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Screening with an Approximate Type Space* 
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preferences, but we assume that the principal knowingly operates on the basis 
of only an approximate type space rather than the (potentially complex) truth. 
We propose a two-step scheme, the profit-participation mechanism, whereby: 
(i) the principal `takes the model seriously' and computes the optimal menu for 
the approximate type space; (ii) but she discounts the price of each allocation 
proportionally to the profit that the allocation would yield in the approximate 
model. We characterize the bound to the profit loss and show that it vanishes 
smoothly as the distance between the approximate type space and the true 
type space converges to zero. Instead, we show that it is not a valid 
approximation to simply act as if the model was correct. 
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1 Introduction

In their path-breaking analysis of organizational decision-making, Herbert

Simon and James March argue that organizations recognize the limits im-

posed by our cognitive abilities and might develop institutions to achieve

good results in the presence of such limits:

�Most human-decision making, whether individual or orga-

nizational, is concerned with the discovery and selection of sat-

isfactory alternatives; only in exceptional cases is it concerned

with the discovery and selection of optimal alternatives.�(March

and Simon, 1958, p 162).1

When applied to a speci�c organizational problem, their views spur

economists to ask two related questions. Given the cognitive limits that

it faces, could an organization �nd a solution that yields a near-optimal

payo¤? If so, do the features of the near-optimal solution di¤er systemati-

cally from those of the optimal solution?

This paper attempts to answer these two questions in the well-known

setting of single-agent mechanism design with quasi-linear preferences. This

model � often simply referred to as the �screening problem�� has found

numerous applications in economics, such as taxation, regulation, or labor

markets. In its most common application, often called �nonlinear pricing�, a

multi-product monopolist faces a buyer, or a continuum of buyers, and o¤ers

a menu of product speci�cations (quality or quantity) at di¤erent prices.

The standard formulation of the screening problem assumes that the

principal knows the space in which the agent�s type lives along with the

distribution of types. In this paper, we re-visit the problem by assuming

1 In a similar fashion, Gordon (1948) writes:
"The fear of bankruptcy and the even more widespread fear of temporary �nancial

embarrassment are probably more powerful drives than the desire for the absolute maxi-
mum in pro�ts. [. . . ] Given the fog of uncertainty within which [the businessman] must
operate, the limited number of variables his mind can juggle at one time, and his de-
sire to play safe, it would not be at all surprising if he adopted a set of yardsticks that
promised reasonably satisfactory pro�ts." Quoted also in Armstrong and Huck (2010)
http://else.econ.ucl.ac.uk/papers/uploaded/359.pdf
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that the principal does not use or know the true type space and distribution.

For reasons that we will discuss in detail below, in contrast our principal

operates on the basis of only an approximate type space. The principal is

aware that her model is potentially incorrect. At the same time, she has a

sense of the quality of her model: she knows an upper bound on the distance

between a true type and its closest type in the approximate type space. We

call this distance the approximation index.2

Given this information, is there a near-optimal mechanism? Can the

principal guarantee herself an expected payo¤ that is not much lower than

it would if she could optimize based on the knowledge of the true space

type?

In order to discuss type approximation in a meaningful way, there must

be a notion of proximity on the preferences of di¤erent types. Our type

space is Euclidean and the agent�s payo¤ function is Lipschitz-continuous

in his type. We do not make further functional assumptions on the agent�s

payo¤, the principal�s cost function, or the agent�s type distribution.

Finding a near-optimal solution in this strategic setting poses a chal-

lenge that is, to the best of our knowledge, absent in non-strategic environ-

ments. Although all primitives are well-behaved, the fact that the agent

best-responds to the principal�s menu choice creates the potential for dis-

continuity in the principal�s expected payo¤ as a function of the chosen

menu. The e¤ect of this discontinuty is heightened by two elements, which

we mention now in vague terms but which will become clearer shortly. First,

in the exact solution of the screening problem the principal�s payo¤ function

is discontinuous exactly at the equilibrium allocation: this is because pro�t

maximization implies that for every allocation that is o¤ered in equilibrium

there must a binding incentive-compatibility constraint or participation con-

straint. Second, outside the monotonic one-dimensional case of Mussa and

Rosen (1978), binding constraints are not necessarily local (McAfee and

McMillan 1988, Wilson 1993, Armstrong 1996, Rochet and Choné 1998, Ro-

chet and Stole 2003). This makes approximation di¢ cult: if a certain type

2This assumption can be further relaxed by assuming that the principal only knows
that the approximation index is satis�ed with a high enough probability.
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is assigned a certain allocation, a small perturbation of that type may lead

to a very di¤erent allocation.

There are conceivably two ways to achieve a valid approximation in these

circumstances. One could make enough assumptions to guarantee that only

local constraints are binding. The resulting approximation would be useful,

however, only if the principal is certain that these assumptions are satis�ed,

and the known environments that satisfy this condition are quite restrictive.

An alternative, more general approach, which we adopt in this paper, is

to look for a scheme that works even in the presence of binding non-local

constraints. As we shall see, the idea is to �nd solutions that are robust

to violations of incentive compatibility constraints, in the sense that the

damage generated by such violations is bounded.

The core of the paper proposes and studies a mechanism for �nding near-

optimal solutions to screening problems. Given an approximate type space

and its corresponding approximation index, we de�ne the pro�t-participation

mechanism, based on two steps:

(i) We compute the optimal menu based on the set of all feasible products

as if the model type space was the true type space.

(ii) We take the menu obtained in the �rst step, a vector of product-price

pairs, keep the product component unchanged and instead modify the

price component. In particular, we o¤er a discount on each product

proportional to the pro�t (revenue minus production cost) that the

principal would get if she sold that product at the original price. The

size of the discount, which is determined by the mechanism, depends

only on the approximation index.

We prove the existence of an upper bound on the di¤erence between

the principal�s payo¤ in the optimal solution with the true space and in the

solution found by the pro�t-participation mechanism. Such upper bound is

a smooth function of the Lipschitz constant and the approximation index.

This means that, for any screening problem, the upper bound vanishes as

the approximation index goes to zero.
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Pro�t participation yields a valid approximation because it takes care of

binding non-local incentive-compatibility constraints. By o¤ering a pro�t-

related discount, the principal guarantees that allocations that yield more

pro�t in the menu computed for the approximate types become relatively

more attractive for the agent. Now, a type that is close to a approximate

type may still not choose the product that is meant for that approximate

type. If he chooses a di¤erent product, however, this must be one that

would have yielded an approximately higher pro�t in the original menu �

the di¤erence is bounded below by a constant that is decreasing in the

discount.

