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“If we knew what it was we were doing, it would not be called research, would it?”
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This thesis aims to explore the design and implementation of Brain Computer Inter-

faces (BCIs) specifically for non medical scenarios, and therefore to propose a solution

that overcomes typical drawbacks of existing systems such as long and uncomfortable

setup time, scarce or nonexistent mobility, and poor real-time performance. The research

starts from the design and implementation of a plug-and-play wearable low-power BCI

that is capable of decoding up to eight commands displayed on a LCD screen, with about

2 seconds of latency. The thesis also addresses the issues emerging from the usage of the

BCI during a walk in a real environment while tracking the subject via indoor position-

ing system. Furthermore, the BCI is then enhanced with a smart glasses device that

projects the BCI visual interface with augmented reality (AR) techniques, unbinding

the system usage from the need of infrastructures in the surrounding environment.
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Chapter 1

Introduction

Interaction with machines and electronic systems has become more and more fre-

quent and well-established since the third industrial revolution, often referred to as

digital revolution, starting from the second half of the 20th century. During this time,

the adoption and proliferation of digital computers marked the beginning of the In-

formation Age, which still continues to the present days. To control those electronic

systems several paradigms of Human Machine Interactions (HMIs) have been developed

during the years, starting from the keyboard based command line, to the more recent

vocal interface, passing through Graphic User Interfaces (GUIs) and touch screen. The

fourth industrial revolution, started in the beginning of the 21st century, pushed the

capabilities of electronic systems even farther thanks to the miniaturization of powerful

and power efficient computational and communication units. The ability of decentral-

ize computation near sensor and the empowered communication are key factors for the

rise of technologies such as Internet of Things (IoT), Cyber Physical Systems (CPSs)

and cloud computing. In industry, the exploitation of these new technologies is generi-

cally called Industry 4.0, where benefits are achieved through CPSs that create virtual

representation of the physical production processes and are able to take autonomous

decentralized decisions or communicate and cooperate with each other at both internal

and inter-company level.

The digital revolution reflects in the mass market with products like smartphones,

smartwatches, wristbands and any kind of wearable device capable of short range or

long range communication. Along with new devices development, also new and smarter

HMI paradigms have been devised that exploit the device internal sensors to detect

user commands (e.g. step counter for smartphones, or wrist rotation for smartwatches).

Other devices exploit biosignals for user interaction like Myo Armband [2], which is

able to sense Electromyogram (EMG) of the forearm muscles and translates the signal

1



Introduction 2

into commands. Brain Computer Interfaces (BCIs), also known as Brain Machine Inter-

faces (BMIs), are a particular type of HMIs that exploit brain activity signals acquired

via Electroencephalography (EEG). BCIs were first developed to support people with

disabilities in their interaction with the external world, with one of the first successful

examples being BCI spellers. Recent years have seen BCI applications reach out to a

larger set of scenarios, such as industry, gaming, learning, healthcare [3] and rehabilita-

tion [4]. Several tech companies developing consumer-oriented products (Google, Apple,

Facebook, etc.) have also become active in this field [5–7], with the vision of being able

to substitute traditional HMIs based on conventional computer input devices, gesture

and voice recognition, touch-screen interaction [2, 8, 9], with the possibility to directly

interact and control computers with our brain.

Bringing this fascinating idea into life will be a tremendous boost towards integrat-

ing actions and interactions with objects in a fully-connected IoT scenario. Applications

can range from verifying whether a worker is attending a specific task or effectively re-

ceiving a communication for safety purposes, to remotely control devices in industrial

or home environments, to navigating menus in shops or restaurants, to gaming. These

applications have different requirements as compared to traditional BCI spellers. On

the one hand, they mostly require less symbols to be recognized with respect to a full

speller, on the other hand they need system latencies to be minimized, both in setup

time and real-time performance. However, traditional BCI systems suffer from a certain

complexity, cost and size, which can only be reduced by moving processing to an exter-

nal hardware, compromising portability and ease-of-use.

The foundation of every BCI system lies in the acquisition of signals that relates

to brain activity. Among the available techniques to extract such information, EEG is

considered as the ideal (if not the only) candidate for consumer applications and has

enjoyed significant improvements in recent years. What was once possible only through

expensive and cumbersome devices, it is now available on the market in cheap and rela-

tively attractive form-factors. Most of them are conceived for gaming and entertainment

or leisure, like MindMaze Mask [10], Neurosky MindWave [11], and Emotiv Insight and

EPOC+ [12]. Not all these systems can acquire EEG with the same signal quality and

setup complexity (i.e. number and type of electrodes), resulting in different BCI ease-

of-use and performance. Moreover, these consumer products are conceived to be more a

toy that identifies mood, focus, meditation, or facial expression of the user, rather than

an actual machine communication tool. Only few commercial products are designed for

custom BCI application development, OpenBCI [13] for example offers an open source

platform for biosignals (mainly EEG) acquisition and streaming, while g.tec Intendix

[14] provides a full PC based BCI speller. A common drawback of these systems is that

they require a continuous data-link between on-body sensors and mobile phones/tablets,

or laptop computers and workstations. This impairs some important features such as
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wearability and minimal intrusiveness, increasing overall system cost as well. More-

over, it causes a severe reduction of the energy efficiency of the whole system [15–17]

as it requires transmission of non-negligible amounts of data. To avoid these issues, the

digital processing should be moved near-sensor, executing algorithms directly on the

wearable device [18, 19]. Such solutions are not readily available, both in commercial

systems and research literature. The focus of this work is to build and validate a BCI

system that fulfill desirable features such as wearability, power efficiency, fast setup,

stand-alone, fast responsiveness. The next section depicts in more detail what are the

original contribution of this thesis.

1.1 Thesis contribution

In an effort to provide a BCI system better tailored for the new scenarios that are

envisioned for the near future, this work proposes three major contributions. The first

one is the design and implementation of an embedded, minimally invasive, low-power,

low-cost, asynchronous BCI speller, able to recognize up to eight different stimuli with

an information transfer rate (ITR) of more than 1 b/s with zero-preparation time thanks

to the usage of dry electrodes. This is comparable with state-of-the-art non-wearable

systems (where signal processing is computed on external hardware), thanks to careful

optimization of the processing and pre-processing algorithms, which are specifically tai-

lored on the proposed system configuration. The second contribution is the assessment

of the wearable BCI in a task that implies user navigation, binding the EEG response

with the position of the subject, in order to understand the challenges of the acquisition

of EEG signals (artifacts, external noise and hardware constrains) in real environments,

and to study the correlations between the brain activity and the subject’s location or

movements. The final contribution is the enhancement of the proposed wearable BCI

system with a Head-Mounted Display (HMD) that provides visual stimuli through Aug-

mented Reality techniques (AR), achieving 80% accuracy with average latency of 3

seconds and allowing for a fully wearable fast and reliable BCI system. The structure

of this thesis will follow the order of the three main contributions stated above.



Chapter 2

Brain Computer Interface

2.1 Overview

Brain Computer Interfaces (BCIs) are hardware-software systems that enables hu-

man machine communication without need of muscles or peripheral nerves, exploiting

exclusively electroencephalographic activity (EEG) as control signals [20]. BCI systems

are typically composed by a signal acquisition headset and a signal processing device,

and optionally feature an input stimuli presentation system and an output display or

actuator. BCI systems recognize patterns in EEG signal following five stages: sig-

nal acquisition, signal enhancement or preprocessing, features extraction, classification,

control interface [21]. The underlying implementation of the five stages are driven by

design goals including target application and users, form factor, type of brain activity

leveraged, and desired target performance.

Decoding brain signal is a very challenging task. In fact, the control signal is cap-

tured together with other signals from other brain activities that may overlap in time and

space. Further noise can be added by artifacts due to muscular and ocular movements,

generating a different type of signal measurable by techniques such as electromyography

(EMG) and electroculography (EOG). Both EMG and EOG signals are present in some

areas of the head where EEG is also observable, interfering with EEG acquisition. In

addition, the amplitude of the EEG signal can be more or less diminished according to

the type of acquisition system adopted. In invasive BCI systems, microelectrode arrays

are physically implanted in the cerebral cortex, the implant requires brain surgery and

is therefore prerogative of very specific experimental medical settings. This technique

is called electrocorticography (ECoG), and compared to EEG it provides better SNR,

since it avoids artifacts like eye blinking or movements and it is more spatially accurate

since the electrodes are physically attached to the signal source area. On the other hand,

4
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non-invasive BCI systems use removable electrodes applied on the scalp, where the EEG

signal is diminished and spread on a wider area, resulting in more noisy and overlapping

signals, but at the same time providing a more appealing setup for non-medical scenar-

ios, allowing BCIs to steer towards consumer market for everyday use. A more detailed

taxonomy of existing BCI systems is illustrated in Sec 2.3.

BCI systems also differ with respect to the type of control signals they work with.

Modern BCI systems rely on five different types of brain activity: Slow Cortical Poten-

tials (SCPs), neuronal action potentials, sensorymotor rhythms, P300 evoked potentials,

and Visual Evoked Potentials (VEPs) [1, 22]. SCPs are slow voltage changes that occur

in cortex and can last from 0.5 s to 10 s. Positive SCPs are associated to decreased ac-

tivity in neurons, while negative SCPs are associated with neuronal activity. It has been

shown by [23–25] that properly trained people can control their SCPs, and therefore it

is possible for them to control cursor movement on a computer screen. Neuronal action

potentials are measured in an invasive way, using cone electrodes inserted in the mo-

tor cortex. The electrodes sense the single cortical neuron-induced potential, however,

unlike SCPs, these potential are more difficult to control and the need for continu-

ous medication has hindered the popularity of this technique. Sensorymotor rhythms

are a combination of mu and beta rhythms (see Sec. 2.2.1) and are associated with

motor imagery, without any actual movement [26]. Once again, user training is neces-

sary to emphasize kinesthetic experiences rather than the visual representation of the

movements [1]. P300 evoked potentials are potential peaks found in an EEG related

to infrequent stimuli of visual, auditory or somatosensory type. The peak is measured

around 300 ms after the infrequent stimulus onset, and its amplitude grows inversely

with the frequency of the stimulus. P300 has been widely used for both medical and

non-medical BCI systems thanks to its relatively fast outcome and because it does not

need any user training. Typical P300-based BCI applications are spellers, where letters

and symbols are presented to the user in a matrix form and sequentially highlighted.

