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Abstract  

The endothelial glycocalyx (eGlx) constitutes the first barrier to protein in all blood vessels. 

This is particularly noteworthy in the renal glomerulus, an ultrafiltration barrier. Leakage of 

protein, such as albumin, across glomerular capillaries results in albumin in the urine 

(albuminuria). This is a hall mark of kidney disease and can reflect loss of blood vessel integrity 

in microvascular beds elsewhere. We discuss evidence demonstrating that targeted damage to 

the glomerular eGlx results in increased glomerular albumin permeability. EGlx is lost in 

diabetes and experimental models demonstrate loss from glomerular endothelial cells. Vascular 

endothelial growth factor (VEGF)A is upregulated in early diabetes, which is associated with 

albuminuria. Treatment with paracrine growth factors such as VEGFC, VEGF165b and 

angiopoietin-1 can modify VEGFA signalling, rescue albumin permeability and restore 

glomerular eGlx in models of diabetes. Manipulation of VEGF receptor 2 signalling, or a 

common eGlx biosynthesis pathway by these growth factors, may protect and restore the eGlx 

layer. This would help to direct future therapeutics in diabetic nephropathy. 
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1. List of abbreviations 

Ang-1       Angiopoietin-1 

A disintegrin and metalloproteinase domain 17 ADAM17 

Chondroitin sulphate      CS 

eGLX       Endothelial glycocalyx 

Endoplasmic reticulum    ER 

Endothelial surface layer     ESL 

GAG        Glycosaminoglycans 

Glomerular endothelial cells     (GEnC) 

Glomerular basement membrane   GBM 

Glomerular filtration barrier     GFB 

Glomerular filtration rate    GFR 

Hyaluronidase      HYAL 

Hyaluronic acid      HA 

Hyaluronic acid synthase     HAS 

Heparanase       HPSE 

Heparan sulphate      HS 

Hydroxyethylstarch      HES  

Matrix metalloproteinase     MMP 

Munich Wistar Frompter     MWF 

Urine albumin creatinine ratios    uACR 

Vascular endothelial growth factor    VEGF 

Vascular endothelial growth factor receptor   VEGFR 

Wheat germ agglutinin     WGA  
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2. Review overview 

The focus of this review is to examine how components of the endothelial glycocalyx (eGlx) 

influence vascular permeability, particularly in the diabetic glomerulus, and the role they may 

have as a potential therapeutic target in diabetic nephropathy. First an overview of the eGlx 

will be given, followed by evidence demonstrating its importance in vascular permeability in 

health, diabetes and diabetic nephropathy. Finally, this review will present approaches that 

restore glomerular eGlx through common pathways, thereby highlighting therapeutic potential.  

3. Endothelial glycocalyx (eGlx) 

The eGlx is a complex carbohydrate meshwork, present on the luminal surface of blood vessels. 

It is primarily composed of glycoproteins (not a focus of this review) and proteoglycans, which 

have a protein core, embedded into the endothelial cell surface. Glycoprotein cores are attached 

to acidic oligosaccharides and terminal sialic acids, while proteoglycan cores are attached to 

multiple, long, unbranched glycosaminoglycan (GAG) chains [1]. The eGlx is often referred 

to as an extended endothelial surface layer (ESL) to incorporate the structural contribution of 

absorbed plasma proteins. It is a dynamic structure [2], with a high turnover rate, that is greatly 

influenced by surrounding factors.  

Proteoglycan synthesis begins when ribosomes, bound to the endoplasmic reticulum (ER), 

synthesise a protein core backbone and feed it into the ER lumen. From here it is transported 

to the lumen of the Golgi apparatus where a serine residue of the core protein is attached to a 

tetrasaccharide via an O-glycosidic bond [3]. GAG chains are then extended from the non-

reducing end by glycosyltransferase enzymes that alternately attach an amino and an acidic 

sugar [4-6]. The main core proteins found in the eGlx are transmembrane syndecans and 

membrane-bound glypicans [7], while the three main GAG are heparan sulphate (HS) 

chondroitin sulphate (CS) and hyaluronic acid (hyaluronan, HA). During polymerisation, GAG 

can be modified by sulfation (the addition of a sulfate group to an individual monosaccharide), 
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which is what gives the eGlx an overall negative charge. GAG can also be modified by de-

acetylation (removal of an acetyl group from a monosaccharide) and/or epimerisation (the 

alteration of a monosaccharide at one stereochemical position only e.g. in the transformation 

of glucuronic acid to iduronic acid) [8]. GAG distribution on core proteins is highly variable. 

