
 Patnaik, N., Hallett, J., & Rashid, A. (2019). Usability Smells: An Analysis
of Developers’ Struggle With Crypto Libraries. In Proceedings of the
Fifteenth Symposium on Usable Privacy and Security (pp. 245-257).
USENIX Association.

Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Usenix at https://www.usenix.org/conference/soups2019/presentation/patnaik. Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/218599225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research-information.bris.ac.uk/en/publications/usability-smells(001544ec-9d69-4e69-b29a-faa21b5de38b).html
https://research-information.bris.ac.uk/en/publications/usability-smells(001544ec-9d69-4e69-b29a-faa21b5de38b).html

Usability Smells: An Analysis of Developers’ Struggle With Crypto Libraries

Nikhil Patnaik
University of Bristol

nikhil.patnaik@bristol.ac.uk

Joseph Hallett
University of Bristol

joseph.hallett@bristol.ac.uk

Awais Rashid
University of Bristol

awais.rashid@bristol.ac.uk

Abstract
Green and Smith propose ten principles to make cryptography
libraries more usable [14], but to what extent do the libraries
implement these principles? We undertook a thematic anal-
ysis of over 2400 questions and responses from developers
seeking help with 7 cryptography libraries on Stack Overflow;
analyzing them to identify 16 underlying usability issues and
studying see how prevalent they were across the 3 cryptog-
raphy libraries for which we had the most questions for on
Stack Overflow. Mapping our usability issues to Green and
Smith’s usability principles we identify 4 usability smells
where the principles are not being observed. We suggest what
developers may struggle the most with in the cryptography
libraries, and where significant usability gains may be had for
developers working to make libraries more usable.

1 Introduction

Cryptographic APIs are hard to use. Other work has devel-
oped recommendations, guidelines and principles for how to
make them more usable—but how can we tell when such us-
ability recommendations, guidelines and principles are not be-
ing implemented? In this paper we focus on the ten principles
proposed by Green and Smith [14] (reproduced in Figure 1).
We investigate two key questions: (i) what are the issues that
developers face when using seven cryptography libraries and
(ii) what are the telltale signs that one of the ten usability
principles is being violated?

Code smells are indicators that a piece of software code
may be of lower quality than desired [12]. A code smell
signifies that, while a piece of code may not be broken, it
is violating a design principle and may be fragile and prone
to failure. For example, Fowler defines the Shotgun Surgery
smell as:

“You whiff this when every time you make a kind
of change, you have to make a lot of little changes
to a lot of different classes. When the changes are

all over the place, they are hard to find, and it’s easy
to miss an important change.” [12]

Code that smells of shotgun surgery may be correct and pass
all the tests, but the smell suggests that there may be a deeper
issue with the code’s structure.

Following the idea of a code smell, a usability smell is
an indicator that an interface may be difficult to use for its
intended users. Past work has focused on usability smells in
graphical user interfaces (GUIs)—indicators that end users
may struggle to use an application [2, 16]. However, usabil-
ity issues are not limited to GUIs. Developers struggle with
programming interfaces in the same way that users struggle
with user interfaces. For example, past work has suggested
that improving the quality of documentation would lead to
developers needing to ask fewer questions about how to use
libraries [19]. If the developer is unfamiliar with the library
they will rely on the documentation provided with the library
and their own programming knowledge to implement the re-
quired cryptographic tasks. If we look at a developer question
and answer site, such as Stack Overflow (a popular developer
question and answer help website), we might expect to see
fewer questions asking for help with the basic usage of a li-
brary if it has improved its API documentation. However, as
our analysis shows, these smells are present across the cryp-
tography libraries we examined and all can make usability
improvements to help developers use them successfully.

In order to identify developers’ struggles with crypto-
graphic libraries, we analyze 2,491 Stack Overflow questions.
We examine questions about seven cryptographic libraries
(Table 1), selected for their popularity and to encompass a
broad range of languages and use-cases. We conduct a the-
matic analysis [5, 8, 23] of the questions and answers looking
for the underlying reason the question was asked—be that
because of missing documentation, confusion around an API,
lack of cryptographic knowledge, or developers preferring
Stack Overflow to other resources. We identify 16 thematic
issues across our corpus of questions and measure their preva-
lence across the different libraries. We relate these issues

mailto:nikhil.patnaik@bristol.ac.uk
mailto:joseph.hallett@bristol.ac.uk
mailto:awais.rashid@bristol.ac.uk

Library URL

OpenSSL https://github.com/openssl/openssl
NaCl http://nacl.cr.yp.to
libsodium https://github.com/jedisct1/libsodium
Bouncy Castle https://bouncycastle.org/java.html
SJCL https://github.com/bitwiseshiftleft/sjcl
Crypto-JS https://github.com/brix/crypto-js
PyCrypto https://www.dlitz.net/software/pycrypto/

Table 1: Cryptography libraries examined in this paper.

back to Green and Smith’s usability principles and identify
four usability smells that indicate that specific principles are
not being implemented fully. Finally we make suggestions,
based on the prevalence of smells in each of the libraries, as
to how library developers can better implement the principles
to reduce the smells and make their API more usable.

The novel contributions of our investigation are as follows:

• An empirical validation of Green and Smith’s princi-
ples showing when a principle is not being applied but
also identifying issues that Green and Smith’s principles
currently do not capture.

• The thematic analysis of 2,491 Stack Overflow questions
to assess the usability of cryptographic libraries.

• Identification of 16 thematic issues across 7 crypto-
graphic libraries—capturing developers’ struggles with
regards to the usability of these libraries codified into
four usability smells (Needs a super sleuth, Confusion
reigns, Needs a post mortem, and Doesn’t play well with
others) which are signs that particular Green and Smith
principles are not being fully implemented by a given
library; before giving an overview of the prevalence of
theses 16 issues, and 4 smells in 3 of the libraries (those
that had over a hundred questions with a score ≥ 2).

2 Background and related work

The background and related work falls into two broad cate-
gories: research on usability issues of APIs in general; and
work focusing on such issues in cryptography and security
libraries. We discuss each of these bodies of work next.

2.1 Usability issues of APIs
Many studies have addressed the usability of APIs and why
they can be difficult to learn and use. Zibran et al. [27] re-
viewed 1513 bug posts across five different repositories to
identify the API usability issues that were reflected in the bug
posts by the developers who used the APIs. They found 22
different API usability factors. We adopt a similar approach

Abstract Integrate cryptographic functionality into
standard APIs so regular developers do not have to
interact with cryptographic APIs in the first place.