The specific highlighting sequence may affect the BCI performance and it is part of its

design. Typically, P300-based BCIs use the average of several trials of the infrequent

stimulus in order to increase accuracy. VEPs are electrical potentials evoked in the

visual cortex by visual stimuli, similarly to visual P300. The difference between visual

P300 and VEP is that while P300 is evoked by an infrequent and possibly unpredictable

stimulus, VEP is evoked by periodic repetitions of the same stimulus. VEPs can be

divided into Transient VEPs (TVEPs) and Steady State VEPs (SSVEPs), where the

discriminating factor is the frequency of the repetition. According to [27], TVEPs are

bounded to frequencies lower than 4 Hz, while [28] reduces the threshold frequency to

2 Hz. However, the two authors agree in setting at 6 Hz the lower bound for SSVEPs

frequency. From the neurological point of view, TVEPs show a resting phase between

two consecutive repetitions, while SSVEPs are overlapped. In practice, the detection of



Brain Computer Interface 6

TVEPs and SSVEPs requires the same kind of processing, and the two techniques can

be basically considered as one. VEPs, together with P300, are the most used techniques

for medical and non-medical BCIs. Like P300, VEP requires no training, but it has

been shown to be faster [29]. As a drawback, the signal is usually very noisy, since its

acquisition is performed in a non-invasive fashion, and the amplitude and phase of the

VEP is very sensitive to stimulus parameters such as frequency and contrast.

The lack of a common evaluation framework for BCI systems caused the adoption

of heterogeneous performance metrics. In literature, it is possible to find assessment of

BCIs made on different metrics, usually reflecting the particular BCI application metric.

As a result, it is sometimes hard, or even impossible, to compare BCIs performance to

each other if different metrics have been used. In a review of the performance assessment

for medical BCI systems, [30] shows that the most used metrics are accuracy, accuracy

combined with information transfer rate (ITR), and ITR alone. ITR is a measure that

estimate the quantity of useful information transferred from brain to machine, in terms

of bits per second (b/s). ITR computation takes into account the number of possible

inputs, the accuracy and the latency of the system. Such metric is generic and suitable

for any BCI with a finite set of inputs (e.g. speller), but is not applicable for example

in BCIs using sensorymotor rhythms to move a cursor on a screen. It is also under-

standable that in medical BCI applications the focus is on the sole accuracy, since users

do not have any other mean of communication. On the contrary, in non-medical BCI

applications the latency (i.e. the time needed by the machine to detect which input the

user is trying to activate) plays a critical role for the system’s acceptance by able-bodied

users.

In this work, the goal is to explore the capabilities and to assess the performance

of plug-and-play portable BCI systems for non-medical scenarios. Therefore, the focus

will be on embedded wearable non-invasive systems adopting VEPs as control signals

(in particular SSVEPs), and ITR as metric for performance assessment.

2.2 EEG signal

2.2.1 Signal Description

EEG measures the electric brain activity caused by electric currents that flow within

the neurons of the brain. Neurons are the cells that constitute the brain tissues and

their structure is depicted in Fig. 2.1. Despite the apparent simplicity of the neural

cell structure, the biophysics of neural current flow relies on complex models of ionic

current generation and conduction. Basically, when a neuron is excited by other neurons

through burst of action potentials (APs), excitatory postsynaptic potentials (EPSPs) are
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Figure 2.1: Structure of a neuron (source: Wikimedia commons). The cell body (a)
contains the cell nucleus and acts as the cell’s life support center. The cell body gathers
and aggregates the signals arriving from other cells though dendrites (b). The axon (c)
allows the neuron to spread the signal away from the cell body to other neurons. The
information is constituted by a neural impulse (d), flowing from the cell body to the
peripheral synaptic terminals (e), that in turn communicate with another neuron.

generated at its aptic dendritic branches. The dendritic membrane becomes depolarized

and extracellularly electronegative with respect to the cell body. This potential differ-

ence causes a current, called primary current, to flow from the nonexcited membrane

of the body to the dendritic tree sustaining the EPSPs [31]. The principle of conser-

vation of electric charges imposes that the flow is looped with extracellular currents,

called secondary current. Primary and secondary current both contribute to generate

the magnetic field measured by the electrodes on the scalp; however, the spatial cell

arrangement is critical for the superposition neural currents in order to produce mea-

surable fields. In fact, the measured EEG signal is the result of the current generated

by the EPSPs of thousands of synchronously activated neurons, because of the coher-

ent distribution of their large dendritic trunks locally oriented in parallel, and pointing

perpendicularly to the cortical surface [31]. The signal must cross several layer before

reaching the electrodes places on the scalp, especially the skull, which attenuates the

signal approximately one hundred times more than the soft layers [32]. Noise within the

brain and over the scalp contribute to lower the SNR, and therefore only large amount

of active neurons can generate enough potential to be recorded by scalp electrodes [32].
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Figure 2.2: (a) Picture of the g.SAHARA dry electrode with custom amplifier PCB.
(b) Electrical schematics of the custom amplifier PCB.

2.2.2 Signal Acquisition

EEG signal acquisition is an easy and non-invasive operation that allowed great

spread of this technique over others (MEG, fMRI, ECoG). In fact, to acquire EEG

signal it is sufficient to measure a set of electric potential differences between pairs

of electrodes attached on the skin. However, detecting EEG activity is not a trivial

task, since sensors and circuitry must cope with non-stable skin-electrode interface as

well as with an intrinsically high-noise signal. Apart from brain activity unrelated to

the SSVEP, additional sources of noise can come from acquisition system like electrical

noise and external interference. The most common source of EEG signal degradation

is the finite contact impedance at the interface between the electrode and the skin. A

high value of contact impedance leads to a potential divider effect at the amplifier input,

which causes a reduction of the capability to reject common-mode noise such as that

from mains, increases the noise generated at the metal-skin interface and augments the

effect of interference coupling through capacitive effects to the cables, or artifacts due to

cable movement, microphony and piezoelectric effect. Contact impedance is minimized

in clinical EEG protocols by removing superficial skin layers by abrasion and inserting

a conductive gel or paste in-between the two surfaces. Skin preparation is obviously not

suitable for non-clinical settings where system setup needs to be as quick and easy as

possible for an untrained person, and associated infection risks are not acceptable.

To minimize setup time and allow self-positioning of the system, zero-preparation

electrodes were adopted as interface between the system and the subject. Two options

were evaluated, dry and wet electrodes. Dry electrodes are recognized as the best option

for zero-preparation time. However, they present contact impedance up to 3 orders of

magnitude higher than wet electrodes with skin preparation; hence, to mitigate such

high contact impedance, an amplification stage is placed directly right on the electrode.

Fig. 2.2 (a) and (b) show, respectively, a picture and the schematic of the active

sensor custom PCB designed for this work. As single-ended amplification stages with

gain higher than one reduce the rejection of common mode noise, only signal buffering
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is performed on the active electrode by a low-power, low-noise, rail-to-rail Operational

Amplifier (O.A.) connected as a unity-gain buffer. Protection resistors with 68 KΩ

are used to limit patient auxiliary current in cases of single fault condition below the

applicable limit of 50 µA. The O.A. is an AD8603 from Analog Devices, which has a

quiescent current of 50 µA and low voltage noise (2.3 µV peak-to-peak in the 0.1 to 10

Hz band and 25 nV/
√
Hz at 1 KHz). The input leakage current is below 1 pA at room

temperature, while total input capacitance is below 5 pF, which translates into an input

impedance in excess of 500 MΩ in the EEG band. In Sec. 2.7.2, the system performance

is evaluated either with wet passive electrodes (Kendall from Covidien-Medtronic [33])

and dry active electrodes (g.SAHARA from g.tec Gmbh [34]).

2.3 Taxonomy

State of the art of BCIs includes heterogeneous systems, that differ for target au-

dience, application and design choices. A taxonomy of the existing BCIs could help

to understand which kinds of devices have been developed so far. Traditionally, BCIs

feature three main characteristics: independent vs dependent, invasive vs non-invasive,

exogenous vs endogenous [1]. An independent BCI is a system that does not depend on

peripheral nerves or muscles, which means that the brain activity necessary for control-

ling the BCI does not need the activity from such brain peripherals (in this case, the

optic nerve is considered brain core). Examples of independent BCIs are all P300-based

BCIs where the stimuli are presented one at a time. In this case, the user gaze is fixed at

the single stimulus source, and the user intention is what actually triggers the BCI. In-

dependent BCIs are often used in medical scenarios, because they are especially suitable

for people suffering from severe neuromuscolar disabilities. In contrast to independent

BCIs, dependent BCIs need the activity of brain’s peripherals for the brain to generate

the required activity. Examples of dependent BCIs are P300-based BCIs where symbols

are displayed in a matrix fashion, or SSVEP-based BCIs, where all the symbols must

appear to the user at the same time. In these cases in fact, it is the user’s gaze that

determines the required brain activity. Dependent BCIs can also be used by disabled

people to some extent. For example, the aforementioned dependent BCIs can be used by

people affected by Amyotrophic lateral sclerosis (ASL), as long as they can move their

eyes. However, dependent BCIs are overall more suitable for able-bodied users.

Invasive BCIs are those systems that require implanting electrodes into the users’

brain. This practice requires brain surgery and may affect patients’ health, and it is per-

formed for research purpose only in medical scenarios. The technique used for invasive

BCIs is called electrocortography (ECoG), also known as Intracranial EEG (IEEG) [1].

ECoG allows for better SNR and better spatial resolution than EEG; however, due to
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Figure 2.3: BCI taxonomy proposed by [1]. The work proposed in this thesis belongs
to the Visual Evoked category: the aim is to design a dependent, exogenous and non-
invasive BCI.

its unpractical and risky application this technique is not likely to spread outside clinics

and research field in a near future. Non-invasive BCI systems use electrodes placed on

the scalp to acquire the EEG signal, resulting in more convenient, safe and inexpensive

application. Electrodes are typically placed on a wearable cap or headband, and can be

easily put on and off. Wet electrodes need some skin preparation beforehand that can

take up to one hour according to the number of electrodes in use. On the contrary, dry

electrodes can be put on in a plug-and-play fashion, with no skin preparation, reducing

the setup time to a matter of seconds.

Exogenous BCIs are those that systems exploit external stimuli in order to evoke

the brain activity necessary for interaction with the machine. Examples of exogenous

BCIs are those based on P300 and SSVEP potentials, and they are more suitable for

plug-and-play systems since they do not require any user training. Endogenous BCIs

do not rely on external stimuli, and the BCI control signals are based mainly on brain

rhythms and other potential. Endogenous systems allow to interact with the BCI in a

more natural manner, through user’s intent. However, the user must learn to produce

the specific patters that are decoded by the system, and the patterns can be meaningless

encoding of BCI actions. For example, in a sensorymotor BCI the intent of moving the

left arm can be mapped into a command for a household appliance. User training for

endogenous BCIs is done via neurofeedback display, where the user can see how the BCI

input changes according to his/her brain activity, and therefore learn how to control

it. The length of the training depends on the subject, the application and the training

strategy. Figure 2.3 shows the high level taxonomy proposed in [1]. One of the goals
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of this thesis is the assessment of wearable, low power, fast, plug-and-play BCI systems

that can be used daily in non-medical scenarios, and therefore, in the reminder of this

chapter, the focus will be on dependent, exogenous and non-invasive systems based on

SSVEPs.

