v α (w ,w ′) : σ

Γ ⊗ ∆ |=Λ a ⊗ b ≤ α̂ (vw ,v ′w ′) : τ
(compV-app)

a ≤ Γ `v α (v ,w ) : σı̂
Γ |=v a ≤ α̂ (〈ı̂,v〉, 〈ı̂,w〉) :

∑
i ∈I σi

(compV-inj)

a ≤ Γ `v α (〈ı̂,v〉, 〈ı̂,w〉) :

∑
i ∈I σi bi ≤ ∆,x :si σi `≤ α (ei , fi ) : τ (∀i ∈ I )

s · Γ ⊗ ∆ |=Λ s (a) ⊗ bı̂ ≤ α̂ (case 〈ı̂,v〉 of {〈i ,x〉 → ei }, case 〈ı̂,w〉 of {〈i ,x〉 → fi }) : τ
(compV-sum-cases)

a ≤ Γ `v α (v ,w ) : σ

Γ |=Λ a ≤ α̂ (return v , returnw ) : σ
(compV-val)

a ≤ Γ ` α (e , e ′) : σ b ≤ ∆,x :s σ ` α ( f
′
, f ′) : τ

(s ∧ 1) · Γ ⊗ ∆ |=Λ (s ∧ 1) (a) ⊗ b ≤ α̂ (let x = e in f , let x = e ′ in f ′) : τ
(compV-let)

a ≤ Γ |=Λ α (v ,w ) : σ

s · Γ |=v s (a) ≤ α (!v , !w ) : !sσ
(compV-bang)

a ≤ Γ `v α (v ,w ) : !rσ b ≤ ∆,x :s ·r σ ` α (e , f ) : τ

s · Γ ⊗ ∆ |=Λ s (a) ⊗ b ≤ α̂ (case v of {!x → e}, casew of {!x → f }) : τ
(compV-bang-cases)

aΓ `v α (v ,w ) : σ [µt .σ/t]

Γ |=v a ≤ α̂ (fold v , foldw ) : µt .σ
(compV-fold)

a ≤ Γ `v α (v ,w ) : µt .σ b ≤ ∆,x :s σ [µt .σ/t] ` b ≤ α (e , f ) : τ

s · Γ ⊗ ∆ |=Λ s (a) ⊗ b ≤ α̂ (case v of {fold x → e}, casew of {fold x → f }) : τ
(compV-fold-cases)

a1 ≤ Γ1 ` α (e1, f1) : σ · · · an ≤ Γn ` α (en , fn ) : σ

JopKV (Γ1, . . . , Γn ) |=
Λ JopKV (a1, . . . ,an ) ≤ α̂ (op(e1, . . . , en ), op(e1, . . . , en )) : σ

(compV-op)

Figure 12.1: Compatible re�nement.



k ≤ (Γ `v α (x ,x ) : σ )

Γ,x :1 σ `
Λ α (e , f ) : τ ≤ Γ `v α (λx .e , λx .f ) : σ ( τ

(Γ `v α (v ,v ′) : σ ( τ ) ⊗ (∆ `v α (w ,w ′) : σ ) ≤ (Γ ⊗ ∆ `Λ α (vw ,v ′w ′) : τ )

Γ `v α (v ,w ) : σı̂ ≤ Γ `v α (〈ı̂,v〉, 〈ı̂,w〉) :

∑
i ∈I

σi

s ◦ (Γ `v α (〈ı̂,v〉, 〈ı̂,w〉) :

∑
i ∈I

σi ) ⊗ (∆,x :s σ `
Λ α (eı̂ , fı̂ ) : τ ) ≤

s · Γ ⊗ ∆ `Λ α (case 〈ı̂,v〉 of {〈i ,x〉 → ei }, case 〈ı̂,w〉 of {〈i ,x〉 → fi }) : τ

Γ `v α (v ,w ) : σ ≤ Γ `Λ α (return v , returnw ) : σ

(s ∧ 1) ◦ (Γ `Λ α (e , e ′) : σ ) ⊗ (∆,x :s σ `
Λ α ( f , f ′) : τ ) ≤

(s ∧ 1) · Γ ⊗ ∆ `Λ α (let x = e in f , let x = e ′ in f ′) : τ

s ◦ (Γ `v α (v ,w ) : σ ) ≤ s · Γ `v α (!v , !w ) : !sσ

s ◦ (Γ `v α (v ,w ) : !rσ ) ⊗ (∆,x :s ·r σ `
Λ α (e , f ) : τ ) ≤

s · Γ ⊗ ∆ `Λ α (case v of {!x → e}, casew of {!x → f }) : τ

Γ `v α (v ,w ) : σ [µt .σ/t] ≤ Γ `v α (fold v , foldw ) : µt .σ

s ◦ (Γ `v α (v ,w ) : µt .σ ) ⊗ (∆,x :s σ [µt .σ/t] `Λ α (e , f ) : τ ) ≤

s · Γ ⊗ ∆ `Λ α (case v of {fold x → e}, casew of {fold x → f }) : τ

JopKV (Γ1 `
Λ α (e1, f1) : σ , . . . , Γn `

Λ α (en , fn ) : σ ) ≤

JopKV (Γ1, . . . , Γn ) `
Λ α (op(e1, . . . , en ), op( f1, . . . , fn )) : σ

Figure 12.2: Compatibility clauses.

It is easy to see that if α is compatible, then it satis�es inequalities in Figure 12.2. Actually, α is

compatible precisely if it satis�es such inequalities. Notice also that in the clause for sequential com-

position the presence of s ∧ 1, instead of s , ensures that for terms like e , let x = (return I ) in f
and e ′ , let x = Ω in f , where f is a closed computation, the distance α (e , e ′) is determined before
sequencing (which captures the idea that although f will not ‘use’ any input, return I and Ω will be still

evaluated, thus producing observable di�erences between e and e ′). In fact, if we replace s ∧ 1 with s ,
then by taking s , 0 compatibility would imply α (e , e ′) = k , which is clearly unsound.

We can �nally de�ne e�ectful applicative similarity distance, the generalisation of e�ectful applica-

tive similarity of Chapter 5 to V-relations.

De�nition 75. Let Γ be a V-relator for T and α = (αΛ
,αV ) be a closed λ-term V-relation. De�ne the closed
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λ-term V-relation [α] = ([α]
Λ
, [α]

V ) as follows:

[α]
Λ
σ (e , f ) , ΓαVσ (JeK, Jf K)

[α]
V

σ(τ (v ,w ) ,
∧

u ∈Vσ
◦

αΛ
τ (vu,wu)

[α]
V∑
i∈I σi

(〈ı̂,v〉, 〈ı̂,w〉) , αVσı̂ (v ,w )

[α]
V∑
i∈I σi

(〈ı̂,v〉, 〈 ̂,w〉) , y

[α]µt .σ (fold v , foldw ) , ασ [µt .σ /t ] (v ,w )

[α]!sσ (!v , !w ) , (s ◦ ασ ) (v ,w ).

(notice that the de�nition of [α]
V is by case analysis on `v v ,w : σ ). A λ-term V-relation α is an e�ectful

applicative simulation distance with respect to Γ if α ≤ [α].

The clause for σ ( τ generalises the usual applicative clause, whereas the clause for !sσ ‘scale’ αVσ
by s . It is easy to see that the above de�nition induces a map α 7→ [α] on the complete lattice of closed

λ-term V-relations. Moreover, such map is monotone since both Γ and CBEs are.

De�nition 76. De�ne e�ectful applicative similarity distance with respect to Γ, denoted as δ , as the
greatest �xed point of α 7→ [α]. That is, δ is the greatest (closed) λ-term V-relation satisfying the equation
α = [α] (such greatest solution exists by the Knaster-Tarski Theorem).

We apply notational convention of Remark 9 and simply refer to applicative simulation (resp. sim-

ilarity) distance in place of e�ectful applicative simulation (resp. similarity) distance with respect to Γ.

Applicative similarity distance comes with an associated coinduction principle: for any closed λ-term

V-relation α , if α ≤ [α], then α ≤ δ . Symbolically:

α ≤ [α]

α ≤ δ
(δ -coind.)

Example 68. Instantiating De�nition 76 with D̃M, we obtain the quantitative re�nement of probabilistic

applicative similarity for P-Fuzz. In particular, for two computations e , f ∈ Λσ , δ (e , f ) is (for readability

we omit subscripts):

min

ω ∈Ω(JeK,Jf K)

∑
v ,w ∈V◦

ω (just v , just w ) · δV (v ,w ) +
∑
v ∈V◦

ω (just v ,⊥)

where we have implicitly used the following identities:

M̃δV (⊥,⊥) = 0

M̃δV (just v ,⊥) = 1

M̃δV (⊥, just w ) = 0.

We immediately notice that δ is adequate in the following sense: for all terms e , f ∈ Λσ we have the

inequality ∑
JeK −

∑
Jf K ≤ δΛ (e , f ),

where

∑
JeK is the probability of convergence of e , i.e.

∑
v ∈V◦JeK(just v ), and subtraction is actually

truncated subtraction.
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Lemma 39. For all µ ∈ DMX and ν ∈ DMY , and I-relation α : X +→ Y , we have:∑
µ −

∑
ν ≤ D̃Mα (µ,ν ),

where − denotes truncated subtraction.

Proof. By Proposition 27 we have:

D̃Mα (µ,ν ) = max{
∑
x ∈X

ax · µ (just x ) + a⊥X · µ (⊥X ) +
∑
y∈Y

by · ν (just y) + b⊥Y · ν (⊥Y )},

where ax ,a⊥X ,by ,b⊥Y are bounded and satisfy the following constraints (already simpli�ed according

to the de�nition of M̃α ):

ax + by ≤ α (x ,y), a⊥X + by ≤ 0, ax + b⊥Y ≤ 1, a⊥X + b⊥Y ≤ 0.

Choosing ax , 1, by , −1, a⊥X , b⊥Y , 0 we obtain the desired inequality. �

Let now e , f be return I and (return I ) or Ω, respectively. We claim that δΛ (e , f ) = 1

2
. By adequacy

we immediately see that
1

2
≤ δΛ (e , f ). We prove δΛ (e , f ) ≤ 1

2
. Let us consider the coupling ω de�ned

by:

ω (just I , just I ) =
1

2

, ω (just I ,⊥) =
1

2

and zero for the rest. Indeed ω is a coupling of JeK and Jf K. Moreover, by very de�nition of δ and D̃M
we have:

δΛ (e , f ) ≤ ω (just I , just I ) · δV (I , I ) + ω (just I ,⊥).

The right hand side of the above inequality gives exactly
1

2
, provided that δV (I , I ) = 0. This indeed holds

in full generality. �

Proposition 30. Applicative similarity distance δ is a re�exive and transitive λ-term V-relation.

Proof. The proof is by coinduction. Let us show that δ is transitive, i.e. that δ · δ ≤ δ . We prove that

the λ-term V-relation (δΛ · δΛ
,δV · δV ) is an applicative simulation distance. We split the proof into �ve

cases:

1. We show that for all terms e , f ∈ Λσ◦ we have:∨
д∈Λσ

δΛ
σ (e ,д) ⊗ δΛ

σ (д, f ) ≤ Γ(δVσ · δ
V

σ ) (JeK, Jf K).