Powerful Sufficiently powerful to satisfy both security
and non-security requirements.

Comprehensible Easy to learn, even without crypto-
graphic expertise.

Ergonomic Don’t break the developer’s paradigm.

Intuitive Easy to use, even without documentation.

Failing Hard to misuse. Incorrect use should lead to
visible errors.

Safe Defaults should be safe and never ambiguous.

Testable Testing mode. If developers need to run tests
they can reduce the security for convenience.

Readable Easy to read and maintain code that uses
it/Updatability.

Explained Assist with/handle end-user interaction, and
provide error messages where possible.

Figure 1: Green and Smith’s 10 usable cryptography API prin-
ciples, reproduced from [14]. We have given each principle
a short name to allow easy reference throughout the paper.

and review the questions developers have about each one of
our selected cryptographic libraries and see what prevalent
usability issues arise. However, we investigate further to iden-
tify the usability smells from each library that contribute to
the violation of the Green and Smith principles.

Other work has explored ways to measure the usability
of existing APIs. Scheller and Kúhn proposed a framework
for measuring an API’s usability against a set of usability
aspects [24]. Dekel and Herbsleb noted that many APIs
place notes about when it is appropriate to use certain func-
tions [9]. They developed a tool (eMoose) to integrate these
notes into developer’s editors (when using an annotated API)
and found that developers who used their tool debugged pro-
grams quicker than those who only had access to the docu-
mentation. In follow up work [10] they noted that the key
behind eMoose’s success was not that eMoose made the notes
immediately available, but rather that it helped provide a scent
for programmers trying to debug their code—a hint that there
was something that could go wrong and that prompted them
to further read the documentation. Our work identifies us-
ability smells that library developers and maintainers can use
to understand how they may improve the usability of their
libraries in line with the Green and Smith principles.

https://github.com/openssl/openssl
https://github.com/openssl/openssl
http://nacl.cr.yp.to
http://nacl.cr.yp.to
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium
https://bouncycastle.org
https://bouncycastle.org/java.html
https://github.com/bitwiseshiftleft/sjcl
https://github.com/bitwiseshiftleft/sjcl
https://github.com/brix/crypto-js
https://github.com/brix/crypto-js
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/

Helping developers avoid mistakes has been studied ex-
tensively with many papers suggesting ways APIs can be
improved to help avoid mistakes and to speed up debugging
when they inevitably occur. Bloch asserted general principles
for API design that would produce a usable API [4]. These
principles were summarized as 39 different maxims, though
Bloch noted that good API design is a craft and couldn’t
be entirely captured by lists of rules. Others have proposed
similar lists of metrics, often developed from studying or sur-
veying developers. Ko and Yann studied the way developers
use APIs [18]. They found that developers do not only need
detailed worked examples but also good explanations of the
concepts, parameters and ideas behind the API’s design. Pic-
cioni et al. [22] ran a study to assess the usability of an API
by comparing the programmer’s expectations to their perfor-
mance. They found that issues with naming convention and
types confused programmers, poor documentation made pro-
gramming harder and that overly flexible APIs confused less
experienced programmers. Clarke and Becker adapted the
cognitive dimensions framework, used to describe the usabil-
ity of user interfaces [15], to evaluate the usability of a class’s
API [6]. They suggested a list of ten dimensions that APIs
should be judged on based on the original cognitive dimen-
sions framework and two new ones that capture how much
work any individual operation does. Our work complements
such research by identifying the signs and smells – based
on questions that developers ask when seeking help—that
suggest developers are struggling to use an API.

As developers have changed so have their sources of docu-
mentation. Stack Overflow is increasingly used as a primary
source of documentation. Parnin et al. surveyed questions
about three popular (non-cryptographic) APIs on the site.
They found that, on average, 80% of the API functions would
be covered by at least one Stack Overflow question, but that
only a relatively small pool of experts answered them [21].
Treude and Robillard looked at ways to extract insight from
Stack Overflow questions and then how to integrate them with
developer’s toolchains [25]. In a small study of developers
they established that developers found these extra insights
helpful when programming. In a similar manner, our work
studies developers’ struggles through an analysis of the ques-
tions they ask on Stack Overflow. Our work adds to the
literature by using Stack Overflow not to gain insight into
developers, but rather into the usability issues of APIs the
developers use.

2.2 Usability issues of cryptography and secu-
rity libraries

Nadi et al. [20] examined over 1,000 Java cryptography-
related questions and developed a set of 5 obstacles captur-
ing the developer’s problem based on the top 100 questions.
Whilst Nadi et al. just looked at Java developers’ struggles
our work is broader examining developers’ struggles with

libraries for multiple languages and systems. They reported a
low inter-rater reliability score (kappa = 0.41). We also relate
these back to principles to identify underlying issues in the
form of usability smells.

Egele et al. looked at the use of cryptographic APIs in
Android applications [11]. They found mistakes in 88% of
the apps that used cryptographic APIs. They developed a
static analysis tool to identify mistakes automatically and
proposed three usability guidelines to help developers avoid
making mistakes in the future. Mindermann et al. studied
the usability of cryptography APIs for the Rust programming
language [19]. They noted that, whilst insecure defaults (and
defaults in general) do not occur frequently in cryptographic
libraries, very few projects warn about depreciated cryptogra-
phy techniques or encourage developers to use more secure
methods. They produced a list of 13 recommendations for
cryptography APIs.

Various studies have assessed the usability of specific cryp-
tographic libraries, e.g., [4, 14, 19] and developed a set of
usability metrics. For example, one common guideline is:

“Use a prominent location to link to the documen-
tation, e.g., at the start page of the repository.” [19]

Another guideline suggests providing examples so that devel-
opers can see how to use the library:

“Example code should be exemplary. If an API is
used widely, its examples will be the archetypes for
thousands of programs.” [4]

The issues we identify in this paper complement these guide-
lines by acting as usability smells—usability principles tell us
how to make libraries more usable, the smells suggest where
users are struggling due to such principles not being observed
or implemented.

Studies have also shown that even if a cryptographic library
is powerful developers may suggest to use an alternative cryp-
tographic library which, although more usable, may be poorly
implemented [1, 14]. For instance, Acar et al. [1] showed that
the Python cryptographic library Keyczar, despite claiming
to be designed for usability, was challenging to use because
of poor documentation and lack of documented support for
the key generation task. Surveying the developers after their
study Acar et al. found that developers frequently found is-
sues with missing documentation and examples in Python
cryptographic libraries. We also find in our analysis of Stack
Overflow questions that many developers struggle and ask
questions due to issues with missing documentation and a
need for example code, alongside several other issues.

