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THE HIGHLY CONNECTED EVEN-CYCLE AND EVEN-CUT
MATROIDS\ast 

KEVIN GRACE\dagger AND STEFAN H. M. VAN ZWAM\ddagger 

Abstract. The classes of even-cycle matroids, even-cycle matroids with a blocking pair, and
even-cut matroids each have hundreds of excluded minors. We show that the number of excluded
minors for these classes can be drastically reduced if we consider in each class only the highly
connected matroids of sufficient size.
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1. Introduction. The complete lists of excluded minors for the classes of even-
cycle matroids and even-cut matroids are currently unknown. Pivotto and Royle [8]
have found nearly 400 different excluded minors for the class of even-cycle matroids.
We will show that, subject to a certain hypothesis described below, a highly connected
binary matroidM of sufficient size is an even-cycle matroid if and only if it contains no
minor isomorphic to one of three matroids. Similarly, subject to that same hypothesis,
a highly connected binary matroid M of sufficient size is an even-cut matroid if and
only if it contains no minor isomorphic to one of two matroids.

Unexplained notation and terminology in this paper will generally follow Oxley
[5]. One exception is that we denote the vector matroid of a matrix A by M(A),
rather than M [A].

An even-cycle matroid is a binary matroid of the form M = M
\bigl( 
w
D

\bigr) 
, where

D \in GF(2)V\times E is the vertex-edge incidence matrix of a graph G = (V,E) and
w \in GF(2)E is the characteristic vector of a set W \subseteq E. The pair (G,W ) is an
even-cycle representation of M . The edges in W are called odd edges, and the other
edges are even edges. Resigning at a vertex u of G occurs when all the edges inci-
dent with u are changed from even to odd and vice-versa. It is easy to see that this
corresponds to adding the row of the matrix corresponding to u to the characteristic
vector of W . Therefore, resigning at a vertex does not change an even-cycle matroid.
A pair of vertices u, v of G is a blocking pair of (G,W ) if (G,W ) can be resigned so
that every odd edge is incident with u or v. We will say that an even-cycle matroid
has a blocking pair if it has an even-cycle representation with a blocking pair.

In her Ph.D. thesis [7], Pivotto gives several descriptions of even-cut matroids,
each of which can serve as a definition. The most practical definition for our purposes
follows. An even-cut matroid is a matroid M that can be represented by a binary
matrix with a row whose removal results in a matrix representing a cographic matroid.
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EVEN-CYCLE AND EVEN-CUT MATROIDS 27

Fig. 1. Even-cycle representation of PG(3, 2)\setminus L.

One can also think of an even-cut matroid as arising from a graft, which is a pair
(G,T ), where G is a graph and T is a subset of V (G) of even cardinality whose
members are called terminals. The collection of inclusionwise minimal edge cuts
\delta (U), where U \subseteq V (G) and | U \cap T | is even, is the collection of circuits for an even-cut
matroid. The graft (G,T ) is an even-cut representation of that matroid.

This paper is a continuation of [3], which is based on the work of Geelen, Gerards,
and Whittle in [1]. The results announced in [1] rely on the matroid structure theorem
by these same authors [2]. Our results are based on hypotheses given by Geelen,
Gerards, and Whittle in [1], as modified in [4]. These hypotheses are believed to be
true, but their proofs are still forthcoming in future papers by Geelen, Gerards, and
Whittle. One of these hypotheses, when restricted to the binary case, is Hypothesis
2.1. We delay the precise statement of Hypothesis 2.1 to section 2 due to its technical
nature.

Before we can state our main results, we need some additional definitions. If \scrF is
a collection of matroids, let \scrE \scrX (\scrF ) denote the class of binary matroids with no minor
contained in \scrF . We denote by PG(3, 2)\setminus e, or PG(3, 2) - 2, or PG(3, 2)\setminus L, respectively,
the matroid obtained by deleting from PG(3, 2) one element, or two elements, or the
three points of a line. Note that PG(3, 2)\setminus L is the vector matroid of the following
matrix and, therefore, is the even-cycle matroid represented by the graph in Figure
1, with odd edges printed in bold.\left[    

0 0 0 0 0 0 1 1 1 1 1 1
1 0 0 1 1 0 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 0 1 1 0 0 1 0 1 1

\right]    .

We define L19 to be the dual of the cycle matroid of the graph obtained from K7

by deleting two adjacent edges, and we define L11 to be the vector matroid of the
following matrix. \left[        

1 0 0 0 0 0 1 0 1 0 1
0 1 0 0 0 0 1 0 0 1 1
0 0 1 0 0 0 0 1 1 1 0
0 0 0 1 0 0 0 1 1 0 1
0 0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 1 0 0 1 1 1

\right]        .

Finally, let H12 be the matroid with the even-cycle representation given in Figure 2.
Again, odd edges are printed in bold.

We will prove the following theorems in section 6.
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28 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

Fig. 2. Even-cycle representation of H12.

Theorem 1.1. Suppose Hypothesis 2.1 holds. Then there exists k \in \BbbZ + such
that a k-connected binary matroid with at least 2k elements is contained in
\scrE \scrX (PG(3, 2)\setminus e, L19, L11) if and only if it is an even-cycle matroid.

Theorem 1.2. Suppose Hypothesis 2.1 holds. Then there exists k \in \BbbZ + such
that a k-connected binary matroid with at least 2k elements is contained in
\scrE \scrX (PG(3, 2)\setminus L,M\ast (K6)) if and only if it is an even-cycle matroid with a blocking
pair.

We will prove the following theorem in section 8.

Theorem 1.3. Suppose Hypothesis 2.1 holds. Then there exists k \in \BbbZ + such that
a k-connected binary matroid with at least 2k elements is contained in \scrE \scrX (M(K6), H

\ast 
12)

if and only if it is an even-cut matroid.

Pivotto [7, section 2.4.2] showed that the class of even-cycle matroids with a
blocking pair consists of the duals of the members of the class of matroids with an
even-cut representation with at most four terminals. Moreover, it is well known
that, for every positive integer k, a matroid M is k-connected if and only if M\ast is
k-connected. Therefore, Theorem 1.2 immediately implies the following result.

Corollary 1.4. Suppose Hypothesis 2.1 holds. Then there exists k \in \BbbZ + such
that a k-connected binary matroid with at least 2k elements is contained in
\scrE \scrX ((PG(3, 2)\setminus L)\ast ,M(K6)) if and only if it has an even-cut representation with at
most four terminals.

A rank-(\leq t) perturbation of a binary matroid M is the vector matroid of the
matrix obtained by adding a binary matrix of rank at most t to a binary matrix
representing M . The work in this paper, as well as the work in [1], [3], and [4], is
based on the hypothesis that the highly connected members of a minor-closed class
of binary matroids are rank-(\leq t) perturbations of graphic or cographic matroids.
Geelen, Gerards, and Whittle [1] introduced the notion of a template to describe the
perturbations in more detail. Hypothesis 2.1 states that the sufficiently highly con-
nected members of a proper minor-closed class of binary matroids can be constructed
using finitely many of these templates. Moreover, every matroid constructed using
one of these templates must be contained in the minor-closed class.

In sections 2 and 3, we will review the necessary definitions and results found in
[1], [3], and [4]. In section 2, we give the definition of a template and state Hypothesis
2.1. In section 3, we define a preorder \preceq on the set of templates and list several
reduction operations that produce from a template \Phi another template \Phi \prime such that
\Phi \prime \preceq \Phi . If \Phi \prime \preceq \Phi , then every matroid constructed using \Phi \prime is a minor of some
matroid constructed using \Phi .

In section 4, we prove that PG(3, 2)\setminus e, L19, L11, PG(3, 2)\setminus L, M(K6), and H\ast 
12
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EVEN-CYCLE AND EVEN-CUT MATROIDS 29

are indeed excluded minors for the respective classes given in the theorems above.
The rest of the paper is devoted to the converse statements. Much of the work

required to prove these statements involves analysis of specific templates, showing
that either one of these excluded minors can be constructed using the template or
the template is highly structured---to the point that only even-cycle matroids (or
even-cycle matroids with a blocking pair, or even-cut matroids) can be constructed
using the template. The finite case checks involved in this process are by and large
carried out using the SageMath software system [9], particularly the matroids compo-
nent [6]. The code for the computations can be found in M109737 01.pdf [local/web
460KB] and M109737 02.zip [local/web 4.70KB], and the technical lemmas proved by
the computations will be given in sections 5 and 7. In section 6, we prove Theorems
1.1 and 1.2, and in section 8, we prove Theorem 1.3. Finally, in section 9, we prove
variations of Theorems 1.1--1.3 with weaker notions of connectivity.

Our main results and the techniques used to prove them give no indication of how
large the value for k must be. The sets of matroids in our theorems are not unique,
and their members do not necessarily need to be excluded minors for the classes we
study. For example, L19 and M\ast (K6) can be replaced with M\ast (Kn) for n > 6, and
M(K6) can be replaced with M(Kn) for n > 6. We chose the small matroids that we
did because they are actually excluded minors for the various classes. Presumably,
this comes at the cost of a larger value for k.

The following notation will be used throughout this paper. We denote an empty
matrix by [\emptyset ]. We denote a group of one element by \{ 0\} or \{ 1\} , if it is an additive or
multiplicative group, respectively. If S\prime is a subset of a set S and G is a subgroup of
the additive group of \BbbF S , we denote by G| S\prime the projection of G into \BbbF S\prime 

. Similarly,
if \=x \in G, we denote the projection of \=x into \BbbF S\prime 

by \=x| S\prime .

2. Binary frame templates. In this section, we will define the notion of a
frame template. We will simplify the definition found in [1] by restricting ourselves
to the binary case.

A binary frame matrix is a binary matrix in which every column has at most two
nonzero entries. The vector matroid of any such matrix is a graphic matroid.

The structure theorem given by Geelen, Gerards, and Whittle [1] is somewhat
technical. They introduced the concept of a template in order to facilitate the descrip-
tion of the theorem. A binary frame template is a tuple \Phi = (C,X, Y0, Y1, A1,\Delta ,\Lambda )
such that the following hold:

(i) C, X, Y0, and Y1 are disjoint finite sets.
(ii) A1 is a binary matrix with rows indexed by X and columns indexed by

Y0 \cup Y1 \cup C.
(iii) \Lambda is a subgroup of the additive group of GF(2)X .
(iv) \Delta is a subgroup of the additive group of GF(2)Y0\cup Y1\cup C .

A binary frame template is in standard form if there are partitions C = C0 \cup C1 and
X = X0 \cup X1 such that A1[X0, C0] is an identity matrix and such that A1[X1, C] is
a zero matrix. Note that | C0| = | X0| and that some or all of C0, C1, X0, and X1 may
be empty. It was proved in [3, Lemma 3.11] that every binary frame template can be
put into standard form; therefore, for the rest of the paper, we will assume that all
binary frame templates are in standard form. Furthermore, the term template will
always refer to a binary frame template in standard form, unless otherwise specified.

Let \Phi = (C,X, Y0, Y1, A1,\Delta ,\Lambda ) be a template. Let B and E be disjoint finite
sets, and let A\prime be a binary matrix with rows indexed by B and columns indexed by
E. We say that A\prime respects \Phi if the following hold:
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30 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

Z Y0 Y1 C0 C1

X0 columns from \Lambda | X0 0 \ast I \ast 
X1 columns from \Lambda | X1 0 0

frame matrix unit or zero columns
rows
from \Delta 

Fig. 3. The matrix A\prime .

(i) X \subseteq B and C, Y0, Y1 \subseteq E.
(ii) A\prime [X,C \cup Y0 \cup Y1] = A1.
(iii) There exists a set Z \subseteq E - (C \cup Y0\cup Y1) such that A\prime [X,Z] = 0, each column

of A\prime [B  - X,Z] is a unit vector, and A\prime [B  - X,E  - (C \cup Y0 \cup Y1 \cup Z)] is a
binary frame matrix.