By (V-rel 2) it is su�cient to prove:∨
д∈Λσ◦

δΛ
σ (e ,д) ⊗ δΛ

σ (д, f ) ≤
∨
v∈TVσ

◦

ΓδVσ (JeK, v) ⊗ ΓδVσ (v, Jf K).

For any д ∈ Λσ◦ instantiate v as JдK. Since δΛ
σ (e ,д) ≤ ΓδVσ (JeK, JдK) and δΛ

σ (д, f ) ≤ ΓδVσ (JдK, Jf K),
we are done by very de�nition of δ .

2. We prove that

(δVσ(τ · δ
V

σ(τ ) (v ,w ) ≤
∧

u ∈Vσ
◦

(δΛ
τ · δ

Λ
τ ) (vu,wu)
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holds for all values v ,w ∈ Vσ(τ
◦ . For that it is su�cient to prove that for any u ∈ Vσ

◦ and for

any z ∈ Vσ(τ
◦ there exists a term e ∈ Λτ◦ such that:

δVσ(τ (v , z) ⊗ δVσ(τ (z,w ) ≤ δΛ
τ (vu, e ) ⊗ δΛ

τ (e ,wu).

By very de�nition of δVσ(τ we have:

δVσ(τ (v , z) ⊗ δVσ(τ (z,w ) ≤
∧

u′∈Vσ
◦

δΛ
τ (vu

′
, zu ′) ⊗

∧
u′∈Vσ

◦

δΛ
τ (zu

′
,wu ′)

≤ δΛ
τ (vu, zu) ⊗ δΛ

τ (zu,wu),

so that it is su�cient to instantiate e as zu.

3. We prove that

(δV∑
i∈I σi

· δV∑
i∈I σi

) (〈ı̂,v〉, 〈 ̂,u〉) ≤ y

(δV∑
i∈I σi

· δV∑
i∈I σi

) (〈ı̂,v〉, 〈ı̂,w〉) ≤ (δVσı̂ · δ
V

σı̂ ) (v ,w )

hold for all v ,w ∈ Vσı̂
◦ and u ∈ V

σ ̂
◦ , with ı̂ , ̂. We have

(δV∑
i∈I σi

· δV∑
i∈I σi

) (〈ı̂,v〉, 〈 ̂,u〉) =
∨

〈 ˆ`,z〉∈V
∑
i∈I σi

◦

δV∑
i∈I σi

(〈ı̂,v〉, 〈 ˆ`, z〉) ⊗ δV∑
i∈I σi

(〈 ˆ`, z〉, 〈 ̂,w〉).

Since ı̂ , ̂ at least one among ı̂ , ˆ` and
ˆ` , ̂ holds, for any 〈 ˆ`, z〉 ∈ V

∑
i∈I σi

◦ . As a consequence,

by very de�nition of δ , the right hand side of the above inequality is equal to something of the

form y ⊗ a, which is itself equal to y. To prove the second inequality, we have to show that for

any 〈ı̂,u〉 ∈ V
∑
i∈I σi

◦ there exists z ∈ Vσı̂
◦ such that

δV∑
i∈I σi

(〈ı̂,v〉, 〈ı̂,u〉) ⊗ δV∑
i∈I σi

(〈ı̂,u〉, 〈ı̂,w〉) ≤ δVσı̂ (v , z) ⊗ δVσı̂ (z,w ).

Notice that for a value 〈 ̂,u〉 ∈ V
∑
i∈I σi

◦ with ̂ , ı̂ we would have, by very de�nition of δ ,

δV∑
i∈I σi

(〈ı̂,v〉, 〈 ̂,u〉) = y, and thus we would be trivially done. Proving the above inequality is

straightforward: simply instantiate z as u and observe that by de�nition of δ we have

δV∑
i∈I σi

(〈ı̂,v〉, 〈ı̂,u〉) ≤ δVσı̂ (v ,u)

δV∑
i∈I σi

(〈ı̂,u〉, 〈ı̂,w〉) ≤ δVσı̂ (u,w ).

4. The case for µt .σ follows the same pattern of the above one.

5. We prove:

(δV
!sσ · δ

V

!sσ ) (!v , !w ) ≤ s ◦ (δVσ · δ
V

σ ) (v ,w ).

For that we notice that for every !u ∈ V !sσ
◦ we have:

δV
!sσ (!v , !u) ⊗ δV

!sσ (!u, !w ) ≤ (s ◦ δVσ ) (v ,u) ⊗ (s ◦ δVσ ) (u,w )

≤ ((s ◦ δVσ ) · (s ◦ δ
V

σ )) (v ,w )

≤ s ◦ (δVσ · δ
V

σ ) (v ,w ).

187



In light of Example 66 we can look at the kernel of δ and recover e�ectful applicative similarity of

Chapter 5 (suitably generalised to V-Fuzz).

Proposition 31. De�ne applicative ∆Γ-similarity � by instantiating De�nition 75 with the 2-relator ∆Γ

and replacing the clause for types of the form !sσ as follows:

!v R!sσ !w =⇒ (φ · s ·ψ ) ◦ Rσ (v ,w ).

Then the kernel φ ◦ δ of δ coincide with �.

Proof. The proof is by coinduction. We start proving that φ ◦ δ is an applicative ∆Γ-simulation. Since

δΛ
σ (e , f ) ≤ ΓδVσ (JeK, Jf K) holds for all terms e , f ∈ Λσ◦ , we can apply Lemma 38 and infer the inequality

φ ◦ δΛ
σ (e , f ) ≤ ∆Γ (φ ◦ δ

V

σ ) (JeK, Jf K). Let us now move to the value clauses.

1. We prove that for all values v ,w ∈ Vσ(τ
◦ we have:

φ ◦ δVσ(τ (v ,w ) ≤
∧

u ∈Vσ
◦

φ ◦ δΛ
τ (vu,wu).

Suppose φ ◦ δVσ(τ (v ,w ) = true, so that δVσ(τ (v ,w ) = k . We show that φ ◦ δΛ
τ (vu,wu) = true

holds for any u ∈ Vσ
◦ . By very de�nition of applicative similarity distance, δVσ(τ (v ,w ) = k implies∧

u ∈Vσ
◦
δΛ
τ (vu,wu) = k . Since V is integral (i.e. k =

y

), we must have δΛ
τ (vu,wu) = k (and thus

φ ◦ δΛ
τ (vu,wu) = true) for any u ∈ Vσ

◦ .

2. Clauses for sum and recursive types are straightforward.

3. We show that for all values !v , !w ∈ V !sσ
◦ ,φ◦δV

!sσ
(!v , !w ) = true implies (φ·s ·ψ )◦(φ◦δVσ ) (v ,w ) = true.

By algebra of CBFs we have:

(φ · s ·ψ ) ◦ (φ ◦ δVσ ) = (φ · s ·ψ · φ) ◦ δVσ
= (φ · s ) ◦ δVσ
= φ ◦ (s ◦ δVσ ).

Sinceφ◦δV
!sσ

(!v , !w ) = true, and thusδV
!sσ

(!v , !w ) = k , by very de�nition ofδ we infer s◦δVσ (v ,w ) = k .

We conclude (φ ◦ (s ◦ δVσ )) (v ,w ) = true.

We now prove by coinduction (ψ ◦ �) ≤ δ , from which follows ((φ · ψ ) ◦ �) ⊆ (φ ◦ δ ) and thus

� ⊆ (φ ◦ δ ). The clause for terms directly follows from Lemma 38. The clauses for values follow the

same structure of the previous part of the proof. We show the case for values of type !sσ . Suppose

ψ ◦ �V
!σ σ

(!v , !w ) = k to hold (otherwise we are trivially done), meaning that !v �V
!σ σ

!w holds as well.

As a consequence, we have ((φ · s ·ψ ) ◦ �Vσ ) (v ,w ) = true, and thus s ◦ (ψ ◦ �Vσ ) (v ,w ) = k .

Remark 21. Notice that if Rσ (v ,w ) holds, then so does (φ · s ·ψ ) ◦ Rσ (v ,w ), but the vice versa is not

true, in general. For instance, taking s , 0 we see that

(φ · 0 ·ψ ) ◦ Rσ (v ,w ) = φ (0(ψ (false))) = φ (0 · ∞) = φ (0) = true,

which essentially means we identify distinguishable values if they are not used. Nonetheless, the reader

should notice that the encoding of a ‘standard’ λ-calculus Λ in V-Fuzz can be obtained via the usual

encoding of Λ in its linear re�nement (Maraist et al., 1999) which corresponds to the fragment of V-Fuzz
based on CBEs 1 and∞, thus avoiding the above undesired result.

In order to make applicative similarity distance a useful tool for reasoning about program distance,

we need to prove it to be compositional. Formally, that amounts to prove that applicative similarity

distance is compatible.
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12.2 Howe’s Method
In order to prove compatibility of applicative similarity distance we design a re�nement of Howe’s

technique as presented in Section 5.4, taking inspiration from (Crubillé & Dal Lago, 2015). We start

by de�ning the notion of Howe’s extension, a construction extending a λ-term V-open relation to a

compatible and substitutive λ-term V-relation.

De�nition 77 (Howe extension (1)). The Howe extension αH of an open λ-term V-relation α is de�ned
as the least solution to the equation β = α · β̂ .

It is easy to see that compatible re�nement −̂ is monotone, and thus so is the map Φα de�ned by

Φα (β ) , α · β̂ . As a consequence, we can de�ne αH
as the least �xed point of Φα . Since open extension

−o is monotone as well, we can de�ne the Howe’s extension of a closed λ-term V-relation α as (αo )H . It

is also useful to spell out the above de�nition concretely.

De�nition 78 (Howe extension (2)). The Howe extension αH of an open λ-term V-relation α is de�ned
by:

(Γ ` αH (e , f ) : σ ) ,
∨
{a | Γ |=Λ a ≤ αH (e , f ) : σ },

(Γ `v αH (v ,w ) : σ ) ,
∨
{a | Γ |=v a ≤ αH (v ,w ) : σ },

where judgments Γ |=Λ a ≤ αH (e , f ) : σ and Γ |=v a ≤ αH (v ,w ) : σ are inductively de�ned for a ∈ V,
Γ `Λ e , f : σ , and Γ `v v ,w : σ by rules in Figure 12.3.

The next lemma is useful for proving properties of Howe’s extension. It states that αH
attains its

value via the rules in Figure 12.3.

Lemma 40. The following hold:

1. Given well-typed values Γ `v v ,w : σ , let

A , {a | Γ |=v a ≤ αH (v ,w ) : σ }

be non-empty. Then Γ |=v
∨
A ≤ αH (v ,w ) is derivable.

2. Given well-typed terms Γ `Λ e , f : σ , let

A , {a | Γ |=c a ≤ αH (e , f ) : σ }

be non-empty. Then Γ |=c
∨
A ≤ αH (e , f ) is derivable.