While a pro�t-related discount is bene�cial because it puts an upper

bound to the pro�t loss due to deviation to di¤erent allocations, it also has

a cost in terms of lower sale prices. The discount rate used in the pro�t-

participation mechanism strikes a balance between the cost and the bene�t.

As the approximation index goes to zero, a given upper bound to the pro�t

loss can be achieved with a lower discount and hence the optimal discount

goes to zero as well.

One may wonder whether there are other, perhaps more immediate, ways

of achieving a valid approximation in our class of problems? To answer

this questions, we restrict attention to model-based mechanisms, namely

approximation schemes that begin with step (i) of the pro�t-participation

mechanism: they �rst �take the model seriously.� In a second stage, they

leave the set of alternatives unchanged and they modify prices according

to any rule. In particular this includes the naive mechanism, whereby the

principal uses the optimal menu for the approximate type space.

We prove that any model-based mechanism that violates a pro�t-participation

condition cannot be a valid approximation scheme: the upper bound to the

pro�t loss does not vanish as the approximation index goes to zero. This

means that if there exist mechanisms that do at least as well as the pro�t-

participation mechanism, they must either be very similar, in that they

contain an element of pro�t participation, or radically di¤erent, because

they do not begin from the exact solution for the approximate type space.

The theorem implies that the naive mechanism is not a valid approximation:
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the principal should not simply act as if her model was correct.

The economic insight from our result is that models can play a useful

role in screening as long as the risk of mis-speci�cation is dealt with in

an appropriate manner. A principal who faces a complex screening model,

but has only an imperfect model of the type space, can start by taking the

model at face value and �nd its optimal solution. However, the resulting

allocation is not robust to model mis-speci�cation. To make sure that small

errors in the model do not lead to bad allocations, the principal must act

�magnanimously� by returning to the agent some of the pro�t that she

would make if her model was true. Such magnanimity takes the form of a

discount that is greater for more lucrative products.

Finally, let us ask why the principal uses an approximate type space to

start with. We name three possible answers and our results have a di¤erent

interpretation in each of these three cases.

Our preferred interpretation, which is also the most immediate, is that

the principal � or the economist interested in modelling the problem at

hand �is unsure about the agent�s preferences and has no way of resolving

this uncertainty. She has, however, a model of the agent�s preferences and is

willing to take a stand on at most how far her model could be from the truth:

the approximation index: Our result provides comfort to the principal. Even

if her model is misspeci�ed, she can still use it to compute a menu. As long

as she discounts the menu appropriately, she can place a bound on her loss.

The more faith the principal has in her model, the lower is the necessary
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discount and the is smaller the loss.34

Under this model uncertainty interpretation, it is important to note that

the principal need not know the true type space either to construct the

pro�t-participation mechanism or to compute the upper bound on her loss.

It is su¢ cient to know how good the approximate type space must be, as

measured by the approximation index. Accordingly, there is a set of multiple

prior distributions on the true type space consistent with the approximation

index. The upper bound that we �nd in our main theorem applies to all of

these.

In the second interpretation, the principal knows all the primitives of

the model, but faces computation costs. Single-agent mechanism design

has been proven to be an NP-complete problem even when the agent has

quasilinear payo¤s (Conitzer and Sandholm 2003). To reduce the heavy

computation burden the principal may replace the true type space with a

smaller one. By combining a method for partitioning the type space and the

pro�t-participation mechanism, we obtain what computer scientists refer to

as a polynomial-time approximation scheme (PTAS): a valid approxima-

tion of the exact solution which requires a computation time that is only

polynomial in the size of the input.

The third interpretation is in terms of sampling costs. Suppose that

the principal is not concerned with computation cost, but she does not

know what the agent preferences only the structure of the type space. She

can however sample the type space. For a �xed marketing fee, she can

3The model uncertainty interpretation is related to the notion of imprecise probability
(see e.g., Walley 1991).
Related concepts are applied to macroeconomics (Hansen and Sargent 2010), but in

non-strategic settings.
Bergemann and Schlag (2007) study monopoly pricing (with one good of exogenous

quality) under model uncertainty, with two possible decision criteria: maximin expected
utility and minimax expected regret.
Our problem is di¢ cult to interpret as a game between the principal and an adversarial

nature which can choose the agent�s type. In our set-up such adversarial nature would
have only a limited ability to deviate from the principal�s model distribution.

4Although there is a potential relation between model uncertainty and quantal re-
sponse equilibrium (McKelvey and Palfrey 1995), there does not appear to be a direct
interpretation of our results in a QRE sense.
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observe the payo¤ function of a particular type. By incurring this sampling

cost repeatedly, she can sample as many types as she wants. The pro�t-

participation mechanism, as stated above, supplies the principal with an

approximate solution whose total sampling cost is polynomial in the input

size. In this interpretation, the principal �rst performs a market analysis

leading to the identi�cation of a limited set of typical consumers. Then,

she tailors her product range to the approximate type space and prices it

�magnanimously�in the sense above.

In the last two interpretations we can perform a comparative statics ex-

ercise on the cognitive limits of the principal. Suppose that the principal is

constrained to solving the problem in at most N time units (in the compu-

tation time story) or sampling at most N types (in the search cost story). In

both cases, the principal will select the approximate type space optimally.

As a result of this we can show that as the principal�s resources decrease

(N goes down): (i) The approximate type relies on a rougher categoriza-

tion; (ii) The menu contains fewer alternatives; (iii) Pricing becomes more

�magnanimous�.

The paper is structured as follows. Section 2 introduces the screening

problem and de�nes the notion of an approximate type space. Section 3 de-

velops pro�t-participation pricing and establishes an approximation bound

(Lemma 1). Section 4 shows the main result of the paper, namely that

the pro�t-participation mechanism is a valid approximation scheme (The-

orem 4). In section 5 we discuss the three possible interpretations of our

results. Section 6 shows that model-based mechanisms are valid approxima-

tion schemes only if they contain an element of pro�t participation (Theorem

5). Section 7 concludes.

1.1 Literature

To the best of our knowledge, this is the �rst paper to discuss near-optimal

mechanisms when the principal uses an approximate type space.

Of course, there is a large body of work on approximation, in many dis-

ciplines. However, as we argued in the introduction, strategic asymmetric

8



information settings such as ours generate non-standard discontinuity is-

sues.5 There are only a small number of papers that study approximation

in mechanism design, which we attempt to summarize here.

In economics, the closest work in terms of approximation in mechanism

design is Armstrong (1999), who studies near-optimal nonlinear tari¤s for a

monopolist as the number of product goes to in�nity, under the assumption

that the agent�s utility is additively separable across products. He shows

that the optimal mechanism can be approximated by a simple menu of two-

part tari¤s, in each of which prices are proportional to marginal costs (if

agent�s preferences are uncorrelated across products, the mechanism is even

simpler: a single cost-based two-part tari¤). Clearly, there are many di¤er-

ences between our approach and Armstrong�s. Perhaps, the most important

one is that his approximation moves from a simpli�cation of the contract

space while we operate on the type space.

