Brettell, N., Campbell, R., Chun, D., Grace, K., \& Whittle, G. (2019). On a Generalization of Spikes. SIAM Journal on Discrete Mathematics, 33(1), 358-372. https://doi.org/10.1137/18M1182255

Publisher's PDF, also known as Version of record
License (if available):
Other
Link to published version (if available):
10.1137/18M1182255

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via SIAM at https://doi.org/10.1137/18M1182255. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

ON A GENERALIZATION OF SPIKES*

NICK BRETTELL ${ }^{\dagger}$, RUTGER CAMPBELL \ddagger, DEBORAH CHUN§, KEVIN GRACE ${ }^{〔}$, AND GEOFF WHITTLE ${ }^{\|}$

Abstract

We consider matroids with the property that every subset of the ground set of size t is contained in both an ℓ-element circuit and an ℓ-element cocircuit; we say that such a matroid has the (t, ℓ)-property. We show that for any positive integer t, there is a finite number of matroids with the (t, ℓ)-property for $\ell<2 t$; however, matroids with the $(t, 2 t)$-property form an infinite family. We say a matroid is a t-spike if there is a partition of the ground set into pairs such that the union of any t pairs is a circuit and a cocircuit. Our main result is that if a sufficiently large matroid has the $(t, 2 t)$-property, then it is a t-spike. Finally, we present some properties of t-spikes.

Key words. matroid, spike, circuit, cocircuit
AMS subject classification. 05B35
DOI. $10.1137 / 18 \mathrm{M} 1182255$

1. Introduction. For all $r \geq 3$, a rank- r spike is a matroid on $2 r$ elements with a partition $\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ into pairs such that $X_{i} \cup X_{j}$ is a circuit and a cocircuit for all distinct $i, j \in\{1,2, \ldots, r\}$. Spikes frequently arise in the matroid theory literature (see, for example, $[2,4,8,10]$) as a seemingly benign, yet wild, class of matroids. Miller [5] proved that if M is a sufficiently large matroid having the property that every two elements share both a 4 -element circuit and a 4-element cocircuit, then M is a spike.

We consider generalizations of this result. We say that a matroid M has the (t, ℓ) property if every t-element subset of $E(M)$ is contained in both an ℓ-element circuit and an ℓ-element cocircuit. It is well known that the only matroids with the $(1,3)$ property are wheels and whirls, and Miller's result shows that if M is a sufficiently large matroid with the $(2,4)$-property, then M is a spike.

We first show that when $\ell<2 t$, there are only finitely many matroids with the (t, ℓ)-property. However, for any positive integer t, the matroids with the $(t, 2 t)$ property form an infinite class: when $t=1$, this is the class of matroids obtained by taking direct sums of copies of $U_{1,2}$; when $t=2$, the class contains the infinite family of spikes. Our main result is the following theorem.

Theorem 1.1. There exists a function f such that if M is a matroid with the

[^0]($t, 2 t)$-property, and $|E(M)| \geq f(t)$, then $E(M)$ has a partition into pairs such that the union of any t pairs is both a circuit and a cocircuit.

We call a matroid with such a partition a t-spike. (A traditional spike is a 2 -spike. Note also that what we call a spike is sometimes referred to as a tipless spike.)

We also prove some properties of t-spikes, which demonstrate that t-spikes are highly structured matroids. In particular, a t-spike has $2 r$ elements for some positive integer r, it has rank r (and corank r), any circuit that is not a union of t pairs avoids at most $t-2$ of the pairs, and any sufficiently large t-spike is $(2 t-1)$-connected. We show that a t-spike's partition into pairs describes crossing $(2 t-1)$-separations in the matroid; that is, an appropriate concatenation of this partition is a $(2 t-1)$ flower (more specifically, a ($2 t-1$)-anemone), following the terminology of [1]. We also describe a construction of a $(t+1)$-spike from a t-spike, and show that every $(t+1)$-spike can be obtained from some t-spike in this way.

Our methods in this paper are extremal, so the lower bounds on $|E(M)|$ that we obtain, given by the function f, are extremely large, and we make no attempts to optimize these. For $t=2$, Miller [5] showed that $f(2)=13$ is best possible, and he described the other matroids with the $(2,4)$-property when $|E(M)| \leq 12$. We see no reason why a similar analysis could not be undertaken for, say, $t=3$.

There are a number of interesting variants of the (t, ℓ)-property. In particular, we say that a matroid has the $\left(t_{1}, \ell_{1}, t_{2}, \ell_{2}\right)$-property if every t_{1}-element set is contained in an ℓ_{1}-element circuit, and every t_{2}-element set is contained in an ℓ_{2}-element cocircuit. Although we focus here on the case where $t_{1}=t_{2}$ and $\ell_{1}=\ell_{2}$, we show, in section 3 , that there are only finitely many matroids with the $\left(t_{1}, \ell_{1}, t_{2}, \ell_{2}\right)$-property when $\ell_{1}<$ $2 t_{1}$ or $\ell_{2}<2 t_{2}$. Oxley et al. [7] recently considered the case where $\left(t_{1}, \ell_{1}, t_{2}, \ell_{2}\right)=$ $(2,4,1, k)$ and $k \in\{3,4\}$. In particular, they proved, for $k \in\{3,4\}$, that a k-connected matroid M with $|E(M)| \geq k^{2}$ has the $(2,4,1, k)$-property if and only if $M \cong M\left(K_{k, n}\right)$ for some $n \geq k$. This gives credence to the idea that sufficiently large matroids with the $\left(t_{1}, \ell_{1}, t_{2}, \ell_{2}\right)$-property, for appropriate values of $t_{1}, \ell_{1}, t_{2}, \ell_{2}$, may form structured classes. In particular, we conjecture the following generalization of Theorem 1.1.

Conjecture 1.2. There exists a function $f\left(t_{1}, t_{2}\right)$ such that if M is a matroid with the $\left(t_{1}, 2 t_{1}, t_{2}, 2 t_{2}\right)$-property, for positive integers t_{1} and t_{2}, and $|E(M)| \geq f\left(t_{1}, t_{2}\right)$, then $E(M)$ has a partition into pairs such that the union of any t_{1} pairs is a circuit, and the union of any t_{2} pairs is a cocircuit.

The study of matroids with the $(t, 2 t)$-property was motivated by problems in matroid connectivity. Tutte proved that wheels and whirls (that is, matroids with the (1,3)-property) are the only 3 -connected matroids with no element whose deletion or contraction preserves 3 -connectivity [11]. Moreover, spikes (matroids with the (2,4)-property) are the only 3 -connected matroids with $|E(M)| \geq 13$ having no triangles or triads, and no pair of elements whose deletion or contraction preserves 3 -connectivity [12]. We envision that t-spikes could also play a role in a connectivity "chain theorem": they are $(2 t-1)$-connected matroids, having no circuits or cocircuits of size $(2 t-1)$, with the property that for every t-element subset $X \subseteq E(M)$, neither M / X nor $M \backslash X$ is $(t+1)$-connected. We conjecture the following.

Conjecture 1.3. There exists a function $f(t)$ such that if M is a $(2 t-1)$ connected matroid with no circuits or cocircuits of size $2 t-1$, and $|E(M)| \geq f(t)$, then either
(i) there exists a t-element set $X \subseteq E(M)$ such that either M / X or $M \backslash X$ is $(t+1)$-connected, or
(ii) M is at-spike.

This paper is structured as follows. In section 3, we prove that there are only finitely many matroids with the (t, ℓ)-property, for $\ell<2 t$. In section 4 , we define t-echidnas and t-spikes, and show that a matroid with the $(t, 2 t)$-property and having a sufficiently large t-echidna is a t-spike. We prove Theorem 1.1 in section 5 . Finally, we present some properties of t-spikes in section 6 .
2. Preliminaries. Our notation and terminology follow Oxley [6]. We refer to the fact that a circuit and a cocircuit cannot intersect in exactly one element as "orthogonality." We say that a k-element set is a k-set. A set S_{1} meets a set S_{2} if $S_{1} \cap S_{2} \neq \emptyset$. We denote $\{1,2, \ldots, n\}$ by $[n]$, and, for positive integers $i<j$, we denote $\{i, i+1, \ldots, j\}$ by $[i, j]$. We denote the set of positive integers by \mathbb{N}.

Lemma 2.1. There exists a function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that, if \mathcal{S} is a collection of distinct s-sets and $|\mathcal{S}| \geq f(s, n)$, then there is some $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ with $\left|\mathcal{S}^{\prime}\right|=n$, and a set J with $0 \leq|J|<s$, such that $S_{1} \cap S_{2}=J$ for all distinct $S_{1}, S_{2} \in \mathcal{S}^{\prime}$.

Proof. We define $f(1, n)=n$ and $f(s, n)=s(n-1) f(s-1, n)$ for $s>1$. Note that f is increasing. We claim that this function satisfies the lemma. We proceed by induction on s. If $s=1$, then the claim holds with $J=\emptyset$.