(iv) Each column of A\prime [X,E  - (C \cup Y0 \cup Y1 \cup Z)] is contained in \Lambda .
(v) Each row of A\prime [B  - X,C \cup Y0 \cup Y1] is contained in \Delta .
Figure 3 shows the structure of A\prime .
Suppose that A\prime respects \Phi and that Z satisfies (iii) above. Now suppose that

A \in GF(2)B\times E satisfies the following conditions:
(i) A[B,E  - Z] = A\prime [B,E  - Z].
(ii) For each i \in Z there exists j \in Y1 such that the ith column of A is the sum

of the ith and the jth columns of A\prime .
We say that A conforms to \Phi . We say that a matroid M conforms to \Phi if there is
a matrix A that conforms to \Phi such that M is isomorphic to the vector matroid of
M(A)/C\setminus Y1. A matroid M coconforms to a template \Phi if its dual M\ast conforms to
\Phi .

Let \scrM (\Phi ) and \scrM \ast (\Phi ) respectively denote the sets of matroids that conform and
coconform to \Phi . The next hypothesis is from [4] and is a modification of a hypothesis
of Geelen, Gerards, and Whittle [1]. (See [4] for details about this modification,
which was necessary to correct a problem for the nonbinary case.) The hypothesis is
believed to be true, but its proof is forthcoming in future papers by Geelen, Gerards,
and Whittle.

Hypothesis 2.1 ([4, Hypothesis 4.3, binary case]). Let \scrM be a proper minor-
closed class of binary matroids. Then there exist k \in \BbbZ + and templates \Phi 1, . . . ,\Phi s,
\Psi 1, . . . ,\Psi t such that

1. \scrM contains each of the classes \scrM (\Phi 1), . . . ,\scrM (\Phi s),
2. \scrM contains each of the classes \scrM \ast (\Psi 1), . . . ,\scrM \ast (\Psi t), and
3. if M is a k-connected member of \scrM with at least 2k elements, then either

M is a member of at least one of the classes \scrM (\Phi 1), . . . , \scrM (\Phi s) or M\ast is a
member of at least one of the classes \scrM (\Psi 1), . . . ,\scrM (\Psi t).

3. Template minors. The definitions and results in this section are from [3].
Proofs of the results can be found there as well. To simplify the proofs in [3], it was
helpful to slightly expand the concept of conforming.

Definition 3.1 ([3, Definition 2.2]). Let A\prime be a matrix that respects \Phi , as defined
in section 2, except that we allow columns of A\prime [B  - X,Z] to be either unit columns
or zero columns. Let A be a matrix that is constructed from A\prime as described in section
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EVEN-CYCLE AND EVEN-CUT MATROIDS 31

2. Let M be isomorphic to M(A)/C\setminus Y1. We say that A and M virtually conform to
\Phi and that A\prime virtually respects \Phi . If M\ast virtually conforms to \Phi , we say that M
virtually coconforms to \Phi .

We will denote the set of matroids that virtually conform to \Phi by \scrM v(\Phi ) and
the set of matroids that virtually coconform to \Phi by \scrM \ast 

v(\Phi ).

Definition 3.2 ([3, Definition 3.1]). A reduction is an operation on a frame tem-
plate \Phi that produces a frame template \Phi \prime such that \scrM (\Phi \prime ) \subseteq \scrM (\Phi ).

Proposition 3.3 ([3, Proposition 3.2]). The following operations are reductions
on a template \Phi :

(1) Replace \Lambda with a proper subgroup.
(2) Replace \Delta with a proper subgroup.
(3) Remove an element y from Y1. (More precisely, replace A1 with A1[X,Y0 \cup 

(Y1  - y) \cup C] and replace \Delta with \Delta | (Y0 \cup (Y1  - y) \cup C).)
(4) For all matrices A\prime respecting \Phi , perform an elementary row operation on

A\prime [X,E]. (Note that this alters the matrix A1 and performs a change of basis
on \Lambda .)

(5) If there is some element x \in X such that, for every matrix A\prime respecting \Phi ,
we have that A\prime [\{ x\} , E] is a zero row vector, remove x from X. (This simply
has the effect of removing a zero row from every matrix conforming to \Phi .)

(6) Let c \in C be such that A1[X, \{ c\} ] is a unit column whose nonzero entry is in
the row indexed by x \in X, and let either \lambda x = 0 for each \lambda \in \Lambda or \delta c = 0 for
each \delta \in \Delta . We contract c from every matroid conforming to \Phi as follows.
Let \Delta \prime be the result of adding  - \delta cA1[\{ x\} , Y0 \cup Y1 \cup C] to each element \delta \in \Delta .
Replace \Delta with \Delta \prime , and then remove c from C and x from X. (More precisely,
replace A1 with A1[X  - x, Y0 \cup Y1 \cup (C  - c)], replace \Lambda with \Lambda | (X  - x), and
replace \Delta with \Delta \prime | (Y0 \cup Y1 \cup (C  - c)).)

(7) Let c \in C be such that A1[X, \{ c\} ] is a zero column and \delta c = 0 for all \delta \in \Delta .
Then remove c from C. (More precisely, replace A1 with A1[X,Y0\cup Y1\cup (C - 
c)], and replace \Delta with \Delta | (Y0 \cup Y1 \cup (C  - c)).)

Since we always have Y0 \subseteq E(M) for every matroid M conforming to \Phi , opera-
tions (9)--(11) listed in the definition below are not reductions as defined above, but
we continue the numbering from Proposition 3.3 for ease of reference.

Definition 3.4 ([3, Definition 3.3]). A template \Phi \prime is a template minor of \Phi if
\Phi \prime is obtained from \Phi by repeatedly performing the following operations:

(8) Perform a reduction of type 1--7 on \Phi .
(9) Remove an element y from Y0, replace A1 with A1[X, (Y0  - y)\cup Y1 \cup C], and

replace \Delta with \Delta | ((Y0  - y) \cup Y1 \cup C). (This has the effect of deleting y from
every matroid conforming to \Phi .)

(10) Let x \in X with \lambda x = 0 for every \lambda \in \Lambda , and let y \in Y0 be such that
(A1)x,y \not = 0. Then contract y from every matroid conforming to \Phi . (More
precisely, perform row operations on A1 so that A1[X, \{ y\} ] is a unit column
with (A1)x,y = 1. Then replace every element \delta \in \Delta with the row vector
 - \delta yA1[\{ x\} , Y0 \cup Y1 \cup C] + \delta . This induces a group homomorphism \Delta \rightarrow \Delta \prime ,
where \Delta \prime is also a subgroup of the additive group of GF(2)C\cup Y0\cup Y1 . Finally,
replace A1 with A1[X  - x, (Y0  - y) \cup Y1 \cup C], project \Lambda into GF(2)X - x, and
project \Delta \prime into GF(2)(Y0 - y)\cup Y1\cup C . The resulting groups play the roles of \Lambda 
and \Delta , respectively, in the new template.)

(11) Let y \in Y0 with \delta y = 0 for every \delta \in \Delta . Then contract y from every matroid
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32 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

conforming to \Phi . (More precisely, if A1[X, \{ y\} ] is a zero vector, this is the
same as simply removing y from Y0. Otherwise, choose some x \in X such that
(A1)x,y \not = 0. Then for every matrix A\prime that respects \Phi , perform row operations
so that A1[X, \{ y\} ] is a unit column with (A1)x,y = 1. This induces a group
isomorphism \Lambda \rightarrow \Lambda \prime , where \Lambda \prime is also a subgroup of the additive group of
GF(2)X . Finally, replace A1 with A1[X  - x, (Y0  - y) \cup Y1 \cup C], project \Lambda \prime 

into GF(2)X - x, and project \Delta into GF(2)(Y0 - y)\cup Y1\cup C . The resulting groups
play the roles of \Lambda and \Delta , respectively, in the new template.)

Throughout the rest of this paper, we will refer to the operations listed in Propo-
sition 3.3 and Definition 3.4 as operations (1)--(11).

Let \Phi \prime be a template minor of \Phi . Let A be a matrix that virtually conforms to
\Phi \prime , and let M be a matroid that virtually conforms to \Phi \prime . We say that A and M
weakly conform to \Phi . Let \scrM w(\Phi ) denote the set of matroids that weakly conform to
\Phi , and let \scrM \ast 

w(\Phi ) denote the set of matroids whose duals weakly conform to \Phi . If
M \in \scrM \ast 

w(\Phi ), we say that M weakly coconforms to \Phi .

Lemma 3.5 ([3, Lemma 3.4]). If a matroid M weakly conforms to a template \Phi ,
then M is a minor of a matroid that conforms to \Phi .

Since Hypothesis 2.1 deals with minor-closed classes, it can be generalized using
the preceding lemma.

Corollary 3.6 ([3, modification of Corollary 3.5]). Suppose Hypothesis 2.1 holds.
Let \scrM be a proper minor-closed class of binary matroids. Then there exist k \in \BbbZ +

and templates \Phi 1, . . . ,\Phi s,\Psi 1, . . . ,\Psi t such that
1. \scrM contains each of the classes \scrM w(\Phi 1), . . . ,\scrM w(\Phi s),
2. \scrM contains each of the classes \scrM \ast 

w(\Psi 1), . . . ,\scrM \ast 
w(\Psi t), and

3. if M is a simple k-connected member of \scrM with at least 2k elements, then
either M is a member of at least one of the classes \scrM v(\Phi 1), . . . ,\scrM v(\Phi s) or
M\ast is a member of at least one of the classes \scrM v(\Psi 1), . . . ,\scrM v(\Psi t).

If \scrM w(\Phi ) = \scrM w(\Phi 
\prime ), we say that \Phi is equivalent to \Phi \prime and write \Phi \sim \Phi \prime . Note

that \sim is indeed an equivalence relation.

Definition 3.7 ([3, Definition 3.6]). We define a preorder \preceq on the set of tem-
plates as follows. We say \Phi \preceq \Phi \prime if \scrM w(\Phi ) \subseteq \scrM w(\Phi 

\prime ). This is indeed a preorder
since reflexivity and transitivity follow from the subset relation.

Let \Phi 0 be the template with all groups trivial and all sets empty. We call this
template the trivial template. In general, we say that a template \Phi is trivial if \Phi \preceq \Phi 0.
It is easy to see (by using operations (1), (2), (3), (6), and (9) as many times as needed)
that for any template \Phi , we have \Phi 0 \preceq \Phi . Therefore, if \Phi \preceq \Phi 0, then actually \Phi \sim \Phi 0.

We now describe a collection of minimal nontrivial templates.

Definition 3.8 ([3, Definition 3.7]).
\bullet Let \Phi C be the template with all groups trivial and all sets empty except that

| C| = 1 and \Delta \sim = \BbbZ /2\BbbZ .
\bullet Let \Phi X be the template with all groups trivial and all sets empty except that
| X| = 1 and \Lambda \sim = \BbbZ /2\BbbZ .

\bullet Let \Phi Y0 be the template with all groups trivial and all sets empty except that
| Y0| = 1 and \Delta \sim = \BbbZ /2\BbbZ .

\bullet Let \Phi CX be the template with Y0 = Y1 = \emptyset , with | C| = | X| = 1, with
\Delta \sim = \Lambda \sim = \BbbZ /2\BbbZ , and with A1 = [1].

\bullet Let \Phi Y1
be the template with all groups trivial, with C = Y0 = \emptyset , with | Y1| = 3
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EVEN-CYCLE AND EVEN-CUT MATROIDS 33

and | X| = 2, and with A1 = [ 1 0 1
0 1 1 ].

Lemma 3.9 ([3, Lemma 3.8]). The following relations hold:
(1) \Phi Y1

\preceq \Phi X .
(2) \Phi Y1

\preceq \Phi C .
(3) \Phi Y0 \preceq \Phi C .
(4) \Phi C \preceq \Phi CX .
(5) \Phi X \preceq \Phi CX .

Lemma 3.10 ([3, Lemma 3.9]). Let \Phi be a template with y \in Y1. Let \Phi \prime be the
template obtained from \Phi by removing y from Y1 and placing it in Y0. Then \Phi \prime \preceq \Phi .

We call the operation described in Lemma 3.10 a y-shift.

Lemma 3.11 ([3, Lemma 3.12]). If \Phi = (C,X, Y0, Y1, A1,\Delta ,\Lambda ) is a binary frame
template with \Lambda | X1 nontrivial, then \Phi X \preceq \Phi .