2.4 State of the Art

Table 2.1: Comparison between state-of-the-art BCI Systems in terms of setups and ITR.

Ref. Stimulus
type

Phase
synch.

Signal
proc.

Synch/
Asynch

Acq.
system

Training Electrodes
type

N Elec-
trodes

Processing
platform

Classifier ITR

[35] SSVEP yes TRCA synch Synamps2 yes wet 9 PC n/a 5.42

[36] SSVEP yes CCA synch Synamps2 yes wet 9 PC n/a 4.50

[37] SSVEP no CCA synch Synamps2 no wet 9 PC n/a 1.75

[38] SSVEP no MFD synch Quickamp no n/a 1 PC max 0.83

[39] c-VEP yes CCA synch g.USBamp yes dry 16 PC threshold 0.76

[40] SSVEP no CCA asynch custom no wet up to 16 PC confidence
indicator

0.72

[41] SSVEP no PCA asynch g.tec no wet 6 PC threshold 0.63

[42] SSVEP no FFT synch NeuroSky n/a n/a 2 tablet max 0.56

[43] SSVEP no PSDA synch custom no wet 2 PC max 0.46

[44] SSVEP no FFT synch Blackrock
Cerebus

no dry 1 PC threshold 0.44

[45] SSVEP no PSDA synch custom no wet 3 phone max 0.40
CCA dry 0.44

noncontact 0.24

[46] SSVEP no CCA asynch custom no dry 3 wearable threshold 1.06

After a brief story of BCIs development, this section reviews the current state of the

art on BCIs focusing on dependent, exogenous, non-invasive systems, based on SSVEPs

or more generally VEPs potentials. Table 2.1 shows a comparison of such systems in

terms of setup and ITR.

The first BCI spellers were introduced at the end of the 80s and exploited a cerebral

reaction called Event-Related Potential (ERP), consisting in very small responses to

specific events or sensory stimuli, which can be detected by acquiring and processing

the EEG signal on the scalp of the subject [47]. In particular, P300 is an ERP, which is

elicited by a relevant stimuli (i.e. the flashing of the intended symbol), which is infre-

quently presented among non-relevant ones (i.e. the other available symbols). In [48],

researchers presented a BCI capable of detecting 36 different target stimuli associated

with the letters of the alphabet and some symbols. By repeatedly flashing entire rows

or columns of a matrix constructed with the target characters, the authors capture the

attended symbol as the intersection of the row and column that elicited the P300 re-

sponse. This first approach to P300 BCI led to an overall performance of 2.3 characters

per minute with 95% accuracy, which translates to an ITR of 0.17 bits per second.

Similar attempts were introduced later by [49] and [50], where the original Farwell
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and Donchin’s system is enhanced with regard to the computing platform or the pro-

cessing algorithm, resulting in ITR improvements up to respectively 0.45 and 0.40 b/s.

While less than half bit per second might be an acceptable transfer rate for disabled

people, it is still quite a slow communication speed to be tolerated by able-bodied sub-

jects, which most likely will refuse to adopt such system. Steady State Visual Evoked

Potential (SSVEP) is another BCI paradigm that has been used in more recent works

with considerable success [35–38]. This potential is elicited in the primary visual cortex

as a result of repetitive external visual stimulation, and is therefore phase and frequency

locked with it. Processing requires identifying the frequency (and possibly the phase)

of the SSVEP signal to determine which stimuli evoked it. The SSVEP paradigm is

attractive due to its higher signal-to-noise ratio (SNR) in comparison with ERPs, being

significantly more immune to eye-related and electrode shifting artifacts when a proper

frequency band is used [29].

SSVEPs relying only on frequency information have two major advantages with re-

spect to mixed phase/frequency SSVEP and ERPs. The first one is that they do not

require synchronization between stimuli and detection platform. This allows to mini-

mize setup time since it considers stimulation and acquisition/processing as stand-alone

systems. Such solution simplifies SSVEP use in IoT environments where the user might

need to interact with several different stimuli presentation systems, which might not be

on the same network or might not be connected at all [51]. The second advantage is that

they can operate directly without the need for a training phase in which the BCI adapts

to the specific user. As this training is often a function of the specific session setup

(including exact electrode position and contact quality), in many cases it must be peri-

odically repeated [52], severely hampering the plug-and-play features of such a device.

Nevertheless, many works still rely on both frequency and phase, significantly reducing

the advantages of such techniques and focusing only on maximizing ITR [53]. This work

demonstrates that practical ITR can be achieved with ”frequency only” SSVEP [46].

Basic feature extraction for SSVEP can be performed using simple techniques. An

early example is found in [54], where the authors designed and implemented a BCI to

help users to input phone numbers based almost entirely on FFT-based Power Spectral

Density Analysis (PSDA). Some studies later combined FFT-based features with more

advanced classification algorithms such as Linear Discriminant Analysis (LDA) [55],

Support Vector Machine (SVM) or Artificial Neural Networks (ANNs) [56] to improve

performance. Nevertheless, these systems are relatively slow, with ITR of 0.56 and 0.44

b/s, respectively.

Other systems employ different signal processing techniques like PSDA [43, 45], PCA

[41] and Matched Filter Detector (MFD) [38]. Chi et al. [45] and Garcia et al. [43]

developed a BCI based on custom acquisition systems. The former uses LED matrices

for stimuli presentation, while the latter focuses on assessing the performance of three
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types of electrodes: wet, dry and contactless. Both of them use PSDA for features

extraction, achieving an ITR of respectively 0.44 and 0.46 b/s. Cecotti [41] proposes

an asynchronous multilevel speller grouping letters within three stimuli, meaning that

for each letter selection the BCI must correctly perform SSVEP detection three times.

Feature extraction is performed using PCA, and the ITR is 0.63 b/s. Chang et al. [38]

analyzed SSVEP response with a MFD, which consists of a bank of matched filters,

followed by an amplitude detector. The authors managed to remotely control a wheel

robot, achieving an ITR of 0.83 b/s using only one electrode.

Such systems have the common drawback of low ITR. To tackle this issue, a well

accepted solution is represented by the use of Canonical Correlation Analysis (CCA).

Developed by Hotelling [57] and first introduced by Lin et al. in the BCI context, it

explores the relationship of two multivariate sets of variables, determining if they have

some underlying correlation [58]. Lin et al. [58] employed CCA to extract the cor-

relation features from nine frequency-coded simulations from multiple EEG channels,

demonstrating that ITR can be improved with respect to FFT-based methods. Authors

in [59] have also confirmed that CCA outperforms FFT-based methods in accuracy and

response delay. Using a joint frequency-phase modulation method to tag 40 characters

with 0.5-s-long stimuli, authors in [36] have developed a noninvasive BCI capable of

achieving an ITR of 4.50 b/s. Some attempts were made also with similar correlation

analyses, like in Nakanishi et al. [35] where a high speed SSVEP brain speller uses Task

Related Component Analysis (TRCA), a spatial filtering in which weight coefficients

are optimized to maximize the covariance of time-locked SSVEP trials. The authors

achieved 5.42 b/s ITR using 9 channels and 40 phase-locked flickering targets. Another

powerful method for direct frequency estimation, described in [60, 61], is based on the

Vandermonde decomposition. Although this solution provides a direct frequency estima-

tion with a short time window, its computational complexity hinders the implementation

on a resource-constrained platform because of the large dimension (> 64 × 64) of the

input matrices calculated to execute the algorithm.

The approaches cited above can reach high level of ITR, enabling a fast BCI for

SSVEP decoding. Anyway, they require a training session to adapt the setup on the

user. A solution to adapt the CCA without specific subject-dependent training is pre-

sented in [37], where authors include in the CCA the information of frequency harmonics

from 9 EEG channels, achieving an ITR of 1.75 b/s using 42 different frequency-coded

stimuli. Nevertheless, all the aforementioned solutions require a synchronization mecha-

nism between stimuli and acquisition phases. Moreover, to maximize accuracy and ITR,

EEG acquisition systems rely on 9 wet electrodes, which limit ease-of-use and unob-

trusiveness, hindering the deployment of such solutions in wearable, minimally invasive

form-factor.

The work presented in [40] represents a step forward in the development of a CCA
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based system, since it is based on non-synchronized stimuli presentation and it does not

require subject-dependent training. However, it achieve an ITR lower than 1 b/s, with

a bulky setup, based on 16 wet EEG electrodes.

The lesson learned from the analysis of the SoA in BCI speller is that the develop-

ment of a high-performance wearable platform for BCI spelling is still an open challenge.

Although some systems target a portable setup, (e.g. a tablet [42] or a smartphone [45]),

they achieve low values of ITR, in a bulky setup (i.e. many electrodes which requires

skin preparation) with power-hungry computational platforms.

Hence, the goal of this chapter is to show a design for a wearable BCI system that

relies on a minimally intrusive setup (i.e. 3 dry sensors), without subject dependent

training and stimuli synchronization, and achieving ITR higher than 1 b/s.

2.5 Canonical Correlation Analysis

The state-of-the-art algorithm for SSVEPs detection is named Canonical Correlation

Analysis (CCA) [62]. This method quantifies the linear dependency between two multidi-

mensional variables by finding a couple of linear combinations, one for each multidimen-

sional variable, that maximizes their correlation. The resulting maximized correlation is

called canonical coefficient and extends the concept of correlation to multidimensional

variables. More than that, CCA actually provides a whole set of canonical coefficients,

sorted by size. The first canonical coefficient of the set is the biggest, and represents

the correlation between a pair of linear combinations that maximizes the correlation.

The second canonical correlation coefficient is the second biggest, and represents the

correlation between another pair of linear combinations, that are uncorrelated with the

previous pair. The number of canonical correlation coefficients and corresponding linear

combination pairs depends on the dimension of the two variables, and corresponds to

the minimum of the dimension of the two variables. In SSVEP-based BCIs, the two

multidimensional variables to be correlated are the n EEG input channels, and a set of

m reference signals that identify the frequency of one single stimulus, usually sine and

cosine of that frequency and one or more harmonics. Therefore, one execution of the

CCA algorithm returns a set of size d = min(n,m) of canonical correlation coefficients

that quantify the correlation between the EEG signal window and one specific stimulus.