Let \mathcal{S} be a collection of s-sets with $|\mathcal{S}| \geq f(s, n)$. Suppose there are n pairwise disjoint sets in \mathcal{S}. Then the desired conditions are satisfied if we take $J=\emptyset$. Thus, we may assume that there is some maximal $\mathcal{D} \subseteq \mathcal{S}$ consisting of pairwise disjoint sets, with $|\mathcal{D}| \leq n-1$. Each $S \in \mathcal{S}-\mathcal{D}$ meets some $D \in \mathcal{D}$. Each such D has s elements. Therefore, each $S \in \mathcal{S}$ contains at least one of $(n-1) s$ elements $e \in \cup \mathcal{D}$. By the pigeonhole principle, there is some $e \in \cup \mathcal{D}$ such that

$$
|\{S \in \mathcal{S}: e \in S\}| \geq \frac{f(s, n)}{(n-1) s}=f(s-1, n) .
$$

Let $\mathcal{T}=\{S-\{e\}: e \in S \in \mathcal{S}\}$. Then, for every $T \in \mathcal{T}$, we have $|T|=s-1$. Moreover, $|\mathcal{T}|=|\{S \in \mathcal{S}: e \in S\}| \geq f(s-1, n)$. By the induction assumption, there is a subset $\mathcal{T}^{\prime} \subseteq \mathcal{T}$, with $\left|\mathcal{T}^{\prime}\right|=n$, and a set J^{\prime}, with $\left|J^{\prime}\right|<s-1$, such that $T_{1} \cap T_{2}=J^{\prime}$ for all distinct $T_{1}, T_{2} \in \mathcal{T}^{\prime}$. Let $\mathcal{S}^{\prime}=\left\{T \cup\{e\}: T \in \mathcal{T}^{\prime}\right\}$. Then, $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ with $\left|\mathcal{S}^{\prime}\right|=n$ such that $S_{1} \cap S_{2}=J^{\prime} \cup\{e\}$ for all distinct $S_{1}, S_{2} \in \mathcal{S}^{\prime}$ and $|J \cup\{e\}|<s$.
3. Matroids with the (t, ℓ)-property for $\ell<2 t$. Recall that a matroid has the $\left(t_{1}, \ell_{1}, t_{2}, \ell_{2}\right)$-property if every t_{1}-element set is contained in an ℓ_{1}-element circuit, and every t_{2}-element set is contained in an ℓ_{2}-element cocircuit. In this section, we prove that there are only finitely many matroids with the $\left(t_{1}, \ell_{1}, t_{2}, \ell_{2}\right)$-property if $\ell_{2}<2 t_{2}$. By duality, the same is true if $\ell_{1}<2 t_{1}$. As a special case, we have that there are only finitely many matroids with the (t, ℓ)-property for $\ell<2 t$.

Lemma 3.1. Let \mathcal{C} be a collection of circuits of a matroid M such that, for some $J \subseteq E(M)$ with $|J| \leq k$, we have $C \cap C^{\prime}=J$ for all distinct $C, C^{\prime} \in \mathcal{C}$. Then, for every subcollection $\left\{C_{1}, \ldots, C_{2^{k}}\right\} \subseteq \mathcal{C}$ of size 2^{k}, there is a circuit contained in $\bigcup_{i=1}^{2^{k}} C_{i}-J$.

Proof. We may assume $|\mathcal{C}| \geq 2^{k}$; otherwise, the result holds vacuously. Also, we may assume $k>0$ as the result holds for any singleton subcollection of \mathcal{C} with $J=\emptyset$. Therefore, \mathcal{C} has at least one subcollection $\mathcal{C}^{\prime}=\left\{C_{1}, \ldots C_{2^{k}}\right\}$, with $\left|\mathcal{C}^{\prime}\right|=2^{k} \geq 2$.

Let $x_{1}, x_{2}, \ldots, x_{|J|}$ be the elements of J. Define $Z_{i, 0}=C_{i}$, for $i \in\left[2^{k}\right]$, and recursively define $Z_{i, j}=Z_{2 i-1, j-1} \cup Z_{2 i, j-1}$ for $j \in[k]$ and $i \in\left[2^{k-j}\right]$. Note that
each $Z_{i, j}$ is the union of 2^{j} members of \mathcal{C}. We will show, by induction on j, that $Z_{i, j}-\left\{x_{1}, x_{2}, \ldots, x_{j}\right\}$ contains a circuit. This is clear when $j=0$. Now let $j \geq 1$. By the induction hypothesis, $Z_{2 i-1, j-1}$ and $Z_{2 i, j-1}$ each contain a circuit, C_{1}^{\prime} and C_{2}^{\prime}, respectively, disjoint from $\left\{x_{1}, x_{2}, \ldots, x_{j-1}\right\}$, for each $i \in\left[2^{k-j}\right]$. (Moreover, $C_{1}^{\prime} \neq C_{2}^{\prime}$ since $C_{1}^{\prime} \cap C_{2}^{\prime} \subseteq Z_{2 i-1, j-1} \cap Z_{2 i, j-1} \subseteq J$, which is independent since J is the intersection of at least two circuits.) We may assume that neither $Z_{2 i-1, j-1}$ nor $Z_{2 i, j-1}$ contains a circuit disjoint from $\left\{x_{1}, x_{2}, \ldots, x_{j}\right\}$; otherwise, so does $Z_{i, j}$. Thus, C_{1}^{\prime} and C_{2}^{\prime} both contain x_{j}. By circuit elimination, there is a circuit C_{3}^{\prime} contained in $\left(C_{1}^{\prime} \cup C_{2}^{\prime}\right)-\left\{x_{j}\right\} \subseteq Z_{i, j}-\left\{x_{1}, x_{2}, \ldots, x_{j}\right\}$. This completes the induction argument. In particular, there is a circuit contained in $Z_{1, k}-\left\{x_{1}, x_{2}, \ldots, x_{|J|}\right\}=\bigcup_{i=1}^{2^{k}} C_{i}-J$, as required.

Lemma 3.2. There exists a function $g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that if M is a matroid having at least $g(\ell, d)$-many ℓ-element circuits, then M has a collection of d pairwise disjoint circuits.

Proof. Let \mathcal{C} be the collection of ℓ-element circuits of M, let f be the function of Lemma 2.1, and let $g(\ell, d)=f\left(\ell, 2^{\ell-1} d\right)$. Then, by Lemma 2.1, there is a subset $\mathcal{C}^{\prime} \subseteq \mathcal{C}$, with $\left|\mathcal{C}^{\prime}\right|=2^{\ell-1} d$, and a set J, with $0 \leq|J| \leq \ell-1$, such that $C \cap C^{\prime}=J$ for every pair $C, C^{\prime} \in \mathcal{C}^{\prime}$. Say $\mathcal{C}^{\prime}=\left\{C_{1}, C_{2}, \ldots, C_{2^{\ell-1} d}\right\}$.

If $J=\emptyset$, then M has $2^{\ell-1} d \geq d$ pairwise disjoint circuits, as required. Thus, we may assume that $J \neq \emptyset$. For each $C_{i} \in \mathcal{C}^{\prime}$, let $D_{i}=C_{i}-J$, and observe that the D_{i} 's are pairwise disjoint. For $j \in[d]$, let

$$
D_{j}^{\prime}=\bigcup_{i=1}^{2^{\ell-1}} D_{(j-1)\left(2^{\ell-1}\right)+i}
$$

By Lemma 3.1, each D_{j}^{\prime} contains a circuit C_{j}^{\prime}, and the C_{j}^{\prime} 's are pairwise disjoint.
Theorem 3.3. Let t_{1}, ℓ_{1}, t_{2}, and ℓ_{2} be positive integers. If $\ell_{1}<2 t_{1}$ or $\ell_{2}<2 t_{2}$, then there is a finite number of matroids with the $\left(t_{1}, \ell_{1}, t_{2}, \ell_{2}\right)$-property.

Proof. By duality, it suffices to prove the result when $\ell_{2}<2 t_{2}$. So let $\ell_{2}<2 t_{2}$, and let g be the function given in Lemma 3.2.

Suppose M has at least $g\left(\ell_{1}, t_{2}\right)$-many ℓ_{1}-element circuits. By Lemma 3.2, M has a collection of t_{2} pairwise disjoint circuits. Call this collection $\mathcal{C}=\left\{C_{1}, \ldots, C_{t_{2}}\right\}$. Let b_{i} be an element of C_{i}, for each $i \in\left[t_{2}\right]$. By the ($t_{1}, \ell_{1}, t_{2}, \ell_{2}$)-property, there is an ℓ_{2}-element cocircuit C^{*} containing $\left\{b_{1}, \ldots, b_{t_{2}}\right\}$. By orthogonality, for each $i \in\left[t_{2}\right]$ there is an element $b_{i}^{\prime} \neq b_{i}$ such that $b_{i}^{\prime} \in C_{i} \cap C^{*}$. This implies that $\ell_{2}=\left|C^{*}\right| \geq 2 t_{2}$; a contradiction. Thus, M has fewer than $g\left(\ell_{1}, t_{2}\right)$-many ℓ_{1}-element circuits.

Suppose $|E(M)| \geq \ell_{1} \cdot g\left(\ell_{1}, t_{2}\right)$. Partition a subset of $E(M)$ into $\left\lfloor\ell_{1} / t_{1}\right\rfloor \cdot g\left(\ell_{1}, t_{2}\right)$ pairwise disjoint t_{1}-sets. By the ($t_{1}, \ell_{1}, t_{2}, \ell_{2}$)-property, each of these t_{1}-sets is contained in an ℓ_{1}-element circuit. The collection consisting of these ℓ_{1}-element circuits contains at least $g\left(\ell_{1}, t_{2}\right)$ distinct circuits. This contradicts the fact that M has fewer than $g\left(\ell_{1}, t_{2}\right)$-many ℓ_{1}-element circuits. Therefore, $|E(M)|<\ell_{1} \cdot g\left(\ell_{1}, t_{2}\right)$. The result follows.

Note that there may still be infinitely many matroids where every t_{1}-element set is in an ℓ_{1}-element circuit for fixed $\ell_{1}<2 t_{1}$; it is necessary that the matroids in Theorem 3.3 have the property that every t_{2}-element set is in an ℓ_{2}-element cocircuit, for fixed t_{2} and ℓ_{2}. To see this, observe that projective geometries on at least three elements form an infinite family of matroids with the property that every pair of elements is in a 3 -element circuit.