Lemma 3.12 ([3, Lemma 3.17]). If \Phi is a template with \Delta trivial, then \Phi is
equivalent to a template \Phi \prime where M(A1[X,Y1]) is a simple matroid.

The next lemma can be extracted from the proof of [3, Lemma 4.12].

Lemma 3.13. Let \Phi be a template such that \scrM w(\Phi ) \subseteq \scrE \scrX (PG(3, 2)). Then either
\Phi \preceq \Phi X or \Phi is equivalent to a template with C = \emptyset and with \Lambda and \Delta trivial.

Definition 3.14 ([3, Definition 4.4]). Let Xr be the largest simple matroid of
rank r that virtually conforms to \Phi Y1 .

Note that X1 = U1,1, and if r \geq 2, then Xr is the vector matroid of the following
binary matrix, where we choose for the frame matrix the matrix representation of
M(Kr - 1), so that the identity matrices are (r  - 2) \times (r  - 2) matrices. We will call
this matrix Ar:

0
1 0 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1
0 1 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1

frame matrix 0 I I I

Lemma 3.15 ([3, Lemma 4.5]). The class \scrM v(\Phi Y1
) is the class of even-cycle ma-

troids with a blocking pair. This class is minor-closed.

4. Excluded minors. In this section, we will establish that the matroids from
the introduction are indeed excluded minors for the various classes of matroids. Com-
putations 1 and 2 in M109737 01.pdf [local/web 460KB] give the SageMath code for
functions that test whether a binary matroid is an excluded minor for the class of
even-cycle and even-cut matroids, respectively. The code is based on the fact that an
even-cycle matroid M can be represented by a binary matrix with a row whose re-
moval results in a matrix representing a graphic matroid. Thus, there is some binary
extension N of M on ground set E(M) \cup \{ e\} such that N/e is graphic. Therefore,
to check if a binary matroid M is even-cycle, it suffices to check if N/e is graphic for
some binary extension N of M . If this is false for all such N , then M is not even-cycle.
The even-cut case is analogous.

Theorem 4.1. Each of the matroids PG(3, 2)\setminus e, L19, and L11 is an excluded
minor for the class of even-cycle matroids.

Proof. The largest even-cycle matroid of rank r has a representation obtained by
putting an odd edge in parallel with every even edge ofKr, and by adding an odd loop.
Therefore, the size of the largest even-cycle matroid of rank r is 2

\bigl( 
r
2

\bigr) 
+1 = r2 - r+1.
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34 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

Therefore, the matroid PG(3, 2)\setminus e, which has rank 4 and size 14, is too large to be
even-cycle. Deletion of any element from PG(3, 2)\setminus e results in the unique matroid (up
to isomorphism) obtained from PG(3, 2) by deleting two elements. This is exactly the
largest simple even-cycle matroid of rank 4, as described above. Thus, deletion of any
element from PG(3, 2)\setminus e results in an even-cycle matroid. To see that contraction of
any element from PG(3, 2)\setminus e results in an even-cycle matroid, note that every binary
matroid of rank 3 is even-cycle since removal of any row results in a matrix that
obviously has at most two nonzero entries per column.

The fact that L19 and L11 are excluded minors for the class of even-cycle matroids
was verified using SageMath in Computations 3 and 4 in M109737 01.pdf [local/web
460KB].

Theorem 4.2. The matroids M(K6) and H\ast 
12 are excluded minors for the class

of even-cut matroids.

Proof. This was verified using SageMath in Computations 5--6 in M109737 01.pdf
[local/web 460KB].

Lemma 4.3. A matroid is an even-cycle matroid with a blocking pair if and only
if its cosimplification also is.

Proof. The class of even-cycle matroids with a blocking pair is minor-closed;
therefore, the cosimplification of an even-cycle matroid with a blocking pair will be
such a matroid as well.

For the converse, let M be even-cycle with a blocking pair, and consider an even-
cycle representation of M with a blocking pair. It suffices to consider coextensions
N of M , with E(N) = E(M) \cup e and such that either \{ e, f\} is a series pair of N or
e is a coloop of N . First, we consider the case where \{ e, f\} is a series pair. If f is
represented by an even edge in the even-cycle representation of M , then e and f in N
are represented by edges obtained by subdividing f in M . This has no effect on the
blocking pair. If f is represented by an odd edge other than a loop, we resign at a
vertex in the blocking pair that is incident with f . This maintains the blocking pair,
but now f is represented by an even edge as above. Now consider the case where f is
represented by an odd loop. Since M is even-cycle with a blocking pair, recall from
Lemma 3.15 and Definition 3.14 that M is a restriction of a matroid represented by
a matrix of the following form:

f

0
1 0 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1
0 1 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1

frame matrix 0 I I I

Since N contains \{ e, f\} as a series pair, N is a restriction of a matroid N \prime represented
by a matrix of the following form:

e f
0

0
1 0 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1

0 0 1 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1
0 frame matrix 0 I I I
1 0 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 0 1 0 0 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0

By Lemma 3.15, N \prime is even-cycle with a blocking pair. Therefore, so is N .
Finally, we consider the case where e is a coloop of N . Then N can be represented

by a graph obtained from the graph representingM by adding a new vertex and joining
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EVEN-CYCLE AND EVEN-CUT MATROIDS 35

M\ast (K5) M\ast (K6\setminus e)

Fig. 4. Even-cycle representations of M\ast (K5) and M\ast (K6\setminus e).

it to any other vertex with an even edge. The blocking pair is maintained.

Theorem 4.4. The matroids PG(3, 2)\setminus L and M\ast (K6) are excluded minors for
the class of even-cycle matroids with a blocking pair.

Proof. Recall from Definition 3.14 and Lemma 3.15 that Xr is the largest simple
matroid of rank r that is even-cycle with a blocking pair. Note that X4 is the matroid
obtained from PG(3, 2) by deleting an independent set of size 3. Therefore, PG(3, 2)\setminus L
is not a restriction of X4. By Lemma 3.15, PG(3, 2)\setminus L is not an even-cycle matroid
with a blocking pair. However, since X3 = PG(2, 2) = F7, all binary matroids of
rank at most 3 are even-cycle matroids with blocking pairs. Therefore, PG(3, 2)\setminus L/e
is even-cycle with a blocking pair for each element e of PG(3, 2)\setminus L. Moreover, by
deleting any element from PG(3, 2)\setminus L, we obtain a restriction of X4. Therefore,
PG(3, 2)\setminus L is an excluded minor for the class of even-cycle matroids with a blocking
pair.

By Theorem 4.2, M(K6) is not an even-cut matroid. Recall from section 1 that
the dual of an even-cycle matroid with a blocking pair is an even-cut matroid. There-
fore, M\ast (K6) is not an even-cycle matroid with a blocking pair. It remains to show
that M\ast (K6\setminus e) and M\ast (K6/e) are even-cycle with a blocking pair. By Lemma 4.3,
M\ast (K6/e) has an even-cycle representation with a blocking pair if and only if M\ast (K5)
does. Even-cycle representations of M\ast (K5) and M\ast (K6\setminus e), with odd edges printed
in bold, are given in Figure 4. Each of these representations has a blocking pair.

5. Some technical lemmas proved with SageMath: Even-cycle ma-
troids. In this section, we list several technical lemmas that we need to prove The-
orems 1.1 and 1.2. Many of the proofs will merely refer the reader to a computation
in M109737 01.pdf [local/web 460KB]. The computations use the SageMath software
system [9]. In Lemmas 5.1--5.20, \Phi is a template with C = \emptyset and all groups trivial.
Moreover, there are binary matrices P0 and P1 and a partition Y1 = Y \prime 

1 \cup Y \prime \prime 
1 such

that A1[X,Y \prime 
1 ] is an identity matrix, A1[X,Y \prime \prime 

1 ] = P1, and A1[X,Y0] = P0. The reader
may prefer to move on to section 6, referring to section 5 as necessary.

Computation 7 gives a SageMath function which builds the largest possible simple
matroid M of rank r(M(A1)) + n  - 1 that virtually conforms to \Phi . It does this by
choosing for the frame matrix the matrix representation of M(Kn) and by including
all possible elements of Z that can be constructed from elements of Y1. For AY0,
we input the matrix A1[X,Y0]. For AY1, we input the matrix A1[X,Y1]. In most
of Computations 8--41, we then test if M contains PG(3, 2)\setminus e as a minor by looking
for a subset S of the ground set of M such that r(M/S) = 4 and | si(M/S)| \geq 14.
If this subset exists, then M must contain PG(3, 2)\setminus e as a minor. In the Python
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36 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

programming language, on which SageMath is based, a set of size n has elements
labeled 0, 1, . . . , n - 1. Thus, for example, if S = \{ 17, 12, 7\} , then the 18th, 13th, and
8th columns are to be contracted. We can similarly test for a PG(3, 2) - 2 minor.

Lemma 5.1. If P1 contains a column with four or more nonzero entries, then
\scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2)\setminus e). More generally, if M(A1[X,Y1]) contains a circuit of
size at least 5, then \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2)\setminus e).

Proof. See Computation 8 in M109737 01.pdf [local/web 460KB].

Lemma 5.2. If P1 contains the submatrix

\left[    
1 0
1 0
0 1
0 1

\right]    , then \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2)\setminus e).

Proof. See Computation 9 in M109737 01.pdf [local/web 460KB].

Lemma 5.3. If P1 contains the submatrix

\left[  1 0 1
1 1 0
0 1 1

\right]  , then \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2)

\setminus e).
Proof. See Computation 10 in M109737 01.pdf [local/web 460KB].

Lemma 5.4. If P1 contains the submatrix

\left[  1 1 1
1 0 1
0 1 1

\right]  , then \scrM w(\Phi ) \nsubseteq 

\scrE \scrX (PG(3, 2)\setminus e).
Proof. See Computation 11 in M109737 01.pdf [local/web 460KB].

Lemma 5.5. If P1 contains the submatrix P \prime 
1 =

\left[    
1 0
1 0
1 1
0 1

\right]    , then \scrM w(\Phi ) \nsubseteq 

\scrE \scrX (PG(3, 2)\setminus e).
Proof. In the matrix [I4| P \prime 

1], columns 1, 2, 4, 5, and 6 form a circuit of size 5,
which is forbidden by Lemma 5.1.

Lemma 5.6. If P0 contains a column with five nonzero entries or either of the
following matrices below as a submatrix, then \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2)\setminus e):\left[        

1 0
1 0
1 0
0 1
0 1
0 1

\right]        ,

\left[        
1 0
1 0
1 0
1 1
0 1
0 1

\right]        .

Proof. If we contract a column from Y0 (in other words, we perform operation
(10) on \Phi ), then a column from the identity matrix A1[X,Y \prime 

1 ] becomes a column in the
resulting A1[X,Y \prime \prime 

1 ]. We see then that if P0 contains one of the submatrices listed in
this result, then contraction of the columns of that submatrix results in the submatrix
forbidden in Lemma 5.1, 5.2, or 5.5.

The following conditions will be used as conclusions for Lemmas 5.7--5.12.
1. \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2)\setminus e, L11) and \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2) - 2),
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EVEN-CYCLE AND EVEN-CUT MATROIDS 37

2. P0 is of the following form, where each column of [H1| H0] has at most two
nonzero entries: \biggl[ 

1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1 H0

\biggr] 
, or

3. P0 is of the form \left[  1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0
1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1,1 H1,0 H0,1 H0,0

\right]  ,

where each column of H1,1 and H0,0 has at most two nonzero entries, and
where each column of H0,1 and H1,0 is a unit column or a zero column.

Lemma 5.7. If P0 contains the columns

\left[             

1 1
1 0
1 0
0 1
0 1
0 0
...

...
0 0

\right]             
, then 1 or 2 holds.

Proof. Suppose neither 1 nor 2 holds. Since 1 does not hold, Lemma 5.6 implies
that P0 contains none of the following submatrices, whether x = 0 or x = 1, and also
contains no column with five nonzero entries:

\left[        
1 1 x
1 0 0
1 0 0
0 1 1
0 1 1
0 0 1

\right]        ,

\left[          

1 1 x
1 0 0
1 0 0
0 1 0
0 1 1
0 0 1
0 0 1

\right]          
,

\left[            

1 1 x
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

\right]            
.

