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Abstract
Flood hazard is a global problem, but regions such as southAsia, where people’s livelihoods are highly
dependent onwater resources, can be affected disproportionally. The 2017monsoon flooding in
theGanges–Brahmaputra–Meghna (GBM) basin, with record river levels observed, resulted in
∼1200 deaths, and dramatic loss of crops and infrastructure. The recent Paris Agreement called
for research into impacts avoided by stabilizing climate at 1.5 °Cover 2 °Cglobal warming above
pre-industrial conditions. Climatemodel scenarios representing thesewarming levels were combined
with a high-resolution flood hazardmodel over theGBMregion. The simulations of 1.5 °Cand 2 °C
warming indicate an increase in extreme precipitation and corresponding flood hazard over theGBM
basin compared to the current climate. So, for example, evenwith global warming limited to 1.5 °C,
for extreme precipitation events such as the southAsian crisis in 2017 there is a detectable increase in
the likelihood inflooding. The additional∼0.6 °Cwarming needed to take us from current climate to
1.5 °Chighlights the changed flood risk evenwith low levels of warming.

1. Introduction

In many regions around the globe, climate change is
increasing the severity of damaging flooding events
[1–4]. Flooding in large rivers such as the Ganges–
Brahmaputra–Meghna (GBM) system can affect mil-
lions of people through damage to property, crops and
livestock and risks to life. Globally, climate change is
expected to result in more rainfall, due to the ability of
a warmer atmosphere to hold more water [5].
However, changes to local and regional rainfall are also
impacted by a number of factors such as topography,
atmospheric composition (e.g. aerosols) [6, 7], land-
use change [8], ocean currents and atmospheric
circulation. So when evaluating the risk of severe
storms and flooding, it is critical to look at changes on
regional scales.

The recent United Nations Framework Conven-
tion of Climate Change agreement in Paris has com-
mitted to restricting warming levels to well below 2 °C
and aiming for 1.5 °C above pre-industrial levels [9].

There has recently been a concerted effort to run
climate simulations designed to inform us of the
impacts of 1.5 °C and 2 °C warming. Two initiatives
have designed climate simulations to represent 1.5 °C
and 2 °C of global warming: (1) the Half a degree
Additional warming, Prognosis and Projected Impacts
(HAPPI) project [10], includes many atmospheric-
only simulations using super-ensembles ( 100> ) and
multiple models to give a range of possible climate
responses. (2) The ‘CESMLowWarming’ project [11],
uses a single coupled atmosphere-ocean model to
achieve climates stabilized at 1.5 °C or 2 °C of global
warming, thereby providing a more complete sample
of ocean variability than HAPPI, but at the expense of
smaller sample sizes. These simulations give decision
makers more targeted information than more general
initiatives, about the benefits of restricting the level of
global warming [12].

This study investigates flooding in the GBM river
system which covers a wide area, through Bangladesh,
Bhutan, China, India and Nepal. Rainfall over the
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GBM system is dominated by the monsoon season
(June–September). Around 80% of Bangladesh is
floodplain, with floods affecting tens of millions of
people occurring every six years or so [13]. Any ampli-
fication of flood hazard may have grave implications
for the vulnerable and exposed populations in these
regions. Previous studies for the GBM have predicted
increases in future peak river discharge [14–18] and
flood extent [19]. Recent studies [3, 20–22], looked at
flood risk at 1.5 °C and 2 °C of global warming, for
changes to peak discharge of the Brahmaputra or glo-
bal flood risk including the Ganges–Brahmaputra.
However, these used high emissions scenarios to
determine 1.5 °Cand 2 °Cof global warming.

The precipitation response for a given level of
warming can differ between low and high emissions
scenarios [12] and between transient and stabilized cli-
mates. It has been found that short duration extreme
rainfall is constrained by the amount of global warm-
ing [23], however thismay vary due to aerosols in areas
with high levels of pollution [24]. Additionally, in the
GBM, we consider longer duration extremes which
not may be as directly constrained by temperature.
The targeted low warming scenarios are designed to
represent a stabilized climate, and avoid complications
introduced by determining specific warming levels
from transient simulations rising to higher levels of
warming. The low warming scenarios also have lower
aerosol levels than present day [25], as projected for
the end of the 21st century. These aerosol levels will
differ significantly from those in time slices at 1.5 °C
and 2 °C, from high emissions scenarios, as these will
occur earlier in the 21st century. So results from these
experimental designs will differ where aerosols play an
important role.