For example, endothelial syndecans-1, -2 and -4 exhibit three GAG attachment sites, which 

predominantly bind HS. However, syndecan-1 has two additional sites specifically for 

chondroitin sulphate [9]. HA is a unique GAG as it is not sulphated, is unbranched, and is not 

linked to a core protein. It is the largest GAG with repeating disaccharide units reaching in 

excess of 106 Da [5]. These lengths are achievable as it is not constrained by the Golgi space 

during chain extension. It is synthesised at the inner surface of the plasma membrane by 

hyaluronic acid synthases (HAS1, HAS2 and HAS 3) [10].  

4. Contribution of eGlx to microvascular permeability 

Vascular permeability is the movement of water and molecules across the capillary wall and 

was originally modelled on Starling principles [11]; 

(Jv/A) = Lp[(Pc – Pi) – σ (Πp – Πi)] 

Where: Jv/A is the volume filtered per unit area, Lp is the hydraulic conductance, Pc is the 

capillary hydrostatic pressure, Pi is the interstitial hydrostatic pressure, σ is the osmotic 

reflection co‐efficient, Πp is the oncotic pressure on plasma-side of endothelial surface layer 

and Πi is the oncotic pressure in the interstium. However, recently these principles have been 

revised. It is now recognised that there is no steady state fluid absorption in capillaries [12]; Πp 

cannot draw fluid back into capillaries (although it can reduce flow from capillaries) and Πi 

has no effect as a filtration force [13]. This is because the eGlx exerts an oncotic force (Πg), 

caused by the plasma proteins in the ESL, that regulates filtration of water at the EnC surface 

[65]. There is also a protein free zone below the GAG chains of the eGlx and above the 



7 

 

endothelial cells, the sub eGlx space. This acts as a buffer zone to oncotic forces. Thus, Πi is 

replaced by Πg in the revised Starling’s principles as follows;  

(Jv/A) = Lp[(Pc – Pi) – σ (Πp – Πg)] [12]Experimental models demonstrate that eGlx damage 

leads to vascular complications [14]. For example, in isolated coronary arterioles the movement 

of fluorescently labelled albumin into the surrounding bath was used to demonstrate that 

pronase (which removes the eGlx) increased albumin permeability 2.3-fold [15]. Pronase was 

also used to show that, when perfused into individually cannulated frog mesenteric vessels, 

eGlx depth was reduced and hydraulic conductivity (water and small solute permeability) was 

increased without impacting tight junctions [16]. Notably, restoration of eGlx depth in these 

vessels recovered hydraulic conductivity. Similarly, we demonstrated that  neuraminidase 

removed eGlx in perfused, single cannulated, frog mesenteric vessels, resulting in increased 

albumin permeability [17].  Of note, in isolated perfused guinea pig hearts, eGlx degradation 

by heparinase I led to increased extravasation of albumin and hydroxyethylstarch (HES), yet 

not small solutes. The authors confirmed that under “normal” conditions there was low 

filtration from venules; under hypoalbuminuric conditions (i.e. no colloid perfusion) the 

increased (colloid free) extravasate occurred independently of eGlx; but when eGlx was 

damaged in the presence of colloid, more colloid rich extravasation occurred. Interestingly, 

extravasation was less with albumin vs HES, despite the fact that the albumin had a lower 

colloidal pressure than HES. It is thought that albumin seals the damaged eGlx [18], thereby 

restoring the ESL. Accordingly, these authors have further modified Starling’s principles as 

follows; 

 (Jv/A) = Lp[(Pc – Pi) – σ (Πe – Πg)] 

Where Πe=colloid osmotic pressure within the ESL and Πg= colloid osmotic pressure directly 

below it. [18] 
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Vascular leakage and oedema are important concerns post-surgery with those experiencing 

perioperative ischemia (e.g. due to aortic clamping or cardiopulmonary by-pass). The 

importance of eGlx in vascular leakage in these patients was highlighted for the first time by 

Rehm et al. [19]. SDC1 and HS were measured in arterial blood of patients before, during and 

after vascular surgery. Both SDC1 and HS shedding were increased after different operative 

procedures in association with conditions of reperfusion (but not due to surgery itself) [19]. 

Using a complementary animal model of ischemia reperfusion, the authors confirmed that 

increased SDC1 and HS shedding were seen in association with reduced coronary 

microvascular eGlx depth, by electron microscopy, in guinea pig hearts.  