In order for the system to compute an output, it is necessary to retrieve canonical cor-

relation values with respect to all the reference signal sets, which means executing CCA

for each possible stimulus. Figure 2.4 summarizes the CCA algorithm and its actual

implementation on many statistical packages.
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Figure 2.4: Block diagram of CCA algorithm and implementation. (a) Signal matrices
input for CCA. (b) CCA formulation algorithm. (c) CCA implementation algorithm.
(d) Feature extraction.

Formally, let us define the multidimensional variable X as a time window of length

Ns samples of the n EEG input channels, such that:

X = {X1, X2, ..., Xn},

Xi = {xi,1, xi,2, ..., xi,Ns},

i = 1, . . . , n.

Let us define the reference signals as a set of sine and cosine of the stimulus frequency

f and its Nh harmonics, then the multidimensional variable Y is defined as follows:

Y =



Y1

Y2

Y3

Y4
...

Ym−1

Ym


=



sin(2πft)

cos(2πft)

sin(4πft)

cos(4πft)
...

sin(2Nhπft)

cos(2Nhπft)



for t = 1
Fs
, 2
Fs
, · · · , Ns

Fs

where Fs is the sample frequency of the EEG acquisition system. Let us define the linear

combinations of X and Y as:

U = Xa

V = Y b
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Then the function to maximize is:

ρ = max
a,b

corr(Xa, Y b)

After retrieving the first canonical correlation coefficient ρ1 and the corresponding

couple of linear combination coefficient matrices a1 and b1, the algorithm continues the

search looking for a couple (a2, b2) such that the linear combinations U2 = Xa2 and

V2 = Y b2 belong to an orthogonal subspace with reference to U1 = Xa1 and V1 = Y b1.

The search continues until the orthogonal subspaces of the less ranked multidimensional

variable are exhausted, resulting in a vector of canonical coefficients

R = {ρ1, ρ2, . . . , ρd}

sorted in decreasing order. Quite often only the first canonical coefficient is used as

feature for frequency detection. However, authors in [63] proved that the combination

of the information held by the other coefficients helps to improve frequency detection

accuracy. In particular, the feature used for frequency detection is calculated as the

Euclidean norm of the first s canonical coefficient:

r =

√√√√ s∑
i=1

ρi

In this work, the Euclidean norm of the first s = 3 canonical coefficients is used as

a feature for frequency detection. The implemented algorithm is described later in Sec.

2.6.2

2.6 Wearable BCI

The system presented is a novel embedded asynchronous BCI featuring a custom

acquisition platform and non-invasive dry electrodes for real-time classification of eight

frequency-coded stimuli. Being able to operate in stand-alone mode, it provides full

portability by removing the need for any external processing device. At the core of the

system, a CCA-based algorithm performs the feature extraction of the incoming EEG

signals from three dry electrodes. The system requires no training phase and does not

need to tailor any parameter on the specific subject or trial, as all critical parameters of

the system, such as the number of channels and location, frequency band, and window
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Figure 2.5: Architectural diagram of the proposed system. Fig. 2.5 (a) and (b) show,
respectively, an image and the block diagram of the wearable node. Fig. 2.5 (c) presents
an image of the dry active electrodes and (d) the electrical schematics of the custom
amplifier stage PCB. Finally, in Fig. 2.5 (e) the LCD screen with stimuli presentation
is depicted.

lengths, are fixed through offline data analysis before the final implementation in a user-

independent fashion. An overview of the overall system is depicted in Fig. 2.5.

The wearable platform is designed for medical IoT applications and derived from [64]

and [65]. The system is composed of an active EEG sensor array interfaced to a custom

board with a biopotential ADC and a low power microcontroller with DSP capabilities.

It acquires and processes the subject response to a visual stimuli. The results of the

CCA analysis, computed in real-time on the microcontroller, can then be communicated

to the host PC as HMI commands.

2.6.1 Hardware

The proposed IoT node is based on a multichannel commercial Analog Front End

(AFE) [66] connected with a low power ARM Cortex M4 microcontroller. The AFE

is the de-facto standard used in biopotential acquisition platforms. The 8 channels are

connected in single ended configuration with the active EEG sensors while the AFE’s

back-end streams the data via SPI to the microcontroller. The ARM Cortex M4 mi-

crocontroller is equipped with a single precision FPU unit and has an instruction set

architecture with DSP extensions to enable a more efficient near-sensor processing. It

can reach operating frequency of 168 MHz with 192 kB of RAM and 1 Mb of FLASH

memory.

The board is a 6-layers Printed Circuit Board (PCB) with a single solid ground

plane. To minimize current return paths, the power planes are split, keeping separated

the analog and digital circuitry. Discrete components were carefully placed on both sides

of the PCB to maximize signal integrity, maintaining a low level of noise and a small
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form-factor that results in 85x50 mm. The board mounts a dedicated IC for power man-

agement, that automatically detects the power source (battery or USB). Analog, digital

and communication subsystems are supplied by separate low-dropout voltage regula-

tors. This versatile configuration allows power management strategies, like duty-cycling

submodules, to enhance battery life.

2.6.2 Firmware implementation

All firmware has been implemented in C language on a low-power ARM CORTEX

M4 microcontroller, using STM32 WorkBench, a dedicated Integrated Development En-

vironment (IDE) based on the open-source GCC compiler version 5.4.1. The proposed

implementation of CCA is based on the Golub algorithm [67, 68], which, by virtue of

its computational efficiency, is widely used in many statistical packages [69]. The Golub

algorithm relies on the computation of two QR decompositions, followed by a SVD fac-

torization. The implemented algorithm is summarized in Fig. 2.4c.

In the implementation of the firmware, this algorithm must be executed Nf times,

once for every stimulus presented at different frequency, and its execution must be op-

timized in order to achieve near real-time performance even with several stimuli. Three

levels of optimization are applied: (i) usage of CMSIS-DSP library provided by ARM

whenever possible [70], (ii) precomputation and storage in Flash memory of the orthog-

onal matrices Qy resulting from the QR decomposition of all the reference signals, and

(iii) input filtering and downsampling. A time window of the acquired EEG signal chan-

nels constitutes the multidimensional variable X. The length Ns of the time window

is a parameter affecting the overall BCI performance, and its computation is described

later.

Before applying CCA, the input signal must be preprocessed in two steps: (i) a

band pass filter is applied for removing low frequency and 50 Hz noise, and allowing a

downsampling factor up to 10, that reflects in a speedup > 4 in CCA computation; (ii)

all the channels are reduced to zero mean in order to be later correlated with the refer-

ence signals. The band pass filter features a low pass 100 taps FIR with cutoff frequency

at 18.4 Hz, and a second order high pass IIR. The low pass FIR filter guarantees to

preserve the signal amplitude up to the first harmonic of the higher stimulus frequency,

since this system uses Nh = 1, and at the same time it achieves 60 dB attenuation at 50

Hz, without introducing excessive delay or computational effort.

After preprocessing, the resulting multidimensional variable X must be correlated

with the corresponding reference signals for each frequency used for the stimuli. The

QR decomposition is therefore computed once only, obtaining the orthogonal matrix

Qx, then the algorithm enters a loop for each stimulus frequency k, where the same Qx
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matrix is multiplied by the corresponding Qy(k) matrix already precomputed and stored

in Flash memory. The resulting matrix is factorized by the SVD, where the optimized

code skips all the computation that involves elements of the matrices which zeros values.

All the coefficients of the diagonal matrix S obtained by the decomposition are used

in the computation of the Euclidean norm, which is the measure of the correlation be-

tween EEG and reference signal that is used for frequency detection. The algorithm

performance is discussed in Sec. 2.7.3.

Since this BCI system is asynchronous, independent and potentially disconnected

from the source of the stimuli, at the end of each data window processing the system

must deliver some output, regardless of actual activity of the user. The frequency clas-

sification is performed by simple thresholding: if the maximum of the Nf correlation

features exceeds the threshold, then the BCI output is the corresponding frequency,

otherwise the system output is the rest or idle state, decoded with class 0. The choice

of the threshold value will be discussed in Sec. 2.7.2.

2.7 Experiments and results

2.7.1 Experimental setup

A graphical interface of the SSVEP-based BCI system usually consists of different

areas of a screen which are associated to different commands, e.g. letters or symbols,

that flicker at specific frequencies. When the user pays attention to a particular flicker-

ing command, SSVEPs are induced at the corresponding frequency and its harmonics.

The BCI system identifies the user intention by quantifying and classifying SSVEP. It is

generally acknowledged that the SSVEP response depends on the frequency of the stim-

ulation, nevertheless there is no consensus on which frequency bands are better suited

for maximizing information transfer rate and accuracy. Regan has shown three distinct

maxima in the response to flickering stimuli at 10, 13-25 and 40-60 Hz [71]. Other sub-

sequent works showed similar results [72]. Kuś et al. [73] observed how signal-to-noise

ratio of SSVEP signal vs. unrelated brain activity is maximized in the 8-20 Hz band,

however not taking into account higher order harmonics in the computation. It should

be observed that, in general, the lower the target frequencies, the lower the sampling

rate required to the system, and consequently its power consumption, which is of major

importance in portable systems.

The BCI system presented in this work is the product of an initial phase of offline

tests used to fix critical parameters, such as the number and location of electrodes, fre-

quency intervals, window length for data processing, etc. Subsequently, online tests have

been carried out to assess the real-time performance. Eight healthy subjects (aged 25-40
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Figure 2.6: Acquisition setup: the flickering stimuli layouts (layout L2 in the figure,
featuring four checkerboards) are presented on a 24-inches LED screen. The subject
stares at the screen from a distance of 80 cm.

years) with normal or corrected-to-normal vision participated in the offline experiments.

Another group of five subjects was taken later for the online tests. All participants re-

ported no history of neurological or psychiatric disorders and provided a written consent

to participate in the experiments.

SSVEP signals are elicited by adjusting the luminosity (contrast) of black and white

10 x 10 square checkerboards [74] on a grey background employing the sampled sinu-

soidal stimulation method [75] on three different layouts. The first layout (L1) only

contains one checkerboard covering 75 % of the screen and centered at the middle point

and is employed to display different stimuli in successive order. The second layout (L2),

comprises four checkerboards arranged in a 2 x 2 pattern at equidistant positions, each

displaying a different frequency-coded stimulus (a single checkerboard occupies 20 % of

the screen). The third layout (L3) contains eight checkerboards arranged in a 2 x 4

pattern, each one covering 10 % of the screen. The design of the layouts aims to test the

level of response of the SSVEP signals with consecutive smaller stimuli in the presence

of non-target stimuli. Fig. 2.6 depicts the acquisition setup with L2.
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The luminosity (contrast) of the checkerboards was adjusted using the following

equation:

Contrast(f, φ, i) = A · sin(2πfi/Fr + φ) +A

where i indicates the frame index, A the initial amplitude, φ the initial phase,

constant for all experiments (φ=0), f the frequency of the stimulation, and Fr is the

refresh rate of the screen. All checkerboards included a grey diagonal cross to help

visual fixation. All the textures were generated using Psychtoolbox 3.0.10 for Windows

in Matlab 9.1. All the layouts were presented on a 24-inch LED (60fps) screen at a

distance of approximately 80 cm. This setup is fixed for all the subjects, in order to

measure the SSVEP elicited by the most uniform stimulation possible. Since there is no

uniformity in literature for the distance between the subject and the screen ([3, 76, 77]),

this choice is arbitrary.