Corollary 3.4. Let t and ℓ be positive integers. When $\ell<2 t$, there is a finite number of matroids with the (t, ℓ)-property.
4. Echidnas and \boldsymbol{t}-spikes. We now focus on matroids with the $(t, 2 t)$-property. In section 5 , we will show that every sufficiently large matroid with the $(t, 2 t)$-property has a partition into pairs such that the union of any t of these pairs is both a circuit and a cocircuit. We call such a matroid a t-spike. We first define a related structure: a t-echidna.

Definition 4.1. Let M be a matroid. A t-echidna of order n is a partition $\left(S_{1}, \ldots, S_{n}\right)$ of a subset of $E(M)$ such that
(i) $\left|S_{i}\right|=2$ for all $i \in[n]$ and
(ii) $\bigcup_{i \in I} S_{i}$ is a circuit for all $I \subseteq[n]$ with $|I|=t$.

For $i \in[n]$, we say S_{i} is a spine. We say $\left(S_{1}, \ldots, S_{n}\right)$ is a t-coechidna of M if $\left(S_{1}, \ldots, S_{n}\right)$ is a t-echidna of M^{*}.

Definition 4.2. A matroid M is a t-spike of order r if there exists a partition $\pi=\left(A_{1}, \ldots, A_{r}\right)$ of $E(M)$ such that π is a t-echidna and a t-coechidna, for some $r \geq t$. We say π is the associated partition of the t-spike M, and A_{i} is an arm of the t-spike for each $i \in[r]$.

Note that if M is a t-spike, then M^{*} is a t-spike.
In this section, we prove, as Lemma 4.5, that if M is a matroid with the $(t, 2 t)$ property, and M has a t-echidna of order $4 t-3$, then M is a t-spike.

Lemma 4.3. Let M be a matroid with the ($t, 2 t$)-property. If M has a t-echidna $\left(S_{1}, \ldots, S_{n}\right)$, where $n \geq 3 t-1$, then $\left(S_{1}, \ldots, S_{n}\right)$ is also a t-coechidna of M.

Proof. Let $S_{i}=\left\{x_{i}, y_{i}\right\}$ for each $i \in[n]$. By definition, if J is a t-element subset of [n], then $\bigcup_{j \in J} S_{j}$ is a circuit. Consider such a circuit C; without loss of generality, we let $C=\left\{x_{1}, y_{1}, \ldots, x_{t}, y_{t}\right\}$. By the $(t, 2 t)$-property, there is a $2 t$-element cocircuit C^{*} that contains $\left\{x_{1}, \ldots, x_{t}\right\}$.

Suppose that $C^{*} \neq C$. Then there is some $i \in[t]$ such that $y_{i} \notin C^{*}$. Without loss of generality, say $y_{1} \notin C^{*}$. Let I be a $(t-1)$-element subset of $[t+1, n]$. For any such I, the set $S_{1} \cup\left(\bigcup_{i \in I} S_{i}\right)$ is a circuit that meets C^{*}. By orthogonality, $\bigcup_{i \in I} S_{i}$ meets C^{*} for every $(t-1)$-element subset I of $[t+1, n]$. Thus, C^{*} avoids at most $t-2$ of the S_{i} 's for $i \in[t+1, n]$. In fact, as C^{*} meets each S_{i} with $i \in[t]$, the cocircuit C^{*} avoids at most $t-2$ of the S_{i} 's with $i \in[n]$. Thus $\left|C^{*}\right| \geq n-(t-2) \geq(3 t-1)-(t-2)=2 t+1>2 t$; a contradiction. Therefore, we conclude that $C^{*}=C$, and the result follows.

Lemma 4.4. Let M be a matroid with the $(t, 2 t)$-property, and let $\left(S_{1}, \ldots, S_{n}\right)$ be a t-echidna of M with $n \geq 3 t-1$. Let I be $a(t-1)$-element subset of $[n]$. For $z \in E(M)-\bigcup_{i \in I} S_{i}$, there is a $2 t$-element circuit and a 2 t-element cocircuit each containing $\{z\} \cup\left(\bigcup_{i \in I} S_{i}\right)$.

Proof. By duality, it suffices to show that there is a $2 t$-element circuit containing $\{z\} \cup\left(\bigcup_{i \in I} S_{i}\right)$. For $i \in[n]$, let $S_{i}=\left\{x_{i}, y_{i}\right\}$. By the $(t, 2 t)$-property, there is a $2 t$ element circuit C containing $\{z\} \cup\left\{x_{i}: i \in I\right\}$. Let J be a $(t-1)$-element subset of $[n]$ such that C and $\bigcup_{j \in J} S_{j}$ are disjoint (such a set exists since $|C|=2 t$ and $n \geq 3 t-1$). For $i \in I$, let $C_{i}^{*}=S_{i} \cup\left(\bigcup_{j \in J} S_{j}\right)$, and observe that $x_{i} \in C_{i}^{*} \cap C$, and $C_{i}^{*} \cap C \subseteq S_{i}$. By Lemma 4.3, $\left(S_{1}, \ldots, S_{n}\right)$ is a t-coechidna as well as a t-echidna; therefore, C_{i}^{*} is a cocircuit. Now, for each $i \in I$, orthogonality implies that $\left|C_{i}^{*} \cap C\right| \geq 2$, and hence $y_{i} \in C$. So C contains $\{z\} \cup\left(\bigcup_{i \in I} S_{i}\right)$, as required.

Let $\left(S_{1}, \ldots, S_{n}\right)$ be a t-echidna of a matroid M. If $\left(S_{1}, \ldots, S_{m}\right)$ is a t-echidna of
M, for some $m \geq n$, we say that $\left(S_{1}, \ldots, S_{n}\right)$ extends to $\left(S_{1}, \ldots, S_{m}\right)$. We say that $\pi=\left(S_{1}, \ldots, S_{n}\right)$ is maximal if there is no echidna other than π to which π extends.

Lemma 4.5. Let M be a matroid with the $(t, 2 t)$-property, with $t \geq 2$. If M has a t-echidna $\left(S_{1}, \ldots, S_{n}\right)$, where $n \geq 4 t-3$, then $\left(S_{1}, \ldots, S_{n}\right)$ extends to a partition of $E(M)$ that is both a t-echidna and a t-coechidna.

Proof. Suppose that $\left(S_{1}, \ldots, S_{n}\right)$ extends to $\pi=\left(S_{1}, \ldots, S_{m}\right)$, where π is maximal. Let $X=\bigcup_{i=1}^{m} S_{i}$. By Lemma 4.3, π is a t-coechidna as well as a t-echidna. The result holds if $X=E(M)$. Therefore, towards a contradiction, we suppose that $E(M)-X \neq \emptyset$. Let $z \in E(M)-X$. By Lemma 4.4, there is a $2 t$-element circuit $C=\left\{z, z^{\prime}\right\} \cup\left(\bigcup_{i \in[t-1]} S_{i}\right)$, for some $z^{\prime} \in E(M)-\left(\{z\} \cup\left(\bigcup_{i \in[t-1]} S_{i}\right)\right)$.

We claim that $z^{\prime} \notin X$. Towards a contradiction, suppose that $z^{\prime} \in S_{k}$ for some $k \in[t, m]$. Let J be a t-element subset of $[t, m]$ containing k. Then, since $\left(S_{1}, \ldots, S_{m}\right)$ is a t-coechidna, $\bigcup_{j \in J} S_{j}$ is a cocircuit that contains z^{\prime}. Now, by orthogonality, $z \in X$; a contradiction. Thus, $z^{\prime} \notin X$, as claimed.

We next show that $\left(\left\{z, z^{\prime}\right\}, S_{t}, S_{t+1}, \ldots, S_{m}\right)$ is a t-coechidna. It suffices to show that $\left\{z, z^{\prime}\right\} \cup\left(\bigcup_{i \in I} S_{i}\right)$ is a cocircuit for each $(t-1)$-element subset I of $[t, m]$. Let I be such a set. Lemma 4.4 implies that there is a $2 t$-element cocircuit C^{*} of M containing $\{z\} \cup\left(\bigcup_{i \in I} S_{i}\right)$. By orthogonality, $\left|C \cap C^{*}\right|>1$. Therefore, $z^{\prime} \in C^{*}$. Thus, $\left(\left\{z, z^{\prime}\right\}, S_{t}, S_{t+1}, \ldots, S_{m}\right)$ is a t-coechidna. Since this t-coechidna has order $1+m-(t-1) \geq 3 t-1$, the dual of Lemma 4.3 implies that $\left(\left\{z, z^{\prime}\right\}, S_{t}, S_{t+1}, \ldots, S_{m}\right)$ is also a t-echidna.

Now, we claim that $\left(\left\{z, z^{\prime}\right\}, S_{1}, S_{2}, \ldots, S_{m}\right)$ is a t-coechidna. It suffices to show that $\left\{z, z^{\prime}\right\} \cup\left(\bigcup_{i \in I} S_{i}\right)$ is a cocircuit for any $(t-1)$-element subset I of $[m]$. Let I be such a set, and let J be a $(t-1)$-element subset of $[t, m]-I$. By Lemma 4.4, there is a $2 t$-element cocircuit C^{*} containing $\{z\} \cup\left(\bigcup_{i \in I} S_{i}\right)$. Moreover, $C=\left\{z, z^{\prime}\right\} \cup\left(\bigcup_{j \in J} S_{j}\right)$ is a circuit since $\left(\left\{z, z^{\prime}\right\}, S_{t}, S_{t+1}, \ldots, S_{m}\right)$ is a t-echidna. By orthogonality, $z^{\prime} \in C^{*}$. Therefore, $\left(\left\{z, z^{\prime}\right\}, S_{1}, S_{2}, \ldots, S_{m}\right)$ is a t-coechidna. By the dual of Lemma 4.3, it is also a t-echidna, contradicting the maximality of $\left(S_{1}, \ldots, S_{m}\right)$.
5. Matroids with the ($\boldsymbol{t}, \mathbf{2 t}$)-property. In this section, we prove that every sufficiently large matroid with the $(t, 2 t)$-property is a t-spike. Our primary goal is to show that a sufficiently large matroid with the $(t, 2 t)$-property has a large t-echidna or t-coechidna; it then follows, by Lemma 4.5, that the matroid is a t-spike.