Determining flood impacts requires a nonlinear
transformation of river discharge using a hydro-
dynamic model because the floodplain topography
and channel-floodplain hydraulic interactions inclu-
ded in such schemes may either amplify or dampen
the flooding response to changing discharge. We
therefore extend previous studies by analyzing flood
inundation using a high-resolution hydraulic model
to represent the possible change in flood risk, based on
these lowwarming scenarios.

2.Methods and datasets

2.1.HAPPI atmospheric simulations
Simulations were used from the HAPPI project:
atmosphere-only climate simulations, forced by sea-
surface temperatures (SSTs), sea-ice concentration
(SIC) and green-house gas concentrations. SSTs and
SIC were from the OSTIA observational dataset [26]
for current day (Hist) simulations (2006–2015), and
SSTs from the Coupled Model Intercomparison
Project Phase 5 (CMIP5 [27]) output were used to
estimate the future scenarios corresponding to 1.5 °C

and 2 °C global warming above pre-industrial condi-
tions, at the end of the 21st century [10]. Large
ensembles were produced by running simulations
with different initial condition perturbations. Seven
models were used for this analysis (table S2), and most
of themodels had around 100 simulations or more for
each of the scenarios (table S3).

2.2. CESM-CAM5 lowwarming simulations
Simulations using the CESM-CAM5 coupled climate
model were designed using specific GHG concentra-
tion pathways, to stabilize temperatures at 1.5 °C and
2 °C global warming above pre-industrial conditions
by 2100 [11]. These simulations cover 2006–2100, and
are continuation runs of 11 CESM-CAM5 historical
simulations (1920–2005) [28] run as per the CMIP5
design [27]. For current day climate, the 2006–2015
decade from the 2 °C simulations was analyzed, to
match the time period of the HAPPI current day
simulations. The 2090–2099 decade was analyzed for
the future scenarios.

2.3. Climate data analysis
Area averages over the GBM river basin were calcu-
lated from climate model outputs. The basin defini-
tions were identified based on theHydroBasins dataset
[29]. For each model, years from different ensemble
members were pooled for analysis, resulting in a large
number of years representing the historical, 1.5 °C and
2 °C worlds in each model (10 years per simulation
multiplied by number of ensemble members as per
table S3). Values such as ensemble means were
calculated across the distributions of years and ensem-
ble members. Observational datasets were used for
model evaluation (see table S4).

We primarily analyzed the yearly maximum of
monthly rainfall (RXmonthly). This is because the
characteristic duration of rainfall event resulting in the
largest flooding events in the GBM is on the order of a
month or longer, so this variable was chosen as a proxy
for the change in river discharge in the GBM (see
section 2.5). We also looked at yearly average pre-
cipitation and yearly maximum of 5 day mean rainfall
(RXx5day), which is a standard climate change index
defined by the Expert TeamonClimate ChangeDetec-
tion and Indices [30, 31]. RXx5day represents extreme
rainfall connected to flooding in small catchments or
tributaries. We validated the seasonal cycle of pre-
cipitation and monsoon winds in the region for each
of themodels.

The climate models have precipitation biases,
(compare ‘OBS/Reanalysis’ with ‘Hist’ in figures 1(a)
and (b)), with the majority of models over-predicting
the peak rainfall. Some of the models also tend to
simulate an early monsoon onset compared to
observed (figure 2). We additionally note that the
observational datasets have limitations. There are dif-
ferences between precipitation observation datasets
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(figures 1(a) and (b)), and it has also been suggested
that high-altitude precipitation (such as over the
Himalayas), may be significantly underestimated in
observations, due to poor coverage of stations and
underestimation of solid precipitation [32, 33].