EEG data were acquired using the hardware presented in section 2.6.1 at a sample

rate of 1 KHz. For the offline test, five electrodes over the occipital lobe (P5, PO3,

POZ, PO4, and P6) and two over the frontal lobe (F3 and F4) were placed to record

the SSVEPs, with reference and ground electrodes located at A1 and A2 respectively.

Online tests were performed only with three electrodes, located at P5, POZ, and P6,

while reference and ground remained at the same position. Electrodes impedance was

kept below 10KΩ. Triggers generated by the stimulation program were bound to the

incoming raw data by custom software. It is worth mentioning that all experiments were

repeated twice to evaluate the performance of the dry electrode system with respect to

a classic wet configuration.

Equally spaced frequency-coded stimuli ranging from 5 Hz to 17.5 Hz, with a step of

1.2 Hz were used to select suitable frequency targets. Each trial included five seconds of

stimulation followed by 5 seconds of pause to reduce visual fatigue. The results from eight

test subjects are summarized in Fig. 2.7 showing that the range of frequencies between

5-12.2 Hz have a significantly higher average correlation magnitude. Nevertheless, the

useful range has been narrowed up to 9.5 Hz to avoid any interference from the alpha

band in the final implementation. Simultaneously, the design exploits an exhaustive

search to determine the minimum number of electrodes required, finding that there are

no significant differences in correlation when using only the electrodes P5, POz and P6

with respect to the full setup. Thus, the final system adopted these changes allowing

us to maximize the performance while reducing overall the complexity and intrusiveness

of the hardware. It is worth noticing that Fig. 2.7 only presents the results of the

wet-electrodes test since there are no significant differences when using dry electrodes.
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Figure 2.7: Average CCA correlation of SSVEP responses for different stimuli (x-
axes) calculated with different reference signals (y-axes). On the diagonal it is possible
to observe higher correlation due to the correspondence between the stimulus frequency
and the reference signals. Noticeably, the lower part of the stimuli spectrum allows for
higher correlation response with respect to the higher part.

2.7.2 Experimental results

The system presented at 2.6.2 was evaluated using dry and wet electrodes while

performing a new test session using L2 and L3 layouts presenting four and eight simul-

taneous stimuli, respectively. All the stimuli were coded using a ∆F = range/Nstimuli,

to allow maximum separation between targets in the frequency range. The subjects

(same as the previous test) fixed the sight at the target frequency indicated with a red

square before the onset of the stimulation. Later, all the stimuli remained active for five

seconds with a resting time of 5 seconds in between trials. The experiment ends when

the subject has been staring once at each stimulus on the screen.

An exhaustive analysis of the offline results shows that the most performing data

window length is 2 s for both wet and dry systems, which turns in Ns = 2000 samples
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Figure 2.8: Average ITR results for the system with wet electrodes (blue triangles),
and dry electrodes (red circles) calculated using different classification thresholds. A
threshold value of 0.55 is shown to maximize ITR for both wet and dry electrodes.

to process for each channel at each CCA iteration. This window size guarantees a good

trade-off between system latency (∼ 2s) and accuracy (> 90%). Even if the system is

asynchronous, offline system latency is assessed by measuring the time interval between

the stimulus onset and the first correct detection. For detailed results description refer

to tables 2.2 and 2.3. The other parameter of the system, the classification threshold, is

chosen to maximize the average ITR, calculated for the asynchronous BCIs as in [78]:

ITR =
1− Pr

davg

(
log2Nf + (1− Pw) log2(1− Pw) + Pw log2

(
PW

Nf − 1

))

where Pr is the probability of non-detected stimuli or trial error, Pw is the prob-

ability of incorrect detected cases, Nf is the number of target stimuli, and davg is the

average delay or latency of the system in seconds. Fig. 2.8 depicts the values of the

average ITR of the wet and dry system calculated with several thresholds. The figure

shows that the threshold value of 0.55 maximizes both curves, therefore it is the most

suitable threshold value to use for the BCI output classification.

Tables 2.2 and 2.3 show the classification performance using four and eight stimuli
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for wet and dry electrodes. Even though the average latency for the 4-stimuli wet system

is smaller than the 8-stimuli system, the latter achieves higher ITR due to the increase in

the number of targets. This situation improves when analyzing the dry systems, where

the 8-stimuli not only outperforms the 4-stimuli, it also achieves similar performance

than the wet system. These results also demonstrate that the interference created by

placing different stimuli at the same layout with decreasing target size is negligible.

Following the results introduced above, the system is validated while performing

the acquisition of the EEG data and classification in real time, employing five test sub-

jects, that have not been involved in the offline experiments. To ease the computation

of the results, the outputs of the classification are transmitted directly to a computer

using a BT communication module, automatically synchronized with the onset of the

corresponding stimulation by a custom software. During the experiments, the checker-

boards with the target frequency were indicated with a red square that appears before

the stimulation. Once a valid frequency was detected, the stimulation was stopped and

the detected frequency was highlighted and cued with a white frame. The accuracy

of the system was then asserted by the number of correct classifications over the total

number of classifications, and the latency is computed as the time needed for detection

of the trials that succeeded. The results of the experiment are summarized in tables

2.4 and 2.5, allowing us to conclude that there are no significant differences between

offline and online experiments. Also, the average ITR using eight stimuli and the dry

sensor interface is 1.25 b/s, proving that the introduced embedded implementation can

achieve performance that is comparable with non-wearable systems [37–39, 41], while

outperforming other wearable or mobile systems [40, 42, 45].

Table 2.2: Offline results for 4 stimuli BCI, wet and dry setup.

Total accuracy Trial accuracy Latency [s] ITR [b/s]
(wet / dry) (wet / dry) (wet / dry) (wet / dry)

S1 0.97 / 0.98 1 / 1 1.91 / 1.86 0.94 / 1.00

S2 0.96 / 0.96 1 / 0.75 1.57 / 2.41 1.07 / 0.53

S3 0.98 / 0.96 1 / 1 1.60 / 1.83 1.12 / 0.91

S4 0.95 / 0.96 1 / 0.75 2.10 / 1.91 0.79 / 0.67

S5 0.96 / 0.98 1 / 1 1.41 / 1.65 1.19 / 1.11

S6 0.99 / 0.97 1 / 1 1.33 / 1.60 1.42 / 1.09

S7 0.95 / 0.99 1 / 1 0.86 / 1.17 1.90 / 1.59

S8 0.97 / 0.98 1 / 1 1.33 / 2.00 1.32 / 0.90

Average 0.97 / 0.97 1 / 0.94 1.51 / 1.80 1.22 / 0.98
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Table 2.3: Offline results for 8 stimuli BCI, wet and dry setup.

Total accuracy Trial accuracy Latency [s] ITR [b/s]
(wet/dry) (wet/dry) (wet/dry) (wet/dry)

S1 0.92 / 0.92 1 / 1 2.11 / 2.84 1.12 / 0.84

S2 0.93 / 0.93 1 / 1 1.43 / 1.66 1.69 / 1.48

S3 0.89 / 0.96 1 / 1 2.24 / 3.25 0.99 / 0.82

S4 0.94 / 0.92 1 / 1 1.71 / 1.87 1.46 / 1.27

S5 0.95 / 0.97 1 / 1 1.70 / 1.59 1.51 / 1.70

S6 0.98 / 0.98 0.75 / 1 2.37 / 2.17 0.90 / 1.28

S7 0.74 / 0.94 1 / 1 1.21 / 3.42 1.20 / 0.74

S8 0.92 / 0.91 1 / 1 1.53 / 1.58 1.54 / 1.48

Average 0.91 / 0.94 0.97 / 1 1.79 / 2.30 1.30 / 1.20

Table 2.4: Online results for 4 stimuli BCI, wet and dry setup.

Total accuracy Trial accuracy Latency [s] ITR [b/s]
(wet/dry) (wet/dry) (wet/dry) (wet/dry)

S1 0.88 / 0.87 1 / 1 0.76 / 3.01 1.69 / 0.41

S2 0.87 / 0.91 1 / 1 0.76 / 1.34 1.64 / 1.06

S3 0.91 / 0.92 1 / 1 1.44 / 2.05 1.01 / 0.72

S4 0.93 / 0.94 1 / 1 2.16 / 1.31 0.70 / 1.24

S5 0.89 / 0.92 1 / 1 1.36 / 0.99 0.96 / 1.48

Average 0.89 / 0.91 1 / 1 1.30 / 1.74 1.20 / 0.99

Table 2.5: Online results for 8 stimuli BCI, wet and dry setup.

Total accuracy Trial accuracy Latency [s] ITR [b/s]
(wet/dry) (wet/dry) (wet/dry) (wet/dry)

S1 0.83 / 0.83 1 / 1 2.01 / 2.52 0.92 / 0.74

S2 0.84 / 0.88 1 / 1 1.19 / 1.34 1.62 / 1.57

S3 0.89 / 0.86 1 / 1 1.18 / 1.50 1.83 / 1.36

S4 0.81 / 0.76 1 / 1 1.65 / 1.40 1.07 / 1.08

S5 0.79 / 0.83 1 / 1 1.79 / 2.02 0.94 / 0.92

Average 0.83 / 0.83 1 / 1 1.56 / 1.76 1.27 / 1.13

2.7.3 Computational results

The algorithm described in 2.6.2 was implemented on the board described in 2.6.1.

DMA transfer, clock gating and optimization of clock frequency were used to minimize

the power consumption. To speed up execution time, the code employs CMSIS [70] func-

tions when possible, and pushed compiler optimization to -O2 within those functions.

As mentioned before, the number of samples to process at each CCA iteration is 2000.

However, it is possible to downsample the data up to factor 10 for a twofold goal: reduce

power consumption and decrease the delay between two consecutive classifications. In

fact, higher BCI output frequency contributes to boost ITR and to enhance the user real
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Figure 2.9: Trend of the power consumption calculated for several downsampling
factors (blue triangles) for four stimuli.

Figure 2.10: Trend of the ITR/power consumption ratio calculated for several CCA
execution periods with wet electrodes (blue triangles) and dry electrodes (red circles).

time experience. Downsampling 10 allows to reduce MCU cycles from about 3157k to

about 768k, achieving speedup > 4 without significantly degrading the accuracy. In fact,

while ITR remains constant, Fig. 2.9 shows the decreasing curve of power consumption

according to downsampling factor.