If not all cryptography libraries are equally usable, then
what issues do developers struggle with when using them?
The analysis presented in this paper sheds light on such issues
and identifies the usability smells that indicate that usability
principles are not being fully observed in the design of a
particular library.

3 Method

We investigate:

1. what issues with cryptographic libraries cause develop-
ers to seek help and ask questions on the Stack Overflow
question and answer site;

2. how prevalent are the usability issues that we identify in
seven cryptography libraries; and

3. what are the usability smells that are indicative of failures
to implement Green and Smith’s usability principles,
and their prevalence in the 3 libraries for which we have
sufficient data.

To answer these questions we selected seven cryptographic
libraries to examine (Table 1), based on their prominence as
well as to include a breadth of languages—C, Java, JavaScript
and Python—and use-cases. Other libraries exist, but these
seven cover a representative sample of what various cryp-
tographic libraries currently look like including those with
many users (OpenSSL) to those with only a few (SJCL). Ad-
ditionally, two of the libraries (NaCl and libsodium) describe
themselves as being usable, so we would hope to see a range
of issues and differences between the usable cryptographic
libraries and the not-so usable ones.

We scraped 2491 questions from Stack Overflow, using the
library names as search terms and selecting only questions
with a score greater than 1 to help avoid low-value and badly
worded questions. Stack Overflow uses a reputation system
to help combat spam—users with sufficient reputation1 are al-
lowed to vote for the usefulness of a question, which becomes
the question’s score.

We conducted a manual review of all 2491 questions: iden-
tifying the underlying issue, capturing common themes be-
tween questions, and verifying the validity of the answer. In
order to do so, we studied the full description of the question
on Stack Overflow to help us pinpoint the core theme of the
issue. We also analyzed the explanations provided by other
developers in the answer section to that question. The ques-
tions in our corpus cover a wide time period. Therefore, to
address the issue of validity, once we studied the question
and any related answers, we reviewed the prominent link of
the cryptographic library to assess whether the question was
still valid and unaddressed by the library. For example, if
the developer said that they could not find documentation
for a specific feature they wished to use, we checked if the
documentation was still unavailable in the current version of
resources for the cryptographic library. Questions that did
not relate to an issue with the library itself, for example, due
to users not understanding the behavior of their operating
system’s dynamic linker (we return to this issue in the Discus-
sion; Section 7) or where the developer mistakenly attributed

1At the time of writing: 15 reputation to vote up, 125 to vote down.

their question to a library, were not considered further. In
total, we analyzed 2317 relevant questions.

We used thematic analysis, a qualitative research method
used to extract themes from text [5, 8, 23], to identify re-
curring themes such as the need for documentation, build
and compatibility issues within the Stack Overflow questions.
We developed our themes by iteratively labelling questions,
and then reviewing and discussing the labelling. We arrived
at a set of 16 themes that captured the different issues de-
veloper’s faced and ascribed a final, single theme to each
of the questions we examined. Initially we used multiple
themes, however we found only 4 cases where a question
had multiple labels, so we simplified and ascribed the theme
that best categorized the underlying reason the question was
asked. We repeated the labelling with a regularly selected
10% subset of the questions analyzed by a second researcher
and calculated Cohen’s kappa—a commonly used measure of
inter-rater agreement [7]. Cohen’s kappa was 0.76 indicating
that our coding was consistent between mappers.

3.1 Threats to validity

The questions in our corpus cover a period of several years.
There is a danger that as time and the cryptographic libraries
themselves change that the issues developers face could also
change. To mitigate this we validated that usability issue
identified in the library were still present in the current version.
For example, if we attributed an issue to the documentation
being missing, we validated that we still couldn’t find the
relevant documentation.

There is also the danger that an issue faced by a developer
may be due to a particular problem faced solely by that devel-
oper and not a more general problem. To mitigate against this
we selected questions which had a score greater than one—
that is to say that more users of Stack Overflow believed the
question to be worthwhile than not. Stack Overflow’s repu-
tation system is designed to help remove questions that have
already been answered, and those that are of low-value (for
example, questions where a developer has not asked a ques-
tion, or questions where students are attempting to have their
coursework answered for them). By selecting only questions
with a positive score we help avoid some noise.

During our thematic analysis, each question was mapped
to a single theme, with the dominant theme being picked in
the case that a question could be attributed to multiple themes.
For the most part, however, questions could be ascribed to a
single theme and multiple themes were rare so a 1–1 mapping
was used for consistency.

To identify the usability smells, we map the issues we iden-
tify to the usability principles that library developers should
be implementing as identified by Green and Smith [14]. Vari-
ous others have suggested different principles for developers
(as we discuss in Section 2). We selected Green and Smith’s
principles because their principles have not currently been

validated, and were themselves a synthesis of other usability
research [4] focused on usability and security issues. Other
principles could be validated using the same methods and
corpus as we have used however, and our dataset is available
for comparative studies.

4 What usability issues do developers face?

Our thematic analysis reveals 16 usability issues with which
developers struggle (Figure 2) categorized into 7 themes as
shown in Figure 3. We discuss each of the issues and give
some examples to demonstrate how they manifest in the ques-
tions posed by the developers.

4.1 Missing information
Missing Documentation. A developer states that they wish
to use a function or form a feature that has components sup-
ported by the library but cannot find relevant information in
the library documentation:

“So I already know how to specify locations for
trusted certificates using
SSL_CTX_load_verify_locations().[⋯] But
nothing is mentioned about the trusted system
certificates residing in the OPENSSLDIR.”

Looking for Example Code. Not all library functionality
needs an example, but it can be helpful to document common
use-cases. The developer wishes to use a function supported
by the library and requests examples of how the function is
used. In the question the developer may address the quality
of the example code or lack thereof:

“I’m attempting to run:

openssl pkcs12 -export -in "path.p12"
-out "newfile.pem"

but I get an error.

unable to load private key

How do I extract the certificate in PEM from
PKCS#12 store using OpenSSL?”

This differs from passing the buck in that the developer has
identified the functionality they want to use and made attempt
at solving it. They have stated the problem they want to solve
and have asked for a example in order to debug their own
attempt.
Clarity of documentation. The developer found the documen-
tation or output but found it vague or unclear in describing
what exactly it does:

“How can I interpret openssl speed output?