Nisan and Segal (2006) discuss approximation schemes for multiple-agent

mechanism design. In this line of research, the designer is concerned about

the communication burden of the mechanism, namely the total amount of

information that must be communicated. The authors contruct an approxi-

mate problem by discretizing the space of agents�valuations and they deter-

mine an upper bound to the communication burden needed to �ne an exact

solution to the discretized problem, both in the general case and in par-

ticular cases. While communication complexity is an important issue with

multiple agents, in our screening problem the communication burden of any

mechanism is linear in the minimum between the size of the type space (if

using a direct mechanism) and the size of the alternative space (with the

indirect version).

Xu, Shen, Bergemann and Yeh (2010) study optimal screening with a

one-dimensional continuous type when the principal is constrained to o¤er

a limited number of products. They uncover a connection with quantization

5Note that screening problems are hard to solve exactly because of their strategic nature
and the presence of asymmetric information. If we are willing to assume that either the
principal maximizes total surplus (rather than pro�t) or that the type of the agent is
observable, then the problem simpli�es (See section 5 for a more formal discussion of this
point)
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theory and use it to bound the loss that the principal incurs from having to

use coarser contracts. Our paper di¤ers both because we look at environ-

ments where non-local constraints may be binding and because we impose

restrictions on the model the principal uses rather than on the contract

space.

A growing �eld of computer science, algorithmic mechanism design, ap-

proaches mechanism design from a computational complexity perspective

(see Hartline and Karlin (2007) for a survey). Most the work in the area fo-

cuses on prior-free mechanisms, where the designer �as is the case in online

mechanisms that must work for a range of environments �has no informa-

tion on the agents�prior distributions. Instead, we have in mind designers,

such as most �rms, that have some information about their agents and make

use of it when deciding on what mechanism to use.

An exception to the prior-free principle is Chawla, Hartline, and Klein-

berg (2007). They study approximation schemes for single-buyer multi-item

unit-demand pricing problems. The valuation of the buyer is assumed to

be independently (but not necessarily identically) distributed across items.

Chawla et al. �nd a constant-approximation mechanism based on virtual

valuations (with an approximation factor of 3). Our paper di¤ers because we

consider a general pricing problem and because our approximation operates

on the type space rather than on the contract space.6

2 Model

From a set of available alternatives Y , the principal selects a subset of al-

ternatives and assigns transfer prices p 2 R to the elements of this subset.
The resulting menu consists of a set of alternative-price pairs or allocations.

Let�s denote a menu by M = f(y0; p0); (y00; p00):::g . We assume that a menu
always contains the outside option y0 whose price p0 is normalized here to

be zero.

Once a menu is o¤ered by the principal, the agent is asked to choose

6A few papers in management science study numerical heuristics in the context of
monopoly pricing, Green and Krieger (1985) and Dobson and Kalish (1993).
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exactly one item from this menu. Although we specify the model with a

single agent, our setup equally applies to settings with a large number of

agents.

The agent�s preferences depend on his private type t 2 T drawn accord-
ing to some probability distribution f 2 �T with full support. In particular,
the agent�s payo¤ is his type-dependent valuation of the object y net the

transfer price to the principal:

v (t; y; p) = u (t; y)� p (1)

The principal�s pro�t is the transfer price net the cost of producing the

object:

� (t; y; p) = p� c (y) (2)

The above assumption follows Rochet and Chone (1998), and much of the

literature on non-linear pricing, in that the principal�s payo¤ does not di-

rectly depend on the agent�s type.

To determine the principal�s expected pro�t from o¤ering a menuM one

has to account for the agent�s choice behavior given this menu. In particular,

for a �xed menu M , the agent�s incentive-compatibility and participation

constraints give rise to a type-dependent allocation pro�le f(y(t); p(t))gT .
Formally, the principal�s expected pro�t given menu M is

�(T;M) =
R
T

[p (t)� cy (t)]f(t)dt (3)

such that for all t 2 T

u(t; y(t))� p(t)) � u(t; y0)� p0 for all (y0; p0) 2M (4)

Note, that there might be multiple pro�les that satisfy the incentive

compatibility constraint. Thus the above pro�t might not be unique. Al-

though generically it will often be, when it is not, we de�ne �(T;M) to

be the maximal pro�t from the allocation pro�les that satisfy the IC con-

11



straints.(The same will apply below when we de�ne the principal�s pro�t

given an approximate type space.)

2.1 Assumptions

We make three main assumptions. First, the agent�s type lives in a compact

and connected set within a �nite dimensional Euclidean space. Second,

for any �xed alternative y, the agent�s preferences are Lipschitz continuous

in his type. Finally, the principal�s expected payo¤ is bounded where the

natural upper-bound equals the total surplus generated by the best possible

alternative-type combination:

Condition 1 (Type Topology) T � Rm is a compact and connected set

where D is the diagonal of the minimal hypercube to contain T .

Condition 2 (Lipschitz Continuity) There exists a number K such that,

for any �xed y 2 Y and t; t0 2 T it follows that
���u(t;y)�u(t0;y)d(t;t0)

��� � K.

Condition 3 (Bounded Pro�t) The �nite upper-bound equals

�max = sup
y2Y;t2T

u (t; y)� c (y)

and without loss of generality, we set the lower bound on � to equal 0.7

Given the above assumptions, we can identify an equivalence class of

problems, by noting that a¢ ne transformations of the payo¤ functions leave

our results una¤ected. Hence we can normalize any two of the above three

7The third condition is implied by the �rst two plus the assumption that the cost
function is bounded from below.
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parameters. Speci�cally, for our purposes a set of problems characterized

by some k

k = K
D

�max

is an equivalent class. We thus normalize D = 1 and �max = 1, and refer to

a problem by its Lipschitz constant K.

2.2 Stereotype Set and Pro�t

Our key point of departure is that the principal, when facing the above

screening problem, does not have access to the full truth. Instead, she is

constrained to operate on the basis of a model which might systematically

di¤er from the truth. The truth in our setup is given by T and f , and the

principal�s model will be given by a pair S and fS . Here S is some �nite

subset of the true type-space T and fS 2 �S is a probability distribution
with full support. We refer to S as the stereotype set or equivalently as an

approximate type space.

Analogously to the way the principal�s expected pro�t was de�ned for

T and f , we can de�ne her expected pro�t if the stereotype model was true.