5. Diabetes and eGlx 

The eGlx has been shown to be altered in a number of pathological situations including 

ischemia-reperfusion injury and inflammation [20-22], hyperglycaemia [23], in chronic kidney 

disease [24]. and during the progression of  diabetes [25, 26]. Diabetes is a major health concern 

worldwide. In the UK between 2015-2016, diabetes-related drugs made up to 10.6% of 

prescribed drugs used in primary care and 6.4% of individuals going to their GPs aged 17yr 

and over were diagnosed with diabetes [27]. In general, diabetic patients suffer ill health, and 

there is strong correlation between diabetes and cardiovascular diseases [28, 29]. More 

specifically, many of those with diabetes will suffer from complications associated with 

microvascular damage, which include retinopathy, neuropathy and nephropathy (collectively 

known as microangiopathy).  

5.2 Diabetes and albuminuria 

Diabetic nephropathy is the main cause of end stage renal failure in the western world [30]. It 

is considered a relatively late complication of diabetes, progressively occurring in susceptible 

patients 15-25yr after the initial onset of diabetes [31, 32]. Albuminuria is correlated with the 

progression of diabetic nephropathy [33] and can be categorised as normoalbuminuric (less 
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than 30mg/day), microalbuminuric (30-300mg/day) or macroalbuminuria (300+mg/day). It is 

also associated with endothelial dysfunction, decline in glomerular filtration rate (GFR) and 

increased risk of cardiovascular disease [34, 35]. Of note, increased GFR also predisposes those 

with diabetes to the development of diabetic nephropathy [36]. Interestingly, even 

normoalbuminuria at the top end of the physiological range is an independent risk factor for 

cardiovascular disease in an otherwise health population [37-39].  

4.2 Diabetes and eGlx dysfunction 

Damage to the eGlx has been shown to occur in both Type-I and Type-II diabetes. Nieuwdorp 

et.al analysed the depth of the eGlx in patients with Type-I diabetes by imaging the erythrocyte-

endothelium gap in sublingual microcirculation using side-stream darkfield imaging, before 

and after leukocyte passage [40]. Using this method, they demonstrated that; eGlx volume was 

reduced in Type-I diabetics; was exacerbated in those diabetics with microalbuminuria; and 

was correlated with increased blood plasma levels of HA and hyaluronidase (which cleaves 

HA). Indeed, in hyaluronidase knock out mice, the development of Type I diabetes-associated 

albuminuria was prevented [41]. EGlx volume has also been shown to be reduced in patients 

with Type-II diabetes in both the sublingual and retinal vascular beds. This was analysed using 

side-stream darkfield imaging and measuring the intravascular distribution of two fluorescent 

tracers of different sizes [26]. 

In addition to hyaluronidase, other enzymes have been implicated in GAG shedding in diabetes. 

For example, circulating matrix metalloproteinases (MMP) 2 and 9, known to cleave 

components of the eGlx [42], were significantly increased in Type I diabetic patients [43]. We 

suggest that TNF-α, an inflammatory mediator in the diabetic milieu, induces MMP-9 

activation, leading to HS cleavage from Sydecan-4 in glomerular endothelial cells [44]. Also, 

vascular endothelial growth factor (VEGF)A which is upregulated in the diabetic milieu 

(discussed in more detail below), can induce glomerular MMP9 expression [45]. Further to 
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this, we have shown that, in an experimental model of albuminuria with glomerular eGlx 

dysfunction, MMP 2/9 inhibition restored glomerular eGlx and prevented albuminuria [46]. 

Another enzyme involved in GAG shedding in diabetes is heparanase (HPSE). Active HPSE 

degrades HS and is upregulated during diabetes in humans and in animal models [47-49]. 

Increased HPSE levels have also been demonstrated in the urine and plasma from Type II 

diabetic patients, and were found to positively correlate with increased glucose levels [48]. An 

increase in vascular permeability is also seen in mice that overexpress heparanase [50] and this 

enzyme has been further linked to the pathophysiology of childhood steroid-sensitive nephrotic 

syndrome [51].  

Hyperglycaemia, an important mediator of the diabetic milieu in Type I and II diabetes, is 

thought to impact eGlx health.  Nieuwdorp et.al showed that acute induction of hyperglycaemia 

in healthy individuals reduced eGlx volume within 6 hours [52]. In culture, hyperglycaemia 

inhibits synthesis of sulphated and non-sulphated GAG, with no demonstrable change in 

proteoglycan expression [53]. Together, these studies demonstrate that eGlx damage is strongly 

associated with the development of albuminuria in diabetes, indeed, the eGlx has been 

proposed as the site of initial damage leading to microalbuminuria [54]. Therefore, the eGlx 

may be a promising target to reduce albuminuria and protect against other microvascular 

complications.  