Lemma 5.1. Let M be a matroid with the $(t, 2 t)$-property, and let $X \subseteq E(M)$.
(i) If $r(X)<t$, then X is independent.
(ii) If $r(X)=t$, then $M \mid X \cong U_{t,|X|}$ and $|X|<3 t$.

Proof. Clearly, as M has the $(t, 2 t)$-property, M has no circuits of size at most t. Thus, if $r(X)<t$, then X contains no circuits and is therefore independent. If $r(X)=t$, then a subset of X is a circuit if and only if it has size $t+1$. Therefore, $M \mid X \cong U_{t,|X|}$.

Suppose towards a contradiction that $M \mid X \cong U_{t, 3 t}$. Let $x \in X$, and let C^{*} be a cocircuit of M containing x. Then $E(M)-C^{*}$ is closed, so $\operatorname{cl}\left(X-C^{*}\right) \subseteq$ $\operatorname{cl}\left(E(M)-C^{*}\right)=E(M)-C^{*}$. Therefore, $r\left(X-C^{*}\right)<r(X)=t$, implying that $\left|C^{*}\right|>2 t$. But then every cocircuit containing x has size greater than $2 t$, contradicting the $(t, 2 t)$-property.

Lemma 5.2. Let M be a matroid with the $(t, 2 t)$-property. Let $C_{1}^{*}, C_{2}^{*}, \ldots, C_{t-1}^{*}$ be a collection of $t-1$ pairwise disjoint cocircuits of M, and let $Y=E(M)-\bigcup_{i \in[t-1]} C_{i}^{*}$. For all $y \in Y$, there is a $2 t$-element circuit C_{y} containing y such that either
(i) $\left|C_{y} \cap C_{i}^{*}\right|=2$ for all $i \in[t-1]$ or
(ii) $\left|C_{y} \cap C_{j}^{*}\right|=3$ for some $j \in[t-1]$, and $\left|C_{y} \cap C_{i}^{*}\right|=2$ for all $i \in[t-1]-\{j\}$.

Moreover, if $C_{y}=S \cup\{y\}$ satisfies (ii), then there are at most $3 t-1$ elements $w \in Y$ such that $S \cup\{w\}$ is a circuit.

Proof. Choose an element $c_{i} \in C_{i}^{*}$ for each $i \in[t-1]$. By the $(t, 2 t)$-property, there is a $2 t$-element circuit C_{y} containing $\left\{c_{1}, c_{2}, \ldots, c_{t-1}, y\right\}$, for each $y \in Y$. By orthogonality, C_{y} satisfies (i) or (ii).

Suppose C_{y} satisfies (ii), and let $S=C_{y}-Y=C_{y}-\{y\}$. Let $W=\{w \in Y$: $S \cup\{w\}$ is a circuit $\}$. It remains to prove that $|W|<3 t$. Observe that $W \subseteq \operatorname{cl}(S) \cap Y$, and, since S contains $t-1$ elements in pairwise disjoint cocircuits that avoid Y, we have $r(\operatorname{cl}(S) \cup Y) \geq r(Y)+(t-1)$. Thus,

$$
\begin{aligned}
r(W) & \leq r(\operatorname{cl}(S) \cap Y) \\
& \leq r(\operatorname{cl}(S))+r(Y)-r(\operatorname{cl}(S) \cup Y) \\
& \leq(2 t-1)+r(Y)-(r(Y)+(t-1)) \\
& =t
\end{aligned}
$$

using submodularity of the rank function at the second line.
Now, by Lemma 5.1(i), if $r(W)<t$, then W is independent, so $|W|=r(W)<t$. On the other hand, by Lemma 5.1(ii), if $r(W)=t$, then $M \mid W \cong U_{t,|W|}$ and $|W|<3 t$, as required.

Lemma 5.3. There exists a function h such that if M is a matroid with the $(t, 2 t)$ property and having at least $h(\ell, d, t) \ell$-element circuits, then M has a collection of d pairwise disjoint $2 t$-element cocircuits.

Proof. By Lemma 3.2, there is a function g such that if M has at least $g(\ell, d)$ ℓ-element circuits, then M has a collection of d pairwise disjoint circuits. We define $h(\ell, d, t)=g(\ell, t d)$, and claim that a matroid with the $(t, 2 t)$-property and having at least $h(\ell, d, t) \ell$-element circuits has a collection of d pairwise disjoint $2 t$-element cocircuits.

Let M be such a matroid. By Lemma $3.2, M$ has a collection of $t d$ pairwise disjoint circuits. We partition these into d groups of size t : call this partition $\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{d}\right)$. Since the t circuits in any cell of this partition are pairwise disjoint, it now suffices to show that, for each $i \in[d]$, there is a $2 t$-element cocircuit contained in the union of the members of \mathcal{C}_{i}. Let $\mathcal{C}_{i}=\left\{C_{1}, \ldots, C_{t}\right\}$ for some $i \in[d]$. Pick some $c_{j} \in C_{j}$ for each $j \in[t]$. Then, by the $(t, 2 t)$-property, $\left\{c_{1}, c_{2}, \ldots, c_{t}\right\}$ is contained in a $2 t$-element cocircuit, which, by orthogonality, is contained in $\bigcup_{j \in[t]} C_{j}$.

LEmma 5.4. There exists a function g such that if M is a matroid with the $(t, 2 t)$ property and $|E(M)| \geq g(t, q)$, then, for some $M^{\prime} \in\left\{M, M^{*}\right\}$, the matroid M^{\prime} has $t-1$ pairwise disjoint cocircuits $C_{1}^{*}, C_{2}^{*}, \ldots, C_{t-1}^{*}$, and there is some $Z \subseteq E\left(M^{\prime}\right)-$ $\bigcup_{i \in[t-1]} C_{i}^{*}$ such that
(i) $r_{M^{\prime}}(Z) \geq q$ and
(ii) for each $z \in Z$, there exists an element $z^{\prime} \in Z-\{z\}$ such that $\left\{z, z^{\prime}\right\}$ is contained in a $2 t$-element circuit C of M^{\prime} with $\left|C \cap C_{i}^{*}\right|=2$ for each $i \in[t-1]$.
Proof. By Lemma 5.3, there is a function h such that if M^{\prime} has at least $h(\ell, d, t)$ ℓ-element circuits, for $M^{\prime} \in\left\{M, M^{*}\right\}$, then M^{\prime} has a collection of d pairwise disjoint $2 t$-element cocircuits.

Suppose $|E(M)| \geq 2 t \cdot h(2 t, t-1, t)$. Then, by the $(t, 2 t)$-property, M^{\prime} has at least $h(2 t, t-1, t)$ distinct $2 t$-element circuits. Hence, by Lemma $5.3, M^{\prime}$ has a collection
of $t-1$ pairwise disjoint $2 t$-element cocircuits $C_{1}^{*}, C_{2}^{*}, \ldots, C_{t-1}^{*}$.
Let $X=\bigcup_{i \in[t-1]} C_{i}^{*}$ and $Y=E(M)-X$. By Lemma 5.2, for each $y \in Y$ there is a $2 t$-element circuit C_{y} containing y such that $\left|C_{y} \cap C_{j}^{*}\right|=3$ for at most one $j \in[t-1]$ and $\left|C_{y} \cap C_{i}^{*}\right|=2$ otherwise. Let W be the set of all $w \in Y$ such that w is in a $2 t$-element circuit C with $\left|C \cap C_{j}^{*}\right|=3$ for some $j \in[t-1]$, and $\left|C \cap C_{i}^{*}\right|=2$ for all $i \in[t-1]-\{j\}$. Now, letting $Z=Y-W$, we see that (ii) is satisfied for both $M^{\prime}=M$ and $M^{\prime}=M^{*}$.

Since the C_{i}^{*} 's have size $2 t$, there are $(t-1)\binom{2 t}{3}\binom{2 t}{2}^{t-2}$ sets $X^{\prime} \subseteq X$ with $\mid X^{\prime} \cap$ $C_{j}^{*} \mid=3$ for some $j \in[t-1]$ and $\left|X^{\prime} \cap C_{i}^{*}\right|=2$ for all $i \in[t-1]-\{j\}$. It follows, by Lemma 5.2, that $|W| \leq s(t)$ where

$$
s(t)=(3 t-1)\left[(t-1)\binom{2 t}{3}\binom{2 t}{2}^{t-2}\right]
$$

We define

$$
g(t, q)=\max \{2 t \cdot h(2 t, t-1, t), 2(q+s(t)+2 t(t-1))\} .
$$

Suppose that $|E(M)| \geq g(t, q)$. Recall that (ii) holds for both $M^{\prime}=M$ and $M^{\prime}=M^{*}$. Moreover, we can choose $M^{\prime} \in\left\{M, M^{*}\right\}$ such that $r\left(M^{\prime}\right) \geq q+s(t)+2 t(t-1)$. Then,

$$
\begin{aligned}
r_{M^{\prime}}(Z) & \geq r_{M^{\prime}}(Y)-|W| \\
& \geq\left(r\left(M^{\prime}\right)-2 t(t-1)\right)-s(t) \\
& \geq q
\end{aligned}
$$

so (i) holds as well, as required.
Lemma 5.5. Let M be a matroid with the ($t, 2 t$)-property. Suppose M has $t-1$ pairwise disjoint cocircuits $C_{1}^{*}, C_{2}^{*}, \ldots, C_{t-1}^{*}$, and, for some positive integer p, there is some $Z \subseteq E(M)-\bigcup_{i \in[t-1]} C_{i}^{*}$ such that
(a) $r_{M}(Z) \geq\binom{ 2 t}{2}^{t-1}(p+2(t-1))$ and
(b) for each $z \in Z$, there exists an element $z^{\prime} \in Z-\{z\}$ such that $\left\{z, z^{\prime}\right\}$ is contained in a 2t-element circuit C of M with $\left|C \cap C_{i}^{*}\right|=2$ for each $i \in[t-1]$.
Then there exist a subset $Z^{\prime} \subseteq Z$ and a partition $\mathcal{Z}^{\prime}=\left(Z_{1}^{\prime}, \ldots, Z_{p}^{\prime}\right)$ of Z^{\prime} into pairs such that
(i) each circuit of $M \mid Z^{\prime}$ is a union of pairs in \mathcal{Z}^{\prime} and
(ii) the union of any t pairs of \mathcal{Z}^{\prime} contains a circuit.