I ran openssl speed on my Ubuntu computer. [⋯]
what is ’Doing md4 for 3s’ mean? does it mean

do the whole test for 3 times/seconds? what does
’1809773 md4’s in 2.99s’ mean? what does ’8192
size blocks’ mean? [⋯] And the above, last lines
of openssl speed md4 output - what does they mean
exactly?”

4.2 Not knowing what to do.
Passing the buck. The developer delegates their question to
the Stack Overflow community, even though a quick search
for the issue on the library website returns the answer needed:

“I’m trying to convert the .cer file to .pem through
openssl, the command is:

openssl x509 -inform der -in
certnew.cer -out ymcert.pem

and that’s the errors I‘m getting:

unable to load certificate

What am I doing wrong?”

Rather than find the answer themselves the developer has
passed the buck and used Stack Overflow to get the answer
rather than search existing resources, as reflected in the re-
sponse:

“[⋯] like explained by ssl.com, a .cer file [⋯]”

Passing the buck differs from other issues, such as what’s
gone wrong here, in that the developer has made no attempt
to solve the problem. They have encountered a problem and
want someone else to give them the answer rather than work
it out or find an existing solution by themselves.
Lack of knowledge. There were many instances where new
users struggled with the functions provided by a library due
to the lack of knowledge they had about the concepts of cryp-
tography. For example:

“[⋯] I’m using OpenSSL to avoid pay for it. I
created my certificate this way: [⋯]
But when I navigate to the website I get an "error"
telling me that this is an "Untrusted certificate":
The security certificate presented by this website
was not issued by a trusted certificate authority.”

This lack of knowledge is implicitly highlighted in the
answer:

“What you get from OpenSSL tool is a self signed
certificate. Of course it is not trusted by any
browser, as who can say you are worth the trust.

Please buy a certificate if you want to set up a public
web site [⋯]”

Missing Documentation. The cryptographic library does not have documentation available to address the issue.

Example Code. The developer asks for code examples to learn how to use a specific feature of the library or to learn how
to implement some behavior. An example is either missing or lacking somehow.

Clarity of Documentation. The library has documentation for the developer’s issue, but it is unclear or lacking additional
information. The developer asks for clarification.

Passing the buck. The developer asks Stack Overflow, even though documentation regarding their issue has been given.
Also questions where they ask a simple question which they answer themselves.

Lack of Knowledge. The developer does not have foundation level cryptography knowledge. The developer is new to
cryptography as a subject and, in turn, the features of the cryptographic library.

Unsupported Feature. The crypto library does not support a security feature the developer wants to implement.

Borrowed Mental Models. The developer requests a mapping of a functionality between cryptographic libraries.

Abstraction Issue. Issues addressing the level of abstraction provided in the code of the cryptographic library. The
developer wants a more detailed explanation than is provided by the documentation.

What’s gone wrong here? The developer has code that looks like it should work, but fails—they are looking for an
explanation why.

API Misuse. The developer has incorrectly used a specific feature from the cryptographic library.

Should I use this? The developer says what they wish to implement and asks which methods would be most apt to use.

How should I use this? The developer does not understand how to correctly use a feature or its various parameters.

Build Issues. Issues related to the setup of the cryptographic library and running provided tests.

Performance Issues. Issues regarding the performance of the cryptographic library.

Compatibility Issues. Issues related to integrating features from the cryptographic library with other libraries and tools.

Deprecated Feature. Issues addressing that a specific feature is not working, later to conclude that the feature is deprecated.

Figure 2: The 16 issues identified through a thematic Analysis of Stack Overflow Questions.

4.3 Not knowing if it can do
Unsupported feature. The developer wants to do something
that the library does not support. This may suggest that the
library is unclear about what it can and cannot do:

“Has anybody Implemented ElGamal using
OpenSSL or even inside?”

Borrowed mental models. The developer is trying to take a
mental model about how one library works and apply it to
different one:

“How to recreate the following signing cmd-line
OpenSSL call using M2Crypto in Python?:

This works perfectly in command-line, I would like
to do the same using M2Crypto in Python code.

[⋯]”

The developer has tried to apply concepts from one library
to another and has become confused when that doesn’t work.
This differs from passing-the-buck in that they are not un-
willing to learn, they just don’t know that the concepts differ.
Passing-the-Buck is where a developer doesn’t know how to
use a library and tries to get someone else to tell them. They
don’t care about learning and just want to be told what to do.

4.4 Programming is hard

Abstraction issue. The developer needs help with an abstrac-
tion provided by the library. They’ve seen the documentation
but they lack knowledge of the underlying abstraction to un-
derstand it. They need more help:

I am trying to get my head around public key en-
cryption using the openssl implementation of rsa in

Issues across time and space

Compatibility issue

Deprecated feature

System issues
Build issue

Performance issue

Not knowing if it can do

Unsupported feature

Borrowed mental models

Not knowing what to do

Passing the buck

Lack of knowledge

Usage issues

Should I use this?

How should I use this?

Programming is hard

Abstraction issue

What's gone wrong here?

API misuse

Missing information

Missing documentation

Looking for example code

Clarity of documentation

Figure 3: Categorization of the 16 issues identified through the thematic analysis.

C++. Can you help? So far these are my thoughts
(please do correct if necessary) [⋯] I see these two
functions: [⋯] If Alice is to generate *rsa, how
does this yield the rsa key pair? Is there something
like rsa_public and rsa_private which are derived
from rsa? Does *rsa contain both public and private
key and the above function automatically strips out
the necessary key depending on whether it requires
the public or private part? [⋯]

What’s gone wrong here? The developer has tried to use the
library but has failed. They have given a specific example and
asked Stack Overflow to suggest what has gone wrong:

“Here is a certificate in x509 format that stores the
public key and the modulo:

const unsigned char
*certificateDataBytes = /*data*/;

Using OpenSSL and C, how can I convert it into an
RSA object? I’ve tried several methods but I can’t
get it to work in RSA_public_encrypt”

API misuse. API Misuse represents questions where the de-
veloper incorrectly uses a function and they are corrected by
another developer, usually supported with an explanation of
the answer. For example:

“[⋯] I’m trying to build a handshake protocol
for my own project and am having issues with the
server converting the clients RSA’s public key to a

Bignum. It works in my client code, but the server
segfaults when attempting to convert the hex value
of the clients public RSA to a bignum.”