6. Glomerular eGlx 

Understanding how the glomerulus regulates filtration and maintains selective (restricted) 

protein passage is key to understanding the development and progression of renal pathologies 

in which this restriction is lost, such as in diabetic nephropathy. Blood is filtered across the 

glomerular capillary through a highly specialised filtration barrier. This multi-layered structure 

prevents large proteins, such as albumin, from leaving the blood whilst allowing minimally 

restricted movement of water and small solutes. Traditionally the glomerular filtration barrier 
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(GFB) is presented as a three-layer structure consisting of podocytes (epithelial cells), the 

glomerular basement membrane (GBM) and fenestrated glomerular endothelial cells (GEnC) 

[55]. However, the glomerular eGlx, highlighted in figure 1, has also been shown to 

significantly contribute towards the GFB [56]. Tissue culture studies show that GEnC 

synthesise and express HS [57], CS and HA [58]. CS and HA can be seen within human 

glomeruli in figure 2. In the glomerulus, HS has been identified not only in the eGlx but also 

in the GBM where it is one of the 4 main components along with laminin, collagen IV and 

nidogen. Here it is primarily found as part of the proteoglycan, agrin [59, 60]. Whether GBM 

HS plays a role in protein restriction is under debate [59, 61-63], although a general note for 

these and all Glx studies is that there is a need to discriminate between GAG of eGlx and 

elsewhere (i.e GBM, podocytes and mesangial cells). 

6.1 EGlx and glomerular permeability 

The glomerular eGlx has been suggested to restrict both solutes and fluid (not just large, 

charged proteins) according to a mathematical simulation of the GFB [64]. Its contribution to 

water permeability was confirmed experimentally when a bolus of hyaluronidase or heparinase, 

given in vivo for up to an hour, led to an increase in GFR [65]. EGlx damage in experimental 

models of diabetes was associated with increased glomerular hydraulic conductivity (a measure 

of single nephron GFR). Further, treatment that restored eGlx depth also rescued hydraulic 

conductivity [66]. In cultured human GEnC, targeted eGlx removal led to an increase in trans-

endothelial electrical resistance, indicating increased water and solute flux [57, 58]. 

Various studies have highlighted the importance of eGlx in glomerular large solute (i.e. 

albumin) permeability. For example, glomerular eGlx removal, by hypertonic saline in rats, 

caused an increase in fractional albumin clearance by 12-fold [67]. Additionally, both  

hyaluronidase and chondroitinase individually increased the fractional clearance of albumin in 

isolated, perfused, mouse kidneys ex vivo (although not in vivo) [65, 68]. This was associated 
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with reduced glomerular eGlx depth, although measurements were indirect. However, it is 

worth noting that chondroitinase and hyaluronidase can digest HA and CS respectively, albeit 

at a slower rate [69, 70]. Hyaluronidase given over 4wk in mice reduced glomerular eGlx 

coverage and caused an increase in albumin passage across the GFB (but not urinary albumin 

creatinine ratio (uACR)) [71]. This was determined by anti-albumin immunogold staining in 

the GFB. We have recently shown that a low dose combination of hyaluronidase and 

chondroitinase, given acutely (30min) or chronically (over 2wk), reduced eGlx coverage 

without off-target effects [72, 73]. Under the same conditions we directly measured changes in 

glomerular albumin permeability, which was significantly increased following enzyme 

treatment. By measuring glomerular albumin permeability directly, we could bypass tubular 

reabsorption of albumin which impacts on the sensitivity of uACR measurements [72]. In vitro, 

low dose, targeted enzymatic removal of CS, HS, and HA on cultured GEnC (quantified by 

immunofluorescence) demonstrated that removal of CS and HS, but not HA, increased albumin 

passage across GEnC monolayers [57, 58]. These treatments demonstrate that specific removal 

of eGlx leads directly to a rapid and sustained increase in glomerular albumin permeability. 

Other non-enzyme-based studies have also demonstrated how the eGlx contributes towards 

GFB function. Aged Munich-Wistar Frömter (MWF) rats with spontaneous proteinuric kidney 

disease have decreased eGlx and increased glomerular albumin permeability [74]. 

Additionally, intravenous administration and subsequent absorption of wheat germ agglutinin 

(WGA) lectin decreased glomerular albumin permeability in aged rats, indicating that 

modifications to the eGlx can improve glomerular function [74]. Genetic deletion of the linker 

between HS chains and perlecan (a core protein) caused mice to become proteinuric [75]. We 

have recently shown that aldosterone, in combination with high salt, damages glomerular eGlx 

in vivo, leading to an increased glomerular sieving coefficient of albumin [46]. This follows 

from interesting work by Oberleithner et al on salt overload and eGlx stiffness. Atomic force 
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microscopy studies demonstrated that salt overload increased eGlx stiffness and reduced eGlx 

depth in cultured endothelial cells in an aldosterone dependent manner [76], a potential 

mechanism for  increased sodium accumulation in the tissues. These experiments highlight the 

importance of the eGlx in preventing excess protein passage. 