Proof sketch. We simultaneously prove statements 1 and 2 by induction on (v , e ). We show a couple of

cases as illustrative examples:

1. Suppose

A , {a | Γ |=v a ≤ αH (x ,w ) : σ }

to be non-empty. If the judgment Γ |=v a ≤ αH (x ,w ) : σ is provable, then it must be the conclusion

of an instance of rule (H-var) from the premise:

a ≤ (∆,x :s σ `
v α (x ,w ) : σ )

so that Γ = ∆,x :s σ . As a consequence, we see that the setA is just {a | a ≤ (∆,x :s σ `
v α (x ,w ) :

σ )}. In particular, we have ∆,x :s σ `
v α (x ,w ) : σ =

∨
A ∈ A.
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a ≤ Γ,x :s σ `
v α (x ,w ) : σ

Γ,x :s σ |=
Λ a ≤ αH (x ,w ) : σ

(H-var)

Γ,x :1 σ |=
Λ a ≤ αH (e ,д) : τ c ≤ Γ ` α (λx .д, f ) : σ ( τ

Γ |=Λ a ⊗ c ≤ αH (λx .e , f ) : σ ( τ
(H-abs)

Γ |=Λ a ≤ αH (v ,v ′) : σ ( τ ∆ |=Λ b ≤ αH (w ,w ′) : σ c ≤ Γ ⊗ ∆ ` α (v ′w ′, f ) : τ

Γ ⊗ ∆ |=Λ a ⊗ b ⊗ c ≤ αH (vw , f ) : τ
(H-app)

Γ |=v a ≤ αH (v ,w ) : σı̂ b ≤ Γ `v α (〈ı̂,w〉,u) :

∑
i ∈I σi

Γ |=v a ⊗ b ≤ α (〈ı̂,v〉,u) :

∑
i ∈I σi

(H-inj)

Γ |=v a ≤ αH (〈ı̂,v〉, 〈ı̂,w〉) :

∑
i ∈I σi

c ≤ s · Γ ⊗ ∆ `Λ α (case 〈ı̂,w〉 of {〈i ,x〉 → fi },д) : τ
∀i ∈ I . ∆,x :s σi |=

Λ bi ≤ α
H (ei , fi ) : τ

s · Γ ⊗ ∆ |=Λ s (a) ⊗ bı̂ ⊗ c ≤ α
H (case 〈ı̂,v〉 of {〈i ,x〉 → ei },д) : τ

(H-sum-cases)

Γ |=Λ a ≤ αH (v ,w ) : σ c ≤ Γ ` α (returnw , f ) : σ

Γ |=Λ a ⊗ c ≤ αH (return v , f ) : σ
(H-val)

Γ |=Λ a ≤ αH (e ,д) : σ ∆,x :s σ |=
Λ b ≤ αH (e ′,д′) : τ c ≤ (s ∧ 1) · Γ ⊗ ∆ ` α (let x = д in д′, f ) : τ

(s ∧ 1) · Γ ⊗ ∆ |=Λ (s ∧ 1) (a) ⊗ b ⊗ c ≤ αH (let x = e in e ′, f ) : τ
(H-let)

Γ |=Λ a ≤ αH (v ,w ) : σ c ≤ s · Γ ` α (!w , z) : !sσ

s · Γ |=Λ s (a) ⊗ c ≤ αH (!v , z) : !sσ
(H-bang)

Γ |=Λ a ≤ αH (v ,w ) : !rσ
c ≤ s · Γ ⊗ ∆ ` α (casew of {!x → д}, f ) : τ

∆,x :s ·r σ |=
Λ b ≤ αH (e ,д) : τ

s · Γ ⊗ ∆ |=Λ s (a) ⊗ b ⊗ c ≤ αH (case v of {!x → e}, f ) : τ
(H-bang-cases)

Γ |=Λ a ≤ αH (v ,w ) : µt .σ
c ≤ s · Γ ⊗ ∆ ` α (casew of {fold x → д}, f ) : τ

∆,x :s σ [µt .σ/t] |=Λ b ≤ αH (e ,д) : τ

s · Γ ⊗ ∆ |=Λ s (a) ⊗ b ⊗ c ≤ αH (case v of {fold x → e}, f ) : τ
(H-fold-cases)

Γ |=Λ a ≤ αH (v ,w ) : σ [µt .σ/t] c ≤ Γ ` α (foldw , z) : µt .σ

Γ |=Λ a ⊗ c ≤ αH (fold v , z) : µt .σ
(H-fold)

∀i ≤ n. Γi |=
Λ ai ≤ α

H (ei ,дi ) : σ c ≤ JopKV (Γ1. . . . , Γn ) ` α (op(д1, . . . ,дn ), f ) : σ

JopKV (Γ1, . . . , Γn ) |=
Λ JopKV (a1, . . . ,an ) ⊗ c ≤ α

H (op(e1, . . . , en ), f ) : σ
(H-op)

Figure 12.3: Howe extension of α .



2. Suppose

A , {a | Γ |=Λ a ≤ αH (let x = e in f ,д) : τ }

to be non-empty. That means there exists a ∈ V such that Γ |=Λ a ≤ αH (let x = e in f ,д) : τ is

derivable. The latter judgment must be the conclusion of an instance of rule (H-let) from premises:

Σ |=Λ b ≤ αH (e , e ′) : σ

∆,x :s σ |=
Λ c ≤ αH ( f , f ′) : τ

d ≤ (s ∧ 1) · Σ ⊗ ∆ ` α (let x = e ′ in f ′,д) : τ

so that Γ = (s ∧ 1) · Σ ⊗ ∆ and a = (s ∧ 1) (b) ⊗ c ⊗ d . In particular, the sets

B = {b | Σ |=Λ b ≤ αH (e , e ′) : σ }

C = {c | ∆,x :s σ |=
Λ c ≤ αH ( f , f ′) : τ }

are non-empty. By induction hypothesis we have

∨
B ∈ B and

∨
C ∈ C . Let d = (s ∧ 1) · Σ ⊗ ∆ `

α (let x = e ′ in f ′,д) : τ . We can now apply rule (H-let) obtaining (s ∧ 1)
( ∨

B
)
⊗

( ∨
C
)
⊗ d ∈ A.

To see that the latter is actually

∨
A it is su�cient to show that for any a ∈ A we have a ≤

(s ∧ 1)
( ∨

B
)
⊗

( ∨
C
)
⊗ d . But any a ∈ A (with a , y) is of the form (s ∧ 1) (b) ⊗ c ⊗ d for b ∈ B,

c ∈ C , and d ≤ d . We are done since both (s ∧ 1) and ⊗ are monotone.

It is not hard to convince ourselves that De�nition 77 and De�nition 78 gives the same λ-term V-

relation. In particular, for an open λ-term V-relation α , αH
is the least compatible λ-term V-relation

satisfying the inequality αo · β ≤ β . The following are standard results. Proofs are straightforward but

tedious (they closely resemble their relational counterparts), and thus are omitted.

Lemma 41. Let α be a re�exive and transitive closed λ-term V-relation. Then the following hold:
1. αH is re�exive.
2. αo ≤ αH .
3. α · αH ≤ αH .
4. αH is compatible.

We refer to property 1 as pseudo-transitivity. In particular, by very de�nition of V-relator we also

have the following inequality.

Γα · ΓαH ≤ Γ αH
. (Γ pseudo-trans.)

Notice that Proposition 30 implies that (δo )H is compatible and bigger than δo . Finally, we notice that

the Howe extension of a λ-term V-relation is substitutive.

Lemma 42 (Substitutivity). Let α be a value substitutive λ-term V-preorder. For all values, Γ,x :s σ `
v

u, z : τ and ` v ,w : σ , and terms Γ,x :s σ ` e , f : τ , let a ,`v αH (v ,w ) : σ . Then:

(Γ,x :s σ `
v αH (u, z) : τ ) ⊗ s (a) ≤ Γ `v αH (u[v/x], z[w/x]) : τ

(Γ,x :s σ ` α
H (e , f ) : τ ) ⊗ s (a) ≤ Γ ` αH (e[x := v], f [x := w]) : τ .

Proof. We simultaneously prove the following statements.

1. For any a ∈ V if Γ,x :s σ |=
Λ a ≤ αH (e , f ) : τ is derivable, then

a ⊗ s (a) ≤ Γ ` αH (e[x := v], f [x := w]) : τ .
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2. For any a ∈ V if Γ,x :s σ |=
v a ≤ αH (u, z) : τ is derivable, then

a ⊗ s (a) ≤ Γ ` αH (u[v/x], z[w/x]) : τ .

The proof is by induction on the derivation of the judgments:

J , Γ,x :s σ |=
Λ a ≤ αH (e , f ) : τ

J ′ , Γ,x :s σ |=
v a ≤ αH (u, z) : τ .

1. Suppose J ′ has been inferred via an instance of rule (H-var). We have two subcases to consider.

1.1 J ′ has been inferred via an instance of rule (H-var) from premises:

a ≤ Γ,x :s σ `
v α (x ,u) : σ

Γ,x :s σ |=
v a ≤ αH (x ,u) : σ

(H-var),

so that s ≤ 1 and J ′ is Γ,x :s σ |=
v a ≤ αH (x ,u) : σ . We have to prove a⊗s◦ (`v αH (v ,w )) ≤

Γ `v αH (v ,u[w/x]) : σ . Since α is value substitutive, from Γ,x :s σ |=
v a ≤ αH (x ,u) : σ

we infer a ≤ Γ `v α (w ,u[w/x]) : σ . Moreover, since αH
is an open λ-term V-relation (and

thus closed under weakening), we have `v αH (v ,w ) : σ ≤ Γ `v αH (v ,w ) : σ . We can now

conclude the thesis as follows:

a ⊗ s (a) ≤ (Γ `v αH (v ,w ) : σ ) ⊗ s ◦ (Γ `v α (w ,u[w/x]) : σ )

≤ (Γ `v αH (v ,w ) : σ ) ⊗ (Γ `v α (w ,u[w/x]) : σ )

[ since s ≤ 1 ]

≤ Γ `v αH (v ,u[w/x]) : σ

[ by pseudo-transitivity ].

1.2 J ′ has been inferred via an instance of rule (H-var) from premises:

a ≤ Γ,y :r τ ,x :s σ `
v α (y,u) : τ

Γ,y :r τ ,x :s σ |=
v a ≤ αH (y,u) : τ

(H-var)

so that J ′ is Γ,y :r τ ,x :s σ |=
v a ≤ αH (y,u) : τ . We have to prove a ⊗ s ◦ (∅ `v αH (v ,w )) ≤

Γ,y :r τ `
v αH (y,u[w/x]) : τ . As V is integral and α is value-substitutive, we have:

a ⊗ s ◦ (∅ `v αH (v ,w )) ≤ a ≤ Γ,y :r τ `
v α (y,u[w/x]).

Since α ≤ αH
we are done.