The time needed to execute the optimized algorithm on the custom device is less than

5 ms, which allows us great liberty in the choice of the performance/power consumption



Location-Based BCI 27

trade-off. In principle, the power consumption decreases when the CCA execution period

increases, because the algorithm is execute less frequently. At the same time, also the

ITR decreases due to BCI response latency growth. Fig. 2.10 shows the trend of the ITR

over power consumption with reference to the period of the CCA execution. The curves

suggest that 100 ms is a good CCA execution period for both dry and wet systems, in

fact 100 ms period guarantees average ITR > 1b/s, power consumption of 22.4 mW for

four stimuli and 27.5 mW for eight stimuli, and ten outputs per seconds for a real-time

user experience. The power consumption was measured on the board using a source

measure unit instrument.



Chapter 3

Location-Based BCI

Geolocation is the enabling technique for a wide spectrum of Location-Based Services

(LBS) involving, for instance, navigation, transport, tourism, entertainment, healthcare

and augmented reality applications. While outdoor localization is mostly solved by

Global Positioning System (GPS) technology, indoor localization is still an open issue

due to heterogeneity of indoor environments and impracticality of a common approach

for all single cases [79]. In fact, GPS is an unreliable technology for indoor positioning,

since its signal is not strong enough to be correctly received inside buildings.

Several approaches for indoor localization have been proposed. Some of them ex-

ploit existing communication infrastructures like WiFi [80] and FM radio signals [81],

others rely on ad-hoc infrastructures like ZigBee [82], Bluetooth [83], Ultra Wide Band

(UWB) [84] and Radio Frequency Identification (RFID) [85]. Other systems do not

need any kind of specific infrastructure, since they compute the device position using

embedded sensors like magnetometer [86], accelerometer, and gyroscope. Furthermore,

several hybrid approaches have been proposed, based on complementary technologies

like inertial sensors and WiFi [87] or Bluetooth and WiFi [88]. Merging geolocation

with EEG monitoring can serve as a tool to understand the brain activity during daily

tasks, empowering the efficiency of future BCI systems in interpreting the user’s inten-

tions and functional state of mind. However, only few contributions proposed a system

that combines the two information sources. In [89], the authors propose a BCI system

for controlling a wheelchair, based on the P300 evoked potential and triggered though

the oddball paradigm technique. The authors achieved geolocation implementing an

optical-based tracking system on the wheelchair. In [90], the author proposes a cloud

based solution for patients localization and monitoring in terms of voice pathology de-

tection. In this solution, EEG signal is acquired through a deeply embedded system

attached to the outer surface of the patients’ vocal fold, while localization is performed

via GPS and WiFi.

28
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Differently from the aforementioned papers, the aim of this work is to create a

Hardware-Software platform to bind the EEG response with the position of the subject,

to understand the challenges on the acquisition of EEG signals in real environments, hin-

dered by artifacts, external noise and hardware constrains, and to study the correlations

between the brain activity and the subject’s location or movements. To achieve this

goal, the system proposed in Sec. 2.6 is paired with an Android application capable of

tracking the subject in an indoor environment. The indoor tracking is performed by In-

doorAtlas [91], a cloud based service that exploits smartphone embedded magnetometer

for indoor positioning.

3.1 System description

The system is managed by an Android application running on a smartphone that

computes the location data and merges it with the EEG raw data, acquired by the same

dedicated hardware board described in Sec. 2.6.1. The board is composed by a 24-bit

ADC, a Cortex-M4 microcontroller and a Bluetooth module for communication with

the smartphone. The smartphone obtains the positioning data using IndoorAtlas SDK

version 2.2.4, with an accuracy of 1 to 3 m [91]. After the preliminary setup phase,

where the cloud builds a map of the magnetic field of the floorplan (fingerprint), device

localization is achieved by streaming to the cloud the magnetometer values.

3.1.1 Android app

Figure 3.1: Android app architecture

The Android app architecture is depicted in Fig. 3.1. An introductory activity wel-

comes the user and let him/her choose a paired Bluetooth device, then the main activity

starts and immediately spawns the ServiceManager thread. The ServiceManager in turn
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Figure 3.2: EEG acquisition board

generates three services, each one in charge of collecting a part of the dataset: the Blue-

tooth Service is designed to connect with the paired Bluetooth device and receive EEG

data packets of 11 bytes at 500 Hz; the Compass Service is designed to compute orien-

tation through smartphone magnetometer and accelerometer; the IndoorAtlas Service

is designed to receive the device position data from the IndoorAtlas cloud. Since all

services must be active during the whole application execution, each service spawns a

dedicated thread for its long-running task, in order not to burden the ServiceManager

with high frequency callbacks. Each dedicated thread stores the received data in an

internal thread-safe buffer, together with a timestamp. The ServiceManager periodi-

cally accesses the three buffers and retrieves data in the current time window using the

timestamp information. Then, the ServiceManager performs synchronization of the data

received from the three service sources and attaches, for each Bluetooth data entry, the

respective device position and orientation. Such merged and synchronized data is then

stored locally in a file for further offline processing.

3.1.2 EEG acquisition system

The EEG signals are acquired with the system implementation presented in Fig.

3.2 [92] [93]. The EEG signals are sampled using the 8-channel Texas Instrument

ADS1298 low power analog-to-digital converter, designed for the acquisition of biopoten-

tials (ExG). Each channel has a resolution of 24 bits with a power consumption of 0.75
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Figure 3.3: Spectrogram of the EEG data and positions

mW. The sampling rate ranges from 250 Hz to 32 kHz. The current system uses only

three channels at 500 Hz, located at Oz, Pz and P4, according to the 10-20 reference

system [94], with a common reference to A1 (left earlobe) and GND connected to Fz.

Circular gel-based electrodes with a surface contact of 2 cm2 are used to transfer the

signals from the skin to the ADC. All the sampled data is then transmitted to a mi-

crocontroller via SPI. The STMicroelectronics STM32F407 microcontroller purveys the

required computational power. It is based on an ARM Cortex-M4 core running at 168

MHz, with floating point unit, 192 kB of SRAM and 1 MB of non volatile Flash mem-

ory. Finally, the raw data is transmitted to the Android application using the Bluegiga

WT12 Bluetooth Class 2 Module.

These components populate a 9 × 4.5 cm 6-layer Printed Circuit Board (PCB) as

shown in Fig. 3.2. The board’s power supply is managed by a dedicated integrated

circuit with an internal switching voltage regulator and Low-dropout (LDO) regulators.

3.1.3 Signal processing

The recorded data is analyzed using initially a time-frequency domain transforma-

tion. The spectrogram of the signal is computed to visualize the position/frequency

relation over time. For this, the EEG data is down-sampled to 100 Hz. Fig. 3.3 is
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obtained using the spectrogram function (Matlab) with window size of 100 samples and

50% overlap. It is plotted in relation to the cartesian coordinates in m from a corner

of the corridor. The points where the position remains unchanged reveal the moments

where the subject is receiving the visual stimulation (10 seconds approximately). Since

the quality of the spectrogram is not sufficient to correctly quantify the VEPs, the sec-

tions containing the visual stimulation are extracted for a thorough analysis. Given the

time-locked nature of the stimuli, signal averaging (on a given time window) is used to

increase the signal-to-noise ratio of the segment. Subsequently, the window is analyzed

using the Frequency Tagging Analysis (FTA) by average of the frequency components

of small chunks of the original signal.

3.1.4 Challenges

Table 3.1: Comparison between different electrode placement

Conf SNR (SSVEP) PLI1 BA2 MA2

A 3.14 3.26 9.29 129.25

B 4.65 2.24 39.03 130.29

C 4.10 2.80 8.70 115.21

1Measured in Vrms

The major challenge regarding the Android application is data synchronization be-

tween services. In fact, there is no practical way to determine via software the arrival

time of a Bluetooth packet with ms precision. The Bluetooth unit of the smartphone

stores locally the received packets and delivers them to the Android Bluetooth adapter

in batches. The frequency of the batch delivery to the Android Bluetooth adapter de-

pends not only on the remote Bluetooth transmission frequency, but also on the internal

implementation of the two units. To overcome this problem, an algorithm is devised to

estimate the arrival time of one packet and then the transmission frequency knowledge

is exploited to update the timestamp for each following packet.

Regarding the acquisition of the EEG signals, challenges arise because of the dif-

ferent sources of noise. These are normally lessened by carrying out experimentation

in carefully controlled environments. Mainly, three sources of interference are present

during the recordings. The first corresponds to the movement artifacts (MA), caused by

the movement of the electrode and/or the electrical changes due to energy equalization

between the subject and the ground. The second, the blink artifacts (BA), normally

present in EEG measurements, are generated by the movement of the eyes. The third

corresponds to the 50 Hz power line interference (PLI). While recording on real-life

scenarios, the location of the electrodes plays an important role in reducing the effects

of the mentioned artifacts, but simultaneously, it can also affect the amplitude of the
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studied signal. Since SSVEP are mostly present at the right side of the occipital lobe

[95]. The use of three electrodes on this region balances complexity and the likelihood

of capturing the signal.

The reduction of artifacts is finally achieved after selecting a proper electrode place-

ment. Empirical experimentation was performed to quantify the PLI, BA and MA

interference in three different configurations. These are: GND and all reference elec-

trodes connected to A1 (A), GND at Fz and all references at connected to the Fp1 (B)

and GND at Fz and all references connected to A1 (C). Table 3.1 shows the results

of the experimentation, demonstrating that C rejects successfully more noise than the

other configurations, notwithstanding that it does not have the best SNR.

3.2 Experiments and results

3.2.1 Experimental setup

Figure 3.4: Overview of the full wearable system composed by the BCI board and
electrodes placed on the head, and the Android hand held device.

Figure 3.5: Predefined path and stimuli location

The system described in Sec. 3.1 is tested on one healthy subject with no previous

history of neural diseases. The board is placed on the subject’s head, as shown in Fig.
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Figure 3.6: Frequency Response for SSVEP at 12.5Hz.

3.4. The electrodes are located at Oz, Pz and P4, following the 10-20 reference system,

while the reference electrode was placed at Fz.

The subject was asked to follow the predefined path as indicated in Fig. 3.5. The vi-

sual stimulation is presented along the walking path by two identical Full High-Definition

(HD) screens (15”, 1920x1080px) with a refresh rate greater than 60 FPS. The distance

between the screen and the user during the stimulation is about 1 meter. The visual

stimulation is generated using a checkerboard (10x10 square elements) covering 35% of

the screen over a grey background. In this experiment, the first stimulus on the path is

at 12.5 Hz, wile the second is at 20 Hz.