Our projection of future changes in flooding is
based on precipitation changes in the climate models,
rather than the absolute conditions in those models.
The response of precipitation to climate change pre-
dicted by themodels is based on physical mechanisms,

Figure 1.Distributions of precipitation averaged over theGBMbasin. (a) Shows boxplots of RXmonthly for each of themodels and
also observations. (b) as per (a), but showing RXx5day, (c) percentage changes in ensemblemeanRXmonthly, between the different
scenarios ‘1.5 °C—Hist’, ‘2 °C—Hist’, and ‘2 °C–1.5 °C’. Error bars show the 5%–95% range of sampling uncertainty in the ensemble
mean change, based on randomly resampling each distribution 1000 times. Color indicates additionalmeasures of significance: Red
symbols indicate the distributions of simulated years are not distinguishable between the two scenarios compared, based on a two
sidedKolmogorov–Smirnov test at p=0.05. For the other colors, there is a detectable difference between the distributions.
Additionally, blue and yellow symbols give an idea of themagnitude of change relative to year-to-year variability. Blue or yellow
symbols indicate whether the proportion of ensemblemembers which change in the same direction as themean is greater or less than
67%. The first panel of (c) shows themulti-model summarywhich does not used color to indicate significance. OBS/Reanalysis
datasets are defined in table S4.

Figure 2. Seasonal cycle of precipitation averaged over theGBMbasin. Eachmodel is shown in a separate panel. Two observational
products (CRU-TS andGPCC), defined in table S4, are shown in the left-most panels.
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which may represent the relative increase or decrease
in precipitation even in the presence of biases. We
concentrate our analysis on the basin scale, to reduce
the influence of small scale effects, which the models
have difficulty representing. Bias-correction, can be
applied to remove biases in the mean (and variability),
but should leave the relative change in precipitation
unchanged. However, this is not always the case for
changes in extremes [34], so bias-correction methods
need to be applied with caution. We analyze scaling
factors based on the relative change in precipitation,
and do not apply bias correction for this study.

As the Asian monsoon drives the majority of pre-
cipitation over the GBM region, it is important that
the climate models represent the monsoon circula-
tion. Separate analysis including most of the HAPPI
models used here has been made for the Asian mon-
soon precipitation [35, 36] and specifically for mon-
soon onset and length [37]. These studies determined
that the HAPPI models capture the Asian monsoon
circulation sufficiently to investigate future changes in
precipitation. Reference [35] showed an increase in
both intensity and frequency of extreme precipitation
in the region, and increases in particularly damaging
persistent rainfall extremes in northern India. An eva-
luation of the large scale 850hPawinds for eachmodel,
and its change between scenarios, is shown in figure 3.
The models have varying biases in the monsoon
winds, although MIROC5, with the highest precipita-
tion, has a notable strengthening of the monsoon
winds relative to the ERA-Interim reanalysis. The pat-
terns of change in the monsoon circulation vary
between between 1.5 °C—‘Hist’, and 2 °C–1.5 °C, and
vary between models, which is consistent with [36],
who additionally concludes that the precipitation
change is dominated by the thermodynamic response
and changes related to circulation aremore uncertain.

2.4. Flood hazardmodel simulations
Flood hazard was estimated by the use of the Bristol
global flood model [38]. In this modeling framework,
calculations of flood extent are performed with an
implementation of the well-known LISFLOOD-FP
flood inundation model [39]. LISFLOOD-FP is a
hydraulic model, solving the 2-dimensional shallow
water equations. This configuration of the model uses a
recently published bare-earth version of the Shuttle
Radar Topography Mission (SRTM) global elevation
database (MERIT DEM [40]), and global river and
catchment hydrography from HydroSHEDS [29] to
determine catchment areas and channel locations. It
applies a Regional Flood Frequency Analyses (FFA) [41]
using global data for river discharge (Global RunoffData
Centre (GRDC) dataset) and rainfall. In this approach,
river hydrographs for locations not included in the
GRDC dataset were estimated based on distributions
from rivers with similar characteristics. For this study,
the FFA based on global data was adjusted using gauge

data from the Ganges and Brahmaputra rivers to
represent the local dischargemore accurately.