In the response to the question, the correct use of the function
is explained:

“RSA new() only creates the RSA struct, it does not
create any of the bignum objects inside that struct,
like the n and e fields. [⋯]”

4.5 Usage issues.

Should I use this? Developers have tasks and features in
mind for which they want to know whether they should use a
specific library function or not—or if there are two or more
functions, which one should they use? In other cases, devel-
opers want to know whether the choices they make regarding
the security of their application are appropriate:

“I’m trying to build two functions using PyCrypto
that accept two parameters: the message and the
key, and then encrypt/decrypt the message.

I found several links on the web to help me out, but
each one of them has flaws:

[⋯] Also, there are several modes, which one is
recommended? I don’t know what to use :/”

This differs from missing documentation where the devel-
oper is searching for specific API documentation, in that here
they are unsure about which part of the API they want to use
in the first place.
How should I use this? In contrast with Should I use this, in
such cases the developer knows what they want to use, but is
confused about some of the parameters involved:

“How to compute
RSA-SHA1(sha1WithRSAEncryption) value with
OpenSSL?”

4.6 System issues
Build issues. To use an API developers must first build it (and
run tests). This causes problems for the developer:

“Error compiling OpenSSL with MinGW/MSYS”

Or

“How to build OpenSSL to generate libcrypto.a
with Android NDK and Windows”

Performance issues. The developer wants to use a library but
finds that it isn’t performant enough for their use-case. They
seek help in optimizing their use of the library:

“[⋯] profiling has revealed [⋯] 40% of my library
runtime is devoted to creating and taking down
HMAC_CTX’s behind the scenes. [⋯] How do I
get rid of the 40% overhead on each invocation in a
(1) thread-safe / (2) resume-able state way? [⋯]”

4.7 Issues across space and time
Compatibility issues. The developer is struggling to integrate
the library in question with another platform or library. For
instance, out of the 2022 questions pertaining to OpenSSL,
244 were related to compatibility issues:

“Encrypt in C# using OpenSSL compatible format,
decrypt in Poco:
I’m trying to encrypt (aes-128-cbc) in Win OS us-
ing a OpenSSL compatible format and decrypt on
Linux OS using Poco::Crypto that is a wrapper of
OpenSSL. ”

Deprecated feature. The developer is trying to do something
the library once supported, but doesn’t know that the latest
version has deprecated it:

“After a few days of scouring the internet and
openssl docs i’ve hit a wall [⋯].”

In the answers the developer realizes that they are using an
outdated API.

“Thanks to JWW and indiv i was able to solve my
problem, it was an issue with me using older API’s,
and improper return checking. Solution: [⋯]:”

Issue O
pe

nS
S

L

Li
bs

od
iu

m

N
aC

l

B
ou

nc
y

C
as

tle

S
JC

L

C
ry

pt
o-

JS

P
yC

ry
pt

o

Missing Documentation 256
(13%)

3
(9%)

5
(12%)

31
(17%)

4
(27%)

2
(6%)

7
(4%)

Example Code 128
(6%)

1
(2%)

10
(5%)

2
(13%)

4
(3%)

Clarity of Documentation 92
(5%)

3
(7%)

2
(1%)

6
(4%)

Passing the buck 136
(7%)

2
(6%)

4
(10%)

22
(12%)

4
(27%)

17
(49%)

10
(6%)

Lack of Knowledge 44
(2%)

6
(19%)

3
(7%)

19
(10%)

4
(11%)

17
(11%)

Unsupported Feature 24
(1%)

1
(2%)

5
(3%)

7
(4%)

Borrowed Mental Models 56
(3%)

2
(5%)

1
(1%)

Abstraction Issue 40
(2%)

2
(5%)

2
(1%)

2
(13%)

2
(6%)

10
(6%)

What’s gone wrong here? 259
(13%)

1
(3%)

2
(5%)

24
(13%)

3
(9?%)

16
(10%)

API Misuse 11
(1%)

1
(2%)

6
(3%)

7
(4%)

Should I use this? 84
(4%)

8
(19%)

19
(10%)

1
(3%)

8
(5%)

How should I use this? 80
(4%)

10
(5%)

2
(6%)

4
(3%)

Build Issue 362
(18%)

7
(22%)

3
(7%)

15
(8%)

3
(9%)

57
(36%)

Performance Issue 20
(1%)

1
(2%)

Compatibility Issue 244
(12%)

7
(22%)

6
(14%)

8
(4%)

3
(20%)

1
(3%)

5
(3%)

Deprecated Feature 20
(1%)

9
(5%)

1
(1%)

Not Relevant 166
(8%)

6
(19%)

2
(1%)

Table 2: Count of the number of Stack Overflow Questions
attributed to each usability issue per library. Zero counts
ommited.

5 How widespread are the issues across the
seven libraries?

Table 2 shows the number of times each issue appeared dur-
ing our thematic analysis for each cryptographic library; and
suggests common issues across the libraries. Missing Docu-
mentation is a common issue: it suggests that developers face
an issue in the first stages of using a cryptographic library as
they are unable to locate documentation to support them. For
instance, SJCL provides the code of each of its functions as
its only developer support resource, and so can be made much
stronger if they considered adding documentation to support
the functions provided.

Passing the Buck and Lack of Knowledge highlight issues
associated with developer behaviors instead of the crypto-
graphic libraries themselves. Passing the Buck issues are
common showing that developers have a tendency to pose
questions on Stack Overflow, while the resources addressing
the very questions are provided by the library and easy to lo-
cate. Many instances are recorded under the OpenSSL library,
along with Bouncy Castle and Crypto-JS. Bouncy Castle
and PyCrypto have a high percentage of questions associated
with Lack of Knowledge. Developers address their lack of
knowledge in their questions and request support in learning

cryptographic concepts in order to use functions from these
libraries.

There are many occasions where the developer has a spe-
cific feature in mind for a project and wants to know how to
securely implement this feature into the project. The reason
the number of questions defined under How should I use this?
is high for OpenSSL, for example, may be because the devel-
oper believes that other developers have already implemented
the feature they had in mind. So the developer resorts to find-
ing the specific implementation on developer community sites
such as Stack Overflow instead of building their feature us-
ing the documentation provided by the cryptographic library.
This could also explain why there are many questions where
developers show an example of their broken code and request
guidance with debugging. The answers usually come in the
form of task-based examples of how to correctly implement,
something to which the developers respond well.