7. EGlx restoration and diabetic nephropathy  

The key question is; how can we restore eGlx? Significant progress has been made in directly 

targeting the eGlx in diabetic patients. Sulodexide, a mixture of low-molecular weight GAG 

(heparan (80%) and dermatan sulfate (20%)), has been used to treat microvascular 

complications in diabetic patients [77]. Initially, several small scale clinical studies 

demonstrated successful, therapeutic use of Sulodexide, showing an increase in sublingual 

eGlx depth (using side-stream darkfield imaging), a decrease in albuminuria (most effective in 

those with microalbuminuria), and slowed progression of diabetic nephropathy [26, 78]. 

Unfortunately, two larger randomized double-blinded placebo control studies later 

demonstrated that treatment with Sulodexide did not reduce albuminuria, therefore the need 

for a new and effective treatment remains [77, 79]. However, it should be noted that many 

consider the effects of Sulodexide to have been undervalued in these later studies [80-83]. 

Overall, these data suggest that the eGlx may be amenable to therapeutic intervention in 

diabetes and that targeting this structure could prove the key for treating this disease. 

Experimentally, restoration of the eGlx has been demonstrated to be achievable and effective 

in blood vessels outside of the kidney in the coronary [84], pulmonary [85] and mesenteric 

microcirculation [16]. We have also demonstrated  that the eGlx can be restored in glomeruli 

[46, 66, 86] which will be key in targeting albuminuria.  

8.1 Glomerular vascular endothelial growth factors (VEGF) 

Podocyte-GEnC crosstalk is critical to maintain normal glomerular function. Growth factors 

form a major part of this communication, but during disease states, these can become 
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imbalanced. One example of these is the VEGF family of proteins. In humans there are five 

VEGF variants, VEGF-A, -B, -C, -D and placenta growth factor [87]. These proteins each have 

distinct biological roles and are important in blood and lymph vessel formation and vascular 

homeostasis. Alternative splicing of the 8 exon, 7 intron VEGF-A gene gives rise to a number 

of mature isoforms with different biological activities. Of these, VEGF165 is the most 

commonly found variant throughout the body [88, 89]. VEGF165 is important for GEnC 

fenestration formation and health via its main signalling receptor, VEGF receptor 2 

(VEGFR2)[90-92]. However, transgenic overexpression of VEGF165 can cause increased GFR 

in the short term, followed by loss of GFR in the long term [93]. In addition, podocyte-specific 

overexpression of VEGF165 was shown to induce albuminuria, increase glomerular VEGFR2 

phosphorylation and increase glomerular MMP-9 expression [45]. Additionally, VEGF165 has 

also been shown to be upregulated in early diabetic nephropathy in human disease [94, 95] and 

in experimental models [96-99]. VEGFR2 was also shown to be upregulated in early 

experimental diabetic nephropathy and was associated with increased GEnC VEGF165-

VEGFR2 signalling [96]. This has been shown to cause loss of permselectivity and albuminuria 

[100]. Of note, VEGF165 may also induce eGlx loss. As well as promoting glomerular MMP9 

expression [45], it also promoted ADAM17 (another member of the MMP family of proteins) 

activation in cultured human GEnC [58]. Furthermore, VEGF165 has been shown to increase 

shedding of sulphated GAG in cultured human GEnC [58]. In the following section, paracrine 

growth factors will be described that may counterbalance the detrimental effects of glomerular 

VEGF165 to protect from albuminuria in diabetes. We suggest they may act by antagonising 

VEGF165/VEGFR2 signalling to restore the glomerular eGlx. Of course, VEGF165 signalling is 

just one mediator of diabetic nephropathy. As well as counterbalancing the effects of the VEGF 

axis, we believe the end point of these paracrine growth factors, restoring eGlx, would go some 

way to counteract the generic effects of the diabetic milieu. 
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8.2 Podocyte paracrine growth factors  

i. VEGF165b: In 2002, Bates and colleagues described a novel family of VEGFA isoforms, 

where the last 6 amino acids differ due to alternative splicing of exon 8, such that the terminal 

end of exon 8 is transcribed instead of the proximal end. These are depicted as VEGFxxxb. For 

example, VEGF165b has been shown to bind VEGFR2 with the same affinity as VEGF165 [101]. 