A limitation of the MERIT DEM used by the
hydraulic model, is that it does not include flood
defenses. For example the western banks of the Brah-
maputra are protected by embankments from Chil-
mari to Sirajganj, so flood extents simulated by the
model will differ with observations in these areas.

This model has previously undergone extensive
validation for catchments in the UK and Canada [38],
and in the USA [42]. They found that the model per-
formance approaches the skill expected by models
built with high quality local data, and that the model
performs better for wet regions and rivers with larger
catchments [42]. The improved MERIT DEM dataset
used in this study may also improve the model perfor-
mance (compared to SRTM topography used in [38]
and [42]). We evaluate the performance of the model
along a stretch of the Brahmaputra river in section 3.2.

For this paper, new simulations were performed
over the region 21–31N, 84–94E. The hydraulic model
simulated flood inundation at 30 arc second (∼900 m
at the equator) resolution, which was downscaled to
the MERIT DEM at 3 arc second resolution. The
model simulates fluvial flooding in catchments above
∼50 km2. For this study, flood hazard for return peri-
ods of 1 in 5, 1 in 20 and 1 in 100 years were calculated.
This covers a large portion of the GBM basin, includ-
ing the whole of Bangladesh. Firstly a ‘baseline’ simu-
lation was calculated using observed distributions of
current river discharge and rainfall, and secondly
simulations were run with scaled river discharge to
represent changes due to global warming. Changes in
flood area and flood depth, between the baseline and
future scenarios, were analyzed over the region and
additionally over the sub-basins Ganges, Brahmaputra
and Meghna (regions shown in figure S1 is available
online at stacks.iop.org/ERL/14/074031/mmedia).

2.5. Scaling discharge from future scenarios
To determine scaling factors based on the global
warming scenarios, the change in RXmonthly was
used as a proxy for the change in river discharge. This
was chosen as we are interested in the peak flows, and
in the GBM system the highest flood waters due to the
monsoon rains build up over a period of at least a
month. Thismetric represents the change in precipita-
tion driving flooding events, however we note that this
does not take into account, evaporation or catchment
hydrology, which may cause discharge to scale differ-
ently to the change in precipitation. This may also vary
by return period, for example table 3 in [20], however
these numbers have large uncertainty ranges (e.g.
figure 5 in [22]). Furthermore, a comparison of
precipitation and runoff for models used in this study,
show consistent changes between these two variables
(figure S3). As discharge results from the accumulation
of runoff, this gives us confidence in our proxy as an
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approximation of future change. The advantage of this
simple approach is that it does not rely on potentially
problematic bias correction methods, or hydrological
modeling thatmay be under-constrained due to sparse
observations and hence introduce a greater level of
uncertainty.

We determined the percentage change in
RXmonthly, between the current day climate and
1.5 °C and 2 °C worlds, averaged over the GBM basin.
The ensemble mean was calculated separately for each

of the 8 models considered (7 HAPPI models and
CESM). A weighted average taking into account the
sampling uncertainty and model spread was used to
produce a best estimate (referred to as the Multi-
Model Summary, see text S3). The best estimates were
7.0%±3.6% and 10.7%±4.7%. The best (medium)
estimates along with the upper (high) and lower
boundwere used to scale the baseline/present day pre-
cipitation and river discharge in the hydraulic model
for the future scenarios.

Figure 3. Figures showing JJA average 850 hPawinds. (a)ERA-Interimwinds and differences between eachmodel and ERA-Interim
for 2006–2015 period. (b)Difference between 1.5 °Cand ‘Hist’ scenarios for eachmodel. (c)Difference between 2 °Cand 1.5 °C for
eachmodel. All data was interpolated to a common 2° horizontal resolution grid before plotting.
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3. The 2017flooding event in theGBM
basin

High rainfall in the monsoon season in South Asia
caused particularly severe flooding in 2017. This
flooding was reported in the media to have killed over
1200 people in India, Nepal and Bangladesh, and
millions were evacuated or otherwise affected [43, 44].
In Bangladesh, reports indicated that over 6.1 million
people were affected with a death toll of at least 134
[43, 45]. The high impact of this event makes it a
relevant case study to evaluate the skill of the hydraulic
model in simulating inundation extent from a recent
event. The following section describes the peak level of
the Brahmaputra river in August 2017, and a compar-
ison showing the skill of modeled inundation extent
against satellite observations.