Therefore, since 2 does not hold, P0 contains one of the following submatrices:\left[        
1 1 1
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1

\right]        ,

\left[        
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1

\right]        ,

\left[      
1 1 0
1 0 1
1 0 1
0 1 1
0 1 0

\right]      ,

\left[      
1 1 1
1 0 1
1 0 1
0 1 1
0 1 0

\right]      ,

\left[      
1 1 0
1 0 1
1 0 1
0 1 1
0 1 1

\right]      .

Computations 12--16 in M109737 01.pdf [local/web 460KB] show that each of these
submatrices results in a template to which virtually conforms a matroid which has
PG(3, 2)\setminus e as a minor or which has both PG(3, 2) - 2 and L11 as minors, contradicting
the assumption that 1 does not hold.
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Lemma 5.8. If P0 contains the columns

\left[             

1 1
1 1
1 0
1 0
0 1
0 0
...

...
0 0

\right]             
, then 1 or 3 holds.

Proof. Suppose neither 1 nor 3 holds. Since 1 does not hold, Lemma 5.6 implies
that P0 contains none of the following submatrices and also contains no column with
five nonzero entries:

\left[        
1 1 0
1 1 0
1 0 1
1 0 1
0 1 0
0 0 1

\right]        ,

\left[        
1 1 0
1 1 0
1 0 1
1 0 0
0 1 1
0 0 1

\right]        ,

\left[          

1 1 0
1 1 0
1 0 1
1 0 0
0 1 0
0 0 1
0 0 1

\right]          
,

\left[          

1 1 0
1 1 0
1 0 0
1 0 0
0 1 1
0 0 1
0 0 1

\right]          
,

\left[            

1 1 0
1 1 0
1 0 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

\right]            
,

\left[        
1 1 1
1 1 0
1 0 0
1 0 0
0 1 1
0 0 1

\right]        ,

\left[          

1 1 1
1 1 0
1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

\right]          
.

Therefore, since 3 does not hold, P0 contains one of the following submatrices:

\left[      
1 1 0
1 1 0
1 0 1
1 0 1
0 1 1

\right]      ,

\left[      
1 1 1
1 1 0
1 0 1
1 0 1
0 1 1

\right]      ,

\left[      
1 1 1
1 1 0
1 0 1
1 0 1
0 1 0

\right]      ,

\left[      
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1

\right]      ,

\left[        
1 1 1
1 1 0
1 0 1
1 0 0
0 1 0
0 0 1

\right]        .

Computations 17--21 in M109737 01.pdf [local/web 460KB] show that each of these
submatrices results in a template to which virtually conforms a matroid which has
PG(3, 2)\setminus e as a minor or which has both PG(3, 2) - 2 and L11 as minors, contradicting
the assumption that 1 does not hold.

Lemma 5.9. If P0 contains the columns

\left[           

1 1
1 1
1 0
0 1
0 0
...

...
0 0

\right]           
, then 1, 2, or 3 holds.
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EVEN-CYCLE AND EVEN-CUT MATROIDS 39

Proof. Suppose neither 1, 2, nor 3 holds. First, suppose that P0 contains one of
the following submatrices:

\left[      
1 1 0
1 1 0
1 0 1
0 1 1
0 0 1

\right]      ,

\left[      
1 1 1
1 1 0
1 0 1
0 1 0
0 0 1

\right]      ,

\left[      
1 1 1
1 1 0
1 0 0
0 1 1
0 0 1

\right]      ,

\left[        
1 1 1
1 1 0
1 0 0
0 1 0
0 0 1
0 0 1

\right]        .

For each of these four submatrices, since 1 does not hold, Lemma 5.6 implies that the
column of P0 containing the third column of the submatrix contains no nonzero entries
except those in the submatrix. But then these submatrices are forbidden by Lemma
5.7 (with the third column playing the role of one of the two columns in Lemma 5.7)
and the assumption that 2 does not hold. Moreover, the following submatrices are
forbidden by Lemma 5.6:

\left[        
1 1 0
1 1 0
1 0 1
0 1 0
0 0 1
0 0 1

\right]        ,

\left[          

1 1 0
1 1 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

\right]          
.

Therefore, since 3 does not hold, P0 must contain the following submatrix:\left[    
1 1 1
1 1 0
1 0 1
0 1 1

\right]    .

Since no column of P0 can contain five nonzero entries, if this submatrix is contained
in the following submatrix: \left[      

1 1 1
1 1 0
1 0 1
0 1 1
0 0 1

\right]      ,

then the column of P0 containing the third column of this matrix contains no other
nonzero entries. Therefore, this submatrix is forbidden by Lemma 5.8 and the as-
sumption that 3 does not hold. Thus, P0 contains the following three columns:\left[           

1 1 1
1 1 0
1 0 1
0 1 1
0 0 0
...

...
...

0 0 0

\right]           
.
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40 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

Now, since 2 does not hold, P0 contains one of the following submatrices, where
x is either 0 or 1:

\left[    
1 1 1 x
1 1 0 1
1 0 1 1
0 1 1 1

\right]    ,

\left[      
1 1 1 x
1 1 0 0
1 0 1 1
0 1 1 1
0 0 0 1

\right]      ,

\left[        
1 1 1 x
1 1 0 0
1 0 1 0
0 1 1 1
0 0 0 1
0 0 0 1

\right]        ,

\left[          

1 1 1 x
1 1 0 0
1 0 1 0
0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 1

\right]          
.

The first of these four submatrices is forbidden by Computations 22 and 23 in
M109737 01.pdf [local/web 460KB]. If x = 0, the third and fourth of these sub-
matrices are forbidden by Lemma 5.6. The second submatrix is forbidden by Lemma
5.6 if the column of P0 containing the fourth column contains an additional nonzero
entry, but it is forbidden by Lemma 5.7 (and the assumption that 2 does not hold)
otherwise. If x = 1, the second matrix is forbidden by Lemma 5.8 (along with the
assumption that 3 does not hold and the fact that no column of P0 can contain five
nonzero entries). The third and fourth submatrices are forbidden by Lemma 5.6 (and
the assumption that 1 does not hold). This completes the proof by contradiction.

Lemma 5.10. If P0 contains the columns

\left[           

1 1
1 1
1 1
1 0
0 0
...

...
0 0

\right]           
, then 1, 2, or 3 holds.

Proof. Suppose neither 1, 2, nor 3 holds. Consider the following matrices:

\left[      
1 1 1
1 1 0
1 1 1
1 0 1
0 0 1

\right]      ,

\left[        
1 1 1
1 1 0
1 1 1
1 0 0
0 0 1
0 0 1

\right]        ,

\left[        
1 1 1
1 1 0
1 1 0
1 0 1
0 0 1
0 0 1

\right]        ,

\left[          

1 1 1
1 1 0
1 1 0
1 0 0
0 0 1
0 0 1
0 0 1

\right]          
,

\left[        
1 1 0
1 1 0
1 1 1
1 0 1
0 0 1
0 0 1

\right]        ,

\left[          

1 1 0
1 1 0
1 1 1
1 0 0
0 0 1
0 0 1
0 0 1

\right]          
,

\left[          

1 1 0
1 1 0
1 1 0
1 0 1
0 0 1
0 0 1
0 0 1

\right]          
,

\left[            

1 1 0
1 1 0
1 1 0
1 0 0
0 0 1
0 0 1
0 0 1
0 0 1

\right]            
.

Since no column of P0 can have five nonzero entries, the first two of these matrices
are forbidden by Lemma 5.8. The other six are forbidden by Lemma 5.6. Now, for
all but the first of these matrices, suppose it is not a submatrix of P0, but the matrix
formed by removing the last row is a submatrix of P0. For the second matrix, this
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EVEN-CYCLE AND EVEN-CUT MATROIDS 41

is impossible by Lemma 5.9. For the third, fourth, fifth, and sixth matrices, this is
impossible by Lemma 5.7. For the seventh and eighth matrices, this is impossible by

Lemma 5.6. Thus, since 3 does not hold, P0 must contain

\left[    
1 1 1
1 1 0
1 1 1
1 0 1

\right]    as a submatrix.

Therefore, after swapping the second and third rows, we may assume without loss of
generality that P0 contains the following three columns:\left[           

1 1 1
1 1 1
1 1 0
1 0 1
0 0 0
...

...
...

0 0 0

\right]           
.

However, since 3 does not hold, P0 must contain a fourth column resulting in P0 con-

taining as a submatrix either one of the eight forbidden matrices above or

\left[    
1 1 1 0
1 1 1 1
1 1 0 1
1 0 1 1

\right]    ,
which is forbidden by Computation 22 in M109737 01.pdf [local/web 460KB]. This
completes the proof by contradiction.

Lemma 5.11. If P0 contains the submatrix

\left[        
1 1
1 1
1 0
1 0
0 1
0 1

\right]        , then 1 or 3 holds.

Proof. Suppose neither 1 nor 3 holds. The following submatrices are forbidden
from P0 by Lemma 5.6:

\left[        
1 1 0
1 1 0
1 0 1
1 0 0
0 1 1
0 1 1

\right]        ,

\left[          

1 1 0
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1

\right]          
,

\left[          

1 1 0
1 1 0
1 0 0
1 0 0
0 1 1
0 1 1
0 0 1

\right]          
,

\left[            

1 1 0
1 1 0
1 0 0
1 0 0
0 1 0
0 1 1
0 0 1
0 0 1

\right]            
,

\left[              

1 1 0
1 1 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

\right]              
,

\left[        
1 1 1
1 1 0
1 0 1
1 0 1
0 1 0
0 1 0

\right]        ,

\left[          

1 1 1
1 1 0
1 0 1
1 0 0
0 1 0
0 1 0
0 0 1

\right]          
,

\left[            

1 1 1
1 1 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

\right]            
.
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42 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

Therefore, since 3 does not hold and since no column of P0 contains five nonzero
entries, P0 contains one of the following submatrices:\left[        

1 1 0
1 1 0
1 0 1
1 0 1
0 1 1
0 1 1

\right]        ,

\left[        
1 1 1
1 1 0
1 0 1
1 0 1
0 1 1
0 1 0

\right]        ,

\left[        
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0

\right]        .

Computations 24--26 in M109737 01.pdf [local/web 460KB] show that each of
these submatrices results in a template to which virtually conforms a matroid which
has PG(3, 2)\setminus e as a minor or which has both PG(3, 2) - 2 and L11 as minors, contra-
dicting the assumption that 1 does not hold.

Lemma 5.12. If P0 contains the submatrix

\left[      
1 1
1 1
1 1
1 0
0 1

\right]      , then 1 or 3 holds.

Proof. Suppose neither 1 nor 3 holds. The following submatrices are forbidden
from P0 by Lemma 5.6:

\left[        
1 1 1
1 1 0
1 1 0
1 0 0
0 1 1
0 0 1

\right]        ,

\left[          

1 1 1
1 1 0
1 1 0
1 0 0
0 1 0
0 0 1
0 0 1

\right]          
,

\left[        
1 1 0
1 1 0
1 1 1
1 0 0
0 1 1
0 0 1

\right]        ,

\left[          

1 1 0
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1
0 0 1

\right]          
,

\left[        
1 1 0
1 1 0
1 1 0
1 0 1
0 1 1
0 0 1

\right]        ,

\left[          

1 1 0
1 1 0
1 1 0
1 0 0
0 1 1
0 0 1
0 0 1

\right]          
,

\left[            

1 1 0
1 1 0
1 1 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

\right]            
.

The following submatrices are forbidden by Lemma 5.11. Moreover, for each
of these matrices, if the given matrix is not a submatrix of P0, then the submatrix
obtained from this matrix by deleting the last row is forbidden from P0 by Lemma
5.8: \left[        

1 1 1
1 1 0
1 1 1
1 0 0
0 1 1
0 0 1

\right]        ,

\left[          

1 1 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1
0 0 1

\right]          
,

\left[        
1 1 1
1 1 0
1 1 0
1 0 1
0 1 1
0 0 1

\right]        ,

\left[        
1 1 0
1 1 0
1 1 1
1 0 1
0 1 1
0 0 1

\right]        .
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EVEN-CYCLE AND EVEN-CUT MATROIDS 43

Therefore, since 3 does not hold, P0 contains a submatrix obtained from the
following matrix by deleting either the third or fourth column:\left[      

1 1 1 0
1 1 0 1
1 1 1 1
1 0 1 1
0 1 1 1

\right]      .