Proof. We first prove the following claim.
Claim 5.5.1. There exist a $(2 t-2)$-element set X, with $\left|X \cap C_{i}^{*}\right|=2$ for each $i \in[t-1]$, and a set $Z^{\prime} \subseteq Z$, with a partition $\mathcal{Z}^{\prime}=\left(Z_{1}^{\prime}, \ldots, Z_{p}^{\prime}\right)$ into p pairs, such that
(I) $X \cup Z_{i}^{\prime}$ is a circuit for each $i \in[p]$ and
(II) \mathcal{Z}^{\prime} partitions the ground set of $(M / X) \mid Z^{\prime}$ into parallel classes, and we have that $r_{M / X}\left(\bigcup_{i \in[p]} Z_{i}^{\prime}\right)=p$.
Proof. For each $z \in Z$, there exist an element $z^{\prime} \in Z-\{z\}$ and a set X^{\prime} such that $\left\{z, z^{\prime}\right\} \cup X^{\prime}$ is a circuit of M, and X^{\prime} is the union of pairs Y_{i} for $i \in[t-1]$, with $Y_{i} \subseteq C_{i}^{*}$. There are $\binom{2 t}{2}^{t-1}$ choices of such pairs $Y_{i} \subseteq C_{i}^{*}$ for $i \in[t-1]$. Thus, for some $m \leq\binom{ 2 t}{2}^{t-1}$, there are $(2 t-2)$-element sets X_{1}, \ldots, X_{m}, each of which intersects C_{i}^{*} in two elements for each $i \in[t-1]$, and sets Z_{1}, \ldots, Z_{m} whose union is Z, such that
for each $j \in[m]$ and each $z_{j} \in Z_{j}$, there is an element $z_{j}^{\prime} \in Z_{j}$ such that $X_{j} \cup\left\{z_{j}, z_{j}^{\prime}\right\}$ is a circuit. Moreover, $r\left(Z_{1}\right)+\cdots+r\left(Z_{m}\right) \geq r(Z)$. Thus, by the pigeonhole principle, there exists some $j \in[m]$ with

$$
r\left(Z_{j}\right) \geq \frac{r(Z)}{\binom{2 t}{2}^{t-1}} \geq p+2(t-1) .
$$

Let $Z^{\prime}=Z_{j}$ and $X=X_{j}$. Now, observe that $X \cup\left\{z, z^{\prime}\right\}$ is a circuit, for some pair $\left\{z, z^{\prime}\right\} \subseteq Z^{\prime}$, if and only if $\left\{z, z^{\prime}\right\}$ is a parallel pair in M / X. So the ground set of $(M / X) \mid Z^{\prime}$ has a partition into parallel classes, where each parallel class has size at least two. Let $\mathcal{Z}^{\prime}=\left\{\left\{z_{1}, z_{1}^{\prime}\right\}, \ldots,\left\{z_{n}, z_{n}^{\prime}\right\}\right\}$ be a collection of pairs from each parallel class such that $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ is independent in $(M / X) \mid Z^{\prime}$. Since $r_{M / X}\left(Z^{\prime}\right)=r\left(Z^{\prime} \cup\right.$ $X)-r(X) \geq r\left(Z^{\prime}\right)-2(t-1) \geq p$, there exists such a collection \mathcal{Z}^{\prime} of size p, and this collection satisfies Claim 5.5.1.

Let X and $\mathcal{Z}^{\prime}=\left\{Z_{1}^{\prime}, \ldots, Z_{p}^{\prime}\right\}$ be as described in Claim 5.5.1, let $Z^{\prime}=\bigcup_{i \in[p]} Z_{i}^{\prime}$, and let $\mathcal{X}=\left\{X_{1}, \ldots, X_{t-1}\right\}$, where $X_{i}=\left\{x_{i}, x_{i}^{\prime}\right\}=X \cap C_{i}^{*}$.

Claim 5.5.2. Each circuit of $M \mid\left(X \cup Z^{\prime}\right)$ is a union of pairs in $\mathcal{X} \cup \mathcal{Z}^{\prime}$.
Proof. Let C be a circuit of $M \mid\left(X \cup Z^{\prime}\right)$. If $x_{i} \in C$, for some $\left\{x_{i}, x_{i}^{\prime}\right\} \in \mathcal{X}$, then, by orthogonality with C_{i}^{*}, we have $x_{i}^{\prime} \in C$. Towards a contradiction, say $\left\{z, z^{\prime}\right\} \in \mathcal{Z}^{\prime}$ and $C \cap\left\{z, z^{\prime}\right\}=\{z\}$. Choose W to be the union of the pairs of \mathcal{Z}^{\prime} that contain elements of $(C-\{z\}) \cap Z^{\prime}$. Then $z \in \operatorname{cl}(X \cup W)$. Hence $z \in \operatorname{cl}_{M / X}(W)$, contradicting Claim 5.5.1(II).

Claim 5.5.3. The union of any t pairs of $\mathcal{X} \cup \mathcal{Z}^{\prime}$ contains a circuit.
Proof. Let \mathcal{W} be a subcollection of $\mathcal{X} \cup \mathcal{Z}^{\prime}$ of size t. We proceed by induction on the number of pairs in $\mathcal{W} \cap \mathcal{Z}^{\prime}$. If there is only one pair in $\mathcal{W} \cap \mathcal{Z}^{\prime}$, then the union of the pairs in \mathcal{W} contains a circuit (indeed, is a circuit) by Claim 5.5.1(I). Suppose the result holds for any subcollection containing k pairs in \mathcal{Z}^{\prime}, and let \mathcal{W} be a subcollection containing $k+1$ pairs in \mathcal{Z}^{\prime}. Let $\left\{x, x^{\prime}\right\}$ be a pair in $\mathcal{X}-\mathcal{W}$, and let $W=\bigcup_{W^{\prime} \in \mathcal{W}} W^{\prime}$. By the induction hypothesis, $W \cup\left\{x, x^{\prime}\right\}$ contains a circuit C_{1}. If $\left\{x, x^{\prime}\right\} \subseteq E(M)-C_{1}$, then $C_{1} \subseteq W$, in which case the union of the pairs in \mathcal{W} contains a circuit, as desired. Therefore, we may assume, by Claim 5.5.2, that $\left\{x, x^{\prime}\right\} \subseteq C_{1}$. Since X is independent, there is a pair $\left\{z, z^{\prime}\right\} \subseteq Z^{\prime} \cap C_{1}$. By the induction hypothesis, there is a circuit C_{2} contained in $\left(W-\left\{z, z^{\prime}\right\}\right) \cup\left\{x, x^{\prime}\right\}$. Observe that C_{1} and C_{2} are distinct, and $\left\{x, x^{\prime}\right\} \subseteq C_{1} \cap C_{2}$. By circuit elimination on C_{1} and C_{2}, and Claim 5.5.2, there is a circuit $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-\left\{x, x^{\prime}\right\} \subseteq W$, as desired. The result now follows by induction.

Now, Claim 5.5.3 implies that the union of any t pairs of \mathcal{Z}^{\prime} contains a circuit, and the result follows.

In order to prove Theorem 1.1, we use some hypergraph Ramsey theory [9].
Theorem 5.6 (Ramsey's theorem for k-uniform hypergraphs). For positive integers k and n, there exists an integer $r_{k}(n)$ such that if H is a k-uniform hypergraph on $r_{k}(n)$ vertices, then H has either a clique on n vertices, or a stable set on n vertices.

We now prove Theorem 1.1, restated below as Theorem 5.7.
Theorem 5.7. There exists a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if M is a matroid with the $(t, 2 t)$-property, and $|E(M)| \geq f(t)$, then M is a t-spike.

Proof. We first consider the case where $t=1$. Let M be a nonempty matroid with the (1,2)-property. Then, for every $e \in E(M)$, the element e is in a parallel pair P and a series pair S. By orthogonality, $P=S$, and P is a connected component of M. Then $M \cong U_{1,2} \oplus M \backslash P$, and the result easily follows.

We may now assume that $t \geq 2$. We define the function $h_{k}: \mathbb{N} \rightarrow \mathbb{N}$, for each $k \in[t]$, as follows:

$$
h_{k}(t)= \begin{cases}4 t-3 & \text { if } k=t \\ r_{k}\left(h_{k+1}(t)\right) & \text { if } k \in[t-1]\end{cases}
$$

where $r_{k}(n)$ is the Ramsey number described in Theorem 5.6. Note that $h_{k}(t) \geq$ $h_{k+1}(t) \geq 4 t-3$, for each $k \in[t-1]$. Let $p(t)=h_{1}(t)$, and let $q(t)=\binom{2 t}{2}^{t-1}(p(t)+$ $2(t-1)$).