2. Suppose J has been inferred via an instance of rule (H-let) from premises:

Γ,x :s σ |=
Λ a ≤ αH (e , e ′) : σ ′ (12.1)

∆,x :r σ ,y :p σ
′ |=Λ b ≤ αH ( f , f ′) : τ (12.2)

c ≤ (p ∧ 1) · (Γ,x :s σ ) ⊗ (∆,x :r σ ) ` α
H (let y = e ′ in f ′,д) : τ . (12.3)

so that J is:

(p ∧ 1) · Γ ⊗ ∆,x :(p∧1) ·s⊗r σ |=
Λ (p ∧ 1) (a) ⊗ b ⊗ c ≤ αH (let y = e in f ,д) : τ .
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We have to prove:

(p ∧ 1) (s (a)) ⊗ r (a) ⊗ (p ∧ 1) (a) ⊗ b ⊗ c ≤ (p ∧ 1) · Γ ⊗ ∆ ` αH (let y = e[x := v] in f [x := v],д[x := w]) : τ .

We apply the induction hypothesis on (12.1) and (12.2) obtaining:

s (a) ⊗ a ≤ Γ ` αH (e[x := v], e ′[x := w]) : σ ′ (12.4)

r (a) ⊗ b ≤ ∆,y :p σ
′ ` αH ( f [x := v], f [x := w]) : τ . (12.5)

From (12.4) and (12.5) by compatibility of αH
(and lax equations of change of base functors) we

infer:

(p ∧ 1) (s (a)) ⊗ (p ∧ 1) (a) ⊗ r (a) ⊗ b ≤ (p ∧ 1) · Γ ⊗ ∆

` αH (let y = e[x := v] in f [x := a], let y = e ′[x := w] in f ′[x := w]) : τ . (12.6)

Finally, since α is value-substitutive, from (12.3) we obtain:

c ≤ (p ∧ 1) · Γ ⊗ ∆ ` αH (let y = e ′[x := w] in f ′[x := w],д) : τ

and thus conclude the thesis from the latter and (12.6) by pseudo-transitivity.

3. Suppose J has been inferred via an instance of rule (H-op) from premises (as usual we write ~xi
for items x1, . . . ,xn ):

∀i . Γi ,x :si σ |=
Λ ai ≤ α

H (ei , e
′
i ) : τ (12.7)

b ≤ JopKV (~Γi ),x :JopKV (~si ) σ ` α (op(~e
′
i ), f ) : τ (12.8)

so that J is

JopKV (~Γi ),x :JopKV (~si ) σ |=
Λ JopKV (~ai ) ⊗ b ≤ αH (op(~ei ), f ) : τ .

We have to prove

JopKV (
−−−→
si (a)) ⊗ JopKV (~ai ) ⊗ b ≤ JopKV (~Γi ) ` αH (

−−−−−−−−→
ei [x := v], f [x := w]) : τ .

We apply the induction hypothesis on (12.7) obtaining:

∀i . s (a) ⊗ ai ≤ Γi ` α
H (ei [x := v], e ′i [x := w]) : τ . (12.9)

Monotonicity of JopKV on (12.9) followed by compatibility gives:

JopKV (
−−−−−−−−→
si (a) ⊗ ai ) ≤ JopKV (~Γi ) ` αH (op(

−−−−−−−−→
ei [x := v]), op(

−−−−−−−−−→
e ′i [x := w])). (12.10)

Finally, as α is value-substitutive, from (12.8) we obtain:

b ≤ JopKV (~Γi ), ` α (op(
−−−−−−−−−→
e ′i [x := w]) f [x := w]) : τ .

The latter together with (12.5) implies

JopKV (
−−−−−−−−→
si (a) ⊗ ai ) ⊗ b ≤ JopKV (~Γi ) ` αH (op(

−−−−−−−−→
ei [x := v]), f [x := w])

by pseudo-transitivity. We conclude the thesis as De�nition 63 entails:

JopKV (
−−−→
si (a)) ⊗ JopKV (~ai ) ≤ JopKV (

−−−−−−−−→
si (a) ⊗ ai ).
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The remaining cases follow the same pattern.

Notice that the open extension of any closed λ-term V-relation is value-substitutive. We can now

prove the main result of Howe’s method, the so-called Key Lemma. The latter states the Howe extension

of applicative similarity distance (restricted to closed terms) is an applicative simulation distance. By

coinduction, we conclude δ = (δH )c (the latter being the closed restriction of δH ), and thus δo = δH ,

meaning that the former is compatible.

Lemma 43 (Key Lemma). Recall that we assume Γ to be Σ-continuous. Let α be a re�exive and transi-
tive applicative simulation distance. Then the Howe extension of α restricted to closed terms/values in an
applicative simulation distance.

Proof. Let us write αH
for the Howe extension of α restricted to closed computations/values. It is

easy to see that αH
satis�es the simulation clauses for values. For instance, we prove the inequality

αH
!sσ

(!v , !w ) ≤ s◦αH
σ (v ,w ), where for readability we omit values superscript inα andαH

. It is su�cient to

show that for any a ∈ V such that the judgment J , ( |=Λ a ≤ αH (!v , !w ) : !sσ ) is derivable, the inequal-

ity a ≤ s ◦ αH
σ (v ,w ) holds. The judgment J must have been inferred via an instance of rule (H-bang),

so that without loss of generality we can assume a = s (b) ⊗ α!sσ (!u, !w ), with |=Λ b ≤ αH (v ,u) : σ
derivable, for some value u. We conclude the thesis as follows:

a ≤ s ◦ αH
σ (v ,u) ⊗ α!sσ (!u, !w )

≤ s ◦ αH
σ (v ,u) ⊗ s ◦ ασ (u,w )

[α is an applicative simulation distance]

≤ s ◦ (αH
σ (v ,u) ⊗ ασ (u,w ))

≤ s ◦ (ασ · α
H
σ ) (v ,w )

≤ s ◦ αH
σ (v ,w ).

[pseudo-transitivity]

The crucial part of the proof is to show that αH
satis�es the clause for computations. We prove that for

any n ≥ 0, and all computations e , f ∈ Λσ◦ , we have:

(αH )Λσ (e , f ) ≤ Γ(αH )Vσ (JeKn , Jf K).

Since Γ is inductive the above inequality gives the thesis as follows:

(αH
σ )

Λ (e , f ) ≤
∧
n

Γ(αH
σ )
V (JeKn , Jf K)

≤ Γ(αH
σ )
V (

⊔
n

JeKn , Jf K)

= Γ(αH
σ )
V (JeK, Jf K).

The proof is by induction on n with a case analysis on the term structure in the inductive case. For

readability we simply write α in place of αΛ
and αV . Moreover, to avoid confusion we remark that

we explicitly distinguish between (ordinary) Kleisli extension and strong Kleisli extension. Given a

monoidal category 〈C, I , ⊗〉, recall that we denote by f ∗ : Z ⊗ TX → TY the strong Kleisli extension of

f : Z ⊗ X → TY and by д† : TX → TY the Kleisli extension of д : X → TY . Moreover, the latter can be

de�ned in terms of the former as д† , (д ·λX )
∗ ·λ−1

TX , where λX : I ⊗X
�
−→ X is the natural isomorphism

given by the monoidal structure of C. Notice also that д† · λTX = (д · λX )
∗
. We now enter the details of

the induction.
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1. We have to prove:

αH
σ (e , f ) ≤ ΓαH

σ (JeK0, Jf K).

Since Γ is inductive and JeK0 = ⊥Vσ
◦

, it is su�cient to prove αH
σ (e , f ) ≤ k . Because the quantale

is integral the latter trivially holds.

2. We have to prove:

αH
σ (return v ,w ) ≤ ΓαH

σ (Jreturn vKn+1, JwK).

Since Jreturn vKn+1 = η(v ), it is su�cient to prove that for any a such that the judgment |=Λ a ≤
αH (return v ,w ) : σ is derivable, a ≤ ΓαH

σ (η(v ), JwK) holds. Suppose |=Λ a ≤ αH (return v ,w ) : σ
to be derivable. The latter must have been inferred via an instance of rule (H-val) from premises:

|=Λ b ≤ αH (v ,v ′) : σ (12.11)

c ≤ ασ (return v ′,w ). (12.12)

In particular, we haveb ≤ αH
σ (v ,v ′) and thus, by condition (Lax unit), b ≤ ΓαH

σ (η(v ),η(v
′)). From,

(12.12) we infer, by very de�nition of applicative simulation distance, c ≤ Γασ (η(v
′), JwK), and

thus b ⊗ c ≤ ΓαH
σ (η(v ),η(v

′)) ⊗ Γασ (η(v
′), JwK). We conclude the thesis by (Γ pseudo-trans.).

3. We have to prove:

αH
τ ((λx .e )v , f ) ≤ ΓαH

τ (J(λx .e )vKn+1, Jf K).

As J(λx .e )vKn+1 = Je[x := v]Kn , it is su�cient to show that for anya such that |=Λ a ≤ αH ((λx .e )v , f ) :

τ holds, we have a ≤ ΓαH
τ (Je[x := v]Kn , Jf K) . Assume |=Λ a ≤ αH ((λx .e )v , f ) : τ . The latter must

have been inferred via an instance of rule (H-app) from premises:

|=Λ b ≤ αH (v ,w ) : σ (12.13)

|=Λ c ≤ αH (λx .e ,u) : σ ( τ (12.14)

d ≤ ατ (uw , f ). (12.15)

Let us examine premise (12.14). First of all, since u is a closed value of type σ ( τ it must be of

the form λx .д. Moreover, (12.14) must have been inferred via an instance rule rule (H-abs) from

premises:

x :1 σ |=
Λ c1 ≤ α

H (e ,h) : τ (12.16)

c2 ≤ ασ(τ (λx .h, λx .д). (12.17)

In particular, we have the equality c1 ⊗ c2 = c . From (12.16) we deduce c1 ≤ x :1 σ ` α
H (e ,h) : τ ,

whereas from (12.13) we inferb ≤ αH
σ (v ,w ). We are now in position to apply Lemma 42, obtaining

c1 ⊗ b ≤ αH
τ (e[x := v],h[x := w]). By very de�nition of applicative simulation distance, (12.17)

implies the inequality c2 ≤ ατ (h[x := w],д[x := w]). Applying pseudo-transitivity followed by

the induction hypothesis we obtain:

c1 ⊗ c2 ⊗ b ≤ α
H
τ (e[x := v],д[x := w]) ≤ ΓαH

τ (Je[x := v]Kn , Jд[x := w]K).

Finally, from (12.15), by de�nition of applicative simulation distance we infer

d ≤ Γατ (Jд[x := w]K, Jf K)

(recall thatu = λx .д, so that JuwK = Jд[x := w]K). We can now conclude the thesis by (Γ pseudo-trans.).

4. Cases for pattern matching against folds and sums are standard (they follow the same pattern of

point 5, but are simpler).
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5. We have to prove:

αH
τ (case !v of {!x → e}, f ) ≤ ΓαH

τ (Jcase !v of {!x → e}Kn+1, Jf K).

As Jcase !v of {!x → e}Kn+1 = Je[x := v]Kn , we show that for any a such that |=Λ a ≤
αH (case !v of {!x → e}, f ) : τ is derivable, the inequality a ≤ ΓαH

τ (Je[x := v]Kn , Jf K) holds.