Podocyte-specific VEGF165b expression in mice has been shown to block the increase in 

glomerular hydraulic conductivity induced by VEGF165 [102]. Reduced glomerular hydraulic 

conductivity has also been demonstrated in glomeruli isolated from diabetic mice, rats and 

humans treated ex vivo with VEGF165b [66]. Further, in a mouse model of Type I diabetes, 

podocyte-specific expression of VEGF165b significantly reduced albuminuria [66]. This was 

also achieved when a dual insult of VEGF165 overexpression was induced alongside the 

induction of diabetes, supporting the hypothesis that VEGF165b reduces albuminuria through 

antagonising VEGF165. Recombinant human VEGF165b protected against albuminuria in a 

Type II model of diabetes, but only when administered before the development of albuminuria. 

Thus, VEGF165b appears to have an impact on water/small solute and large solute permeability 

in the GFB. The protective effects of VEGF165b on glomerular hydraulic conductivity in 

diabetic rats was shown to be VEGFR2 dependent [66]. The activation of VEGFR2 by 

VEGF165b appears to be endothelial cell-type dependent. In human umbilical vein (large vessel) 

endothelial cells, VEGF165b could bind, but not phosphorylate, VEGFR2 yet in human 

microvascular endothelial cells it resulted in the phosphorylation of Akt [101]. Of note, 

overexpression of VEGF165b in glomeruli caused increased VEGFR2 expression and 

phosphorylation in both healthy and diabetic mouse glomeruli [66]. This suggests that 

VEGF165b could have differential VEGFR2 signalling effects in different vascular beds. 

Critically, VEGF165b has also been shown to modify the eGlx. This was demonstrated in an 

early model of Type I diabetes in mice where human recombinant VEGF165b administration 
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restored glomerular eGlx depth. This may be via delayed downstream signalling by VEGF165b-

induced activation of VEGFR2, potentially involving a role for VEGFR2/VEGFR1 

heterodimer formation [103]. 

ii. Ang1: Angiopoietins are a family of endothelial cell growth factors, with essential roles in 

regulating vascular growth, development and maturation. The complex interaction between the 

angiopoietins and vascular endothelial growth factors determine endothelial cell behaviour, 

therefore they are key players in microvascular permeability, both in health and diabetic 

nephropathy [104-107]. The two major members of the angiopoietin family are angiopoietin-1 

(Ang1) and angiopoietin-2 (Ang2) [108]. Tie2 is the main signalling receptor and binds both 

Ang1 and Ang2, although in most circumstances only Ang1 induces receptor phosphorylation 

[109-111]. Ang2 predominantly antagonises Ang1-induced phosphorylation of Tie2 [110]. 

Tie2 together with VEGFR2 activation is required for endothelial cell survival and vessel 

stabilization [92, 112, 113]. In healthy mice, Ang1 reduced the vascular leakage of 70kDa 

macromolecules from newly formed mouse blood vessels [114] and from mature vessels 

(mouse and human) following treatment with permeabilising reagents [115, 116]. Moreover, 

Ang1 reduced hydraulic conductivity in rat glomeruli and in continuous frog mesenteric vessels 

[16]. The reflection coefficient (a measure of macromolecular restriction) in continuous vessels 

was also increased. Critically, Ang1 increased eGlx depth in continuous vessels. All these data 

indicate that Ang1 decreased vascular water and solute permeability, potentially via eGlx. 

Therefore, we hypothesised that Ang1 could modify glomerular eGlx to restrict albuminuria.  

Of note, Ang-2 reduced eGlx depth in human umbilical vein endothelial cells in a heparanase 

dependent manner, which was blocked by Ang-1 [117]. Further, in an in vivo model, Ang-2 

was shown to increase vascular leak which was blocked by heparanase inhibition [117]. In 

diabetes the balance between Ang1 and Ang-2 is lost, which also impacts on VEGF165. Ang2 

mRNA was upregulated in human diabetic glomeruli and Ang1 was significantly decreased in 
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a Type 1 diabetic mouse model [104]. In these mice, when Ang1 was overexpressed by 

podocytes, albuminuria was reduced and Tie2 phosphorylation was increased, highlighting the 

protective effects of Ang1 in diabetes. Of note, in the diabetic mice, glomerular VEGFA 

expression was increased and glomerular VEGFR2 expression was decreased, but VEGFR2 

phosphorylation was increased. Notably, podocyte-specific overexpression of Ang1 

significantly reduced the increased VEGFR2 phosphorylation [104]. Also, kidney cortex 

soluble VEGFR1 expression was increased, which can sequester VEGFA. Therefore, the 

effects of Ang1 may be two-pronged; Tie2 activation and VEGF165 signalling suppression.  