By Lemma 5.4, there exists a function g such that if $|E(M)| \geq g(t, q(t))$, then, for some $M^{\prime} \in\left\{M, M^{*}\right\}$, the matroid M^{\prime} has $t-1$ pairwise disjoint cocircuits $C_{1}^{*}, C_{2}^{*}, \ldots, C_{t-1}^{*}$, and there is some $Z^{\prime} \subseteq E\left(M^{\prime}\right)-\bigcup_{i \in[t-1]} C_{i}^{*}$ such that $r_{M^{\prime}}\left(Z^{\prime}\right) \geq$ $q(t)$, and, for each $z \in Z^{\prime}$, there exists an element $z^{\prime} \in Z^{\prime}-\{z\}$ such that $\left\{z, z^{\prime}\right\} \cup$ $\left(\bigcup_{i \in[t-1]}\left\{x_{i}, x_{i}^{\prime}\right\}\right)$ is a circuit of M^{\prime}, where $\left\{x_{i}, x_{i}^{\prime}\right\} \subseteq C_{i}^{*}$.

Let $f(t)=g(t, q(t))$, and suppose that $|E(M)| \geq f(t)$. For ease of notation, we assume that $M^{\prime}=M$. Then, by Lemma 5.5 , there exist a subset $Z \subseteq Z^{\prime}$ and a partition $\mathcal{Z}=\left(Z_{1}, \ldots, Z_{p(t)}\right)$ of Z into $p(t)$ pairs such that
(I) each circuit of $M \mid Z$ is a union of pairs in \mathcal{Z} and
(II) the union of any t pairs of \mathcal{Z} contains a circuit.

By Lemma 4.5, and since $t \geq 2$, it suffices to show that M has a t-echidna or a t-coechidna of order $4 t-3$. If the smallest circuit in $M \mid Z$ has size $2 t$, then, by (II), \mathcal{Z} is a t-echidna of order $p(t) \geq 4 t-3$. So we may assume that the smallest circuit in $M \mid Z$ has size $2 j$ for some $j \in[t-1]$.

Claim 5.7.1. If the smallest circuit in $M \mid Z$ has size $2 j$, for $j \in[t-1]$, and $|\mathcal{Z}| \geq$ $h_{j}(t)$, then either
(i) M has a t-coechidna of order $4 t-3$ or
(ii) there exists some $Z^{\prime} \subseteq Z$ that is the union of $h_{j+1}(t)$ pairs of \mathcal{Z} for which the smallest circuit in $M \mid Z^{\prime}$ has size at least $2(j+1)$.

Proof. Let $2 j$ be the size of the smallest circuit in $M \mid Z$. We define H to be the j-uniform hypergraph with vertex set \mathcal{Z} whose hyperedges are the j-subsets of \mathcal{Z} that are partitions of circuits in $M \mid Z$. By Theorem 5.6 and the definition of h_{k}, as H has at least $h_{j}(t)$ vertices, it has either a clique or a stable set, on $h_{j+1}(t)$ vertices. If H has a stable set \mathcal{Z}^{\prime} on $h_{j+1}(t)$ vertices, then clearly (ii) holds, with $Z^{\prime}=\bigcup_{P \in \mathcal{Z}^{\prime}} P$.

So we may assume that there are $h_{j+1}(t)$ pairs in \mathcal{Z} such that the union of any j of these pairs is a circuit. Let $Z^{\prime \prime}$ be the union of these $h_{j+1}(t)$ pairs. We claim that the union of any set of t pairs contained in $Z^{\prime \prime}$ is a cocircuit. Let T be a transversal of t pairs of \mathcal{Z} contained in $Z^{\prime \prime}$, and let C^{*} be the $2 t$-element cocircuit containing T. Towards a contradiction, suppose that there exists some pair $P \in \mathcal{Z}$ with $P \subseteq Z^{\prime \prime}$ such that $\left|C^{*} \cap P\right|=1$. Select $j-1$ pairs $Z_{1}^{\prime \prime}, \ldots, Z_{j-1}^{\prime \prime}$ of \mathcal{Z} that are each contained in $Z^{\prime \prime}-C^{*}$ (these exist since $\left.h_{j+1}(t) \geq 3 t-1 \geq 2 t+j-1\right)$. Then $P \cup\left(\bigcup_{i \in[j-1]} Z_{i}^{\prime \prime}\right)$ is a circuit that intersects the cocircuit C^{*} in a single element, contradicting orthogonality. We deduce that the union of any t pairs of \mathcal{Z} that are contained in $Z^{\prime \prime}$ is a cocircuit. So M has a t-coechidna of order $h_{j+1}(t) \geq 4 t-3$, satisfying (i).

We now apply Claim 5.7.1 iteratively, for a maximum of $t-j$ iterations. If (i) holds, at any iteration, then M has a t-coechidna of order $4 t-3$, as required.

Otherwise, we let \mathcal{Z}^{\prime} be the partition of Z^{\prime} induced by \mathcal{Z}; then, at the next iteration, we relabel $Z=Z^{\prime}$ and $\mathcal{Z}=\mathcal{Z}^{\prime}$. If (ii) holds for each of $t-j$ iterations, then we obtain a subset Z^{\prime} of Z such that the smallest circuit in $M \mid Z^{\prime}$ has size $2 t$. Then, by (II), M has a t-echidna of order $h_{t}(t)=4 t-3$. This completes the proof.
6. Properties of t-spikes. In this section, we prove some properties of t-spikes, which demonstrate that t-spikes form a class of highly structured matroids. In particular, we show that a t-spike has order at least $2 t-1$; a t-spike of order r has $2 r$ elements and rank r; the circuits of a t-spike that are not a union of t arms meet all but at most $t-2$ of the arms; and a t-spike of order at least $4 t-4$ is $(2 t-1)$-connected. We also show that an appropriate concatenation of the associated partition of a t-spike is a $(2 t-1)$-anemone, following the terminology of [1].

It is straightforward to see that the family of 1-spikes consists of matroids obtained by taking direct sums of copies of $U_{1,2}$. We also describe a construction that can be used to obtain a $(t+1)$-spike from a t-spike, and show that every $(t+1)$-spike can be constructed from some t-spike in this way.

Basic properties.

Lemma 6.1. Let M be a t-spike of order r. Then $r \geq 2 t-1$.
Proof. Let $\left(A_{1}, \ldots, A_{r}\right)$ be the associated partition of M. By definition, $r \geq t$. Let J be a t-element subset of $[r]$, and let $Y=\bigcup_{j \in J} A_{j}$. Pick some $y \in Y$. Since Y is a cocircuit and a circuit, $Z=(E(M)-Y) \cup\{y\}$ spans and cospans M. Since $|Z|=2(r-t)+1$,

$$
2 r=|E(M)|=r(M)+r^{*}(M) \leq(2(r-t)+1)+(2(r-t)+1)
$$

It follows that $r \geq 2 t-1$.
Lemma 6.2. Let M be a t-spike of order r. Then $r(M)=r^{*}(M)=r$.
Proof. Let $\left(A_{1}, \ldots, A_{r}\right)$ be the associated partition of M, and label $A_{i}=\left\{x_{i}, y_{i}\right\}$ for each $i \in[r]$. Pick $I \subseteq J \subseteq[r]$ such that $|I|=t-1$ and $|J|=r-t$. Let $X=\left(\bigcup_{i \in I} A_{i}\right) \cup\left\{x_{j}: j \in J\right\}$, and observe that $|X|=|I|+|J|=r-1$. Now, since $\left(A_{1}, \ldots, A_{r}\right)$ is a t-echidna, $\bigcup_{j \in J} A_{j} \subseteq \operatorname{cl}(X)$. As $E(M)-\bigcup_{j \in J} A_{j}$ is a cocircuit, we deduce that $r(M)-1 \leq r(X) \leq|X|=r-1$, so $r(M) \leq r$. Similarly, as $\left(A_{1}, \ldots, A_{r}\right)$ is a t-coechidna, we deduce that $r^{*}(M) \leq r$. Since $r(M)+r^{*}(M)=|E(M)|=2 r$, the lemma follows.

The next lemma shows that a circuit C of a t-spike is either a union of t arms, or else C meets all but at most $t-2$ of the arms.

Lemma 6.3. Let M be at-spike of order r with associated partition $\left(A_{1}, \ldots, A_{r}\right)$, and let C be a circuit of M. Then either
(i) $C=\bigcup_{j \in J} A_{j}$ for some t-element set $J \subseteq[r]$ or
(ii) $\left|\left\{i \in[r]: A_{i} \cap C \neq \emptyset\right\}\right| \geq r-(t-2)$ and $\left|\left\{i \in[r]: A_{i} \subseteq C\right\}\right|<t$.

Proof. Let $S=\left\{i \in[r]: A_{i} \cap C \neq \emptyset\right\}$, so S is the minimal subset of $[r]$ such that $C \subseteq \bigcup_{i \in S} A_{i}$. If C is properly contained in $\bigcup_{j \in J} A_{j}$ for some t-element set $J \subseteq[r]$, then C is independent; a contradiction. So $|S| \geq t$. If $|S|=t$, then $C=\bigcup_{i \in S} A_{i}$, implying C is a circuit, which satisfies (i). So we may assume that $|S|>t$. Now $\left|\left\{i \in[r]: A_{i} \subseteq C\right\}\right|<t$; otherwise C properly contains a circuit. Thus, there exists some $j \in S$ such that $A_{j}-C \neq \emptyset$. If $|S| \geq r-(t-2)$, then (ii) holds; thus we assume that $|S| \leq r-(t-1)$. Let $T=([r]-S) \cup\{j\}$. Then $|T| \geq t$, so $\bigcup_{i \in T} A_{i}$ contains a cocircuit that intersects C in one element, contradicting orthogonality.