This is a �ctional object in the sense that neither S nor fS are necessarily

true. Nevertheless, as we will show in Section 4, this object plays an im-

portant intermediate role for the principal to estimate a bound on the true

optimal pro�t. Given a �xed menu M and a resulting stereotype allocation

f(y(t); p(t))gS the principal�s expected pro�t under her model of S and fS
is given by:

�(S;M) =
X
t2S

fS (t) (p (t)� c (y (t))) (5)

such that for all t 2 S

u (t; y (t))� p (t) � u
�
t; y0

�
� p0 for all

�
y0; p0

�
2M:
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2.3 Model Quality

The last component of our setup helps to establish a relationship between the

principal�s model and the truth. In particular, we de�ne a distance between

the principal�s model and the truth that we call the true approximation

index and denote it by "true.

To de�ne the approximation index we have to start from T and take a

partition P of this set such that it satis�es two conditions: (i) each cell of

this partition contains exactly one element of the stereotype set S; (ii) for

any given stereotype bt 2 S; the probability fS(bt) equals the integral of f over
the set of types in T that belong to the same partition cell as bt. Holding

this partition �xed, we can then determine the maximal Euclidean distance

between a type t from T and a stereotype bt from S such that they belong

to the same partition cell.

Note that multiple partitions of T will satisfy the above two conditions.

Each of these will induce a potentially di¤erent maximal distance. We choose

the partition with the smallest maximal distance and we call is the best ap-

proximation partition. Given the properties of T and f , this will always

exist. The resulting minimal maximal distance is then the true approxi-

mation index "true: We call any " such that " � "true is an approximation

index.

The above structure and the approximation has a di¤erent meaning de-

pending on which of the three interpretations of our framework �model

uncertainty, computational complexity, searching the case of cost �one has

in mind.

In the case of computational complexity or search costs, the principal

knows the true T and f and hence can directly set " = "true. She can decide

on the approximation index as a function of her objectives. As we discuss it

in Section 5 in detail, operating on the basis of a small S instead of T will

often lead to signi�cant reductions of complexity or search costs.

In the case of model uncertainty, the principal does not know the true T

and f . Furthermore, in the sense that such uncertainty is radical, the prin-

cipal does not formulate fully-speci�ed Bayesian beliefs about these objects
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either. However, she knows that her representation does not correspond

to the truth and believes that relative to her model, T and f are such that

"true < ".

The approximation index is a form of prior knowledge, which imposes

restrictions on what the true type space and distribution might be relative

to the principal�s model. Importantly, to construct the Pro�t Participation

Mechanism, the principal need not know T and f , only her model as given

by S and fS in addition to an upper bound on K and a valid approximation

index ": Importantly, while the approximation index " does restrict the

relationship between the truth and the principal�s model, it does not pin

down the truth given the principal�s model. Instead, given an S and fS
pair, it allows for a great degree of �exibility about what the true type-

space and type-generating probability distribution might be.

Finally, in this model uncertainty interpretation, our analysis can be

easily extended to situations where the principal is not 100% certain that

"true � ". If the principal thinks that there is a small probability � that

"true > ", we can simply modify the upper bound to the loss by adding a

worst-case scenario (a pro�t of zero) that occurs with probability �.

3 Pro�t-Participation Pricing

In this section we introduce the key component of our solution method.

After de�ning such pro�t-participation pricing we prove a key intermediate

result. This result is stated somewhat generally, because we will need to

apply it twice, in a somewhat di¤erent fashion, in the proof of our main

theorem.

Fix the principal�s model S with associated probability distribution fS ,

the agent�s payo¤ function u (which need only be de�ned for stereotypes),

the cost function c, a Lipschitz-constant K, and an approximation index ".

We de�ne pro�t-participation pricing as follows:

De�nition 1 For any menuM =
��
y1; p1

�
; :::;

�
yk; pk

��
pro�t-participation

15



pricing transforms this menu to be ~M =
��
y1; ~p1

�
; :::;

�
yk; ~pk

��
, where

~pi = (1� �) pi + �c
�
yi
�
; for i = 1:::::k

and

� =
p
2K":

The next lemma puts a bound on the pro�t loss when the principal

replaces a particular menu with its pro�t-participation discounted version.

For any partition ~P of the type space T , let S
�
~P
�
be the class of stereo-

type sets such that each partition cell contains exactly one stereotype.

Lemma 1 Fix T , f , S, fS, as well as the associated best approximation
partition P. Take any feasible menu M . Let ~M be the menu derived through

pro�t-participation pricing. Take any stereotype set S0 2 S (P 0) where P 0 is
a partition of T that is at least as �ne as P. Then:

�
�
S0; ~M

�
��(S;M) � �2

p
2K"

Proof. Take any menu M and compute the discounted menu ~M . Consider

two types t̂ and t that they belong to the same cell of P: Suppose that t̂ 2 S
and t 2 S0. We have to distinguish between two cases.

1. When ~M is o¤ered, t chooses the allocation y
�
t̂
�
meant for t̂. Here,

the only loss for the principal is due to the price discount determined by � :

~p
�
t̂
�
� c

�
y
�
t̂
��
= (1� �)

�
p
�
t̂
�
� c

�
y
�
t̂
���

2. When ~M is o¤ered, t chooses the allocation y0 di¤erent from y
�
t̂
�
.

By the Lipschitz condition and the " distance limit (the two types belong to

the same cell of P, and hence cannot be more than " away from each other),
we know that

��u �t̂; y �t̂��� u �t; y �t̂���� � K"��u �t̂; y0�� u �t; y0��� � K"
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When combining these inequalities they imply that utility di¤erentials for t

and t̂ cannot be too di¤erent:

u
�
t; y
�
t̂
��
� u

�
t; y0

�
� u

�
t̂; y
�
t̂
��
� u

�
t̂; y0

�
� 2K"

As the next step of the proof, we consider a revealed preference argument.

From the incentive compatibility constraints we know: (i) that t prefers y0

to y
�
t̂
�
and hence

~p
�
y
�
t̂
��
� ~p

�
y0
�
� u

�
t; y
�
t̂
��
� u

�
t; y0

�
and (ii) that t̂ preferred ŷ

�
t̂
�
to y0 and hence:

u
�
t̂; y
�
t̂
��
� u

�
t̂; y0

�
� p

�
y
�
t̂
��
� p

�
y0
�

If we combine the last two inequalities with the Lipschitz bound, we obtain

~p
�
y
�
t̂
��
� ~p

�
y0
�
� p

�
y
�
t̂
��
� p

�
y0
�
� 2K"

Substituting the de�nition of the discounted price ~p, we get:

�
�
p
�
y0
�
� c

�
y0
�
�
�
p
�
y
�
t̂
��
� c

�
y
�
t̂
����

� �2K"

This inequality guarantees that a non-served type, t =2 S, will never choose
an allocation y0 that is much worse than y

�
t̂
�
for the principal.