Other than Missing Documentation, developers also high-
light difficulties they have while setting up OpenSSL and
running the provided tests. Reviewing the questions, we see
that developers have projects in mind and intend to implement
OpenSSL with other platforms they are using. This raises
many questions associated with Compatibility. Developers
find it very difficult to integrate OpenSSL with other plat-
forms, a particularly pertinent issue as OpenSSL is widely
used—and for large-scale projects. However, having compati-
bility issues makes OpenSSL less usable as developers cannot
easily reconcile implementation of security requirements with
other requirements for their projects.

6 Usability smells

Having identified the above issues, we map them on to Green
and Smith’s 10 principles (shown in Figure 1) in order to iden-
tify the usability smells that are indicative of one or more of
the principles not being fully observed. The purpose of these
smells is not to identify usability issues with a library early,
but rather to guide work to improve a library’s usability based
on where developers appear to struggle between releases of a
library as part of the software lifecycle. We note that Green
and Smith’s principles are written in a positive manner—for
example:

“Integrate cryptographic functionality into standard
APIs so regular developers do not have to interact
with cryptographic APIs in the first place.”

In contrast, the issues we identify from the thematic study are
written in a negative context—for example:

“Missing Documentation: The cryptographic li-
brary does not have documentation available to
address the issue.”

The two viewpoints however are linked—if a library developer
fails to fully implement a usability principle, then we might

expect to see questions indicating that the library users are
struggling with one of the usability issues we identify. Our
mapping between usability principles and usability issues
is presented in Table 3. For each issue we identified, we
considered whether it would indicate failing to implement one
of Green and Smith’s principles. We did not map the lack of
knowledge or passing the buck issues as these are attributable
to specific developer behaviors and do not represent failures
to implement usability within a library, and so do not map
to Green and Smith’s principles. For example the borrowed
mental model issue is present when a developer expects one
library to work similarly to another; this is mapped to the
ergonomic principle as it indicates a failure to not break the
developer’s paradigm.

Based on this mapping, we identify four usability smells.
In the same fashion as Fowler [12], we describe them as
whiffs.

6.1 Needs a super sleuth
Issues at play: Missing documentation; Example code; Clarity
of documentation.

You whiff this when documentation is missing, unclear or
there is a lack of example code pertaining to how to use the
library. The information to achieve the task you are intending
to undertake is hard to find or understand in a way that can
make the library work for your needs easily. You need to
be a super-sleuth to find the documentation and decipher its
meaning!

By not breaking the developer’s paradigm (the ergonomic
principle), developers can intuitively use the library with
fewer references to the documentation or example code. By
providing visible and early errors (the failing principle) devel-
opers can quickly understand when something is wrong and
fix it themselves.

6.2 Confusion reigns
Issues at play: Should I use this; How should I use this;
Abstraction issue; Borrowed mental models.

You can catch a whiff of this when developers are designing
and prototyping their programs—they are trying to decide
whether this is the right library to use and how to start using it.
They are unclear as to how to use the library, perhaps having
confused some concepts or borrowed a mental model they
have for another library that isn’t relevant here.

By making the library easy to use even without documen-
tation (intuitive principle) a developer can quickly work out
if they should use a library, how to use it and understand the
abstraction it provides. If it is easy to learn (comprehensible
principle) they can quickly evaluate it. If it uses standard
APIs (abstraction principle) they can quickly figure out its use
without worrying about details. By not breaking the devel-
oper’s paradigm (ergonomic principle) they can reuse existing

Whiff Issue A
bs

tra
ct

Po
w

er
fu

l

C
om

pr
eh

en
si

bl
e

E
rg

on
om

ic

In
tu

iti
ve

Fa
ili

ng

S
af

e

Te
st

ab
le

R
ea

da
bl

e

E
xp

la
in

ed

Need a super-sleuth Missing Documentation
Example code
Clarity of documentation

Confusion reigns Should I use this?
How should I use this?
Abstraction issues
Borrowed mental models

Needs a post-mortem What’s gone wrong here?
Unsupported feature
API misuse
Deprecated feature

Doesn’t play well with others Build issues
Compatibility issues
Performance issues

Table 3: Mapping between developer issues and Green & Smith principles.

mental models about how similar libraries behave.

6.3 Needs a post-mortem

Issues at play: What’s gone wrong here; Unsupported feature;
API misuse; Deprecated feature.

If the confusion reigns whiff concerns the smells pre-
coding, then this whiff occurs after they have written some
code. The developer has used the library but something has
gone wrong. Either they have used the library incorrectly or
they are struggling to work out if it is an issue with the library
itself. Perhaps an update to the library has broken their code,
or led them to believe that it can do something it can’t—either
way the code needs a post-mortem.

By not breaking the developers model (ergonomic prin-
ciple) developers can quickly guess whether their code is
erroneous and work out what’s gone wrong. If it is easy to use
(intuitive principle) then this aids with debugging what’s gone
wrong as well as figuring out the capabilities and features of
the library. Being hard to misuse (failing principle) avoids
API misuse, and prevents API designers from deprecating
APIs without a warning. If the defaults are safe and sensible
(safe principle), then developers may avoid the complex API
features and their potential misuses. Making the code easy to
read (readable principle) means that if a developer needs to
dive into the source to figure a bug out, they can do so with
the minimum of fuss. Finally by helping developers with end-
user interaction (explained principle), library designers can
ensure developers do things in a standard way hence avoiding
the need to ask if other people have done things the same way
or differently.

6.4 Doesn’t play well with others
Issues at play: Build issue; Compatibility issue; Performance
issue.

If a library is going to be easy to use, developers have to
be able to use it in the first place. This smell occurs when the
library won’t build, won’t integrate with other libraries and
build systems, and is a resource hog without providing a clear
explanation why.

This smell doesn’t appear to be particularly well covered by
Green and Smith’s issues. By adding a testing mode with only
a subset of the features active (testable principle) developers
can avoid having to build all the dependencies and get the
library built for early testing and prototyping. By making the
library powerful enough to satisfy security and non-security
requirements (powerful principle) developers can more easily
integrate it with other less flexible libraries.

We group performance issues under this smell, however we
could not see any of Green and Smith’s principles that exactly
covered this usability aspect. In describing the explained
principle, Green and Smith suggest:

“Firstly, most developers using a security API do
not have a firm grasp on the cryptographic or secu-
rity background and thus would be hard pressed to
explain to the end-user what went wrong” [14]

Perhaps by extending this principle to include not just why
things go wrong, but also why things take so long this ad-
ditional issue could be covered by Green and Smith’s ten
principles. Alternatively the powerful principle could be ex-
tended to cover not just the developer’s primary security and
non-security functionality requirements, but also cover the
performance aspects.