Connectivity. Let M be a matroid with ground set E. Recall that the connectivity function of M, denoted by λ, is defined as

$$
\lambda(X)=r(X)+r(E-X)-r(M)
$$

for all subsets X of E. It is easily verified that

$$
\begin{equation*}
\lambda(X)=r(X)+r^{*}(X)-|X| \tag{6.1}
\end{equation*}
$$

A subset X or a partition $(X, E-X)$ of E is k-separating if $\lambda(X)<k$. A k separating partition $(X, E-X)$ is a k-separation if $|X| \geq k$ and $|E-X| \geq k$. The matroid M is n-connected if, for all $k<n$, it has no k-separations.

Lemma 6.4. Suppose M is a t-spike with associated partition $\left(A_{1}, \ldots, A_{r}\right)$. Then, for all partitions (J, K) of $[r]$ with $|J| \leq|K|$,

$$
\lambda\left(\bigcup_{j \in J} A_{j}\right)= \begin{cases}2|J| & \text { if }|J|<t \\ 2 t-2 & \text { if }|J| \geq t\end{cases}
$$

Proof. Let (J, K) be a partition of $[r]$ with $|J| \leq|K|$.
Claim 6.4.1. The lemma holds when $|J| \leq t$.
Proof. Suppose $|J|<t$. Since $\left(A_{1}, \ldots, A_{r}\right)$ is a t-echidna (respectively, t-coechidna), $\bigcup_{j \in J} A_{j}$ is independent (respectively, coindependent). So, by $(6.1), \lambda\left(\bigcup_{j \in J} A_{j}\right)=$ $2|J|+2|J|-2|J|=2|J|$.

Now suppose $|J|=t$. Then, by definition, $\bigcup_{j \in J} A_{j}$ is a circuit and a cocircuit. So $\lambda\left(\bigcup_{j \in J} A_{j}\right)=(2 t-1)+(2 t-1)-2 t=2 t-2$, by (6.1).

Claim 6.4.2. Let $X \subseteq Y \subseteq[r]$ such that $|X| \geq t-1$. Then

$$
\lambda\left(\bigcup_{x \in X} A_{x}\right) \geq \lambda\left(\bigcup_{y \in Y} A_{y}\right)
$$

Proof. Let X^{\prime} be a $(t-1)$-element subset of X, and let $y \in Y-X$. Then $\lambda\left(\bigcup_{x \in X^{\prime}} A_{x}\right)=2(t-1)$, and $\lambda\left(A_{y} \cup\left(\bigcup_{x \in X^{\prime}} A_{x}\right)\right)=2 t-2$, by Claim 6.4.1. By submodularity of the connectivity function,

$$
\begin{aligned}
\lambda\left(A_{y} \cup \bigcup_{x \in X} A_{x}\right) & \leq \lambda\left(A_{y} \cup \bigcup_{x \in X^{\prime}} A_{x}\right)+\lambda\left(\bigcup_{x \in X} A_{x}\right)-\lambda\left(\bigcup_{x \in X^{\prime}} A_{x}\right) \\
& =(2 t-2)+\lambda\left(\bigcup_{x \in X} A_{x}\right)-(2 t-2) \\
& =\lambda\left(\bigcup_{x \in X} A_{x}\right)
\end{aligned}
$$

Claim 6.4.2 now follows by induction.
Now suppose $|J|>t$. By Claims 6.4.1 and 6.4.2, $\lambda\left(\bigcup_{j \in J} A_{j}\right) \leq 2 t-2$. Recall that $|K| \geq|J|>t$. Let K^{\prime} be a t-element subset of K. Let $J^{\prime}=[r]-K^{\prime}$, and note that $J \subseteq J^{\prime}$. So, by Claim 6.4.2,

$$
\lambda\left(\bigcup_{j \in J} A_{j}\right) \geq \lambda\left(\bigcup_{j \in J^{\prime}} A_{j}\right)=\lambda\left(\bigcup_{k \in K^{\prime}} A_{k}\right)=2 t-2
$$

We deduce that $\lambda\left(\bigcup_{j \in J} A_{j}\right)=2 t-2$, as required.
Given a t-spike M with associated partition $\left(A_{1}, \ldots, A_{r}\right)$, suppose that $\left(P_{1}, \ldots, P_{m}\right)$ is a partition of $E(M)$ such that, for each $i \in[m], P_{i}=\bigcup_{i \in I} A_{i}$ for some subset I of $[r]$, with $\left|P_{i}\right| \geq 2 t-2$. Using the terminology of [1], it follows immediately from Lemma 6.4 that $\left(P_{1}, \ldots, P_{m}\right)$ is a $(2 t-1)$-anemone. (Note that a partition whose concatenations give rise to a flower in this way has previously appeared in the literature [3] under the name of "quasi-flowers.")

Lemma 6.5. Let M be a t-spike of order at least $4 t-4$, for $t \geq 2$. Then M is $(2 t-1)$-connected.

Proof. Let r be the order of the t-spike M, and let $\left(A_{1}, \ldots, A_{r}\right)$ be the associated partition of M. Towards a contradiction, suppose M is not $(2 t-1)$-connected, and let (P, Q) be a k-separation for some $k<2 t-1$. Without loss of generality, we may assume that $|P| \geq|Q|$. Note, in particular, that $\lambda(P)<k \leq|Q|$ and $\lambda(P)<2 t-2$.

Suppose $\left|P \cap A_{j}\right| \neq 1$ for all $j \in[r]$. Then, by Lemma $6.4, \lambda(P)=|Q|$ if $|Q|<2 t$, otherwise $\lambda(P)=2 t-2$; either case is contradictory. So $\left|P \cap A_{j}\right|=1$ for some $j \in[r]$.

Suppose $|Q| \leq 2 t-2$. Then, by Lemma 6.3 and its dual, Q is independent and coindependent, so $\lambda(P)=|Q|$ by (6.1); a contradiction.

Now we may assume that $|Q|>2 t-2$. Suppose $\bigcup_{i \in I} A_{i} \subseteq P$, for some $(t-1)$ element set $I \subseteq[r]$. Then $A_{j} \subseteq \operatorname{cl}(P)$ for each $j \in[r]$ such that $\left|P \cap A_{j}\right|=1$. For such a j, it follows, by the definition of λ, that $\lambda\left(P \cup A_{j}\right) \leq \lambda(P)$; we use this repeatedly in what follows. Let $U=\left\{u \in[r]:\left|P \cap A_{u}\right|=1\right\}$. For any subset $U^{\prime} \subseteq U$, we have $\lambda\left(P \cup\left(\bigcup_{u \in U^{\prime}} A_{u}\right)\right) \leq \lambda(P)<2 t-2$. Let $P^{\prime}=P \cup\left(\bigcup_{u \in U} A_{u}\right)$, and let $Q^{\prime}=E(M)-P^{\prime}$. If $\left|Q^{\prime}\right|>2 t-2$, then $\lambda\left(P^{\prime}\right)=2 t-2$ by Lemma 6.4, contradicting that $\lambda\left(P^{\prime}\right) \leq \lambda(P)<2 t-2$. So $\left|Q^{\prime}\right| \leq 2 t-2$. Now, let $d=|Q|-(2 t-2)$, and let U^{\prime} be a d-element subset of U. Then $\lambda(P) \geq \lambda\left(P \cup\left(\bigcup_{u \in U^{\prime}} A_{u}\right)\right)=\lambda\left(Q-\bigcup_{u \in U^{\prime}} A_{u}\right)$. Since $\left|Q-\bigcup_{u \in U^{\prime}} A_{u}\right|=2 t-2$, we have that $\lambda\left(Q-\bigcup_{u \in U^{\prime}} A_{u}\right)=2 t-2$, so $\lambda(P) \geq 2 t-2$; a contradiction. We deduce that $\left|\left\{i \in[r]: A_{i} \subseteq P\right\}\right|<t-1$. Since $|Q| \leq|P|$, it follows that $\left|\left\{i \in[r]: A_{i} \subseteq Q\right\}\right| \leq\left|\left\{i \in[r]: A_{i} \subseteq P\right\}\right|<t-1$.

Now $\left|\left\{i \in[r]: A_{i} \cap Q \neq \emptyset\right\}\right| \geq r-(t-2)$, so $r(Q) \geq r-(t-1)$ by Lemma 6.3. Similarly, $r(P) \geq r-(t-1)$. So

$$
\begin{aligned}
\lambda(P) & =r(P)+r(Q)-r(M) \\
& \geq(r-(t-1))+(r-(t-1))-r \\
& \geq(4 t-4)-2(t-1)=2 t-2
\end{aligned}
$$

a contradiction. This completes the proof.
Constructions. We first describe a construction that can be used to obtain a $(t+1)$-spike of order r from a t-spike of order r, when $r \geq 2 t+1$. We then show that every $(t+1)$-spike can be constructed from some t-spike in this way.

Recall that M_{1} is an elementary quotient of M_{0} if there is a single-element extension M_{0}^{+}of M_{0} by an element e such that $M_{1}=M_{0}^{+} / e$. A matroid M_{1} is an elementary lift of M_{0} if M_{1}^{*} is an elementary quotient of M_{0}^{*}. Note also that if M_{1} is an elementary quotient of M_{0}, then M_{0} is an elementary lift of M_{1}.