This matrix itself is not a submatrix of P0 because it contains a submatrix forbidden
by Computation 23 in M109737 01.pdf [local/web 460KB]. Thus, after swapping the
second and third rows, we may assume without loss of generality that P0 contains the
following submatrix: \left[      

1 1 1
1 1 1
1 1 0
1 0 1
0 1 1

\right]      .

Since 3 does not hold and since we have already forbidden all other possibilities,
P0 must contain the following submatrix:\left[      

1 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

\right]      ,

but this contains a submatrix forbidden by Computation 23 in M109737 01.pdf [lo-
cal/web 460KB]. This completes the proof by contradiction.

Lemma 5.13. If [P1| P0] contains any of the following submatrices, with the sub-
matrix to the left of the vertical line contained in P1, with the column to the right of
the vertical line contained in P0, and with either x = 0 or x = 1, then \scrM w(\Phi ) \nsubseteq 
\scrE \scrX (PG(3, 2)\setminus e):

\left[    
1 1 x
1 0 1
0 1 1
0 0 1

\right]    ,

\left[      
1 1 x
1 0 0
0 1 1
0 0 1
0 0 1

\right]      ,

\left[        
1 1 x
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

\right]        .

Proof. See Computations 27--32 in M109737 01.pdf [local/web 460KB].

Lemma 5.14. If [P1| P0] contains any of the following submatrices, with the sub-
matrix to the left of the vertical line contained in P1, with the column to the right of
the vertical line contained in P0, then \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2)\setminus e).

\left[    
1 1 1
1 1 0
1 0 1
0 1 1

\right]    ,

\left[      
1 1 1
1 1 0
1 0 0
0 1 1
0 0 1

\right]      ,

\left[        
1 1 1
1 1 0
1 0 0
0 1 0
0 0 1
0 0 1

\right]        .
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44 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

Proof. See Computations 33--35 in M109737 01.pdf [local/web 460KB].

Lemma 5.15. If [P1| P0] contains any of the following matrices as a submatrix,
with the portion to the left of the vertical line contained in P1 and the portion to the
right contained in P0, then \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2)\setminus e):

\left[    
1 1 0
1 0 1
0 1 1
0 1 1

\right]    ,

\left[      
1 1 0
1 0 1
0 1 1
0 1 0
0 0 1

\right]      ,

\left[    
1 1 1
1 1 0
0 1 1
0 1 1

\right]    ,

\left[      
1 1 1
1 1 0
0 1 0
0 1 1
0 0 1

\right]      .

Proof. See Computations 36--39 in M109737 01.pdf [local/web 460KB].

Lemma 5.16. If [P1| P0] contains either of the matrices below as a submatrix, with
the portion to the left of the vertical line contained in P1 and the portion to the right
contained in P0, then \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2)\setminus e):

\left[    
1 1 1
1 1 0
1 0 1
0 1 1

\right]    ,

\left[      
1 1 1
1 1 0
1 0 1
0 1 0
0 0 1

\right]      .

Proof. See Computations 40 and 41 in M109737 01.pdf [local/web 460KB].

Lemma 5.17. If P1 contains either of the following submatrices, then \scrM w(\Phi ) \nsubseteq 
\scrE \scrX (PG(3, 2) - 2): \left[  1 1

1 0
0 1

\right]  ,

\left[    
1 1
1 1
1 0
0 1

\right]    .

Proof. See Computations 42 and 43 in M109737 01.pdf [local/web 460KB].

Lemma 5.18. If [P1| P0] contains either of the following submatrices, with the por-
tion to the left of the vertical line contained in P1 and the portion to the right contained
in P0, then \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2) - 2):\left[    

1 1
1 1
0 1
0 1

\right]    ,

\left[    
1 1
1 0
0 1
0 1

\right]    .

Proof. See Computations 44 and 45 in M109737 01.pdf [local/web 460KB].

Lemma 5.19. If [P1| P0] contains the submatrix

\left[    
1 1
1 1
1 0
0 1

\right]    , with the portion to the

left of the vertical line contained in P1 and the portion to the right contained in P0,
then \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2) - 2).

Proof. See Computation 46 in M109737 01.pdf [local/web 460KB].
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EVEN-CYCLE AND EVEN-CUT MATROIDS 45

Lemma 5.20. If P0 contains the submatrix

\left[    
1 1 1
1 0 1
1 1 0
0 1 1

\right]    , then \scrM w(\Phi ) \nsubseteq 

\scrE \scrX (PG(3, 2) - 2).

Proof. See Computation 47 in M109737 01.pdf [local/web 460KB].

6. Even-cycle matroids. Theorem 4.1 shows that the class of even-cycle ma-
troids is contained in \scrE \scrX (PG(3, 2)\setminus e, L19, L11). We will prove Theorem 1.1, which
shows that for sufficiently highly connected binary matroids, the reverse inclusion
holds. First, we prove several lemmas. The conclusions of the lemmas in this section
are stated up to reordering of the rows and columns of A1[X,Y1].

Lemma 6.1. Let \Phi be a template with C = \emptyset and with \Lambda trivial. Then at least
one of the following holds:

1. There exists k \in \BbbZ + such that no simple k-connected matroid with at least 2k
elements virtually conforms to \Phi , or

2. A1 is of the following form, with Y1 = Y \prime 
1 \cup Y \prime \prime 

1 and each Pi an arbitrary
binary matrix:

Y \prime 
1 Y \prime \prime 

1 Y0

I P1 P0

Proof. By operation (4), we may assume that A1 is of the following form, with
Y0 = V0 \cup V1, with Y1 = Y \prime 

1 \cup Y \prime \prime 
1 , and with each Pi an arbitrary binary matrix:

Y \prime 
1 Y \prime \prime 

1 V0 V1

I P1 0 P0

0 0 I P2

If V0 \not = \emptyset , let k \geq | Y0| , and let M be a matroid virtually conforming to \Phi . Then
\lambda (Y0) = r(Y0) + r(E(M) - Y0) - r(M) < r(Y0) \leq | Y0| \leq k. Therefore, k-connectivity
implies that | E(M) - Y0| < | Y0| . But then | E(M)| < 2| Y0| \leq 2k. Thus, 1 holds.

Therefore, we may assume that V0 = \emptyset . In this case, 2 holds.

Lemma 6.2. Let \Phi be a template with C = \emptyset , with \Delta and \Lambda both trivial, and
with A1 of the form given in conclusion (2) of Lemma 6.1. Then at least one of the
following holds:

1. \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2)\setminus e),
2. P1 is a restriction of a matrix of the form [ 1\cdot \cdot \cdot 1I ] and P0 is of the following

form, where each column of [H1| H0] has at most two nonzero entries:\biggl[ 
1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1 H0

\biggr] 
,

3. P1 is a restriction of a matrix of the form

\left[  1 \cdot \cdot \cdot 11 \cdot \cdot \cdot 1
I

\right]  and P0 is of the following

form, where each column of H1,1 and H0,0 has at most two nonzero entries
and where each column of H0,1 and H1,0 is a unit column or a zero column:\left[  1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0

1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1,1 H1,0 H0,1 H0,0

\right]  ,
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46 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

4. P1 = [1, 1, 0, . . . , 0]T or P1 = [1, 1, 1, 0, . . . , 0]T , or
5. Y \prime \prime 

1 = \emptyset .
Proof. Suppose 1 does not hold. By Lemma 3.12, M(A1[X,Y1]) is simple. By

Lemma 5.1, M(A1[X,Y1]) has no circuit of size at least 5; thus each column of P1

has at most three nonzero entries. Therefore, every column of P1 has exactly two or
three nonzero entries. Let P1 = [P1,2| P1,3], where P1,i consists entirely of columns
with exactly i nonzero entries. By Lemmas 5.2 and 5.3, along with the fact that
M(A1[X,Y1]) is simple, P1,2 must be a restriction of a matrix of the form [ 1\cdot \cdot \cdot 1I ].

By Lemma 5.2, every pair of columns in P1,3 must both have nonzero entries in
the same two rows. Suppose a third column in P1,3 does not have nonzero entries in
the same two rows as the other two columns. It follows that P1,3 must contain the
following submatrix: \left[    

1 1 1
1 1 0
1 0 1
0 1 1

\right]    .

However, this contains the submatrix forbidden by Lemma 5.3. Therefore, P1,3

is of the following form:

\left[  1 \cdot \cdot \cdot 11 \cdot \cdot \cdot 1
I

\right]  .
We will now show that either P1,2 or P1,3 is an empty matrix. Consider the matrix

P \prime 
1 =

\left[    
1 0
1 0
1 1
0 1

\right]    .

As observed in Lemma 5.5, this is not a submatrix of P1 because in the matrix [I4| P \prime 
1],

columns 1, 2, 4, 5, and 6 form a circuit of size 5. Thus, if v is a column of P1,3, then
every column w of P1,2 must have its nonzero entries in two of the rows that contain
the nonzero entries of v. This fact, with Lemma 5.3, implies that if P1,3 contains

exactly one column, then P1 is a restriction of the matrix

\left[  1 1 1
1 0 1
0 1 1

\right]  , but this is the
submatrix forbidden by Lemma 5.4. Therefore, we see that if P1,3 is a nonempty
matrix, then P1 must be a restriction of a matrix of the following form:\left[       

1 1 \cdot \cdot \cdot 1
1 1 \cdot \cdot \cdot 1
0
... I
0

\right]       .

However, if P1 is of this form and contains the column with two nonzero entries,
then by adding the first row to the second and swapping the resulting unit column
with the appropriate column of the original identity matrix, we obtain a matrix of

the form [ 1\cdot \cdot \cdot 1I ]. Thus, P1 is either of the form [ 1\cdot \cdot \cdot 1I ] or of the form

\left[  1 \cdot \cdot \cdot 11 \cdot \cdot \cdot 1
I

\right]  .D
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EVEN-CYCLE AND EVEN-CUT MATROIDS 47

Suppose P1 is of the form [ 1\cdot \cdot \cdot 1I ]. If 2 does not hold, then either 4 or 5 holds
or [P1| P0] contains one of the following submatrices, with the submatrix to the left
of the vertical line contained in P1, with the column to the right of the vertical line
contained in P0, and with either x = 0 or x = 1:

\left[    
1 1 x
1 0 1
0 1 1
0 0 1

\right]    ,

\left[      
1 1 x
1 0 0
0 1 1
0 0 1
0 0 1

\right]      ,

\left[        
1 1 x
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

\right]        .

By Lemma 5.13, 1 holds.

Now, suppose P1 is of the form

\left[  1 \cdot \cdot \cdot 11 \cdot \cdot \cdot 1
I

\right]  . If 3 does not hold, then either 4 or 5

holds or [P1| P0] contains one of the following submatrices, with the submatrix to the
left of the vertical line contained in P1, with the column to the right of the vertical
line contained in P0, and with either x = 0 or x = 1:

\left[    
1 1 1
1 1 0
1 0 1
0 1 1

\right]    ,

\left[      
1 1 1
1 1 0
1 0 0
0 1 1
0 0 1

\right]      ,

\left[        
1 1 1
1 1 0
1 0 0
0 1 0
0 0 1
0 0 1

\right]        ,

\left[      
1 1 x
1 1 x
1 0 1
0 1 1
0 0 1

\right]      ,

\left[        
1 1 x
1 1 x
1 0 0
0 1 1
0 0 1
0 0 1

\right]        ,

\left[          

1 1 x
1 1 x
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

\right]          
.

If [P1| P0] contains any of the first three of these submatrices, then Lemma 5.14 implies
that 1 holds. The last three contain submatrices forbidden by Lemma 5.13; therefore,
1 holds in that case as well.