In total there are two sources of pro�t loss: (i) the price discount, (ii) the

deviation of types from the chosen option of their stereotypes. The former

is bounded by:

�
�
t; y0; ~p

�
y0
��
� �

�
t; y0; p

�
y0
��
� ���

�
t; y0; p

�
y0
��
� ��

and the latter is bounded by:

�
�
t; y0; p

�
y0
��
� �

�
t; y
�
t̂
�
; p
�
y
�
t̂
���

� �2K"
�
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To minimize total pro�t loss we can choose the discount rate � such that

for any type t 2 S0,

�
�
t; y0; ~p

�
y0
��
� �

�
t; y
�
t̂
�
; p
�
y
�
t̂
���

� �� � 2K"
�

= �2
p
2K"

This concludes the proof.

The lemma is the crucial result of the paper. It shows that pro�t partic-

ipation puts an upper bound to the loss that the principal su¤ers if the type

space is not what she thought it was. The existence of this bound is based

on a trade-o¤ introduced by pro�t-participation pricing. First o¤ering a

price discount leads to a loss to the principal proportional to � . At the same

time, pro�t-based discounts also loosen the agent�s incentive compatibility

constraints in a particular way. In the discounted menu allocations that gen-

erate higher pro�t to the principle become now relatively more attractive to

the agent. Hence if a type from the re�ned S0 chooses di¤erently than its

assigned stereotype from S it not only follows that this type realizes a utility

similar to its assigned stereotype, by virtue of the Lipschitz condition, but

also that this deviation cannot hurt the principal too much. Furthermore,

the greater is the pro�t-based discount, the smaller is the potential loss that

the principal might need to su¤er due to a deviation. Setting � =
p
2K"

optimizes on this trade-o¤ between the loss from lower prices and the loss

from deviations and establishes the above upper bound.

4 Pro�t Participation Mechanism

In the previous section we did not mention optimality. Neither the set of

alternatives o¤ered to the agent nor the prices of these alternatives satis�ed

were chosen with expected pro�t in mind. We now introduce a solution

method that combines �nding the optimal menu for a stereotype set and

then adapting this menu to the true type set through pro�t-participation

pricing:
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De�nition 2 The pro�t-participation mechanism (PPM) consists of the fol-
lowing steps:

(i) Compute an optimal menu M̂ for the screening problem de�ned by

S; fS, ", Y ,u; �;

(ii) Apply pro�t-participation pricing on M̂ to obtain a discounted menu
~M .

PPM takes the pricing problem described in Section 2 as its input. It

produces an output that consists of a menu ~M . Our focus is the di¤erence

between the optimal pro�t that the principal could achieve by solving the

screening problem for the true type space and the pro�t that she can expect

when she o¤ers ~M to the true type space. This comparison gives rise to a

notion of the approximation loss.

De�nition 3 The PPM loss is the di¤erence between the expected pro�t in

the optimal solution of the true type space and the expected pro�t if the menu

found through PPM is o¤ered (to the true type space).

We can now state the main result of this paper:

Theorem 4 The PPM loss is bounded above by 4
p
2K".

Proof. Step 1. De�ne the optimal mechanism

M� = argmax
M

�(T;M) :

to be an allocation vector that maximizes the principal�s expected pro�t

subject to the IC constraints and contains the outside option. Let�s denote

this optimal pro�t by �(T;M�).

The optimal mechanismM� and hence the maximal pro�t �(T;M�) are

unknown objects and they remain unknown in our approach. In fact, all the

sets and menus in the proof are not known to the principal, except the ones

found through PPM.
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Step 2. For the rest of the proof, �x P to be the best approximation par-
tition (which by de�nition achieves a true approximation index not greater

than "). Among all possible stereotype sets S (P), pick Smax 2 S (P) to
maximize the principal�s expected pro�t given that M� is o¤ered. Formally,

Smax 2 argmax
S2S

�(S;M�)

The principal�s pro�t when the agent�s type is restricted to Smax must be

better than the optimal pro�t:

�(Smax;M
�) � �(T;M�)

Step 3. We now apply Lemma 1 for the �rst time. We begin with menu

M� o¤ered to Smax 2 S (P). We discount the menu according to pro�t-
participation pricing, thus obtaining a new menu M 0. The inequality in the

lemma holds for any partition P 0 which is at least as �ne as P and for any
S 2 S (P 0); so in particular it holds for S 2 S (P). So we conclude that for
S 2 S (P):

�
�
S;M 0���(Smax;M�) � �2

p
2K":

Step 4. Take any stereotype set S 2 S (P) and pick a menu M̂ that is

optimal for that stereotype:

M̂ 2 argmax
M

�(S;M)

By de�nition given stereotype set S; this menu M̂ is better for the principal

than using menu M 0 which we de�ned in Step 3. Hence

�
�
S; M̂

�
� �

�
S;M 0�

Step 5. Let us apply Lemma 1 for the second time. We now take the

partition P 0 to be the �nest possible partition, namely T . We discount M̂
through pro�t-participation pricing to become ~M: The lemma guarantees
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that:

�
�
T; ~M

�
��

�
S; M̂

�
� �2

p
2K"

Summing up the above �ve steps:

�(T;M�) = [max pro�t] (Step 1)

�(Smax;M
�) � �(T;M�) (Step 2)

�
�
S;M 0� � �(Smax;M

�)� 2
p
2K" (Step 3)

�
�
S; M̂

�
� �

�
S;M 0� (Step 4)

�
�
T; ~M

�
� �

�
S; M̂

�
� 2
p
2K" (Step 5)

and hence the proft-loss due to using ~M instead of the optimal M� is

bounded by:

�
�
T; ~M

�
� �(T;M�)� 4

p
2K"

The theorem constructs a bound to the PPM loss by applying Lemma

1 twice. The �rst application bounds the di¤erence between the maximal

pro�t with the true type space and the stereotype pro�t with any stereotype

set satisfying the approximation index " given the optimal menu for the

true type space. The second application bounds the di¤erence between the

maximal stereotype pro�t and the pro�t that the principal obtains in the

true type space if she uses the discounted version of the best menu for the

stereotype set. Taken together, the two steps bound the di¤erence between

the maximal pro�t and the pro�t obtained with the discounted version of

the optimal menu based on the principal�s model.8

5 Interpretation and Comparative Statics

So far, we have not discussed in detail why the principal might operate only

on the basis of an approximate model. Why is she not just using the true

8When using PPM, the principal actually only uses the second application of Pro�t-
Participation Pricing. The �rst application is only used to prove the bound in the proof.
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type space? In this section, we propose three answers to this question.