Let M_{0} be a t-spike of order $r \geq 2 t+1$ with associated partition π. Let M_{0}^{\prime} be an elementary quotient of M_{0} such that none of the $2 t$-element cocircuits are preserved (that is, extend M_{0} by an element e that blocks all of the $2 t$-element cocircuits, and then contract e). Now, in M_{0}^{\prime}, the union of any t cells of π is still a $2 t$-element circuit, but, as $r\left(M_{0}^{\prime}\right)=r\left(M_{0}\right)-1$, the union of any $t+1$ cells of π is a $2(t+1)$-element
cocircuit. We then repeat this in the dual; that is, let M_{1} be an elementary lift of M_{0}^{\prime} such that none of the $2 t$-element circuits are preserved. Then M_{1} is a $(t+1)$-spike. Note that M_{1} is not unique; more than one $(t+1)$-spike can be constructed from a given t-spike M_{0} in this way.

Given a $(t+1)$-spike M_{1}, for some positive integer t, we now describe how to obtain a t-spike M_{0} from M_{1} by a specific elementary quotient, followed by a specific elementary lift. This process reverses the construction from the previous paragraph. The next lemma describes the single-element extension (or coextension, in the dual) that gives rise to the elementary quotient (or lift) we desire. Intuitively, the extension adds a "tip" to a t-echidna. In the proof of this lemma, we assume knowledge of the theory of modular cuts (see [6, section 7.2]).

Lemma 6.6. Let M be a matroid with a t-echidna $\pi=\left(S_{1}, \ldots, S_{n}\right)$. Then there is a single-element extension M^{+}of M by an element e such that $e \in \operatorname{cl}_{M^{+}}(X)$ if and only if X contains at least $t-1$ spines of π for all $X \subseteq E(M)$.

Proof. Let

$$
\mathcal{F}=\left\{\bigcup_{i \in I} S_{i}: I \subseteq[n] \text { and }|I|=t-1\right\}
$$

By the definition of a t-echidna, \mathcal{F} is a collection of flats of M. Let \mathcal{M} be the set of all flats of M containing some flat $F \in \mathcal{F}$. We claim that \mathcal{M} is a modular cut. Recall that, for distinct $F_{1}, F_{2} \in \mathcal{M}$, the pair $\left(F_{1}, F_{2}\right)$ is modular if $r\left(F_{1}\right)+r\left(F_{2}\right)=$ $r\left(F_{1} \cup F_{2}\right)+r\left(F_{1} \cap F_{2}\right)$. It suffices to prove that for any $F_{1}, F_{2} \in \mathcal{M}$ such that $\left(F_{1}, F_{2}\right)$ is a modular pair, $F_{1} \cap F_{2} \in \mathcal{M}$.

For any $F \in \mathcal{M}$, since F contains at least $t-1$ spines of π, and the union of any t spines is a circuit (by the definition of a t-echidna), it follows that F is a union of spines of π. So let $F_{1}, F_{2} \in \mathcal{M}$ such that $F_{1}=\bigcup_{i \in I_{1}} S_{i}$ and $F_{2}=\bigcup_{i \in I_{2}} S_{i}$, where I_{1} and I_{2} are distinct subsets of $[n]$ with $u_{1}=\left|I_{1}\right| \geq t-1$ and $u_{2}=\left|I_{2}\right| \geq t-1$. Then

$$
\begin{aligned}
r\left(F_{1}\right)+r\left(F_{2}\right) & =\left(t-1+u_{1}\right)+\left(t-1+u_{2}\right) \\
& =2(t-1)+u_{1}+u_{2} .
\end{aligned}
$$

Suppose that $\left|I_{1} \cap I_{2}\right|<t-1$. Let $s=\left|I_{1} \cap I_{2}\right|$. Then $F_{1} \cup F_{2}$ is the union of $u_{1}+u_{2}-s \geq t-1$ spines of π. So

$$
\begin{aligned}
r\left(F_{1} \cup F_{2}\right)+r\left(F_{1} \cap F_{2}\right) & =\left(t-1+\left(u_{1}+u_{2}-s\right)\right)+2 s \\
& =(t-1)+s+u_{1}+u_{2} .
\end{aligned}
$$

Since $s<t-1$, it follows that $r\left(F_{1} \cup F_{2}\right)+r\left(F_{1} \cap F_{2}\right)<r\left(F_{1}\right)+r\left(F_{2}\right)$. So, for every modular pair $\left(F_{1}, F_{2}\right)$ with $F_{1}, F_{2} \in \mathcal{M}$, we have $\left|I_{1} \cap I_{2}\right| \geq t-1$, in which case $F_{1} \cap F_{2}$ is a flat containing the union of $t-1$ spines of π, and hence $F_{1} \cap F_{2} \in \mathcal{M}$ as required.

Now, there is a single-element extension corresponding to the modular cut \mathcal{M}, and this extension satisfies the requirements of the lemma (see, for example, [6, Theorem 7.2.3]).

Let M be a t-spike with associated partition $\pi=\left(A_{1}, \ldots, A_{r}\right)$, for some integer $t \geq 2$, where $r \geq 2 t-1$ by Lemma 6.1. Let M^{+}be the single-element extension of M by an element e described in Lemma 6.6.

Consider M^{+} / e. We claim that π is a $(t-1)$-echidna and a t-coechidna of M^{+} / e. Let X be the union of any $t-1$ spines of π. Then X is independent in M, and $X \cup\{e\}$ is a circuit in M^{+}, so X is a circuit in M^{+} / e. So π is a $(t-1)$-echidna of M^{+} / e.

Now let C^{*} be the union of any t spines of π, and let $H=E(M)-C^{*}$. Then H is the union of at least $t-1$ spines, so $e \in \operatorname{cl}_{M^{+}}(H)$. Now $H \cup\{e\}$ is a hyperplane in M^{+}, so C^{*} is a cocircuit in M^{+}. Hence π is a t-coechidna of M^{+} / e.

We now repeat this process on $N=\left(M^{+} / e\right)^{*}$. In N, the partition π is a t-echidna and $(t-1)$-coechidna. By Lemma 6.6, there is a single-element extension N^{+}of N (a single-element coextension of M^{+} / e) by an element e^{\prime}. By the same argument as in the previous paragraph, π is a $(t-1)$-echidna and $(t-1)$-coechidna of N^{+} / e, so N^{+} / e is a $(t-1)$-spike. Let $M^{\prime}=\left(N^{+} / e\right)^{*}$.

Note that M^{+} / e is an elementary quotient of M, so M is an elementary lift of M^{+} / e where none of the $2(t-1)$-element circuits of M^{+} / e are preserved in M. Similarly, M^{+} / e is an elementary quotient of M^{\prime} where none of the $2(t-1)$-element cocircuits are preserved. So the t-spike M can be obtained from the $(t-1)$-spike M^{\prime} using the earlier construction.

Acknowledgments. The authors would like to thank the Mathematical Research Institute (MATRIX), Creswick, Victoria, Australia, for support and hospitality during the Tutte Centenary Retreat, 26 Nov.-2 Dec. 2017, where work on this paper was initiated.

REFERENCES

[1] J. Aikin and J. Oxley, The structure of crossing separations in matroids, Adv. in Appl. Math., 41 (2008), pp. 10-26.
[2] J. Geelen, Some open problems on excluding a uniform matroid, Adv. in Appl. Math., 41 (2008), pp. 628-637.
[3] J. Geelen and G. Whittle, Inequivalent representations of matroids over prime fields, Adv. in Appl. Math., 51 (2013), pp. 1-175.
[4] J. F. Geelen, A. M. H. Gerards, and G. Whittle, Branch-width and well-quasi-ordering in matroids and graphs, J. Combin. Theory Ser. B, 84 (2002), pp. 270-290.
[5] J. Miller, Matroids in which Every Pair of Elements Belongs to Both a 4-circuit and a 4cocircuit, M.Sc. thesis, Victoria University of Wellington, Wellington, New Zealand, 2014.
[6] J. Oxley, Matroid Theory, 2nd ed., Oxf. Grad. Texts Math. 21, Oxford University Press, Oxford, 2011.
[7] J. Oxley, S. Pfeil, C. Semple, and G. Whittle, Matroids with many small circuits and cocircuits, Adv. in Appl. Math., 105 (2019), pp. 1-24.
[8] J. Oxley, D. Vertigan, and G. Whittle, On inequivalent representations of matroids over finite fields, J. Combin Theory Ser. B, 67 (1996), pp. 325-343.
[9] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2), 30 (1930), pp. 264286.
[10] P. D. Seymour, Recognizing graphic matroids, Combinatorica, 1 (1981), pp. 75-78.
[11] W. T. Tutte, Connectivity in matroids, Canad. J. Math., 18 (1966), pp. 1301-1324.
[12] A. Williams, Detachable Pairs in 3-Connected Matroids, Ph.D. thesis, Victoria University of Wellington, Wellington, New Zealand, 2015.

[^0]: *Received by the editors April 20, 2018; accepted for publication (in revised form) December 14, 2018; published electronically February 21, 2019.
 http://www.siam.org/journals/sidma/33-1/M118225.html
 Funding: The first and fifth authors were supported by the New Zealand Marsden Fund. The second author was supported by NSERC Scholarship PGSD3-489418-2016. The fourth author was supported by National Science Foundation grant 1500343.
 ${ }^{\dagger}$ Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands (n.j.brettell@tue.nl).
 ${ }^{\ddagger}$ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, N2L 3G1, Canada (rtrjvdc@gmail.com).
 ${ }^{\S}$ Mathematics Department, West Virginia University Institute of Technology, Beckley, WV 25801 (deborah.chun@mail.wvu.edu).

 『Heilbronn Institute for Mathematical Research, School of Mathematics, University of Bristol, Bristol BS8 1TH, UK (kevin.grace@bristol.ac.uk).
 "School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6012, New Zealand (geoff.whittle@vuw.ac.nz).