Lemma 6.3. Let \Phi be a template with C = \emptyset , with \Delta and \Lambda both trivial, with A1

of the form given in conclusion 2 of Lemma 6.1, and with | Y \prime \prime 
1 | = 1. Then at least

one of the following holds:
1. \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2)\setminus e),
2. P1 = [1, 1, 0 . . . , 0]T and P0 is of the following form, where no column of

[H1,1| H1,0| H0,1| H0,0] has three or more nonzero entries and where at most
one of H1,1, H1,0, and H0,1 has columns with two nonzero entries:\left[  1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0

1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1,1 H1,0 H0,1 H0,0

\right]  , or
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3. P1 = [1, 1, 1, 0 . . . , 0]T and P0 is a restriction of a matrix of the following
form, where each column of H1,1,1, H1,0,0, H0,1,0, and H0,0,1 is either a unit
column or a zero column, and where each column of H1,1,0 and H0,0,0 has at
most two nonzero entries:\left[    

1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 1 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0
1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0
1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1,1,1 H1,1,0 0 0 H1,0,0 H0,1,0 H0,0,1 H0,0,0

\right]    .

Proof. Suppose 1 does not hold. Since | Y \prime \prime 
1 | = 1, Lemma 6.2 implies that either

P1 = [1, 1, 0 . . . , 0]T or P1 = [1, 1, 1, 0 . . . , 0]T . First, consider the case where P1 =
[1, 1, 0 . . . , 0]T . If P0 contains either [0, 0, 1, 1, 1]

T or [1, 0, 1, 1, 1]T as a submatrix, then
by contracting that column of Y0, we obtain in P1 a submatrix forbidden by Lemmas
5.2 or 5.5, respectively. This, with the fact that no column of P0 can contain five
nonzero entries, shows that [P1| P0] is of the following form, where each column of
[H1,1| H1,0| H0,1| H0,0] contains at most two nonzero entries:\left[  1 1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0

1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
0 H1,1 H1,0 H0,1 H0,0

\right]  .

By Lemmas 5.6 and 5.15, at most one of H1,1, H1,0, and H0,1 contains a column with
two nonzero entries. Therefore, 2 holds.

Now consider the case where P1 = [1, 1, 1, 0, . . . , 0]T . If P0 contains either [0, 0, 0, 1,
1, 1]T or [1, 0, 0, 1, 1]T as a submatrix, then by contracting that column of Y0, we ob-
tain in P1 a submatrix forbidden by Lemma 5.2 or 5.5, respectively. This, with the
fact that no column of P0 can contain five nonzero entries, shows that [P1| P0] is of
the following form, where each column of H1,1,1, H1,0,0, H0,1,0, and H0,0,1 is either a
unit column or a zero column, and where each column of H1,1,0, H1,0,1, H0,1,1, and
H0,0,0 has at most two nonzero entries:\left[    

1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0
1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0
1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1,1,1 H1,1,0 H1,0,1 H0,1,1 H1,0,0 H0,1,0 H0,0,1 H0,0,0

\right]    .

By Lemma 5.16, at most one of H1,1,0, H1,0,1, and H0,1,1 contains any nonzero
entries. Therefore, if any simple matroids virtually conform to \Phi , then 3 holds.
Otherwise, we discard \Phi since the results in this paper deal with simple matroids.

Lemma 6.4. Let \Phi be a template with C = \emptyset , with \Delta and \Lambda both trivial, and with
A1 of the form given in conclusion 2 of Lemma 6.1. Then at least one of the following
holds:

1. \scrM w(\Phi ) \nsubseteq \scrE \scrX (PG(3, 2)\setminus e, L11),
2. P0 is of the following form, where each column of [H1| H0] has at most two

nonzero entries: \biggl[ 
1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1 H0

\biggr] 
, or

3. P0 is of the following form, where each column of H1,1 and H0,0 has at most
two nonzero entries and where each column of H0,1 and H1,0 is a unit column
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or a zero column: \left[  1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0
1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1,1 H1,0 H0,1 H0,0

\right]  .

Proof. If P0 satisfies the hypotheses of any one of Lemmas 5.6--5.12, then the
result holds. Now suppose P0 satisfies none of the hypotheses of Lemmas 5.6--5.12.
This fact, along with the fact that no column of P0 can contain five nonzero entries,
implies that P0 has at most one column, other than duplicate columns, with more
than two nonzero entries. In this case, clearly 2 holds.

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let \scrM denote the class of binary matroids in
\scrE \scrX (PG(3, 2)\setminus e, L19, L11), and let \scrT = \{ \Phi 1, . . .\Phi s,\Psi 1, . . . ,\Psi t\} be the set of tem-
plates given by Hypothesis 2.1. Consider a template \Psi \in \{ \Psi 1, . . . ,\Psi t\} . Recall that
every matroid coconforming to \Psi must be contained in the minor-closed class \scrM .
Every cographic matroid is a minor of a matroid that coconforms to \Psi . Therefore,
\Psi does not exist since \scrM does not contain L19, which is cographic. Thus, t = 0 and
\scrT = \{ \Phi 1, . . . ,\Phi s\} . Because PG(3, 2)\setminus e, L19, and L11 are simple matroids, it suffices
to consider the simple matroids conforming to these templates.

Any matroid containing PG(3, 2) as a minor of course also contains PG(3, 2)\setminus e.
Therefore, Lemma 3.13 implies that, for any template \Phi \in \{ \Phi 1, . . . ,\Phi s\} , either
\Phi \preceq \Phi X or \Phi is a template with C = \emptyset and with \Lambda and \Delta trivial. We will show that
in fact \Phi \preceq \Phi X . In this case, we will be able to assume that \scrT = \{ \Phi X\} , since \scrM (\Phi X)
is the class of even-cycle matroids and is therefore minor-closed.

Suppose, for contradiction, that \Phi is a template with C = \emptyset and with \Lambda and \Delta 
trivial. Since \scrM w(\Phi ) \subseteq \scrE \scrX (PG(3, 2)\setminus e), conclusion 2 of Lemma 6.1 holds, and one
of conclusions 2--5 of Lemma 6.2 holds. If conclusion 2 of Lemma 6.2 holds, then
any matroid virtually conforming to \Phi is clearly an even-cycle matroid. Similarly,
if conclusion 3 holds, then by adding the first row to the second we see that any
matroid virtually conforming to \Phi is an even-cycle matroid. Therefore, if either 2 or
3 of Lemma 6.2 holds, then \Phi \preceq \Phi X . Since we already know that \scrM (\Phi X) \subseteq \scrM , we
may discard \Phi as a template that describes \scrM .

Now suppose conclusion 4 of Lemma 6.2 holds. Then, in Lemma 6.3, either 2
or 3 holds. By adding the first row to the second we see that any matroid virtually
conforming to \Phi is an even-cycle matroid. Therefore, we may again discard \Phi as a
template that describes \scrM .

Now suppose conclusion 5 of Lemma 6.2 holds; so Y \prime \prime 
1 = \emptyset . In Lemma 6.4, either

conclusion 2 or conclusion 3 holds. By adding one row to another if necessary, we
again see that \Phi \preceq \Phi X . Thus, \Phi may be discarded.

We now prove Theorem 1.2.

Proof of Theorem 1.2. Let \scrM denote the class of binary matroids in
\scrE \scrX (PG(3, 2)\setminus L,M\ast (K6)), and let \scrT = \{ \Phi 1, . . . ,\Phi s,\Psi 1, . . . ,\Psi t\} be the set of tem-
plates for \scrM given by Hypothesis 2.1. As above, since M\ast (K6) is cographic, t = 0
and \scrT = \{ \Phi 1, . . . ,\Phi s\} . Recall that \scrM w(\Phi Y1

) is the class of even-cycle matroids with
a blocking pair. We will show that \scrT = \{ \Phi Y1\} . Because PG(3, 2)\setminus L and M\ast (K6)
are simple matroids, it suffices to consider the simple matroids conforming to these
templates.

Let \Phi be a template such that \scrM w(\Phi ) \subseteq \scrE \scrX (PG(3, 2)\setminus L,M\ast (K6)). To show that
PG(3, 2)\setminus L is a minor of some matroid virtually conforming to a template, it suffices
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to show that PG(3, 2) - 2 is a minor of some matroid virtually conforming to that tem-
plate. Moreover, for each computation in M109737 01.pdf [local/web 460KB] where
we showed that L11 was a minor of a matroid virtually conforming to some template,
we also showed that PG(3, 2) - 2 is a minor of some matroid virtually conforming to
that template. Therefore, \scrM w(\Phi ) \subseteq \scrE \scrX (PG(3, 2)\setminus e, L19, L11) \subseteq \scrE \scrX (PG(3, 2)).

Thus, by Lemma 3.13, since PG(3, 2)\setminus L conforms to \Phi X , we have that \Phi is a
template with C = \emptyset and with \Lambda and \Delta trivial. By Lemma 6.1, we may assume
that A1 is of the following form, with Y1 = Y \prime 

1 \cup Y \prime \prime 
1 and each Pi an arbitrary binary

matrix:

Y \prime 
1 Y \prime \prime 

1 Y0

I P1 P0

By Lemmas 6.2 and 5.17, either P1 = [1, 1, 0, . . . , 0]T , or P1 = [1, 1, 1, 0, . . . , 0]T , or
Y \prime \prime 
1 = \emptyset .

Case 1. Suppose P1 = [1, 1, 0, . . . , 0]T . By Lemma 6.3, P0 is of the following form,
where no column of [H1,1| H1,0| H0,1| H0,0] has three or more nonzero entries:\left[  1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0

1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1,1 H1,0 H0,1 H0,0

\right]  .

By Lemma 5.18, no column of [H1,1| H1,0| H0,1] has two or more nonzero entries.
Let A be any matrix with r rows that virtually conforms to \Phi . Add a row r + 1
to the matrix, where row r + 1 is the sum of rows 2, . . . , r. Then one can see that
M(A) is an even-cycle matroid with row 1 being the sign row and with a blocking
pair represented by rows 2 and r + 1. Therefore, \Phi \preceq \Phi Y1

, and we may discard \Phi .
Case 2. Suppose P1 = [1, 1, 1, 0, . . . , 0]T . By Lemma 6.3, P0 is of the following

form, where each column of H1,1,1, H1,0,0, H0,1,0, and H0,0,1 is either a unit column or
a zero column, and where each column of H1,1,0 and H0,0,0 has at most two nonzero
entries: \left[    

1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 1 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0
1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0
1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1,1,1 H1,1,0 0 0 H1,0,0 H0,1,0 H0,0,1 H0,0,0

\right]    .

By Lemma 5.19, H1,1,0 must be a zero matrix. Therefore, by adding the first row
to the second, we see that any matroid virtually conforming to \Phi is even-cycle with a
blocking pair by taking the first row to be the sign row and taking the blocking pair
to be represented by the second and third rows. Therefore, \Phi \preceq \Phi Y1 , and we may
discard \Phi .

Case 3. Suppose Y \prime \prime 
1 = \emptyset . Either conclusion 2 or conclusion 3 of Lemma 6.4 must

hold. First, suppose 2 of Lemma 6.4 holds. Then P0 is of the following form, where
each column of [H1| H0] has at most two nonzero entries:\biggl[ 

1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1 H0

\biggr] 
.

We may assume that no column of H1 is a zero column because any such columns can
be obtained from Y1. Therefore, by Lemma 5.20, H1 is a restriction of a matrix of the
form [ 1\cdot \cdot \cdot 1I ]. By a similar argument as was used in Case 1, we see that every matroid
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virtually conforming to \Phi is even-cycle with a blocking pair. Therefore, \Phi \preceq \Phi Y1
, and

we may discard \Phi .
Now, suppose 2 of 6.4 holds. Then P0 is of the following form, where each column

of H1,1 and H0,0 has at most two nonzero entries and where each column of H0,1 and
H1,0 is a unit column or a zero column:

\left[  1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0
1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
H1,1 H1,0 H0,1 H0,0

\right]  .

By Lemma 5.20, H1,1 is a restriction of a matrix of the form [ 1\cdot \cdot \cdot 1I ], with possibly a
zero column as well. Therefore, by adding the first row to the second, we see that
any matroid virtually conforming to \Phi is even-cycle with a blocking pair by taking
the first row to be the sign row and taking the blocking pair to be represented by the
second and third rows. Therefore, \Phi \preceq \Phi Y1

, and we may discard \Phi . This completes
the proof.