Whiff Issue O
pe

nS
S

L

B
ou

nc
y

C
as

tle

P
yC

ry
pt

o

Needs a super sleuth Whiffiness factor 10% 11% 4%
Missing documentation 13% 17% 4%
Example code 6% 5% 3%
Clarity of documentation 5% 1% 4%

Confusion reigns Whiffiness factor 3% 6% 4%
Should I use this? 4% 10% 5%
How should I use this? 4% 5% 3%
Abstraction Issue 2% 10% 6%
Borrowed mental models 3% 1% 0%

Needs a post mortem Whiffiness factor 10% 11% 8%
What’s gone wrong here? 12% 13% 10%
Unsupported feature 1% 3% 4%
API misuse 1% 3% 4%
Deprecated feature 1% 5% 1%

Doesn’t play well
with others

Whiffiness factor 11% 5% 22%

Build issue 18% 8% 36%
Compatibility issue 12% 4% 3%
Performance issue 1% 0% 0%

Table 4: What whiffs can you smell on each library? Percent-
ages of the questions for each library that were mapped to
each issue are shown, along side a Whiffiness factor, based on
the weighted average, that indicates how strong the smell is:

 : particularly pungent (weighted average > 10%);

 : merest whiff (weighted average ≥ 2,≤ 10%).

7 Discussion

With four whiffs established, Table 4 describes how smelly
3 of the crypto libraries appear to be—OpenSSL, Bouncy
Castle and PyCrypto. For the remaining 4 libraries we lack
a sufficient volume of questions to make any meaningful
statement about the issues with which the library’s users may
struggle. However, for these 3 libraries we have 2,022, 185
and 160 questions respectively and so can consider where
the pain points for developers using these libraries may lie.
We include the libraries with fewer questions in our thematic
analysis in order to reduce skew towards the issues prevalent
in the more frequently queried libraries, however we lack the
volume of questions required to suggest what the pain-points
for developers are in the 4 remaining libraries. We do not
claim that there is a fault in any of the libraries—rather we
suggest what the most frequent issues that some developers
struggle with when using them are—and where the biggest
usability gains might be had. Future work should explore
and find the underlying cause for the smell and establish why
developers appear to be struggling.

For each library we add a Whiffiness factor (based on the
weighted average of the percentage frequency of the issues
associated with each whiff). All the libraries we looked at
smell a little of needing a super sleuth with OpenSSL and
Bouncy Castle users especially struggled with missing doc-
umentation. Despite this the overall whiffiness of this smell
appeared to be low, as there were fewer questions over all
3 libraries associated with these issues—this suggests that
documentation may be improving; and whilst documenting
more of the library and giving more examples will help users,
there may be bigger usability gains to be had elsewhere.

As for the confusion reigns whiff, again, the libraries all
seem to show some signs of it—with the issue being partic-
ularly pronounced for Bouncy Castle, where we saw many
developers asking whether it was appropriate to use this li-
brary, and having particular issues with the abstractions it
provides. This is somewhat surprising as, at least for the
Java version, Bouncy Castle integrates with the Java Cryp-
tography Architecture which provides a standard API for
libraries providing cryptography functionality. Bouncy Castle
also provides its own API, and supports languages other than
Java—perhaps offering too much choice confuses developer
as to the parameters for a specific version. Focusing on the
intuitive and comprehensible principles, i.e., by making the
library easier to learn and understand without the need for
expertise, should help reduce this smell.

The doesn’t play well with others whiff was present for all
three libraries. OpenSSL and PyCrypto in particular struggled
with build issues, whereas Bouncy Castle (which is available
as a precompiled JAR file) had fewer issues associated with
building the library. Integrating software into systems is
known to be difficult [13], but offering prebuilt images seems
to go some way to mitigating this. Building the library is
just the first step for OpenSSL however, as the library has to
be linked into the final compiled program. When mapping
the Stack Overflow questions, we saw several examples of
developers asking about the dynamic linker. For instance:

“I am using OpenSSL in my project.library is
detecting but getting some errors like below:

Error:(23) undefined reference to
’RSA_generate_key’ [⋯]
I included appropriate .so files in appropriate folder.
I am not getting reason behind the undefined
reference error.please help me to solve this issue.”

These are not library usability issues as they represent a mis-
understanding about the host-system and tools rather than
the library itself. So we did not map them to an issue (the
question in the specific example above was resolved by the
developer updating their Makefile). The issue was common
enough, however, that we believe that there may be a serious
usability issue integrating libraries with systems, and a gap
in the literature in looking into these issues. Further work is

needed to map out what these issues are, how common they
are and what we can do to mitigate them.

The final whiff we identified, the needs a post mortem
smell, was prevalent in the OpenSSL, Bouncy Castle and Py-
Crypto libraries. For these libraries the biggest contributing
issue to this smell was that of developers trying to establish
what had gone wrong with their programs. Making the code
more readable and the libraries more intuitive to use even
without documentation should help to make the debugging
process easier and mitigate this smell. OpenSSL and Bouncy
Castle are lower-level than other cryptography libraries pro-
viding greater access to their internals and crypto primitives.
For these libraries we would expect an increase in the number
of questions by developers trying to debug the code, simply
because they wrap things up less into high-level APIs and
offer more scope for developers to make a mistake. Perhaps
then it is not unreasonable to expect lower-level libraries to
display this issue more than the higher-level ones.

OpenSSL in particular, has been criticised in the past for
being hard to use [1, 17, 26]. Kamp in particular argued for
someone to:

“Please Put OpenSSL Out of Its Misery.

OpenSSL must die, for it will never get any bet-
ter.” [17]

Our analysis certainly suggests that OpenSSL is a bit stinky—
in particular it seems that developers struggle a lot debug-
ging it and in finding the documentation. Ignoring those
issues, however, it is similar to the other crypto libraries and
sometimes a little bit better (it seems better at abstraction,
describing its parameters, for example)—at the very least
both Bouncy Castle and PyCrypto appear harder to debug.
OpenSSL gets a lot of stick for being unusable but perhaps it
doesn’t deserve it all—it has a general pong of poor usabil-
ity but there are other libraries with sharper, more specific,
stenches out there too.