Suppose |=Λ a ≤ αH (case !v of {!x → e}, f ) : τ . The latter must have been inferred via an

instance of rule (H-bang-cases) from premises:

∅ |=Λ b ≤ αH (!v ,u) : !sσ (12.18)

x :r ·s σ |=
Λ c ≤ αH (e , e ′) : τ (12.19)

d ≤ ατ (case u of {!x → e ′}, f ). (12.20)

In particular, we have a = r (b) ⊗ c ⊗ d . Let us examine premise (12.18). First of all, since u is a

closed value of type !sσ , it must be of the form !v ′. Moreover, (12.18) must have been inferred via

an instance of rule (H-bang) from premises:

∅ |=Λ b1 ≤ α
H (v ,w ) : σ (12.21)

b2 ≤ α!sσ (!w , !v ′). (12.22)

In particular, b = s (b1) ⊗b2. From (12.22), by de�nition of applicative simulation distance we infer

b2 ≤ s ◦ ασ (w ,v ′). Since (12.21) implies b1 ≤ α
H
σ (v ,w ), we have:

b = s (b1) ⊗ b2

≤ s ◦ αH
σ (v ,w ) ⊗ s ◦ ασ (w ,v ′)

≤ s ◦ (αH
σ (v ,w ) ⊗ ασ (w ,v ′))

≤ s ◦ αH
σ (v ,v ′)

where the last inequality follows by pseudo-transitivity. From (12.19) we infer the inequality

c ≤ x :r ·s σ ` α
H (e , e ′) : τ . We are now in position to apply Lemma 42 obtaining:

(r · s ) ◦ αH
σ (v ,v ′) ⊗ c ≤ αH

τ (e[x := v], e ′[x := v ′]).

The latter, together with the inequality b ≤ s ◦ αH
σ (v ,v ′), implies

r (b) ⊗ c ≤ αH
τ (e[x := v], e ′[x := v ′]).

Applying the induction hypothesis we conclude:

r (b) ⊗ c ≤ ΓαH
τ (Je[x := v]Kn , Je ′[x := v ′]K).

Finally, from (12.20), by de�nition of applicative simulation distance we infer

d ≤ Γατ (Je ′[x := v ′]K, Jf K)

(recall that u = !v ′) and thus conclude the thesis by (Γ pseudo-trans.).

6. We have to prove:

αH
τ (let x = e in f ,д) ≤ ΓαH

τ (Jlet x = e in f Kn+1, JдK).

As Jlet x = e in f Kn+1 = Jf [x := _]K†nJeKn , it is su�cient to prove that for any a such that

|=Λ a ≤ αH (let x = e in f ,д) : τ is derivable, we have a ≤ ΓαH
τ (Jf [x := _]K†nJeKn , JдK). Suppose
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|=Λ a ≤ αH (let x = e in f ,д) : τ . The latter must have been inferred via an instance of rule (H-let)
from premises:

|=Λ b ≤ αH (e , e ′) : σ (12.23)

x :s σ |=
Λ c ≤ αH ( f , f ′) : τ (12.24)

d ≤ ατ (let x = e ′ in f ′,д). (12.25)

In particular, we have a = (s ∧ 1) (b) ⊗ c ⊗ d . We now claim to have:

(x :s σ ` α
H ( f , f ′) : τ ) ⊗ (s ∧ 1) ◦ αH

σ (e , e ′)

≤ ΓαH
τ (Jlet x = e in f Kn+1, Jlet x = e ′ in f ′K). (12.26)

By very de�nition of Howe extension, the latter obviously entails

(s ∧ 1) (b) ⊗ c ≤ ΓαH
τ (Jlet x = e in f Kn+1, Jlet x = e ′ in f ′K).

Moreover, by de�nition of applicative simulation distance, (12.25) implies d ≤ Γατ (Jlet x =
e ′ in f ′K, JдK), which allows to conclude the thesis by (Γ pseudo-trans.). Let us now turn to the

proof of (12.25). First of all we apply the induction hypothesis on αH
σ (e , e ′). By monotonicity of

s ∧ 1 we have thus reduced the proof of (12.25) to proving the inequality:

(x :s σ ` α
H ( f , f ′) : τ ) ⊗ (s ∧ 1) ◦ ΓαH

σ (JeKn , Je ′K)

≤ ΓαH
τ (Jf [x := _]K†nJeKn , Jf ′[x := _]K†Je ′K). (12.27)

Consider the diagram:

I ×TVσ
◦

≤γ ⊗(s∧1)◦ΓαHσ _
��

Jf [x :=_]K†n ·λTVσ◦ // TVτ

ΓαHτ_
��

I ×TVσ
◦ Jf ′[x :=_]K† ·λTVσ◦

// TVτ
◦

(12.28)

where I = {∗} and γ (∗, ∗) = (x :s σ ` α
H ( f , f ′) : τ ). It is easy to see that (12.27) follows from

(12.28), since e.g.:

(Jf [x := _]K†n · λTVσ
◦
) (∗, JeKn ) = Je[x := _]K†nJeKn .

To prove (12.28) we �rst observe that by very de�nition of strong monad we have Jf [x := _]K†n ·
λTVσ

◦
= (Jf [x := _]Kn ·λVσ

◦
)∗. We can now apply condition (L-Strong lax bind). As a consequence,

to prove (12.28) it is su�cient to prove that for all closed values v ,w of type σ , we have:

(x :s σ ` α
H ( f , f ′) : τ ) ⊗ (s ∧ 1) ◦ αH

σ (v ,w ) ≤ ΓαH
τ (Jf [x := v]Kn , Jf ′[x := w]K).

By Lemma 42 and induction hypothesis we have:

(x :s σ ` α
H ( f , f ′) : τ ) ⊗ s ◦ αH

σ (v ,w ) ≤ ΓαH
τ (Jf [x := v]Kn , Jf ′[x := w]K).

We conclude the thesis since s ∧ 1 ≤ s .

7. We have to prove:

αH
σ (op(e1, . . . , em ), f ) ≤ ΓαH

σ (Jop(e1, . . . , em )Kn+1, Jf K)
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where op is anm-ary operation symbol in Σ. As usual, we use the notation ~xi for items x1, . . . ,xm .

We show that for any a such that |=Λ a ≤ αH (op(~ei ), f ) : σ is derivable, a ≤ ΓαH
τ (Jop(~ei )KnJf K)

holds. Suppose to have |=Λ a ≤ αH (op(~ei ), f ) : τ . The latter must have been inferred via an

instance of rule (H-op) from premises:

∀i ≤ m. |=Λ ai ≤ α
H (ei , fi ) : σ (12.29)

b ≤ ατ (op( f1, . . . , fm ), f ). (12.30)

In particular, we have a = JopKV (a1, . . . ,am ) ⊗ b. We apply the induction hypothesis on (12.29)

obtaining, for each i ≤ m, the inequality ai ≤ ΓαH (JeiKn , JfiK). By monotonicity of JopKV we thus

infer:

JopKV (~ai ) ≤ JopKV (ΓαH (Je1Kn , Jf1K), . . . , ΓαH (JemKn , JfmK))
≤ ΓαH

σ (JopKVσ (Je1Kn , . . . , JemKn ), JopKVσ (Jf1K, . . . , JfmK))
= ΓαH

σ (Jop(e1, . . . , em )Kn+1, Jop( f1, . . . , fm )K),

where the second inequality follows since Γ is Σ-compatible. We conclude the thesis from (12.30)

by (Γ pseudo-trans.) and de�nition of applicative simulation distance.

Theorem 16 (Compatibility). Applicative similarity distance is compatible.

Proof. We have to prove that δo is compatible. By Lemma 41 we know that δo ≤ (δo )H and that (δo )H

is compatible. Therefore, to conclude the thesis it is su�cient to prove (δo )H ≤ δo . The Key Lemma

implies that the restriction of (δo )H on closed terms is an applicative simulation distance, and thus

smaller or equal than δ . We can thus show that for all Γ `Λ e , e ′ : σ , the inequality Γ `Λ (δo )H (e , e ′) :

σ ≤ Γ `Λ δo (e , e ′) : σ holds. In fact, since (δo )H is substitutive, and thus value substitutive
1
, we have:

Γ `Λ (δo )H (e , e ) : σ ≤
∧
v̄ :Γ

`Λ (δo )H (e[x̄ := v̄], e ′[x̄ := v̄]) : σ

≤
∧
v̄

δΛ
σ (e[x̄ := v̄], e ′[x̄ := v̄])

= Γ `Λ δo (e , e ′) : σ .

A similar argument holds for values.

It is worth noticing that Theorem 16 gives the following generalisation of the so-called metric preser-
vation (de Amorim et al., 2017; Reed & Pierce, 2010).

Corollary 6 (Metric Preservation). For any environment Γ , x1 :s1
σ , . . . ,xn :sn σ , values v̄ , w̄ : Γ, and

Γ `Λ e : σ we have:

s1 ◦ δ
V

σ1

(v1,w1) ⊗ · · · ⊗ sn ◦ δ
V

σn (vn ,wn ) ≤ δ
Λ
σ (e[~x := ~v], e[~x := ~w]).

Having proved that applicative similarity distance is a compatible generalised metric, we now move

to applicative bisimilarity distance.

1
Notice that in De�nition 73 we substitute closed values (in computations and values) meaning that simultaneous substitution

and sequential substitution coincide. In particular, value substitutivity implies e.g.

(Γ `Λ α (e , f ′) : τ ) ≤
∧
v̄ :Γ

αΛ
τ (e[x̄ := v̄], f [x̄ := v̄]).

.
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12.3 E�ectful Applicative bisimilarity Distance
In previous section we proved that applicative similarity distance is a compatible V-preorder. However,

in the context of programming language semantics it is often desirable to work with V-equivalences

(cf. pseudometrics). In this section we discuss two natural program V-equivalences: e�ectful applica-
tive bisimilarity distance (applicative bisimilarity distance, for short) and two-way e�ectful applicative
similarity distance (two-way applicative similarity distance, for short). We prove that under suitable

conditions on CBEs, both applicative bisimilarity distance and two-way applicative similarity distance

are compatible V-equivalences. Proving compatibility of the latter is straightforward, whereas proving

compatibility of the former is non-trivial, and requires a generalisation of the transitive closure trick of

Chapter 5.

Before entering formalities, let us remark that so far we have mostly worked with inequation and

inequalities. That was �ne since we have been interested in non-symmetric V-relations. However,

for symmetric V-relations inequalities seem to be not powerful enough, and often plain equalities are

needed in order to make proofs work. For that reason in the rest of this section we assume CBFs to be

monotone monoid (homo)morphism. That is, we modify De�nition 64 requiring the equalities:

h(k ) = ` h(a ⊗ b) = h(a) ⊗ h(b).

Notice that we do not require CBEs to be join-preserving (i.e. continuous). We also require operations

JopKV to be quantale (homo)morphism, i.e. to preserves unit, tensor, and joins. It is easy to see that the

new requirements are met by most of the examples considered so far. We start with two-way applicative

similarity distance.