3.1. Peak river levelmeasured at Bahadurabad
On the 16th of August, the Brahmaputra recorded a
record high level of 20.84 m at Bahadurabad. How-
ever, an analysis of river discharge at this station
shows that despite being a record river level for this
particular gauging site, the discharge for this event
(78 500 m3 s−1, measured on the 17th of August) was
only a 1 in 5 year return period flow (95% confidence
interval 3–9 years).

Other than the uncertainty in discharge measure-
ments, the discrepancy between the return periods for
river level and discharge at Bahadurabad is most likely
explained by very local changes in the river channels
from sedimentation and construction of flood
embankments. The relationship between discharge
and river height is a local effect around the gauge as a
result of erosion and deposition as mobile sediment
waves move through the system. However at the reach
scale that we consider here these local variations will
cancel out and our overall estimates of the impact of
increasing flows on inundation extent will be reason-
able ones. The discharge return period for this event is
used for the following comparison, as discharge is used
to drive the hydraulicmodel.

3.2. Representation of 2017 event in thefloodhazard
model
Because ground based measurements of flood extent
do not exist at the resolution of the flood model, we
compared flood extent from the model with estimates
from two satellite products: (1) Copernicus Sentinel-1
Synthetic Aperture Radar (SAR) data and (2) the Joint
Research Centre Global Surface Water (GSW) dataset
[46], which is produced from Landsat imagery. The
Sentinel data at ∼10 m resolution was processed and
water bodies were detected based on the backscatter
amplitude (supplementary text S1). SAR products can
penetrate clouds, so the Sentinel-1 data can give a
snapshot of inundation extent. The GSW dataset

provides a flood recurrence product at ∼25 m, based
onmany images over the 1984–2015 period.

The 1 in 5 year modeled hazard was compared
over a region downstream of the Bahadurabad gauge
(89–90E 24.4–25.2N, figure S2). We compared this
against a single Sentinel-1 image from 22 August 2017.
This is not exactly like-for-like, as the floodmodel uses
a 1 in 5 year discharge everywhere, whereas the actual
flow in different river segments will be greater or lower
depending on local conditions. We also compared
against flood recurrence greater than 20% (5 years) in
theGSWdataset.

Detection of flood extent in satellite data is not
exact, both false positives and missed detection are
possible. For example, in SAR data, smooth surfaces
such as roads or mud flats may in some cases be classi-
fied as water, water roughened by wind may be classi-
fied as land, and flooded areas covered by vegetation
may not be detected due to backscatter effects. Topo-
graphical shadow effects may cause false positives as
well. Some of these effects, such as topographical sha-
dows, can be corrected by the image processing, but
this is still not a perfect representation of the ground
situation. The GSW dataset will also not detect bodies
of water obscured by vegetation, and persistent cloud
cover may cause short duration flooding events to be
missed.

Figures 4(a)–(b) compares model flooded regions
with satellite data, at the satellite’s resolution. The
floodmodel captures a large proportion of the compli-
cated braided river structure and flood plain.
Figure 4(a) shows the modeled fluvial flood extent
against the Sentinel data for 2017. As only ∼7% of the
catchment areas reside in Bangladesh, we expect the
fluvial flooding to drive the majority of the flooding.
On the flood plain to the east of the river, the modeled
fluvial flooding under-predicts the Sentinel flood
extent (figure 4(a)). Figure 4(b) shows the modeled
fluvial flooding against the GSW flooding. The model
shows better agreement with the GSWdataset than the
Sentinel image. This may be either to do with the nat-
ure of the different instrumentation and processing
picking up different types of flooding or because the
the GSWdata is a recurrence product whichmore clo-
sely represents the 1 in 5 year maximum extent as the
model does, compared to the Sentinel data which is a
snapshot offlooding on 22August 2017.