5.1 Model Uncertainty

The �rst interpretation �which is also the one we prefer � is immediate.

The principal faces non-probabilistic uncertainty about the model (Walley

1991). She has a model of the agent�s type space, the stereotype set S

with the stereotype distribution function. She knows that the model may

be wrong but she does not know in which direction, however she knows the

upper bound to the approximation index ". Theorem 4 allows the principal

to achieve a minimum expected pro�t and guarantees that, as " vanishes,

this lower bound converges to the expected pro�t she would have if she knew

the true type space. Thus the PPM supplies a solution that is valid for a

whole range of true fT; fg pairs.
The rest of this section discusses in more detail the other two inter-

pretations: computational complexity and search cost. We conclude this

section by providing a simple comparative static property of PPM in light

of constraints on thinking/searching costs for the principal.

5.2 Computation Cost

To understand our contribution, it is useful to provide some background

information on the computational complexity of screening.

Unless we have a �clever algorithm�(to be discussed below), �nding an

exact solution to our screening problem requires a computation time that

is exponential in the size of the input. To see this, assume for now that T

is discrete (even though computational complexity notions can be extended

to uncountable). Note that under the Revelation Principle we can solve

the problem in two stages: (i) For each possible allocation of alternatives

to types, we see if it is implementable and, if it is, we compute the proft-

maximizing price vector; (ii) Given the maximized pro�t values in (i), we

choose the allocation with the highest pro�t. While given a �nite T , each

step (i) is a linear program, the number of allocations that we must consider

in (i) is as high as (#Y )#T . The number of steps we must perform can
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then grow exponentially in the size of the input.9 This means that �nding

the exact solution could take too long even for relatively modest instances.

The time or resources necessary to �nd the optimal solution to the screening

problem might well become unbounded given this brute-force algorithm.

Before trying to improve on the brute force algorithm, it is useful to note

that the complexity of screening problems depends on two joint assumptions:

asymmetric information and con�ict of interest. If either of these assump-

tions is missing, we can �nd an exact solution in polynomial time. If there

were no asymmetric information and the principal could condition contracts

on the agent�s type, she would simply o¤er agent t the surplus-maximizing

allocation

y� (t) 2 argmax
y
u(t; y)� c (y)

at price

p� (t) = u(t; y� (t))� u(t; y0)

This is would involve just #Y �#T steps.
If there were no con�ict of interest �namely, if we wanted to maximize

the surplus u(t; y) � c (y) �it would be even simpler. The principal would
o¤er all alternatives, each of them at the cost of production (p (y) = c (y)).

The agent would select y� (t) 2 argmaxy u(t; y)�c (y). Solving this problem
would involve just #Y steps.

Obviously, the time required to �nd the exact solution would be lower if

there existed a clever algorithm. Conitzer and Sandholm (Theorem 4, 2003)

have shown that the problem of �nding an exact solution to single-agent

mechanism design with quasilinear utility is NP-complete.10

In the case of computational complexity, the principal knows all prim-

9 If there are less products than types, it may be quicker to compute an indirect mech-
anism rather than invoke the Revelation Principle and compute the direct mechanism. To
achieve the exponential bound, assume for instance that #Y = a#T , where a > 1, and
increase both the number of types and products.
10Their proof refers to the case where the seller�s cost function may depend on the

buyer�s type (c (y; t) in our notation), while we assume that it depends only on product
speci�cation (c (y)), in line with Rochet and Choné (1998). A polynomial-time exact algo-
rithm for the case with c (y) is not known. However, if it existed, then our approximation
scheme would still o¤er a time saving that is polynomial in the size of the input.
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itives of the model, but pays a cost c > 0 for each unit of computational

time. As we argued before, absent a smart algorithm, solving the computa-

tional time needed for the solution with the true type space is #Y #T . The

computation time for PPM is of the order of

#Y #S

and thus it is polynomial in the number of possible alternatives, #Y , inde-

pendent of the number of types#T , and exponential in the size of the stereo-

type space#S. The above theorem implies that through pro�t-participation

pricing, such a reduction in computational time can be achieved at an ap-

proximation cost of 4
p
2K". This means that our mechanism is particularly

successful in reducing the complexity of the type space. Once the principal

is satis�ed with, say, a 1% pro�t loss, her computation cost is independent

of the complexity of the type space.

We can formalize these properties of PPM. To do so, we adopt here the

de�nition whereby an algorithm is a polynomial-time approximation scheme

(PTAS) if it returns a solution that is within a factor " of being optimal (AS)

and for every ", the running time of the algorithm is a polynomial function

of the input size (PT).

Proposition 1 PPM yields a polynomial-time approximation scheme that

is constant in T and polynomial in Y .

Proof. Consider S (P) and pick a stereotype set S such that the cardinality
of the stereotype set is minimal while the partition still satis�es the " max-

imal distance property. Let Q (") stand for the smallest cardinality of such

a stereotype set S: To �nd an upper-bound on Q ("), let us partition the

type space into identical m-dimensional hypercubes with diagonal length ":

Given such a partition, the maximal number of stereotypes we need is:

�Q (") =

�
1

2"

�m
(6)

Note that this upper bound is tight if types are uniformly distributed on the
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type space and the number of true types goes to in�nity.

We can now prove that the pro�t participation scheme is an approxima-

tion scheme (AS). This is true because

lim
"!0

4
p
2K" = 0

To prove that PPM is polynomial in time (PT), �x an " > 0 and note

that the cardinality of the minimal stereotype set S here is

#S = �Q (") =

�
1

2"

�m
Thus, the total computation time of PPM is proportional to the number of

steps needed to compute the optimal mechanism for the stereotype set S.

The Revelation Principle guarantees that this number is bounded above by

#Y #S

Hence, for any given ", the dimension of the stereotype space #S is �xed,

and the computation time of PPM is polynomial in the input size#Y �#T .11

The proposition is proven by showing that, for any ", it is possible to

construct a stereotype set such that every type is at most " away from a

stereotype. This bounds the exponent of the term #Y #S . The computation

time then becomes polynomial in #Y and constant in #T . The stereotype

set is constructed by partitioning the whole type space in hypercube and

selecting the mid point of each cube as a stereotype.

11A more stringent notion of approximation quality, fully polynomial-time approxima-
tion scheme (FPTAS), requires the computation time to be polynomial not only in the
input size but also in the quality of the approximation, namely in 1

"
. It is easy to see that

this requirement fails here. A designer who wants to move from a 1% approximation to
a 0.5% approximation, a 0.25% approximation, and so on, will face an exponentially in-
creasing computation time. However, it is known that many problems �all the �strongly�
NP-complete ones (Garey and Johnson, 1974) �do not have an FPTAS.
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5.3 Sampling cost

Our analysis has an alternative interpretation in terms of sampling cost.