7. Some technical lemmas proved with SageMath: Even-cut matroids.
In this section, we will list several technical lemmas that we will need to prove Theorem
1.3. As was the case with section 5, many of the proofs will merely refer the reader to
a computation in M109737 01.pdf [local/web 460KB]; the computations will use the
SageMath software system. The reader may prefer to move on to section 8, referring
to section 7 as necessary. In Lemmas 7.1--7.9, \Psi is a template with C = \emptyset , with \Lambda 
trivial, and with \Delta = \{ 0, \=x\} for some row vector \=x. Moreover, there are partitions
Y1 = Y \prime 

1 \cup Y1,0\cup Y1,1 and Y0 = Y0,0\cup Y0,1 such that \=xy = 1 if and only if y \in Y1,1\cup Y0,1

and such that A1 is of the following form:

Y \prime 
1 Y1,0 Y1,1 Y0,0 Y0,1

I AY1
BY1

AY0
BY0

.

Computation 48 in M109737 01.pdf [local/web 460KB] gives a SageMath function
which builds the largest possible matrix A conforming to such a template whose vector
matroid is a simple matroid of rank r+| X| . The variable B Jrows specifies the number
of row indices b \in B for which A[b, Y0 \cup Y1] = \=x.

Lemma 7.1. If BY1 contains the submatrix [1, 0], then \scrM w(\Psi ) \nsubseteq \scrE \scrX (H12).

Proof. See Computation 49 in M109737 01.pdf [local/web 460KB].

Lemma 7.2. If [AY1 | BY1 ] contains any one of the following submatrices, with the
column to the left of the vertical line contained in AY1

, and the column to the right of
the vertical line contained in BY1

, then \scrM w(\Psi ) \nsubseteq \scrE \scrX (H12):\biggl[ 
1 1
1 1

\biggr] 
,

\biggl[ 
1 0
1 0

\biggr] 
,

\biggl[ 
1 1
1 0

\biggr] 
.

Proof. See Computations 50--52 in M109737 01.pdf [local/web 460KB].

Lemma 7.3. If AY1
contains any one of the following submatrices, then \scrM w(\Psi ) \nsubseteq 

\scrE \scrX (H12): \left[  1 1
1 1
0 1

\right]  ,

\left[  1 0
1 1
0 1

\right]  ,

\left[    
1 0
1 0
0 1
0 1

\right]    .D
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Proof. See Computations 53--55 in M109737 01.pdf [local/web 460KB].

Lemma 7.4. If A1 contains any one of the following matrices, with the column
on the left indexed by an element of Y1 and the column on the right is indexed by an
element of Y0, then \scrM w(\Psi ) \nsubseteq \scrE \scrX (H12):\left[    

1 1
1 1
0 1
0 1

\right]    ,

\left[    
1 0
1 1
0 1
0 1

\right]    ,

\left[      
1 0
1 0
0 1
0 1
0 1

\right]      ,

\left[    
1 1
1 1
1 0
0 1

\right]    ,

\left[      
1 0
1 0
1 1
1 1
1 1

\right]      .

Proof. If the column on the left is contained in AY1 and the column on the right is
contained in AY0 , then these matrices are forbidden because contraction of the element
indexing this column of AY0

produces a new AY1
, containing a column originally in the

identity matrix, that contains one of the submatrices listed in Lemma 7.3. Since we
may choose the zero vector for every element of \Delta , we also have \scrM w(\Psi ) \nsubseteq \scrE \scrX (H12)
if these submatrices are contained in [AY1 | BY0 ], in [BY1 | BY0 ], or in [BY1 | AY0 ].

Lemma 7.5. If [AY1 | BY0 ] contains any one of the following submatrices, with the
column to the left of the vertical line contained in AY1 , and the column to the right of
the vertical line contained in BY0

, then \scrM w(\Psi ) \nsubseteq \scrE \scrX (H12):\biggl[ 
1 0
1 0

\biggr] 
,

\biggl[ 
1 1
1 0

\biggr] 
,

\biggl[ 
1 1
1 1

\biggr] 
.

Proof. See Computations 56--58 in M109737 01.pdf [local/web 460KB].

Lemma 7.6. If [BY1 | AY0 ] contains any one of the following submatrices, with the
column to the left of the vertical line contained in BY1 , and the column to the right of
the vertical line contained in AY0

, then \scrM w(\Psi ) \nsubseteq \scrE \scrX (H12):\left[  0 1
0 1
0 1

\right]  ,

\left[  1 1
0 1
0 1

\right]  ,

\left[  1 1
1 1
0 1

\right]  ,

\left[  1 1
1 1
1 1

\right]  .

Proof. See Computations 59--62 in M109737 01.pdf [local/web 460KB].

Lemma 7.7. If [BY1
| BY0

] contains any one of the following submatrices, with the
column to the left of the vertical line contained in BY1

, and the column to the right of
the vertical line contained in BY0

, then \scrM w(\Psi ) \nsubseteq \scrE \scrX (H12):\biggl[ 
0 1
0 1

\biggr] 
,

\biggl[ 
1 0
0 1

\biggr] 
,

\biggl[ 
1 0
1 0

\biggr] 
.

Proof. See Computations 63--65 in M109737 01.pdf [local/web 460KB].

Lemma 7.8. If AY0
contains the following submatrix, then \scrM w(\Psi ) \nsubseteq \scrE \scrX (H12):\left[        

1 0 1 0
1 1 0 0
1 1 1 1
1 1 1 1
1 1 1 1
0 1 1 0

\right]        .
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Proof. See Computation 66 in M109737 01.pdf [local/web 460KB].

Lemma 7.9. If BY0
contains the following submatrix, then \scrM w(\Psi ) \nsubseteq \scrE \scrX (H12):\biggl[ 

1 1 0 0
1 0 1 0

\biggr] 
.

Proof. See Computation 67 in M109737 01.pdf [local/web 460KB].

Lemma 7.10. If AY0
contains the following submatrix, then \scrM w(\Psi ) \nsubseteq \scrE \scrX (H12):\left[      

1 1 1 1
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

\right]      .

Proof. See Computation 68 in M109737 01.pdf [local/web 460KB].

8. Even-cut matroids. In this section, we prove Theorem 1.3. Recall that we
use the following definition: An even-cut matroid is a matroid M that can be repre-
sented by a binary matrix with a row whose removal results in a matrix representing
a cographic matroid. Thus, there is some binary extension N of M on ground set
E(M) \cup \{ e\} such that N/e is cographic. Thus, to check if a binary matroid M is
even-cut, it suffices to check if N/e is cographic for some binary extension N of M .
It will be useful to consider the dual situation. Therefore, it suffices to check if there
is a binary coextension N\ast of M\ast such that N\ast \setminus e is graphic. If this is the case, then
M\ast \in \scrM (\Phi C). We see then that \scrM \ast (\Phi C) is exactly the class of even-cut matroids.
Recall from Lemma 3.9 that \Phi Y1 \preceq \Phi C . This property reflects the fact, first observed
by Pivotto [7], that even-cycle matroids with a blocking pair are duals of even-cut
matroids.

Recall that H12 is the matroid with the even-cycle representation given in Figure
2. Thus, H12 is the vector matroid of the binary matrix below. In that matrix, the
top row is the sign row.\left[      

1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0 1 1 0 0
1 1 0 0 0 0 0 0 0 0 1 1
0 0 1 1 0 0 1 1 0 0 1 1

\right]      .

Lemma 4.2 shows that the class of even-cut matroids is contained in \scrE \scrX (M(K6),
H\ast 

12). Theorem 1.3 is the claim that for sufficiently highly connected matroids, the
reverse inclusion holds. We will prove Theorem 1.3 after giving a definition and
proving some lemmas.

Definition 8.1. Let | C| = 2, and let \Delta be the subgroup of GF(2)C generated by
[1, 0] and [0, 1]. The template \Phi 2

C is given by

\Phi 2
C = (C, \emptyset , \emptyset , \emptyset , [\emptyset ],\Delta , \{ 0\} ).

Lemma 8.2. For a template \Phi , either \Phi 2
C \preceq \Phi or \Phi is equivalent to a template

with | C1| \leq 1, where C1 is as in Figure 3.
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Proof. There are three cases to consider.
Case 1. Every element of \Delta | C is in the row space of A1[X0, C]. Then contraction

of C0 turns the elements of C1 into loops, and contraction of C1 is the same as deletion
of C1. By deleting C1 from every matrix virtually conforming to \Phi , we see that \Phi is
equivalent to a template with C1 = \emptyset .

Case 2. There is exactly one element \=x \in \Delta | C that is not in the row space of
A1[X0, C]. Then contraction of C0 turns the elements of C1 into parallel elements.
Thus, contraction of some element c \in C1 turns the elements of C1  - \{ c\} into loops,
and contraction of C1  - \{ c\} is the same as deletion of C1  - \{ c\} . By deleting C1  - \{ c\} 
from every matrix virtually conforming to \Phi , we see that \Phi is equivalent to a template
with | C1| = 1.

Case 3. There are distinct elements \=x and \=y in \Delta | C that are not in the row space
of A1[X0, C]. Index the elements of C0 by \{ 1, 2, . . . , n\} and the elements of X0 by
\{ d1, d2, . . . , dn\} . Let Sx and Sy be the supports of \=x| C0 and \=y| C0, respectively. Then
the support of (\=x+ \=y)| C0 is the symmetric difference Sx\bigtriangleup Sy. First, suppose that for
every pair of elements \=x and \=y in \Delta | C that are not in the row space of A1[X0, C],
we have that \=x + \=y is in the row space of A1[X,C]. Since the rows of A1[X0, C] are
linearly independent, it must be that the zero vector is equal to\sum 

i\in Sx\bigtriangleup Sy

A1[\{ di\} , C] + \=x+ \=y =
\sum 
i\in Sx

A1[\{ di\} , C] + \=x+
\sum 
i\in Sy

A1[\{ di\} , C] + \=y,

and therefore, since we are working in characteristic 2,\sum 
i\in Sx

A1[\{ di\} , C] + \=x =
\sum 
i\in Sy

A1[\{ di\} , C] + \=y.

Thus, contraction of C0 projects \=x and \=y onto the same element of GF(2)C1 . Moreover,
this is true for any pair of elements of \Delta | C that are not in the row space of A1[X0, C].
Therefore, the same argument used for Case 2 shows that \Phi is equivalent to a template
with | C1| = 1.

Therefore, we may assume that there are elements \=x and \=y in \Delta | C that are
not in the row space of A1[X0, C] and such that \=x + \=y is also not in the row space
of A1[X0, C]. Repeatedly perform operations (3) and (9) on \Phi until the following
template is obtained:

(C,X, \emptyset , \emptyset , A1[X,C],\Delta | C,\Lambda ).
On this template, perform operations (1) and (2) to obtain the following template:

(C,X, \emptyset , \emptyset , A1[X,C], \langle \=x, \=y\rangle , \{ 0\} ).

By performing elementary row operations, we see that every matrix virtually respect-
ing this template is row equivalent to a matrix virtually respecting the following
template, where \=x\prime | C0 and \=y\prime | C0 are zero vectors:

\Phi \prime = (C,X, \emptyset , \emptyset , A1[X,C], \langle \=x\prime , \=y\prime \rangle , \{ 0\} ).

Note that \=x\prime | C1, \=y
\prime | C1, and (\=x\prime + \=y\prime )| C1 are nonzero since \=x, \=y, and \=x + \=y were not

in the row space of A1[X0, C] in the original template \Phi . Also, we must have \=x\prime \not = \=y\prime 

because otherwise, \=x\prime + \=y\prime = 0, contradicting the assumption that \=x + \=y was not in
the row space of A1[X0, C] in \Phi . Now, on \Phi \prime , repeatedly perform operation (6) and
then operation (5) to obtain the following template:

\Phi \prime \prime = (C1, \emptyset , \emptyset , \emptyset , [\emptyset ], \langle \=x\prime | C1, \=y
\prime | C1\rangle , \{ 0\} ).
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EVEN-CYCLE AND EVEN-CUT MATROIDS 55

Now, every matroid M conforming to \Phi \prime \prime is obtained by contracting C1 from
M(A), where A is a matrix conforming to \Phi \prime \prime . Thus, if there are any elements of C1

that are parallel elements in M(A), contracting one of these elements turns the rest
of the parallel class into loops. So these elements are deleted to obtain M . Thus, \Phi \prime \prime 

is equivalent to a template where these elements have been deleted from C. There
are two cases to consider. First, if it is the case that either the supports of \=x\prime and \=y\prime 

are disjoint or one support is contained in the other, then in the resulting template,
| C| = 2 and \Delta = \langle [1, 0], [0, 1]\rangle . So this resulting template is \Phi 2

C . In the other case, \=x\prime 

and \=y\prime have intersecting supports, but neither is contained in the other. In this case,
\Phi \prime \prime is equivalent to the following template with | C1| = 3:

\Phi \prime \prime \prime = (C1, \emptyset , \emptyset , \emptyset , [\emptyset ], \langle [1, 1, 0], [1, 0, 1]\rangle , \{ 0\} ).