Proposition 32. For a V-relator Γ, de�ne two-way applicative similarity distance as δ ⊗δ◦. Then two-way
applicative similarity distance is a compatible V-equivalence.

Proof. Clearly δ ⊗ δ◦ is symmetric. Moreover, since CBEs are monoid (homo)morphism it is also com-

patible.

We now move to the more interesting case of applicative bisimilarity distance.

De�nition 79. De�ne e�ectful applicative bisimilarity distance with respect to Γ (applicative bisimilar-
ity distance, for short), denoted as γ , as e�ectful applicative similarity distance with respect to Γ ∧ Γ◦.

Proposition 30 implies that γ is re�exive and transitive. Moreover, if CBEs preserve binary meet, i.e.

s (a) ∧ s (b) = s (a ∧ b) for any CBE s in Π, then γ is also symmetric, ad thus a V-equivalence. Finally

we observe that γ is the greatest λ-term V-relation α such that both α and α◦ are applicative simulation

distance (with respect to Γ).

We now look at the proof of compatibility of γ . As usual, we cannot rely on Lemma 43 since Γ ∧ Γ◦

being conversive is, in general, not inductive. To overcome this problem, we proceed as in Chapter 5

and characterise applicative bisimilarity distance di�erently.

Lemma 44. Let Γ be a V-relator. De�ne the λ-term V-relation γ ′ as follows:

γ ′ ,
∨
{α | α◦ = α , α ≤ [α]}.

Then:

1. γ ′ is a symmetric applicative simulation distance (with respect to Γ), and therefore the largest such.

2. γ ′ coincides with γ .
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Proof. Obviously γ is an applicative simulation distance (with respect to Γ). Moreover, γ is symmetric

and thus we have γ ≤ γ ′. To see that γ ′ ≤ γ it is su�cient to prove that γ ′ is an applicative simulation

distance with respect to Γ ∧ Γ◦. Clauses on values are trivially satis�ed. We now show that for any

symmetric applicative simulation α , we have the inequality αΛ
σ (e , e ′) ≤ ΓαVσ (JeK, Je ′K)∧Γ(αVσ )◦ (Je ′K, JeK)

for all terms e , e ′ ∈ Λσ . For that it is su�cient to prove αΛ
σ (e , e ′) ≤ Γ(αVσ )

◦ (Je ′K, JeK), which obviously

holds since α is symmetric.

Lemma 44 allows to apply the Key Lemma on γ , thus showing that γ H
is compatible. However, as

we already know there is little hope to prove γ H
to be symmetric. We thus look at its transitive closure.

The latter is in general not symmetric, but it is so for a speci�c class of CBEs.

De�nition 80. We say that a CBE s is �nitely continuous, if s , ∞ implies s (
∨
A) =

∨
{s (a) | a ∈ A},

for any set A ⊆ V.

Example 69. All concrete CBEs considered in previous examples satisfy the conditions mentioned in

this section, and thus are �nitely continuous. Moreover, it is easy to prove the all CBEs de�ned from

the CBEs n,∞ of Example 57 using operations in Lemma 36 are �nitely continuous
2

provided that V is

completely distributive (Hofmann et al., 2014) and JopKV (a1, . . . ,⊥, . . . ,an ) = ⊥ (which is the case for

most of the concrete operations we considered). �

The following is the central result of our argument.

Lemma 45. Assume CBEs in Π to be �nitely continuous. De�ne the transitive closure αT of a V-relation
α as αT ,

∨
n α

(n)
, where α (0) , I, and α (n+1) , α (n) · α .

1. Let α be a re�exive and transitive λ-term V-relation. Then (αH )T is compatible.
2. Let α be an re�exive, symmetric, and transitive open λ-term V-relation. Then (αH )T is symmetric.

Proof. We start with point 1. First of all observe that by Lemma 41 αH
is compatible. To prove com-

patibility of (αH )T we have to check that it satis�es all clauses in Figure 12.2. We show the case for

sequential composition as an illustrative example (the other cases are proved in a similar, but easier,

way). We have to prove:

(s ∧ 1) ◦ (Γ ` (αH )T (e , e ′) : σ ) ⊗ (∆,x :s σ ` (α
H )T ( f , f ′) : τ )

≤ (s ∧ 1) · Γ ` (αH )T (let x = e in f , let x = e ′ in f ′) : τ .

Let c , ((s ∧ 1) · Γ ` (αH )T (let x = e in f , let x = e ′ in f ′) : τ ). By de�nition of transitive closure we

have to prove:

(s ∧ 1) ◦
∨
n

(Γ ` (αH ) (n) (e , e ′) : σ ) ⊗
∨
m

(∆,x :s σ ` (α
H ) (m) ( f , f ′) : τ ) ≤ c .

By �nite continuity, either s ∧ 1 = ∞ or it is continuous with respect to joints. In the former case we

are trivially done. So suppose the latter case, so that thesis becomes:∨
n

(s ∧ 1) ◦ (Γ ` (αH ) (n) (e , e ′) : σ ) ⊗
∨
m

(∆,x :s σ ` (α
H ) (m) ( f , f ′) : τ ) ≤ c .

In particular, we also have s , ∞. We prove that for any n,m ≥ 0 the following holds: for all e , e ′, f , f ′

(of appropriate type),

(s ∧ 1) ◦ (Γ ` (αH ) (n) (e , e ′) : σ ) ⊗ (∆,x :s σ ` (α
H ) (m) ( f , f ′) : τ )

≤ ((s ∧ 1) · Γ ` (αH )T (let x = e in f , let x = e ′ in f ′) : τ )

2
Recall that since a is integral we have the inequality a ⊗ ⊥ = ⊥ for any a ∈ V.
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holds. First of all we observe that since αH
is re�exive, we can assume n = m. In fact, if e.g. n = m + l ,

then we can ‘complete’ (αH ) (m)
as follows:

(αH ) (m) = (αH ) (m) ·I · · · · I︸  ︷︷  ︸
l -times

≤ (αH ) (m) · αH · · · · αH︸         ︷︷         ︸
l -times

= (αH ) (n) .

We now do induction on n. The base case is trivial. Let us turn on the inductive step. We have to prove:

(s ∧ 1) ◦
(∨

e ′′
(Γ ` αH (e , e ′′) : σ ) ⊗ (Γ ` (αH ) (n) (e ′′, e ′) : σ )

)
⊗

∨
f ′′

(∆,x :s σ ` α
H ( f , f ′′) : τ ) ⊗ (∆,x :s σ ` (α

H ) (n) ( f ′′, f ′) : τ ) ≤ c .

Since s ∧ 1 is continuous it is su�cient to prove that for all terms e ′′, f ′′ we have:

(s ∧ 1) ◦ (Γ ` αH (e , e ′′) : σ ) ⊗ (s ∧ 1) ◦ (Γ ` (αH ) (n) (e ′′, e ′) : σ )

⊗ (∆,x :s σ ` α
H ( f , f ′′) : τ ) ⊗ (∆,x :s σ ` (α

H ) (n) ( f ′′, f ′) : τ ) ≤ c ,

i.e.

(s ∧ 1) ◦ (Γ ` αH (e , e ′′) : σ ) ⊗ (∆,x :s σ ` α
H ( f , f ′′) : τ ) ⊗ (s ∧ 1) ◦ (Γ ` (αH ) (n) (e ′′, e ′) : σ )

⊗ (∆,x :s σ ` (α
H ) (n) ( f ′′, f ′) : τ ) ≤ c .

We can now apply compatibility of αH
plus the induction hypothesis, thus reducing the thesis to:(

(s ∧ 1) · Γ ⊗ ∆ ` αH (let x = e in f , let x = e ′′ in f ′′) : σ )
)

⊗

(
(s ∧ 1) · Γ ⊗ ∆ ` (αH )T (let x = e ′′ in f ′′, let x = e ′ in f ) : σ )

)
≤ c .

We can now conclude the thesis by very de�nition of (αH )T .

To prove point 2 we have to show (αH )T ≤ ((αH )T )◦. For that it is su�cient to show αH ≤ ((αH )T )◦.
That amounts to prove that for all computations Γ ` e , e ′ : σ and values Γ `v v ,v ′, and for any a ∈ V
such that Γ |=Λ a ≤ αH (e , e ′) : σ is derivable we have a ≤ Γ ` (αH )T (e , e ′) : σ (and similarity for

Γ `v v ,v ′ : σ ). The proof is by induction on the derivation of Γ |=Λ a ≤ αH (e , e ′) : σ using point 1.

Finally, we can prove that applicative bisimilarity distance is compatible.

Theorem 17. If any CBE in Π is �nitely continuous, then applicative bisimilarity distance is compatible.

Proof. From Lemma 45 we know that (γ H )T is compatible. Therefore, it is su�cient to prove ((γ )H )T = γ .

One inequality follows from Lemma 41 as follows: γ ≤ γ H ≤ (γ )T . For the other inequality, we rely on

the coinduction proof principle associated with γ , meaning that it is su�cient to prove that ((γ )H )T is a

symmetric applicative simulation (with respect to Γ). Symmetry is given by Lemma 45. From Lemma 43

(Key Lemma) we know thatγ H
is an applicative simulation distance. Since the identity λ-term V-relation

is an applicative simulation distance, and the composition of applicative simulation distances is itself an

applicative simulation distance (see Proposition 30), we see that (γ H )T is itself an applicative simulation

distance (with respect to Γ).

We conclude this chapter by noticing that we can rely on Theorem 17 to come up with concrete

notions of compatible applicative bisimilarity distance. For instance, we obtain a compatible pseudo-

metric for for P-Fuzz (observe that CBEs are indeed �nitely continuous). To the best of the author’s

knowledge, this is the �rst example of a compatible applicative pseudometric for a Turing complete
higher-order probabilistic sequential language (but see Section 13.2).
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Chapter 13

Conclusion

What if some day or night a demon

were to steal into your loneliest

loneliness and say to you: ‘This life

as you now live it and have lived it

you will have to live once again and

innumerable times again; and there

will be nothing new in it, but every

pain and every joy and every thought

and sigh and everything unspeakably

small or great in your life must

return to you, all in the same

succession and sequence - even this

spider and this moonlight between

the trees, and even this moment and I

myself. The eternal hourglass of

existence is turned over again and

again, and you with it, speck of dust!’

Friedrich Nietzsche, The Gay Science

Chapter 12 concludes our investigation on coinductive equivalences and metrics for languages with

algebraic e�ects. Before discussing some related and future works, it is useful to brie�y summarise the

results we have achieved.

In the �rst part of this dissertation we have de�ned abstract notions of program equivalence and

re�nement for higher-order languages with algebraic e�ects, aiming to answer the question of whether

two e�ectful programs can be deemed as operationally equivalent. To answer such a question we have

de�ned the notions of e�ectful applicative (bi)similarity, monadic applicative (bi)similarity, and e�ectful

normal form (bi)similarity. For all these notions we proved congruence and precongruence theorems,

as well several results about their relationship.