Suppose that the principal knows the set of possible types, T , and the set of

possible alternatives, Y , but does not know the payo¤ function of the agent:

u : T � Y ! < (but she knows that u satis�es the Lipschitz condition for
K). The principal can choose to sample as many types as she wants, but

each sampling operation entails a �xed cost 
. Sampling is simultaneous,

not sequential. The principal chooses a sampling set S ex ante. By equating

the sampling set S with the stereotype set, we can apply PPM, as de�ned

above. Theorem 1 guarantees that the resulting pricing scheme is an "-

approximation of the optimal pricing scheme.

5.4 Comparative Statics on the Principal�s Cognitive Re-
sources

Assume now that there is some binding constraint either on computational

time or on total sampling cost, and let�s denote this constraint by N . Then

using PPM to solve the non-linear pricing problem gives rise to the following

comparative static results with respect to N:

Corollary 1 If the principal uses PPM, then, as N decreases:

(i) #bY decreases (there are fewer items on the menu)

(ii) #S decreases (the type model is based on a rougher categorization)

(iii) � increases (the principal prices alternatives in more magnanimous

way).

In words, as the thinking or searching cost rises in our framework, a

principal who uses PPM to solve our problem will use mechanisms that are

simpler as measured in the number of distinct items o¤ered to the agent. At

the same time, the principal will derive this mechanism based on a rougher

categorization of true types into stereotypes, but will o¤er the items at a

greater discount when compared to the prices optimal for the stereotypes.
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6 Other Approximation Schemes

While the pro�t-participation mechanism is a valid approximation scheme,

can we guarantee that there are no other mechanisms that �do better�? The

performance of any approximation scheme depends on the class of problems

to which it is applied. According to the No Free Lunch Theorem of Opti-

mization (Wolpert and McCready 1997), an elevated performance over one

class of problems tends to be o¤set by performance over another class. In

our case, the more prior information the principal has, the more tailored

the mechanism can be. For more restrictive classes of problems (e.g. one-

dimensional problems with the standard regularity conditions), it is easy

to think of mechanisms that perform better than the pro�t-participation

mechanism. But a more pertinent question is whether there are other valid

mechanisms for our same general class of problems.

As indicated by the No Free Lunch Theorem of Optimization (Wolpert

and McCready 1997), the performance of an approximation scheme should

be evaluated for a given set of problems. In this paper, we focus on a

large class of screening problems, limited only by the Lipschitz constant K

and the approximation index ". In this section, we ask whether there are

other mechanisms, besides PPM, that work for the class of problems under

consideration.

We begin by de�ning the class of mechanisms that take the model seri-

ously and then modify prices:

De�nition 4 A mechanism is model-based if it can be represented as a two-
step process where �rst one performs step (i) of the PPM and then, leaving

the alternative vector unchanged, modi�es the price vector according to some

function

~p(y) = 	 (p(y); c(y);K; ") :

The function 	 obviously does not operate on the price of the outside

option y0, which is a primitive of the problem. We focus our attention on

mechanisms that return minimal exact solutions, namely solutions where all

alternatives o¤ered are bought with positive probability.
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The function 	 can encompass a number of mechanisms. In the naive

one, the principal takes the model seriously tout court, without modifying

prices.

Example 1 In the naive mechanism,

	(p(y); c(y);K; ") = p(y)

In the �at discount mechanism, the principal acts magnanimously by

discounting prices, but her generosity is not related to stereotype pro�ts:

Example 2 In the �at discount mechanism

	(p(y); c(y);K; ") = p(y)� �

for some � > 0, which may depend on K and ".

Finally, we can also represent the PPM in this notation:

Example 3 In PPM

	(p(y); c(y);K; ") = (1� �) p(y) + �c(y)

for some � > 0, which may depend on K and ".

The following de�nition is aimed at distinguishing between mechanisms

depending on whether they contain an element of pro�t participation or not.

De�nition 5 A model based mechanism violates pro�t participation if for

an "true > 0, there exists �p > 0 and �c > 0 such that for all p0 < p00 � �p and

c � �c
p00 �	

�
p00; c;K; "

�
� p0 �	

�
p0; c;K; "

�
The principal lets the agent participate in her pro�ts if she gives her

a price discount that is strictly increasing in the pro�t (that she would

made had she sold that alternative at the full price). Pro�t participation is
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violated if there is a price/cost region, which includes the origin, such that

this condition is violated, namely an increase in the principal�s pro�t does

not translate into a strict increase in the absolute value of the price discount.

It is easy to see that both the naive price mechanism and the �at-discount

mechanism violate pro�t participation (indeed, they violate it for all values

of p00 > p0 and c. Instead, with PPM, we have

p00 �	
�
p00; c

�
= �p00 + �c > �p0 + �c = p0 �	

�
p0; c

�
for all p00 > p0

Hence PPM never violates pro�t participation.

We now show that unlike the PPM, mechanisms that violate pro�t par-

ticipation are not valid approximation schemes for the class of problems

considered here.

Theorem 5 The upper bound to the pro�t loss generated by a model-based
mechanism that violates pro�t participation does not vanish as "! 0.

Proof. It is useful to make the dependence of the mechanism on K and "

explicit. Hence in the proof we continue to write 	(p; c;K; ").

Suppose that the mechanism is model-based but violates pro�t partici-

pation for some �p > 0 and �c > 0. Select

p0 =
1

2
�p

p00 2
�
1

2
�p;min

�
1

2
�p+

1

6
K; �p

��
Suppose that c = 0. For the p0 and p00 chosen above it must be that:

p00 �	
�
p00; 0;K; "

�
� p0 �	

�
p0; 0;K; "

�
(7)
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De�ne h = p0 and q = p00 � p0. Consider the following problem:

T = [0; 2]

f (t) =
1

2
for all t 2 [0; 2]

Y = [1; 2] [ f�yg [ y0

u (t; y) =

8><>:
h+ q (t� 1� 2 jy � tj) if y 2 [1; 2]
h if y = �y

0 if y = y0
c (y) = 0 for all y

In this screening problem, types below t = 1 prefer a �generic�alternative

�y. Types above t = 1 prefer a �personalized�alternative y = t.

It is easy to see that in the optimal solution of this screening problem

types below 1 buy �y at price h and each type t > 1 is o¤ered a personalized

alternative ŷ (t) = t at price h+ q (t� 1). The principal�s expected pro�t is
h+ 1

4q.