Our group investigated if the protective capabilities of Ang1 in diabetes may be mediated by 

the eGlx. First, we confirmed that Ang1 (given ex vivo) significantly reduced albumin 

permeability in glomeruli isolated from Type 1 diabetic rats [72]. We then demonstrated that 

recombinant Ang1, given i.v. 30min before sacrifice, significantly restored glomerular eGlx in 

diabetic animals, shown by quantitative electron microscopy. This suggests that Ang1 effects 

glomerular function through glomerular eGlx [72]. 

iii. VEGFC: VEGFC is most commonly associated with developmental lymphangiogenesis, 

where it is required for normal development of the endothelial lymphatic system, signalling 

through VEGFR3 [118]. It also signals through VEGFR3 to maintain the differentiated 

lymphatic endothelium in adults [119]. Like VEGFA, VEGFC can signal to vascular 

endothelial cells, increasing migration and proliferation by stimulating VEGFR2 [120]. 

Binding to VEGFR2 by VEGFC occurs at the same binding site as VEGF165, as indicated by 

the ability of each growth factor to displace the other [120]. In the glomerulus, VEGFC is 

expressed by podocytes and acts on GEnC [121]. Unusually, we could not demonstrate 

phosphorylation of VEGFR3 by VEGFC in cultured human GEnCs, but could show 

phosphorylation of VEGFR2, albeit over a longer time course than VEGFA (30min v.s. 2min) 

[121]. We examined phosphorylation of VEGFR2 tyrosine residues by VEGFC, however we 
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did not find significant phosphorylation at Tyr 951, 1175 or 1214; sites involved in VEGF165 

activation and downstream signalling (Figure 3). This suggests that VEGFR2 phosphorylation 

is delayed and perhaps total phosphorylation is reduced in GEnC by VEGFC. In these cells 

VEGFC reduced macromolecular protein passage [121]. We suggest that this is due to the 

synthesis of unsulfated and sulphated GAG by VEGFC (discussed in more detail below) [122]. 

Using our glomerular albumin permeability assay, we demonstrated that ex vivo treatment of 

isolated mouse glomeruli with VEGFC blocked the increased permeability induced by 

VEGF165. In addition, VEGFC could rescue raised glomerular albumin permeability in 

glomeruli isolated from Type II diabetic (and albuminuric) mice [73]. We have also 

demonstrated that the effects induced by VEGFC, like the other protective growth factors 

discussed, may be mediated via the eGlx. Glomerular albumin permeability was increased in 

mice administered GAG enzymes, both acutely (30min) and chronically (2wk), but VEGFC 

blocked this effect whilst restoring eGlx depth and/or coverage [73].  

We went on to investigate the effect of VEGFC on albuminuria and eGlx in vivo using 

podocyte-specific overexpression of VEGFC. Of note, VEGFC reduced glomerular VEGFA 

mRNA expression and had no long term detrimental effects on glomerular function [73], in 

contrast to that described for podocyte-specific overexpression of VEGFA [45]. Glomerular 

VEGFR2/VEGFR3 heterodimer formation was significantly increased in podocyte-specific 

VEGFC overexpressing mice [73]. This suggests that VEGFC may antagonise VEGF165 

signalling by competitively binding VEGFR2, but may induce differential signalling through 

modification by VEGFR3. We confirmed that podocyte-specific overexpression of VEGFC 

could rescue albuminuria in a Type I diabetic mouse model, if it was expressed before 

albuminuria developed [73]. Increased glomerular VEGFR2 expression in diabetic mice was 

significantly reduced by VEGFC, supporting our hypothesis that VEGFC antagonises 
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VEGF165/VEGFR2 signalling. Together, this data suggests that VEGFC protects from 

albuminuria through modification of VEGFR2 signalling and eGlx restoration. 

8. A common pathway for therapeutic targeting of eGlx?  

VEGF165b, Ang1 and VEGFC all protect from increased glomerular VEGF165 signalling and 

from albuminuria in diabetes, preferentially when administered during early development. 

Critically, these growth factors counterbalance VEGFA signalling, either through 

expression/sequestering of VEGF165 and/or potential modification of VEGFR2 signalling. 

Blockade of the glomerular VEGF165 system in disease needs to be moderate to avoid 

additional glomerular dysfunction [92, 123-125]. Perhaps counterbalancing by these important 

endogenous mediators provides the key. In addition, restoration of the glomerular eGlx by these 

growth factors was associated with reduced glomerular small solute (VEGF165b and Ang1) and 

albumin permeability (VEGF165b, Ang1, VEGFC). We know that VEGF165b restores 

glomerular eGlx and that this leads to increased WGA lectin binding [66]. WGA binds N-

acetyl glucosamine, a component of HS and HA, and N-acetyl neuraminic acid, which is a 

major sialic acid. This gives some clues as to the components of the VEGF165b-restored eGlx. 