8 Conclusion

How can we tell what a developer is struggling with when
using a crypto library? Through our analysis of a substantial
corpus (2491) of questions from Stack Overflow, we found 16
issues and four whiffs that suggest when developers are strug-
gling. By linking these smells to the usability principles by
Green and Smith [14], we can suggest how to improve crypto
libraries and make them more usable for developers. Our
study offers evidence to validate parts of Green and Smith’s
heuristics, but also highlights issues that were missed. Their
usability principles suggest ways to mitigate most of the is-
sues we identify; however issues associated with the doesn’t
play well with others smell (in particular build and perfor-
mance issues) suggest the need for an additional principle to
help cover these issues.

Our whiffs capture the general problems developers have
when using crypto libraries. Not all libraries smell the same,
and improvements to usable crypto libraries appear to be
paying off with fewer usability smells. By smelling carefully
we can find the pain point for developers and help improve
usability. Libraries will perhaps always be a bit smelly given
the challenges of catering for the requirements of a wide and
diverse set of developers and applications; but by integrating
usability principles we can at least make them less so.

9 Acknowledgements

This work is supported by funding from the National Cy-
ber Security Centre and in part by the Engineering and Phys-
ical Sciences Research Council grant EP/P011799/2: Why
Johnny doesn’t write secure software.

References

[1] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L.
Mazurek, and C. Stransky. Comparing the usability
of cryptographic APIs. In 2017 IEEE Symposium on
Security and Privacy, pages 154–171, May 2017.

[2] D. Almeida, J. C. Campos, J. Saraiva, and J. C. Silva.
Towards a catalog of usability smells. In Proceedings
of the 30th Annual ACM Symposium on Applied Com-
puting, pages 175–181. ACM, 2015.

[3] D. G. Altman. Practical statistics for medical research.
CRC press, 1990.

[4] J. Bloch. How to design a good API and why it matters.
In Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages,
and applications, pages 506–507. ACM, 2006.

[5] V. Braun and V. Clarke. Using thematic analysis in psy-
chology. Qualitative research in psychology, 3(2):77–
101, 2006.

[6] S. Clarke and C. Becker. Using the cognitive dimensions
framework to evaluate the usability of a class library. In
Proceedings of the First Joint Conference of EASE PPIG
(PPIG 15), 2003.

[7] J. Cohen. A coefficient of agreement for nominal scales.
Educational and psychological measurement, 20(1):37–
46, 1960.

[8] J. W. Creswell and J. D. Creswell. Research de-
sign: Qualitative, quantitative, and mixed methods ap-
proaches. Sage publications, 1994.

[9] U. Dekel and J. D. Herbsleb. Improving api documenta-
tion usability with knowledge pushing. In Proceedings

of the 31st International Conference on Software Engi-
neering, pages 320–330. IEEE Computer Society, 2009.

[10] U. Dekel and J. D. Herbsleb. Reading the documenta-
tion of invoked API functions in program comprehen-
sion. In 2009 IEEE 17th International Conference on
Program Comprehension (ICPC 2009), pages 168–177.
IEEE, 2009.

[11] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel.
An empirical study of cryptographic misuse in android
applications. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,
pages 73–84. ACM, 2013.

[12] M. Fowler. Refactoring: improving the design of exist-
ing code. Addison-Wesley Professional, 1999.

[13] D. Garlan, R. Allen, and J. Ockerbloom. Architectural
mismatch or why it’s hard to build systems out of ex-
isting parts. In 1995 17th International Conference on
Software Engineering, pages 179–179. IEEE, 1995.

[14] M. Green and M. Smith. Developers are not the enemy!:
The need for usable security APIs. IEEE Security &
Privacy, 14(5):40–46, 2016.

[15] T. R. G. Green and M. Petre. Usability analysis of visual
programming environments: A ‘cognitive dimensions’
framework. Journal of visual languages and computing,
7(2):131–174, 1996.

[16] P. Harms and J. Grabowski. Usage-based automatic
detection of usability smells. In International Confer-
ence on Human-Centred Software Engineering, pages
217–234. Springer, 2014.

[17] P. H. Kamp. Please put OpenSSL out of its misery.
ACM Queue, 12(3):20–23, 2014.

[18] A. J. Ko and Y. Riche. The role of conceptual knowl-
edge in API usability. In Visual Languages and Human-
Centric Computing (VL/HCC), 2011 IEEE Symposium
on, pages 173–176. IEEE, 2011.

[19] K. Mindermann, P. Keck, and S. Wagner. How us-
able are Rust cryptography APIs? arXiv preprint
arXiv:1806.04929, 2018.

[20] S. Nadi, S. Kriüger, M. Mezini, and E. Bodden. Jump-
ing through hoops: Why do Java developers struggle
with cryptography APIs? In 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering (ICSE),
pages 935–946, 2016.

[21] C. Parnin, C. Treude, L. Grammel, and M. A. Storey.
Crowd documentation: Exploring the coverage and the
dynamics of API discussions on stack overflow. Georgia
Institute of Technology, Tech. Rep, 2012.

[22] M. Piccioni, C. A. Furia, and B. Meyer. An empirical
study of API usability. In Empirical Software Engineer-
ing and Measurement, 2013 ACM/IEEE international
symposium on, pages 5–14. IEEE, 2013.

[23] J. Saldaña. The coding manual for qualitative re-
searchers. Sage, 2015.

[24] T. Scheller and E. Kühn. Automated measurement of
api usability: The api concepts framework. Information
and Software Technology, 61:145–162, 2015.

[25] C. Treude and M. P. Robillard. Augmenting API doc-
umentation with insights from stack overflow. In Soft-
ware Engineering (ICSE), 2016 IEEE/ACM 38th Inter-
national Conference on, pages 392–403. IEEE, 2016.

[26] M. Ukrop and V. Matyas. Why Johnny the developer
can’t work with public key certificates. In Cryptog-
raphers’ Track at the RSA Conference, pages 45–64.
Springer, 2018.

[27] M. F. Zibran, F. Z. Eishita, and C. K. Roy. Useful,
but usable? factors affecting the usability of APIs. In
2011 18th Working Conference on Reverse Engineering,
pages 151–155. IEEE, 2011.

	Introduction
	Background and related work
	Usability issues of APIs
	Usability issues of cryptography and security libraries

	Method
	Threats to validity

	What usability issues do developers face?
	Missing information
	Not knowing what to do.
	Not knowing if it can do
	Programming is hard
	Usage issues.
	System issues
	Issues across space and time

	How widespread are the issues across the seven libraries?
	Usability smells
	Needs a super sleuth
	Confusion reigns
	Needs a post-mortem
	Doesn't play well with others

	Discussion
	Conclusion
	Acknowledgements