Note that the K-Lipschitz condition is satis�ed by this problem. To see

this, note that u (t; y) is continuous in t for all y and that lim~t!t
�� @
@tu (t; y)

��
reaches a maximum when y > t > 1, in which case, it is 3q. This means that

u satis�es a Lipschitz condition for 3q. Given the normalization that D = 1,

T must be halved to [0; 1], implying a Lipschitz condition with K = 6q.

This is always satis�ed because, given the de�nition of q,

6q = 6
�
p00 � p0

�
� 6

�
min

�
1

2
�p+

1

6
K; �p

��
� 61

2
�p � K:

To show that the mechanism 	 does not yield a valid approximation, we

consider the following sequence of stereotype sets with associated stereotype
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probability distributions:(
S0 = f0; 1; 2g
fS0 (0) = fS0 (2) =

1
4 ; fS0 (1) =

1
2(

S1 =
�
0; 12 ; 1;

3
2 ; 2
	

fS1 (0) = fS1 (2) =
1
8 ; fS1

�
1
2

�
= fS1 (1) = fS1

�
3
2

�
= 1

4

...

(
Sn =

�
0; 12n ; : : : ; 1; 1 +

1
2n ; : : : ; 2

	
fSn (0) = fSn (2) =

1
2n+2

; fSn (s) =
1

2n+1
for all other s

...

Given the prior f , the true approximation index for stereotype set Sn is

"ntrue =
1
2
1
2n =

1
2n+1

. We set "n = 1
2n+1

.

Hold n �xed. The exact solution of the screening problem for Sn involves

o¤ering �y at price p (�y) = h as well as a vector of alternatives identical to

the vector of types
�
1 + 1

2n ; : : : ; 2�
1
2n ; 2

	
, each of them priced at p (ŷ (s)) =

h + q (t� 1). The minimum price is h, while the maximum price is h + q.

Hence, by our de�nition of h and q, all prices are between p0 and p00.

The mechanism returns the following prices:

~p (�y) = 	 (p (�y) ; 0;K; "n) = 	 (h; 0;K; "n)

~p (ŷ (s)) = 	 (p (ŷ (s)) ; 0;K; "n) = 	 (h+ qs; 0;K; "n)

Now recall that by de�nition 	(p; c) violates pro�t participation. Hence,

for any t 2 [1; 2],

h+ q (s� 1)�	(h+ q (s� 1) ; 0;K; "n) � h�	(h; 0;K; "n) (8)

Now take any type t 2 [1; 2] which is not a stereotype (a set of measure

31



1 for every Sn) and consider his choice between the allocation meant for any

stereotype s 2 [1; 2] modi�ed by 	 (ŷ (s) at price 	(h+ q (s� 1) ; 0 : K; "n))
and the allocation meant for stereotypes below t = 1 (�y at price 	(h; 0)).

If he buys ŷ (s) he gets payo¤

h+ q (t� 1� 2 js� tj)�	(h+ q (s� 1) ; 0;K; "n)

If he buys �y he gets utility

h�	(h; 0;K; "n)

He chooses ŷ (s) only if

q (t� 1� 2 js� tj)�	(h+ qs; 0;K; "n) � �	(h; 0;K; "n)

which, if one subtracts (8) from it, implies:

q (t� 1� 2 js� tj)� q (s� 1) � 0;

which can be re-written as

t� s � 2 js� tj ;

which is always false. Hence, all types that are not stereotypes choose �y

rather than a nearby personalized alternative. For any Sn, the expected

pro�t of the principal if she uses 	 is h.

Hence, the limit of the pro�t as n ! 1 ("n ! 0) is still h, which is

strictly lower than the pro�t with the maximal pro�t with the true type,

which, as we saw above, is h+ q
2 .

The intuition behind Theorem 5 has to do with the knife-edge nature

of mechanisms that do not include an element of pro�t participation. In

the exact solution of the problem with the approximate type space, there is

a binding constraint (IC or PC) for every alternative that is o¤ered. The

pro�t-participation mechanism �and analogous schemes �manage to relax

these constraints in the right direction. By adding slack to those constraints

32



that ensure that the agent does not choose alternatives with a lower pro�t.

Mechanisms without the pro�t-participation feature return a price vector

that still displays binding constraints � or, even, no longer satis�es those

constraints.

This means that in mechanisms where pro�t participation is violated

types near a stereotype might choose di¤erent allocations. If only local

constraints are binding, the magnitude of such misallocations vanishes as

" ! 0. But in multi-dimensional screening problems non-local constraints

will typically be binding. In this case, the magnitude of the misallocation

does not vanish even as "! 0.

The proof above proceeds by constructing a relatively straightforward

class of problems where in the optimal solution non-local constraints are

binding for a set of true types with positive measure. Namely, we assume

that the alternative space includes a generic inferior alternative and a con-

tinuum of type-speci�c alternatives. In the optimal solution, a portion of

types face a binding incentive-compatibility constraint between a person-

alized alternative and the generic alternative. Hence, all types nearby a

stereotype strictly prefer the generic alternative to this stereotype�s optimal

allocation. This creates a non-vanishing loss for the principal.

Of course, the class of problems used in the proof is a set of measure zero,

within the set of all possible problems. However, all we need to proceed is

a class of problems where non-local constraints may bind, and is often a

generic feature of the studied multi-dimensional screening problem (Rochet

and Choné 1998 or Rochet and Stole 2003).

Theorem 5 only applies to the class of model-based mechanisms. Thus,

we can interpret it as saying that, if there are mechanisms, beside PPM,

that constitute valid approximation schemes for screening problems, such

mechanisms are: (i) either similar to PPM in that they are model-based

and contain an element of pro�t participation; (ii) or radically di¤erent

because they are not model-based. We leave the exploration of mechanisms

in (ii) to future research.
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7 Conclusion

We consider a principal who faces a screening problem but is constrained

to operate on the basis of an approximate type-space. We characterize

the upper bound to the expected loss that the principal incurs if she uses

the pro�t-participation mechanism. We show that the loss vanishes as the

approximate type space tends to the true one. We prove that this is not

true for any similar mechanisms that do not contain a pro�t participation

element.

The economic insight of this paper is that a principal who operates on the

basis of an approximate type space cannot just ignore the mis-speci�cation

error. She can, however, �nd a simple way to limit the damage. It would be

interesting to know whether this insight holds beyond our set-up. Our analy-

sis has a number of limitations that future research could address. First, we

assume that the principal�s cost depend only on the product characteristics

but not on the type of the agent (as in insurance problems). Second, we

assume that there is only one agent (or a continuum thereof). It would

be interesting to extend the analysis to multiple agents. Third, we restrict

attention to quasilinear mechanisms.
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