More extensive investigations have been carried out for Ang1 and VEGFC. Ang1 can 

restore/enhance eGlx in frog mesentery vessels and glomerular capillaries in vivo within 30min. 

Whether this is due to de novo synthesis or not has yet to be proven, but inhibition of vesicle 

translocation by Brefeldin A blocked the effect, indicating that restoration may come from pre-

existing pools of GAG [16]. In human microvascular endothelial cells in vitro, Ang1 increased 

sulphated GAG content of cell supernatant [16]. GAG were also shown to be effected by Ang-

1 in cultured human GEnC, where treatment induced de novo synthesis of both sulphated and 

un-sulphated GAG, as determined by 3H glucosamine and liquid chromatography, within 1hr 

(Desideri et al, unpublished). These experiments suggest that rapid de novo synthesis in vivo is 

a plausible explanation. Using the same technique, de novo GAG synthesis was also seen in 
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GEnC in response to VEGFC after 24hr [58]. 76% of sulphated GAG synthesised by VEGFC 

were highly sulphated, compared to only 32% under control conditions. Additionally, using 

immunofluorescence, VEGFC was shown to induce HA and CS synthesis. Furthermore, 

VEGFC significantly increased NDST2 mRNA, a sulfotransferase, which supports 

observations of increased eGlx charge. As mentioned previously, these effects by VEGFC are 

in contrast to VEGF165, which may promote GAG shedding [45, 58]. This leads to a complex 

interaction between these families of growth factors, VEGF165/VEGFR2 signalling and eGlx 

modifications as summarised in figure 4.  

In conclusion, there are similarities arsing in the mechanism of protection of these paracrine 

growth factors. The next step is to identify the common pathways influenced by these growth 

factors that promote restoration of glomerular eGlx, and those that protect from degradation. 

This will prove to be a powerful, multi-targeted approach to albuminuric diabetic nephropathy. 

In addition, eGlx restoration by the same means has the potential to treat other microvascular 

disorders where capillary leak to small solutes and large proteins is a key step in the progression 

of the disease.  
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10. Figure legends 

Figure 1. Transmission electron micrograph of the glomerular filtration barrier showing 

endothelial glycocalyx. Representative image from an FVB strain mouse, anaesthetised and 

perfusion fixed with Glutaraldehyde containing the cation, Alcian blue. This enabled 

visualisation of the electron dense, negatively charged glycocalyx on GEnCs. Of note, 

podocytes are also coated in glycocalyx. 

Figure 2. Hyaluronic acid and chondriotin sulphate expression in human glomeruli. Fresh 

frozen sectioned human glomeruli were treated with 250mg/ml HYAL (B), 100mU/ml 

chondroitinase (D), to show specificity, or left untreated (A and C). They were then fixed and 

immunostained with biotinylated hyaluronic acid binding protein (HABP) in conjunction with 

strepavidin-AF488(green) and anti-PECAM-1(red) (A and B), or anti-CS in conjunction with 

anti-mouse IgM AF488 (green) anti-PECAM-1(red) (C and D), and counterstained with DAPI 

(blue). Confocal Z stacks are shown. Architecture is not optimal in fresh frozen tissue and 

capillary loops are not apparent. Arrows indicate co-localisation of GAG with GEnCs, 

suggesting eGlx. 

Figure 3. VEGFC does not induce VEGFR2 phosphorlyation at tyrosine (ty) sites 1175, 1214 

or 951 in cultured glomerular endothelial cells (GEnC). GEnC were stimulated with 1nM 

VEGFA (VA), 10nM VEGFC (VC) or vehicle (Veh) for 2 min (A) or 30min (B). Cells were 

lysed and samples subjected to Western blotting for specific VEGFR2 tyrosine residues ty1175, 

ty1214 or ty951 and total VEGFR2. Representative blots are shown. Densitometry summary 

data is shown in C.  One-way ANOVA, Bonferroni post hoc tests indicated. *=p<0.05, 

***=p<0.001, n=3-6. 

Figure 4. The effect of protective paracrine growth factor signalling on restoration of eGlx in 

the glomerular filtration barrier. VEGF165 podocyte overexpression in early diabetic 

nephropathy leads to enhanced glomerular endothelial VEGFR2 activation, a damaged eGlx 
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and increased albuminuria (A). The overexpression of paracrine growth factors VEGF165b, 

Ang1 and VEGFC can impact the detrimental signalling of VEGF165 in a number of ways; 

podocyte VEGF165 expression or availability may be reduced; VEGFR2 signalling may be 

reduced/altered; enzymes associated with the synthesis, modification or shedding of GAG may 

be rebalanced such that the eGlx layer is restored and albuminuria is reduced. 
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