The subject explores the walking path from the starting point. Once the first screen

is reached, the subject observes the screen with the corresponding visual stimulation to

generate the SSVEP. Subsequently, the user moves to the next screen for the last stimuli

observation. The subject’s position and EEG data is recorded using the implementation

presented in Sec. 3.1.2 and 3.1.3 for posterior offline analysis.

3.2.2 Experimental results

The resulting raw data is processed following the methodology presented in Sec.

3.1.3. The two plots presented in Fig. 3.6 and Fig. 3.7 reveal the capability of the

system to detect the generated stimuli. It is worth noticing also that the channel car-

rying the strongest frequency response is not always the same, specially for different

frequencies, which justifies the employment of multiple electrodes.

As an another study case using the proposed platform, the focus was set on the
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Figure 3.7: Frequency Response for SSVEP at 20Hz.

Table 3.2: Relation between the subject speed and the frequency of the movement
artifacts. The growing trend suggests a correlation between the two measures.

Velocity(Km/h) CF12 CF2 CF3

3.02 1.4 2.8 4.3

3.4 1.5 3.1 4.7

4.35 1.6 3.5 5

5.1 1.9 3.6 5.1
2Central Frequency (CFx) measured in Hz

correlation between the moving artifacts and the displacement of the subject. Fig. 3.3

shows the frequency components of the artifacts featuring three spectral lines compo-

nents with a bandwidth of 1 Hz and a separation of 1.5 Hz approx. Table 3.2 shows

the results of experimentation with different increasing walking speeds, where is worth

notice that these lines have the tendency to move towards higher frequencies. This char-

acterization may be useful to develop a method to determine the speed of the user or to

reduce the effects of these artifacts. This may be covered in a future research.

In summary, the current results show that the Evoked Potentials can be successfully

extracted using the proposed system even in a mobile, wearable setup (as opposed to

the usual stationary conditions used in EEG experiments). This encourage the belief

that the current platform will enable us to seek for more complex brain responses in

a future research. Also, correlations between indoor position and motion were charac-

terized, which can be used to extract extra information from the signal or to increase

the SNR, demonstrating significant opportunity for sensor fusion exploiting real-time



AR-based BCI 36

location and EEG tracking. Moreover, the system can be applied for studying the en-

vironmental context such as the visibility of the stimuli, the presence of other persons

obstructing the stimuli, or the interest of one person to stare at a particular portion of

the wall, with possible applications in exposition contexts like stores or museums. It is

worth mentioning that all the data-set generated so far and in future experimentations

will be publicly available, enabling other researchers to study the brain activity in re-

lation with position. Another important contribution of this work is that all the data

is collected in real scenarios. This will challenge the current methods but will empower

the development of new algorithms to mitigate the effects of undesired signals present

in the environment.



Chapter 4

AR-based BCI

Despite BCIs moving towards being embedded in wearable devices, visual stimuli

are still mostly presented on large LCD monitors, limiting their application to fixed

locations of the environment. By combining BCIs with AR tools such as smart glasses,

microprojectors or head-mounted displays (HMD), the system flexibility can be dramat-

ically increased. As an example, visual stimuli can be triggered adaptively according to

the user’s position or action. So, if the user approaches a specific object, a BCI starts

to interact with that object through the HMD.

An example of the integration of a P300 based BCI system used to enable HMI is

reported in [96], where an EEG acquisition system is coupled with an AR system to

enable the control of a smart home. The system is tested on three subjects for tasks of

domotic control (i.e. TV channel switching, opening and closing doors.). The subjects

were firstly trained in numbers and characters spelling based on their P300 response.

The final needed time for recognition task is typically around 30s with accuracy ranging

from 83 to 100%. This system reaches high accuracy but it is intended for users with

severe disabilities, based on a full coverage EEG cap and not suitable for a wearable

consumer application.

The work of [97] presents a wearable interface that combines an eye-tracker with a

BCI trigger to detect the response to visual stimulation using a binary classifier. Basi-

cally, the eye-tracker detects where the user is looking, and enables the SSVEP stimuli

mapped on the intended object, enabling the user to choose how to interact with the ob-

ject. The system is based on a modified version of the Emotiv NeuroHeadset, using wet

saline electrodes which acquire the EEG signal at 128 Hz. Samples are sent wirelessly

to an Odroid board, powered by a high-end processor (i.e. Samsung Exynos4412 Prime

chip operating with 1.7 GHz ARM Cortex-A9 Quad Cores). The average classification

accuracy is 73.5% while the time needed to perform a recognition task is higher than 4

seconds.

37
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Another solution, presented in [98], relies on a simpler approach, since it uses a QR

code recognition to enable the interaction with the selected object and a commercial

smart glasses system [99] to present the SSVEP stimuli. The embedded camera of the

eyeglasses executes a QR-code recognition when the user is looking in the direction of

the intended object, and enable the SSVEP stimulation accordingly. The EEG data

are acquired with an Emotiv EEG neuroheadset, and processed by a bench top host

PC. This system was tested on 7 subjects reaching an average accuracy of 85.7% with a

recognition latency that ranges from 3 to 6 seconds. The aforementioned solutions are

inspiring attempts to enable a natural, hand and voice free control strategy, but they

are based on bulky setups, where the EEG interface requires skin preparation and the

digital computing platforms are power-hungry and cumbersome, hence not suitable to

be integrated into an unobtrusive wearable form factor.

This chapter shows how to enhance the embedded wearable BCI discussed in Chap-

ter 2 by connecting the device with commercial smart glasses (Moverio BT-200 [99]),

which provides the visual stimuli exploiting AR techniques. This solution allows for a

fully-wearable self-contained plug-and-play BCI with a wide range of possible applica-

tions in industrial and smart-home scenarios. The enhanced system is tested on five

subjects, reaching an average accuracy of 80% with a recognition latency of 3 seconds,

suitable for a fast and reliable BCI.

4.1 Smart glasses

The HMD used for AR stimuli presentation is the EPSON Moverio BT-200, a com-

mercial smart glasses running Android 4.0.4 on a dual-core ARM Cortex A9. The device

allows for WiFi and Bluetooth connectivity. The display is a TFT active matrix with

LCD size of 0.42 inches, 16:9 aspect ratio and 60 Hz refresh rate. The viewer, a binocular

see-through that renders a screen of 80 inch virtual size at a virtual distance of 5 m,

makes Moverio BT-200 particularly suitable for 3D AR applications. The processor and

battery are enclosed in a handheld trackpad for standard interaction. The see-through

display of Moverio BT-200 is a particularly desirable feature, since it allows the user to

interact directly with the real world when virtual augmentation is not necessary, and let

the user see both real world and information overlay whenever augmentation is needed.

4.2 AR for stimuli presentation

Using the integrated camera and Vuforia SDK for digital eyewear [100], a BCI App is

developed that detects whenever the user is staring at tags, which can be freely applied
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Figure 4.1: Example of the application usage from the user’s perspective.

to objects in the environment, and informs the BCI wearable node that the user wants

to interact with a certain object. Different tags can trigger different numbers of stimuli

but, remarkably, different tags can trigger stimuli using the same set of frequencies,

overcoming the bottleneck problem of pushing as many target frequencies as possible in

a small bandwidth between 5 Hz and 10 Hz, where the SSVEP response is maximized.

Each stimulus consists of a PNG image representing an 8 x 8 black and white square

checkerboard, with a gray diagonal cross to guide user’s gaze. The frequency of the

stimulus is rendered by modulating the image opacity from 0 to 1 with a sine waveform.

The app can dynamically arrange up to six different checkerboards at the same time,

however in this work the focus is on a four checkerboard setup. Each checkerboard is

controlled by its own ValueAnimator object, initialized for linearly animating float values

from 0 to 2, representing the coefficient of π in the sine wave equation. The duration

of the animation reflects the stimulus frequency, and it is computed from the frequency

attribute, which can be set directly in the XML layout file. An AnimatorUpdateListener

object is used to intercept the updates of the ValueAnimator animation, and set the

opacity of the image accordingly. The animation is then repeated for a number of times

calculated on the predefined stimulation length, and then the checkerboard disappears.

Fig 4.1 shows an example of the application usage from the user’s perspective: when

the user looks at a tag, four flickering checkerboards appear on the HMD, representing



AR-based BCI 40

Figure 4.2: Frequency response of stimuli generated on the AR glasses and captured
by a photo-resistor. The deviation from the target frequency is < 0.1 Hz.

four possible actuations on the corresponding item. The app notifies via Bluetooth the

BCI wearable node when stimulation begins and ends, allowing the MCU to execute the

classification algorithm only when SSVEP can be detected, significantly reducing power

consumption.

4.3 AR-based stimuli validation

The BCI system has been validated on five healthy subjects (aged 25-43), with

normal or corrected-to-normal vision. All participants reported no history of neurological

or psychiatric disorders and provided written consent to participate in the experiments.

The tests have been carried out in an lab environment, which is particularly harsh in

terms of electrical and electromagnetic noise.

The first test is intended to validate the stimulus presentation described in 4.2.

To this end, a photo-resistor is connected to one input of the system, to capture light

variations generated by the projection of the flickering checkerboards on the glasses. Fig

4.2 shows the Power Spectral Density (PSD) of the resulting signal, indicating that the

maximum deviation from the original target frequency is confined below 0.1 Hz. Such

variations do not affect the final accuracy of the system for time windows up to a few

seconds. It is possible to note that the peak corresponding to 7.4 Hz is not as sharp as

the others. This may be due to noise or movement artifacts of the light sensor during the

presentation of the 7.4 Hz stimulus, since it is hand held near one of the smart glasses

lenses.
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Figure 4.3: CCA correlation

Figure 4.4: Front and back view of the complete setup during a test.The HDMI cable
attached to the board is used only for testing purpose, and it is not required during
normal operation of the system. Similarly, the current size and weight of the PCB allow
an easy debugging. Nevertheless, the entire hardware dimensions can be reduced to a
half.

4.4 Experiments and results

4.4.1 Experimental setup

SSVEP signals are elicited employing four black and white checkerboards as de-

scribed in Sec. 4.2, arranged in a 2 x 2 pattern, located at the corners of the visual

field of the smart glasses display. Four equally spaced frequency-coded stimuli (5.0 Hz,

6.2 Hz, 7.4 Hz and 8.6 Hz) are used as targets. During the tests, the subjects will fix

the eyesight at a target indicated with a red cue before the onset of the stimulation.

Later, all the stimuli will remain active for ten seconds, followed by 5 seconds of pause
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to reduce visual fatigue. This process is repeated four times to cover all checkerboards,

and the trial is repeated three times for each subject.