In the region to the west of the river, the model is
over-predicting the observed event. This is probably
because the western bank of the Brahmaputra river is
protected by an embankment that is not represented
in theMERITDEM and therefore not in themodel. In
addition, the hydraulic model simulates a 1 in 5 dis-
charge in all river segments in the domain, so this
comparison is less valid in other parts of our domain
whichmay have a different return period for 2017.

Metrics representing this comparison were calcu-
lated over this region. Using the Critical Success Index
(see [42], supplementary text S2) the model fluvial
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flood extent has a score of 0.47 for GSW and 0.36 for
Sentinel. This shows lower performance than shown
in [42] and [38]. As matching the higher resolution
satellite data is a very difficult test we also calculated
the absolute fractional error between data aggregated
to larger scales (figure 4(d)), with errors of 0.22 (Senti-
nel) and 0.16 (GSW) at 100 m, reducing to 0.13 and
0.15 respectively at 5 km.

Given this < 15% error in fractional flooded area
at 5 km, we conclude that the model is fit for the the
sub-basin scale relative change analysis which we per-
form here. The hydraulic model is a physically based
model, and ismass andmomentum conserving. So the
evaluation of the 1 in 5 year event gives us confidence
that the relevant physics and the topography is well
represented by the model and a greater return period

Figure 4. Satellite data versusmodel: (a) comparison ofmodel 1 in 5 year fluvialflooding versus Sentinel flooding from22August
2017. (b)Comparison of 1 in 5 year flood extent,model fluvialflooding versus GSW. (c)Absolute fractional error and bias between
model and satellite flood areas aggregated to different scales.
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of river flow will result in a realistic flood inundation
for the 1 in 20 and 1 in 100 year events.

4. Changes inflood risk at 1.5 °Cand 2 °C
warming

4.1. Simulatedmean and extreme precipitation in
theGBM
Changes to GBM precipitation are shown for
RXmonthly in figure 1(c). All except for one of the
models shows a wetter climate in the future scenarios,
and in the 2 °C simulations, greater than two-thirds of
years are wetter than the mean in the current climate,
for all except two of the models. ECHAM6-3-LR
shows a small drying to 1.5 °C, but an increase between
1.5 °C and 2 °C. Similar but slightly higher changes are
seen for RXx5day (figure S4) and lower changes for
yearly precipitation (figure S5), showing a greater
wetting change for shorter duration events. Figure 1(c)
gives estimates for the ensemble mean change, which
in generalmay differ from the changes of higher return
period events. However, in this study, changes for
different return periods are consistent within the
sampling uncertainty and there is no systematic trend
of higher or lower scaling of precipitation at higher
return periods (figure S6). We additionally note that
using the ensemble mean may result in underestimat-
ing the uncertainty as the sampling uncertainty
increases for higher return periods.

In all of themodels apart fromCAM4-2degree, the
1.5 °C—‘Hist’ change is greater than the 2 °C–1.5 °C
change. This is partly because the global warming
from historical to 1.5 °C is greater (∼0.6 °C) than
between 1.5 °C and 2 °C (0.5 °C). Comparing the
RXmonthly change per degree of warming (figure S7),
half of themodels still show a greater change for 1.5 °C
—‘Hist’, however the other models show no-change
or a smaller change, so there are nonlinear changes
between scenarios which vary between the models.
These differences may be due to the removal of sup-
pressive effect of rainfall between ‘Hist’ and 1.5 °C,
and varying representations of aerosols in the model.
The patterns of circulation changes also differ between
1.5 °C—‘Hist’ and 2 °C–1.5 °C in all of the models
(figure 3), so different mechanisms may be dominat-
ing in the differentmodels.