In order to de�ne such notions of equivalence and re�nement, we have developed an abstract re-

lational framework, based on monads and relators, which we have also used to de�ne the notions of

e�ectful contextual approximation (resp. equivalence) and e�ectful CIU approximation (resp. equiva-

lence). The aforementioned congruence and precongruence theorems, directly lead to soundness of our

notions of (bi)similarity for e�ectful contextual approximation (resp. equivalence).

In order to prove soundness of e�ectful applicative (bi)similarity, in Chapter 5 we have developed

a non-trivial generalisation of Howe’s method, the standard relational construction used to prove con-
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gruence properties of applicative bisimilarity. We have argued that our abstract Howe’s method is of

interest by itself, as it sheds light on the very essence of Howe’s construction itself. Additionally, we

have showed a further application of such a method by proving full abstraction of e�ectful CIU approx-

imation (resp. equivalence) for e�ectful contextual approximation (resp. equivalence).

These results hold both for call-by-name and call-by-value calculi. In Chapter 6 we have showed

that we can strengthen our techniques and achieve, under mild conditions, full abstraction of monadic

applicative (bi)similarity for e�ectful contextual equivalence. That holds, however, only for call-by-

name calculi.

In Chapter 7 we have de�ned e�ectful normal form (bi)similarity, which gives the notion of e�ectful

eager normal form (bi)similarity, in call-by-value calculi, and e�ectful weak head normal form, in call-

by-name calculi. We have proved congruence and precongruence theorems for all these notions, as well

as their (strict) inclusion in e�ectful applicative (bi)similarity.

Compared to other standard operational techniques, normal form bisimilarity has the major ad-

vantage of being an intensional program equivalence, equating programs according to the syntactic

structure of their (possibly in�nitary) normal forms. As a consequence, in order to deem two programs

as normal form bisimilar, it is su�cient to test them in isolation, i.e. independently of their interaction

with the environment. These features make normal form bisimilarity a powerful technique for program

equivalence. Additionally, we make such a technique even more powerful by proving suitable up-to

context techniques.

In the second part of this dissertation we have tackled a di�erent problem, namely the one of quan-

tifying operational di�erences between programs. That directly led to the investigation of notions of

e�ectful program metric (or distance). In Chapter 10, Chapter 11, and Chapter 12 we have de�ned ef-

fectful applicative (bi)similarity distance for the calculus V-Fuzz. The latter is a linear λ-calculus with a

powerful type system expressing program sensitivity.

In order to de�ne e�ectful applicative (bi)similarity distance, which is de facto the re�nement of ef-

fectful applicative (bi)similarity to quantale-valued relations, in Chapter 12 we have designed an abstract

relational framework for studying e�ectful program distances. Such a framework builds on Lawvere’s

insights on the categorical nature of metric spaces as well as on results from monoidal topology. In

particular, of a central importance is the notion of a V-relator (Chapter 11), i.e. of a relator acting on

quantale-valued relations. Prime examples of V-relators are provided by the well-known Hausdor� and

Wasserstein-Kantorovich distances.

Finally, in Chapter 12 we have proved our main results, namely congruence and precongruence

theorems for e�ectful applicative bisimilarity and similarity distance, respectively. Such results are

proved with a further generalisation of Howe’s method.

13.1 Related Work
The results presented in this dissertation are de�nitely not the �rst account of program equivalences,

re�nements, and metrics for e�ectful languages. However, our results are, to the best of the author’s

knowledge, the �rst abstract accounts of operational coinductive techniques for languages with algebraic

e�ects.

Concerning applicative notions of equivalence, to the best of the author’s knowledge, no abstract ac-

count exists on applicative coinductive techniques for calculi with algebraic e�ects. Nevertheless, there

are several works that investigate such techniques for calculi with speci�c e�ects. Among them, prime

examples are given by (C. L. Ong, 1993) and (S. Lassen, 1998b), to which this dissertation is in great debt,

for nondeterministic calculi, and (Crubillé & Dal Lago, 2014; Dal Lago et al., 2014) for probabilistic cal-

culi. An abstract account of logic-based equivalences for higher-order languages with algebraic e�ects

has been developed in (Simpson & Voorneveld, 2018), where congruence properties of the equivalences
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de�ned are proved using our abstract Howe’s method. Applicative bisimilarity has also been investi-

gated for languages with non-algebraic e�ects, notably for languages with control operators (Biernacki

& Lenglet, 2014). However, we have to remark that applicative bisimilarity has been proved to be fragile

in presence of non-algebraic e�ects, and actually unsound in presence of information hiding (Koutavas

et al., 2011).

Normal form bisimulations have been extensively investigated for pure λ-calculi (S. B. Lassen, 1999,

2005; C. L. Ong, 1993; Sangiorgi, 1994), as well as for calculi with non-algebraic e�ects, notably con-

tinuations (Biernacki, Lenglet, & Polesiuk, 2018) and control operators (S. B. Lassen, 2006a; Støvring

& Lassen, 2007). Until Lassen’s work on eager normal form bisimulation (S. B. Lassen, 2005), normal

form bisimilarity has been mainly investigated for call-by-name languages, due to its equivalence with

Lévy-Longo tree equivalence, and for the so-called classical theory of λ-calculus (Barendregt, 1984), due

to its equivalence with Böhm tree equivalence.

To the best of the author’s knowledge, no abstract account of normal form bisimilarity in the context

of languages with algebraic e�ects has been given so far. However, there are some works on speci�c

e�ectful extensions of Böhm trees, notably the work of de Liguoro and Piperno on nondeterministic

Böhm trees (De Liguoro & Piperno, 1995), and the work of Leventis on probabilistic Böhm trees (Leventis,

2018), as well as works on nondeterministic extensions of weak head normal form bisimulation, notably

(S. B. Lassen, 2006b).

The situation is rather di�erent if one looks at non-coinductive abstract theories of program equiv-

alence. Denotational semantics of e�ectful calculi has been studied since Moggi’s seminal work (Moggi,

1989), thus implicitly providing a notion of program equivalence. All this has been given a more opera-

tional �avour starting with Plotkin and Power account of adequacy for algebraic e�ects (G. D. Plotkin &

Power, 2001, 2002). The literature also o�ers abstract accounts on logical relations for e�ectful calculi.

The �rst of them is due to Goubault-Larrecq, Lasota and Nowak (Goubault-Larrecq, Lasota, & Nowak,

2008), which is noticeably able to deal with nondeterministic and probabilistic e�ects, but also with dy-

namic name creation, for which applicative bisimilarity is known to be unsound (Koutavas et al., 2011).

Similar in spirit to our approach, the work of Katsumata and Sato (Katsumata & Sato, 2013) (as well as

(Katsumata, 2013)) analyses monadic lifting of relations in the context of >>-lifting.

Another piece of work which is related to ours is due to Johann, Simpson, and Voigtländer (Johann,

Simpson, & Voigtländer, 2010), who focused on algebraic e�ects and observational equivalence, and

their characterisation via CIU theorems and a form of logical relation based>>-lifting. In both cases, the

target language is a call-by-name typed λ-calculus. A further account on logical relations for languages

with algebraic e�ects is given in (Biernacki, Piróg, Polesiuk, & Sieczkowski, 2018). An extensive analysis

of observational equivalences and preorders for languages with algebraic e�ects (with a case studied on

combinations of probability with nondeterminism) is given in (Lopez & Simpson, 2018).

Concerning program metrics, several works have been done in the past years on quantitative rea-

soning in the context of programming language semantics. In particular, several authors have used

(cartesian) categories of ultrametric spaces as a foundation for denotational semantics of both concur-

rent (Arnold & Nivat, 1980; de Bakker & Zucker, 1982) and sequential programming languages (Escardo,

1999). Bisimilarity-based distances have been proposed for probabilistic �rst-order calculi (Du, Deng,

& Gebler, 2016), where, due to the absence of higher-order features, ampli�cation phenomena do not

occur (but see (Gebler, K.G., & Tini, 2016)). A di�erent approach is investigated in (de Amorim et al.,

2017), where a denotational semantics combining ordinary metric spaces and domains is given to pure
(i.e. e�ect-free) Fuzz. The main theorem of (de Amorim et al., 2017) is a denotational version of the

so-called metric preservation (Reed & Pierce, 2010) (whose original proof requires a suitable step-indexed
metric logical relation). Corollary 6 is the operational counterpart of such result generalised to arbitrary

algebraic e�ects.

A di�erent but deeply related line of research has been recently proposed in (Crubillé & Dal Lago,

2015, 2017), where coinductive, operationally-based distances have been studied for probabilistic λ-
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calculi. In particular, in (Crubillé & Dal Lago, 2015) a notion of applicative distance based on the Wasser-

stein lifting is proposed for a probabilistic a�ne λ-calculus. Restricting to a�ne programs only makes

the calculus strongly normalising and removes copying capabilities of programs by construction. That

way programs cannot amplify distances between their inputs and therefore are forced to behave as non-

expansive functions. This limitation is overcome in (Crubillé & Dal Lago, 2017), where a coinductive

notion of distance is proposed for a full linear λ-calculus, and distance trivialisation phenomena are

studied in depth. The price to pay for such generality is that the distance proposed is not applicative,

but a tuple distance somehow resembling environmental bisimilarity (Sangiorgi et al., 2011).

13.2 Future Work
Topics for further work are plentiful. Here we list some major lines of research.

13.2.1 Handlers
This dissertation analyses calculi with algebraic e�ects. As remarked in the introduction of this work,

the theory of algebraic e�ects has been extended with e�ect handlers, giving rise to the theory of al-
gebraic e�ects and handlers (Bauer & Pretnar, 2015; G. D. Plotkin & Pretnar, 2013; Pretnar, 2015). An

handler is a syntactical constructor for manipulating the control �ow of the program by specifying how

to interpret operation symbols. For instance, consider the program printc .e that prints the character c
and continues as e . As usual, the operational semantics of printc .e is to �rst print c , and then continue

as e . We can use handlers to modify the control �ow of computation, so that we �rst evaluate e , and

then we print c . For that we use the handler:

handler {printc .k 7→ let x = k in printc .(return x )}.

Accordingly, the handler acts as way to rede�ne the operational behaviour of printc , and thus behaves

as a kind of algebraic homomorphism.

It is an open question whether the techniques developed in this dissertation can be extended to

languages with algebraic e�ects and handlers. This is certainly the case for some (restricted) handlers.

An example is provided by Example 21, where a restricted exception handling constructor is introduced.

Although non-algebraic, such operation can be easily shown to satisfy condition (Σ comp), meaning that

we can apply our abstract soundness results to that calculus.

Extending such a result to arbitrary e�ect handlers, however, seems to require non-trivial extension

of the framework designed, as the semantics of an operation symbol is now determined by the context

in which it is evaluated. A promising route to achieve such a goal seems to look at speci�c normal form

bisimulations.

13.2.2 Full Abstraction and Non-algebraic E�ects
Both e�ectful applicative (bi)similarity and e�ectful normal form (bi)similarity have been proved to be

sound, but not fully abstract for e�ectful contextual equivalence/approximation. An interesting question

is whether there exist conditions on monads and relators guaranteeing full abstraction results.