Concurrently, EEG data is acquired using the hardware presented in Sec. 2.2.2 and

2.6.1 from three electrodes placed at the occipital lobe (P5, POZ, and P6), with refer-

ence and ground located at A1 and A2 respectively. An example of the complete setup

is presented at Fig. 4.4.

Before each test with the smart glasses, a control test is performed using a regu-

lar 24-inch LED (60fps) display. The results obtained are later used to evaluate the

performance of the AR projections with respect to the classical technique for SSVEP

stimulation [101].

4.4.2 Experimental results

Subject Latency (s) Accuracy ITR (b/s)

S1
2.57 1.00 0.78
4.50 1.00 0.44
3.08 1.00 0.65

S2
2.95 0.67 0.19
3.85 0.91 0.37
2.25 1.00 0.89

S3
3.03 0.63 0.15
3.78 0.68 0.16
2.00 0.87 0.62

S4
1.70 0.91 0.83
3.13 0.85 0.37
1.58 0.82 0.65

S5
5.63 0.69 0.11
3.00 0.50 0.07
2.50 0.50 0.08

Average 3.04 0.80 0.42

Table 4.1: Experimental results. For each subject results of three trials are reported.

Table 4.1 reports detailed results for all subjects. To account for some occasional

variabilities regarding the acquisition setup each subject has repeated the test three

times. Of the five subjects, only S5 has performed poorly, possibly due to a certain

degree of intolerance to bearing the eyeglass frames. Nevertheless, the average results

show that the system is reliable (average accuracy 80%) and responsive (average latency

of about 3 s), with an average ITR with four targets of 0.42 b/s.

The results demonstrate that the presented embedded implementation outperforms

systems based on AR eyeglasses while being also aligned with the SoA traditional SSVEP

systems. Moreover, this work shows that online and real-time processing is achievable
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through a low-intrusivity setup, which is a significant step forward with respect to the

current offline and bulky systems.



Chapter 5

Conclusions

This dissertation presents a novel SSVEP embedded BCI system based on a cus-

tom hardware platform for medical IoT and a minimally intrusive setup with 3 zero-

preparation EEG dry electrodes. Leveraging a multimodal approach, which ranges from

EEG acquisition to embedded optimization, this work aims at widening the usage of

BCI systems among able-bodied people, by designing a fully wearable and easy-to-use

system for brain-machine communication with up to eight stimuli. The work goes a step

further combining a deeply embedded platform with dry electrodes, which highlights

the contribution of this work with regards of current system based on cumbersome

processing platforms and wet electrodes. The whole processing chain, from raw EEG

signal acquisition to frequency identification via CCA algorithm, is executed in real-time

on an embedded cost-effective microcontroller. The code optimization, tailored for the

CORTEX M4 Instruction Set Architecture allows to calculate up to 10 EEG feature clas-

sifications per second, keeping power consumption as low as 27.5 mW. The system has

been fully designed, tested and validated on five subjects, achieving an average ITR of

1.06 b/s with the dry electrodes interface and 1.28 b/s with the wet electrodes interface.

The proposed solution does not require subject dependent training and synchronization

mechanisms for the stimuli presentation, hence it is suitable for the deployment in non-

prepared environment.

In the third chapter, the same hardware is used in a study for combining EEG signals

with subject position data retrieved with a smartphone via indoor positioning system.

Differently form the setup in the second chapter, this time the system features only wet

electrodes and the results are analyzed offline. The system is tested in a real environ-

ment and experimental results show that it is possible to extract Evoked Potentials from

the EEG signal and therefore locate the subject.

In the fourth chapter is presented the enhancement of the BCI system described

in the second chapter, resulting in a fully-wearable BCI composed of a low-power EEG

44
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acquisition system for SSVEP detection connected to a pair of commercial smart glasses

for stimuli presentation. The use of AR environment delivers a realistic BCI, promising

a more intuitive way of brain communication. The wearable BCI offers the performance

of the current SoA systems while also providing a real-time EEG signal classification

through a non-intrusive, embedded processing platform. The system has been validated

on five subjects, achieving an average ITR of 0.42 b/s and an average output latency

of 3.0 seconds. This performance substantially improves those of SoA wearable systems

employing AR and smart glasses in terms of both accuracy and delay [97, 98]. Firmware

optimization of the algorithm has been shown helpful in keeping power consumption as

low as 32.12 mW, essential for providing extended hours of operation. The usage bot-

tleneck of the system is therefore constituted by the battery duration of the commercial

HMD device.

This work aims at spreading the usage of BCI systems by devising a wearable easy-

to-use online system ready to be deployed in fields where reliability constraints are

stronger, such as smart environments like industry 4.0. The ability of the proposed

system to provide a real-time user experience highlights the contribution of this work

towards a more realistic and useful BCI. It is already possible to envision some future

enhancements to the current system, under hardware and software point of view. As

a first remark, the commercial smart glasses used for stimuli augmentation represent a

bottleneck for power consumption, hindering the long term usage capability of the BCI.

To overcome this problem, future work can follow two possible scenarios: acting on the

smart glasses device hardware, or acting on the BCI configuration. In former case, a

careful hardware design for a custom low power smart glasses device is required. In

latter case, another BCI based on mu or beta rhythm, or EOG, can be used to control

stimuli activation. Unlike the current system, where the smart glasses camera is active

all the time and the device is performing continuous pattern recognition, in this scenario

the stimuli presentation is triggered by the low power BCI, and the power hungry smart

glasses can be kept idle for the remaining time. The BCI in this configuration must

implement two behavioural states: regular SSVEP-based classification during stimuli

presentation and ”start stimuli command” detection the rest of time. The command

can be encoded into a double eyeblink and decoded using EOG, or with a brain rhythm

pattern like mu, beta or alpha waves. In case of EOG encoding, at least one more elec-

trode is needed near the forehead to capture the eye blinking, whereas in case of alpha,

beta and mu waves the user might need training to learn how to produce the required

pattern.

Hardware upgrade can be done also for the BCI device, by porting the firmware on

a Parallel Ultra Low Power (PULP) architecture [102]. Switching to such architecture

would bring an advantage in the power consumption over performance trade-off of the

system, making room for a better suited and more performing classifiers than simple
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threshold. In particular, Convolutional Neural Networks have been proven to be good

classifiers for SSVEP-based dry electrodes BCI [103], and it would be interesting to test

their performance on a minimal invasive and wearable setup like the one discussed in this

thesis. As a further investigation, it would be interesting to assess the value of ITR on

varying number of stimuli and number and position of channels. Such characterization

could clarify the trade-offs between performance, electrodes, and stimuli, helping BCI

designers to choose the most suitable configuration for their target application.
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Kotchoubey, Andrea Kübler, Juri Perelmouter, Edward Taub, and Herta Flor.

A spelling device for the paralysed. Nature, 398(6725):297, 1999.

http://neurosky.com/biosensors/eeg-sensor/biosensors/
http://neurosky.com/biosensors/eeg-sensor/biosensors/
https://www.emotiv.com/
http://openbci.com/
http://www.gtec.at/Products/Complete-Solutions/intendiX-Specs-Features
http://www.gtec.at/Products/Complete-Solutions/intendiX-Specs-Features


Bibliography 49

[25] Niels Birbaumer, Andrea Kubler, Nimr Ghanayim, Thilo Hinterberger, Jouri

Perelmouter, Jochen Kaiser, Iver Iversen, Boris Kotchoubey, Nicola Neumann,

and Herta Flor. The thought translation device (ttd) for completely paralyzed

patients. IEEE Transactions on rehabilitation Engineering, 8(2):190–193, 2000.

[26] Gert Pfurtscheller, Ch Neuper, Doris Flotzinger, and Martin Pregenzer. Eeg-based

discrimination between imagination of right and left hand movement. Electroen-

cephalography and clinical Neurophysiology, 103(6):642–651, 1997.

[27] Hui Shen, Li Zhao, Yan Bian, and Longteng Xiao. Research on ssvep-based con-

trolling system of multi-dof manipulator. In International Symposium on Neural

Networks, pages 171–177. Springer, 2009.

[28] Xiaorong Gao, Dingfeng Xu, Ming Cheng, and Shangkai Gao. A bci-based environ-

mental controller for the motion-disabled. IEEE Transactions on neural systems

and rehabilitation engineering, 11(2):137–140, 2003.

[29] William M Perlstein et al. Steady-state visual evoked potentials reveal frontally-

mediated working memory activity in humans. Neuroscience letters, 342(3):191–

195, 2003.

[30] David E Thompson, Stefanie Blain-Moraes, and Jane E Huggins. Performance

assessment in brain-computer interface-based augmentative and alternative com-

munication. Biomedical engineering online, 12(1):43, 2013.

[31] Sylvain Baillet, John C Mosher, and Richard M Leahy. Electromagnetic brain

mapping. IEEE Signal processing magazine, 18(6):14–30, 2001.

[32] Saeid Sanei and Jonathon A Chambers. Eeg signal processing. 2007.

[33] COVIDIEN. Covidien Kendall, 2015. URL https://bio-medical.com/

covidien-kendall-disposable-surface-emg-ecg-ekg-electrodes-1-3-8-35mm-50pkg.

html.

[34] g.tec GmbH. g.SAHARA. URL http://www.gtec.at/Products/

Electrodes-and-Sensors/g.SAHARA-Specs-Features.

[35] Masaki Nakanishi et al. Enhancing Detection of SSVEPs for a high-speed brain

speller using task-related component analysis. IEEE Transactions on Biomedical

Engineering, 65(1), 2018.

[36] Xiaogang Chen et al. High-speed spelling with a noninvasive brain–computer

interface. Proceedings of the national academy of sciences, 112(44):E6058–E6067,

2015.

https://bio-medical.com/covidien-kendall-disposable-surface-emg-ecg-ekg-electrodes-1-3-8-35mm-50pkg.html
https://bio-medical.com/covidien-kendall-disposable-surface-emg-ecg-ekg-electrodes-1-3-8-35mm-50pkg.html
https://bio-medical.com/covidien-kendall-disposable-surface-emg-ecg-ekg-electrodes-1-3-8-35mm-50pkg.html
http://www.gtec.at/Products/Electrodes-and-Sensors/g.SAHARA-Specs-Features
http://www.gtec.at/Products/Electrodes-and-Sensors/g.SAHARA-Specs-Features


Bibliography 50

[37] Xiaogang Chen, Zhikai Chen, Shangkai Gao, and Xiaorong Gao. A high-ITR

SSVEP-based BCI speller. Brain-Computer Interfaces, 1(3-4):181–191, 2014.

[38] Hsiang-Chih Chang et al. Real-time control of an SSVEP-actuated remote-

controlled car. In SICE Annual Conference 2010, Proceedings of, pages 1884–1887.

IEEE, 2010.
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