4.2. Changes inflooding
Flood hazardmaps were produced using the hydraulic
model for the baseline period and low, medium and
high estimates for the 1.5 °C and 2 °C scenarios. The
changes in flooded area over the region are shown in
figures 5(a) and (b) for the medium estimate of the
1.5 °C scenario for 1 in 5 and 1 in 100 year flood
hazards. A zoomed in section shows the area around
Dhaka. The 1 in 5 year hazard has amuch smallerflood
extent than the 1 in 100 year hazard, but crucially the
change in additional area flooded between 1.5 °C and

the baseline (red regions) is considerably larger for the
1 in 5 year hazard than the 1 in 100 year hazard,
highlighting the importance of changes in these
frequently occurring events. The changes to the depth
of flood waters for the same simulations are shown in
figure 5(c) and (d) with large areas increasing flood
depth by 20 cm and smaller areas increasing by 50 cm
or more. The medium 2 °C scenario shows incremen-
tally larger changes compared to the 1.5 °C scenario,
in bothflood area and flood depth (figure S8).

The changes in flood extent were aggregated over
three sub-regions representing the Ganges, Brahma-
putra and Meghna basins. These are shown in figure 6
for each of the scenarios and 1 in 5, 1 in 20 and 1 in
100 year flood hazard. The more frequent (less severe)
flood hazards, show greater percentage increases in
flood extent than the more extreme flooding events.
This may be expected by the nature of river valleys as
lower, flatter areas will flood in the less severe events.
However, when the flood waters reach steeper areas in
more extreme events, the relative increase in area will
be less for a given change in water level. The relative
change in the 1 in 5 year flood area (figure 6, blue and
red bars) is greater than the corresponding relative
precipitation change (blue and red shading). There are
small differences between the basins, but the relative
change in flood area consistently decreases for the 1 in
20 and 1 in 100 year floods. The 1 in 100 year flood
area in the Ganges and Brahmaputra rivers show a
smaller change than the relative precipitation change.

Figure 6 shows the percentage area relative to the
baseline flood increase, however the absolute change in
area does not show a consistent trend with the return
period of the event (figure S9). We also note that the 1
in 100 year events experience a greater change in flood
depth, so these particularly extreme events may
become more destructive due to higher flood waters,
evenwithout theflooded area increasing dramatically.

5.Discussion

The Paris Agreement calls to restrict global warming to
well below 2 °C and aim for 1.5 °C. The simulations
used here reflect those goals and may give different
results to evaluating 1.5 °C and 2 °C in high emission
scenarios such as used for CMIP5. The climate models
employed here show a significant trend of increasing
rainfall in the GBM for all except one of the models
analyzed. This trend is stronger for extreme rainfall
than average rainfall which has implications for flood-
ing. Even at a low level of global warming of 1.5 °C, the
wetting signal in the GBM is clear, and given it is
proximity to densely populated regions, this translates
to increased flood risk. There is also a statistically
significant increase in monsoon precipitation between
1.5 °C and 2 °C despite there being overlap in the
uncertainty ranges of changes from present day to
1.5 °C and 2 °C (figure 1(c)). This shows there is a clear
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benefit in reducing flood risk by keeping temperatures
to the lower target.

The precipitation change between current climate
and 1.5 °C is greater than the change between 1.5 °C
and 2 °C. However, due to experimental design, less of
the models show this trend for change in precipitation
per degree of warming. The design of the lowwarming

experiments also results in greater aerosol change
betweenHist and future climates, than between 1.5 °C
and 2 °C, which may not be the case in high emission
scenarios.

In addition to aerosol influence, theremay be non-
linear changes in the monsoon circulation in this
region, which are uncertain based on climate model

Figure 5. Simulated changes in flood extent and depth between 1.5 °Cand the baseline. (a) and (b)Change in flood extent due to
fluvialflow, for 1 in 5 year and 1 in 100 year hazards respectively. Regions are separated into ‘Land’ (notflooded), ‘Flooded baseline’
and ‘Flooded 1.5 °C’ (additional areas offlooding), and ‘Water body’ (permanent water). (c) and (d)Change in flood depth due to
fluvialflow, for 1 in 5 and 1 in 100 year hazards respectively. All panels show the change in the ‘medium’ 1.5 °C scenario compared to
the baseline simulation.