Full abstraction of applicative bisimilarity is known to hold for the pure λ-calculus (Abramsky,

1990a), as well as for the probabilistic λ-calculus (Crubillé & Dal Lago, 2014), but to fail for the non-

deterministic λ-calculus (S. Lassen, 1998b). The latter perfectly �ts the abstract theory of Chapter 5,

meaning that proving full abstraction results for e�ectful applicative (bi)similarity seems to require a

severe restriction on our axioms of Σ-continuous monads and relators. A promising route towards this
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challenge would be to understand which class of tests (if any) characterise e�ectful applicative bisim-

ilarity, depending on the underlying monad and relator, this way generalising results in (Van Breugel,

Mislove, Ouaknine, & Worrell, 2005) and (Crubillé & Dal Lago, 2014).

Another interesting line of research is to investigate whether the theory of normal form bisimulation

can be extended to languages with non-algebraic e�ects. In particular, normal form bisimilarity has been

extended to languages with local states (Støvring & Lassen, 2007), control operators (Biernacki, Lenglet,

& Polesiuk, 2018), and both control operators and local states, where it has additionally been proved

to be fully abstract for contextual equivalence (Støvring & Lassen, 2007). In light of such results, it is

natural to ask whether there exists an abstract notion of normal form bisimulation for languages with

local e�ects. Achieving such a result would be a major improvement in the theory of normal form

bisimulation, especially considering that applicative bisimilarity has been proved to be unsound for

several languages with non-algebraic e�ects (Koutavas et al., 2011).

13.2.3 E�ectful Logical Relations
Recalling the distinction between observational, applicative (or extensional), intensional, and logical

program equivalence made in the introduction, it is clear that a major issue that has not been addressed

in this work concerns e�ectful logical equivalences. Logical relations techniques for e�ectful languages

have been extensively investigated both for languages with speci�c algebraic e�ects (Bizjak & Birkedal,

2015; Culpepper & Cobb, 2017) and for e�ectful languages in general (Goubault-Larrecq et al., 2008; Kat-

sumata, 2013; Katsumata & Sato, 2013). In particular, the latter work uses relation lifting constructions

resembling relators, and thus seems to suggest the applicability of our relational framework to study

e�ectful logical relations.

We also remark that logical relations for general algebraic e�ects have been studied in (Johann et

al., 2010) and (Biernacki, Piróg, et al., 2018). The latter work seems to have some limitations for our pur-

poses, since the calculus studied does not take into account pure algebraic operations, i.e. (algebraic)

operations whose semantics is de�ned independently of handlers. Having such operations give calculi

more expressive power, as handlers alone do not allow for a �ne analysis of e.g. true probabilistic non-

determinism (the latter requires to have operations, either internal or external to the calculus, that act

as sources of probabilistic nondeterminism). More relevant for us is (Johann et al., 2010), where logical

relations for a call-by-name polymorphic PCF (G. Plotkin, 1977) enriched with algebraic operations are

de�ned. It is not hard to realise that the de�nition of such logical relations can be mimicked in our

framework relying on the observation function of Chapter 6 and on a suitable step-indexing (Appel

& McAllester, 2001), and that the logical relations thus obtained can be used to provide an alternative

characterisation of e�ectful contextual equivalence/approximation. That holds for both call-by-name

and call-by-value calculi.

An abstract understanding of the relationship between logical relations and notions of bisimulation

is, however, still missing.

13.2.4 Program Distances and Coe�ects
Compared to the results achieved on program equivalence and re�nements, our investigation on pro-

gram distance is at its very beginning. A �rst extension of the theory developed is the design of e�ectful

contextual and CIU distances. Such distances should be de�nable by generalising the results of Chapter 5

to V-Fuzz and V-relations. The author conjectures that to be possible, provided one restricts to �nitely-

continuous change of base functors. On a similar line of research, the development of e�ectful distances

based on logical relations, along the lines of (Reed & Pierce, 2010), should be rather straightforward.

A potentially more interesting notion of program distance might be the generalisation of normal

form bisimilarity to the abstract setting of quantale-valued relations.
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On a di�erent side, we observe that program sensitivity is an instance of the more general notion

of a coe�ect. Coe�ects (Brunel et al., 2014; Gaboardi et al., 2016; Petricek et al., 2014) are a formalism

introduced to model context-dependent computations, i.e. computations whose behaviour depends on

the context in which they happen. From a mathematical perspective, coe�ects are the dual of e�ects. As

a consequence, as e�ects are modelled as monads, coe�ects are modelled as comonads. This suggests

the possibility of looking at more general notions of distances (as well as equivalences), for e�ectful and

coe�ectful calculi.

Finally, recalling the informal introduction to program metric of Chapter 9, we notice that the de-

velopment of the theory of applicative bisimulation distances is rooted in the re�nement of Assump-

tion 3 (non-expansiveness) into Assumption 4 (Lipshitz-continuity). Such a re�nement allowed us to

bypass problems raised by distance trivialisation. However, that was only one possible route to de�ne

well-behaved notions of program distance. Another possibility is the one investigated in (Crubillé &

Dal Lago, 2017), where the proposed notion of tuple distance can be seen as a way to re�ne Assump-

tion 1 by de�ning distances not on pairs of terms, but on pairs of tuples. Looking at other possible

‘non-standard’ notions of program distance is a stimulating topic for further research.
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Appendix A

Names of Categories

The following is a list of the categories mentioned in this dissertation.

• Set: the category of sets and functions. Objects are denoted by lettersX ,Y , . . .whereas morphisms

by letters f : X → Y ,д : X → Y , . . ..

• Rel: the category of sets and relations. Objects are denoted by lettersX ,Y , . . .whereas morphisms

by letters R : X +→ Y ,S : X +→ Y , . . ..

• PreOrd: the category of preordered sets and monotone functions. A preorder on a set X is a

re�exive and transitive relation ≤X : X +→ X . We denote objects of PreOrd as (X , ≤X ), (Y , ≤Y ), . . ..
A morphism f : (X , ≤X ) → (Y , ≤Y ) is a morphism f : X → Y in Set such that f · ≤X ⊆ ≤Y · f
holds in Rel.

• V-Rel is the category of sets and V-relations, for a quantale V. Objects are denoted by letters

X ,Y , . . . whereas morphisms by letters α : X +→ Y , β : X +→ Y , . . ..

• V-Cat: the category of V-categories and V-functor. A V-category (X ,α ) consists of a set X to-

gether with a re�exive and transitive V-relation α : X +→ X . We denote objects of V-Cat as

(X ,α ), (Y , β ), . . .. A morphism f : (X ,α ) → (Y , β ) is a V-functor, i.e. a morphism f : X → Y in

Set such that f · α ≤ β · f holds in V-Rel.

208



Appendix B

Spans

In order to have a better grasp of the Barr extension of a functor, it is useful to look at relations using

the notion of a span (Bruni & Gadducci, 2003; Carboni, Kasangian, & Street, 1984).

De�nition 81. A span on a category C is given by an ordered pair of C-morphisms (α : U → X , β : U →
Y ). The objectU is called the source of the span.

We use the notation 〈X
α
←− U

β
−→ Y 〉 for spans. Given spans 〈X

α
←− U

β
−→ Y 〉 and 〈Y

φ
←− W

ψ
−→ Z 〉,

their composition can be de�ned as follows, provided that C has enough pullbacks. Let 〈U
π1

←−− P
π2

−−→W 〉
be a pullback of β : U → Y and φ : W → Y , then de�ne:

〈Y
φ
←−W

ψ
−→ Z 〉 · 〈X

α
←− U

β
−→ Y 〉 , 〈X

α ·π1

←−−−− P
ψ ·π2

−−−−→ Z 〉

Diagrammatically:

P
π1

��

π2

  
U

α

��

β

��

W
φ

~~

ψ

  
X Y Z

Since pullbacks are unique modulo isomorphism, we need to work with equivalence classes of spans.

For any C-object U the span 〈U
1

←− U
1

−→ U 〉 acts as identity for composition. In fact, given a span

〈X
α
←− U

β
−→ Y 〉, the composition 〈Y

1

←− Y
1

−→ Y 〉 · 〈X
α
←− U

β
−→ Y 〉 is obtained by taking a pullback of

β : U → Y and 1 : Y → Y . Obviously 〈U
1

←− U
β
−→ Y 〉 is such a pullback, so that we have 〈Y

1

←− Y
1

−→

Y 〉 · 〈X
α
←− U

β
−→ Y 〉 = 〈X

α
←− U

β
−→ Y 〉.

Spans can be used as set-theoretic presentation of relations. In fact, any relationR can be represented

as the span 〈X
π1

←−− GR
π2

−−→ Y 〉, and any span 〈X
α
←− U

β
−→ Y 〉 de�nes a relation, namely β · α◦ : X +→ Y .

Spans, however, retain more information than relations, as they are sensitive to multiplicity (in fact,

there is a correspondence between spans and relations over multisets; see (Bruni & Gadducci, 2003) for

details).
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Barr’s construction can be seen as a construction on spans. In fact, we can de�ne the Barr extension

of a functor T as the map T on spans thus de�ned:

T : 〈X
α
←− Z

β
−→ Y 〉 7→ 〈TX

Tα
←−− TZ

T β
−−→ Y 〉

This abstract perspective on Barr’s construction gives several insights on the structure of T . For

instance, given the prime role of pullbacks in the de�nition of span composition, it comes with no

surprise that in order for T to satisfy (rel 2) (properly generalised to spans), T need preserve weak

pullbacks.

We conclude remarking that we can indeed safely look at Barr’s construction in terms of span,

rather than relation. This is not evident, in principle, as spans and relations are not in a one-to-one

correspondence, and thus di�erent spans may represent di�erent relations. Nonetheless, we can easily

prove that Barr’s construction is independent from the span representation of a relation.

Lemma 46. Let R : X +→ Y be a relation, and let 〈X
π1

←−− GR
π2

−−→ Y 〉 be the span associated with R. Let

〈X
α
←− U

β
−→ Y 〉 be another span representing R, that is such that β · α◦ = π2 · π

◦
1
holds. Then 〈TX

T π1

←−−−

TGR
T π2

−−−→ TY 〉 and 〈TX
Tα
←−− TU

T β
−−→ TY 〉 represent the same relation too; that is,T β · (Tα )◦ = Tπ2 · (Tπ1)

◦

holds.

Proof. First of all notice that the map e = ι · 〈α , β〉 is surjective.

U

α



β

��

〈α ,β 〉
��

X × Y� _

ι
��

X GR
π1oo π2 // Y

In fact, for any (x ,y) ∈ GR we have x (π2 ·π
◦
1
) y, and thus x (β ·α◦) y. That means that there existsu ∈ U

such that α (u) = x and β (u) = y, meaning that e (u) = (x ,y). Since e is a surjection, by the axiom of

choiceTe is a surjection too. In particular, we haveTe · (Te )◦ = I, and thus we can calculate as follows:

T β · (Tα )◦ = T (π2 · e ) · (T (π1 · e ))
◦ = Tπ2 ·Te · (Te )

◦ · (Tπ1)
◦ = Tπ2 · (Tπ1)

◦
.
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