Figure 6.Aggregated changes inflooded area for three sub-basins. Changes inflooded area relative to baseline flooded area for each
scenario, for 1 in 5, 1 in 20 and 1 in 100 year flood hazard. Changes are shown over the three sub-basinsGanges, Brahmaputra and
Meghna (figure S1). Themedium estimate is shown as a dot; low andhigh estimates are shown by the extent of the error bars. The
shaded areamarks the range in percentage change in precipitation between the low and high estimates for the 1.5 °C (blue) and 2 °C
(red) scenarios.
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projections (see figure 3 and [36]). The model mean
signal in precipitation may be dominated by the ther-
modynamic response, with differences between mod-
els due to the representation of changes in the
monsoon.

There are advantages and limitations in different
modeling setups. Coupled atmosphere-ocean models
(e.g. CESM-CAM5) sample a wide range of possible
ocean variability, and atmosphere only models (e.g.
HAPPI) may underestimate this variability [47]. How-
ever the use of prescribed SSTs also reduces proble-
matic biases present in coupled models [48]. In this
study, having consistent projections from both type of
models gives us greater confidence that our conclusions
are not skewedby the choice of experimental design.

Increased river flow is expected to have a more
noticeable impact on the flood extent for less extreme
events. This nonlinear response of the flood area to the
change in river flow highlights the importance of the
floodplain topography. Modeling only the change in
precipitation or river discharge may therefore be mis-
leading. Using a hydraulic model to map inundation
extent is needed to convey the full impacts of climate
change onfloods.

This study applies a scaling factor to river discharge
based on themodeled changes in precipitation. This is a
simplification assuming the leading order effects related
to flood hazard are from the direct precipitation
response. It also assumes that the shape of distributions
of discharge do not change with global warming, which
would change the relative magnitudes of floods at dif-
ferent return periods. However, any changes in the
shape of the distribution are highly uncertain and are
not supported by our climate simulations (figure S6).
This approach also does not take into account all of the
catchment hydrology that contributes to river flow and
there are there are influences from changes in temper-
ature, glacial melt and rainfall-runoff processes. How-
ever, we find that that for the subset of climate models
where runoff is calculated, the runoff scales very simi-
larly to precipitation (figure S3). There are also uncer-
tainties modeling river flow, especially in data sparse
regions such as theGBM. So this approach avoids intro-
ducing additional uncertainty and complexity, with the
caveat that we are attributing changes in flood risk to
changes in precipitation only and not other catchment
effects. In addition, the use of RXmonthly for our proxy
is most relevant to the downstream river sections as
flooding in upstream catchments will have a faster
response time. Our analysis showed that for shorter
events (e.g. RXx5day), the climate change influence is
stronger, soRXmonthly is a conservative choice.

Another significant contributor to river flow in
this region is glacier melt. In the upper sections of the
Ganges and Brahmaputra, glacial melt contributes
about 11% and 16% of average runoff respectively (see
table S7 in [49]). For the Upper Brahmaputra, this
increases to around 20%–25% during months of peak
flow (figure S6 in [49]). In the near future, glacier melt

may have a small increase (scenario dependent), how-
ever after 2040–2050, glacier melt is projected to
decline [49–52]. This is a result of a balance between
increased melting rates at warmer temperature and
reduced glacier mass. Following this, in the scenarios
stabilized at 1.5 °C or 2 °C around the end of the 21st
century, the contribution of glacier melt to river flow
would be expected to be slightly reduced compared to
present day.

The population in South Asia is highly reliant on
water resources for subsistence agriculture, and is
strongly impacted by floods. We show a clear
anthropogenic signal in precipitation change in the
GBM basin and a subsequent response in flood area
at 1.5 °C and 2 °C warming. The relative change in
flood extent varies with event intensity which is
important to note for adaptation measures. This
study shows the use of precipitation changes to scale
river discharge is a justifiable approximation to
gauge the sensitivity of flood hazard. For future stu-
dies, it will be important to investigate a wide range
of river systems in depth to see what, if any, change is
discernible due to climate change, even with high
levels ofmitigation.
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