However, by contracting any element of C, the other two become parallel. Thus, by
contracting a second element, the third becomes a loop. Therefore, the third element
is deleted to obtain a matroid conforming to \Phi \prime \prime \prime . Thus, \Phi 2

C \sim \Phi \prime \prime \prime \preceq \Phi .

Lemma 8.3. If \Phi is a template with | C1| = 1 and with \Lambda | X1 trivial, then \Phi CX \preceq \Phi 
or \Phi is equivalent to a template with C = \emptyset .

Proof. We consider two cases, depending on whether \Delta | C contains an element
that is not in the row space of A1[X0, C].

Case 1. Every element of \Delta | C is in the row space of A1[X0, C]. Let A be a matrix
that conforms to \Phi . When C0 is contracted from M(A), each element of C1 becomes
a loop and can therefore be deleted rather than contracted. Thus, \Phi is equivalent to a
template \Phi \prime with C1 = \emptyset . Suppose there exist elements \=x \in \Delta | C0 and \=y \in \Lambda | X0 such
that there are an odd number of natural numbers i with \=xi = \=yi = 1. Repeatedly
perform operations (3), (9), and (5) on \Phi \prime to obtain the following template:

(C0, X0, \emptyset , \emptyset , A1[X0, C0],\Delta | C0,\Lambda ).

Then perform operations (1) and (2) to obtain the following template:

(C0, X0, \emptyset , \emptyset , A1[X0, C0], \{ 0, \=x\} , \{ 0, \=y\} ).

Any matroid conforming to this template is obtained by contracting C0 from M(A),
where A is a matrix conforming to \Phi . Recall that A[B  - X0, E  - C0] is a frame
matrix. If \=x is in the row labeled by r and \=y is in the column labeled by c, then when
C0 is contracted, 1 is added to the entry of the frame matrix in row r and column c.
Otherwise, the entry remains unchanged when C is contracted. We see then that this
template is equivalent to \Phi CX , where 1's are used to replace \=x and \=y.

Thus, we may assume that for every element \=x \in \Delta | C0 and \=y \in \Lambda | X0, there is an
even number of natural numbers i such that \=xi = \=yi = 1. This implies that contraction
of C has no effect on the frame matrix. So \Phi \prime and therefore \Phi are equivalent to a
template with \Lambda | X0 trivial. In this case, we see that repeated use of operation (6)
produces a template equivalent to \Phi with C = \emptyset .

Case 2. There is an element \delta \in \Delta | C that is not in the row space of A1[X0, C].
Since | C1| = 1, every element of \Delta | C not in the row space of A1[X0, C] becomes a
1 after C0 is contracted, and every element that is in the row space becomes a 0.
Therefore, we may assume that the column vector A1[X,C1] is a zero vector and that
an element of \Delta | C has a 0 as its final entry if it is in the row space and a 1 otherwise.

If \=x \in \Delta | C and \=y \in \Lambda | X0 are such that there is an odd number of natural
numbers i such that \=xi = \=yi = 1, then we call the ordered pair (\=x, \=y) a pair of
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odd type. Otherwise, (\=x, \=y) is a pair of even type. Consider a matrix A virtually
conforming to \Phi and contract C from M(A). The effect on the elements of \Delta is a
change of basis followed by a projection into a lower dimension. Therefore, a group
structure is maintained. Let us call the resulting group \Delta \prime . There are two subcases
to check.

Subcase a. Suppose there exists a pair (\=x, \=y) of odd type. If \=x is in the row space
of A1[X0, C], or if \=x is not in the row space of A1[X0, C] but (\delta , \=y) is a pair of even
type, then we will show that \Phi CX \preceq \Phi . On \Phi , repeatedly perform operations (3),
(9), and (5) as needed to obtain the following template:

(C,X0, \emptyset , \emptyset , A1[X0, C],\Delta | C,\Lambda ).

Then perform operations (1) and (2) to obtain the following template:

\Phi \prime = (C,X0, \emptyset , \emptyset , A1[X0, C], \langle \=x, \delta \rangle , \{ 0, \=y\} ).

Consider the following matrix conforming to \Phi CX :

0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 1 1
1
...

frame frame 1
matrix matrix 0

...
0

The matrix below conforms to \Phi \prime and results in the same matroid when C is con-
tracted:

C0 C1

0

0 \=y \cdot \cdot \cdot \=y I
...
0

0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0 \delta 
\=x
...

frame frame \=x
matrix matrix

0

Therefore, we may assume that an element \delta \prime \in \Delta | C is in the row space of
A1[X0, C] if and only if (\delta \prime , \=y) is a pair of even type. Moreover, this is true for every
nonzero element of \Lambda | X0. Thus, if \=y1 and \=y2 are nonzero elements of \Lambda | X0, then both
(\delta , \=y1) and (\delta , \=y2) are pairs of odd type, since \delta is not in the row space of A1[X0, C].
This implies that (\delta , \=y1 + \=y2) is a pair of even type. But we have just shown that this
implies that \=y1+ \=y2 is the zero vector. Thus \=y1 = \=y2 and \Lambda | X0 = \{ 0, \=y\} in the original
template \Phi . By a similar argument, \=x = \delta and \Delta | C = \{ 0, \delta \} in the original template
\Phi . Therefore, \Phi is equivalent to a template with | C0| = | X0| = 1, with A1[X0, C0] =
[1], with A1[X0, C1] = [0], with \Lambda | X0 = \{ [0], [1]\} , and with \Delta | C = \{ [0, 0], [1, 1]\} . We
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may now assume that the original template \Phi was of this form and will study this
template \Phi in this form but before any operations have been performed on it.

We will show that \Phi is equivalent to the following template \Phi \prime , with C = \emptyset ,
obtained by adjoining an element y to Y1 and letting A1[X1, y] be the zero vector.
We will define \Delta \prime \prime below.

\Phi \prime = (\emptyset , X1, Y0, Y1 \cup y,A1[X1, Y0 \cup Y1 \cup y],\Delta \prime \prime , \{ 0\} ).

Recall that \Delta \prime is the group obtained from \Delta after C is contracted. Let \Delta \prime \prime be the
subgroup of GF(2)Y0\cup Y1\cup y consisting of all the row vectors obtained by adjoining to
any element of \Delta \prime either a zero or a 1. So | \Delta \prime \prime | = 2| \Delta \prime | . Let A be a matrix that
virtually conforms to \Phi . Recall that columns indexed by elements of Z are formed by
adding a column indexed by Y1 to a column indexed by Z in a matrix that respects
\Phi . If A[B  - X,C] is the zero matrix, then M(A)/C conforms to \Phi \prime because we may
simply choose never to use y to build a column indexed by Z.

Otherwise, choose an element r of B  - X such that A[r, C] = [1, 1]. Let S
be the subset of B  - (X \cup r) such that s \in S if and only if A[s, C] = [1, 1]. Let
T = B  - (X \cup S \cup r). The effect on the frame matrix of contracting C from M(A) is
to remove r and to add a 1 to each entry As,c of the frame matrix where s \in S and

where c is an element of E  - (C \cup Y0 \cup Y1 \cup Z) with Ar,c = 1. Let \^A be the matrix
that results from A by contracting C. Recall that every column of the frame matrix
A[B  - X,E  - (C \cup Y0 \cup Y1 \cup Z)] contains at most two nonzero entries. Thus, for a
column c with Ar,c = 1, the column A[B  - (X \cup r), c] must be either a unit column

or a zero column. Therefore, there are several possibilities for \^A[B  - (X \cup r), c].
Either \^A[S, c] = [1, . . . , 1]T and \^A[T, c] = [0, . . . , 0]T , or \^A[S, c] = [1, . . . , 1]T and
\^A[T, c] is an identity column, or \^A[S, c] is the complement of an identity column and
\^A[T, c] = [0, . . . , 0]T . This exact same situation can be obtained with \Phi \prime using the
new column y. Thus, \Phi is equivalent to \Phi \prime , a template with C = \emptyset .

Subcase b. Therefore, we may assume that every pair of elements (\=x, \=y) \in \Delta \times 
(\Lambda | X0) is a pair of even type. Thus, contraction of C0 has no effect on the frame
matrix. This implies that \Phi is equivalent to a template with \Lambda trivial. By repeated
use of operation (6), we obtain a template equivalent to \Phi with C0 = \emptyset , with | C1| = 1,
and with \Delta | C = \{ [0], [1]\} . Using an argument similar to the one used at the end of
Subcase a, we see that \Phi is equivalent to a template with C = \emptyset by adjoining an
element to Y1.

Lemma 8.4. Let \Phi = (C,X, Y0, Y1, A1,\Delta ,\Lambda ) be a template. If \Phi \prime = (C \prime , X, \emptyset , \emptyset , A1,
\Delta ,\Lambda ), where C \prime = Y0 \cup Y1 \cup C, then every matroid conforming to \Phi \prime is a minor of a
matroid conforming to \Phi .

Proof. Let \Phi \prime \prime = (C,X, Y \prime 
0 , \emptyset , A1,\Delta ,\Lambda ), where Y \prime 

0 = Y0 \cup Y1. By Lemma 3.10,
\Phi \prime \prime \preceq \Phi . Any matroid conforming to \Phi \prime is obtained from a matroid conforming to \Phi \prime \prime 

by contracting Y \prime 
0 .

We now prove Theorem 1.3.

Proof of Theorem 1.3. Let \scrM = \scrE \scrX (M(K6), H
\ast 
12), and let \scrT = \{ \Phi 1, . . . ,\Phi s,

\Psi 1, . . . ,\Psi t\} be the set of templates given by Hypothesis 2.1 for \scrM . Consider a
template \Phi \in \{ \Phi 1, . . . ,\Phi s\} . Recall that every matroid conforming to \Phi must be
contained in the minor-closed class \scrM . Every graphic matroid is a minor of a ma-
troid that conforms to \Phi . Since \scrM does not contain M(K6), it must be the case that
\Phi does not exist. Thus, s = 0 and \scrT = \{ \Psi 1, . . . ,\Psi t\} . Therefore, we will study the
highly connected matroids in \scrM by considering their dual matroids which virtually
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conform to some template \Psi \in \{ \Psi 1, . . . ,\Psi t\} . Because M(K6) and H\ast 
12 are cosimple

matroids, it suffices to consider cosimple matroids in \scrM . Thus, it suffices to consider
simple matroids that are duals of matroids in \scrM . Therefore, we only consider simple
matroids conforming to \Psi .

Let \Psi = (C,X, Y0, Y1, A1,\Delta ,\Lambda ) be a template in \scrT . We know that \scrM \ast (\Phi C) is
the class of even-cut matroids. Therefore, we may assume that \Phi C \in \{ \Psi 1, . . . ,\Psi t\} ,
and if any template \Psi \preceq \Phi C , we may discard \Psi from the set \{ \Psi 1, . . . ,\Psi t\} . Since H12

is an even-cycle matroid, H12 conforms to \Phi X . Thus, we have \Phi X \npreceq \Psi . By Lemma
3.11, \Lambda | X1 is trivial. Moreover, by Lemma 3.9, we have \Phi CX \npreceq \Psi .

The following matrix conforms to \Phi 2
C , with C indexing the last two columns:\left[          

0 0 0 1 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 1 0 1 0 1 0 1 0 1 0 0 1
0 0 0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 0 0 1

\right]          
.

By contracting C, we obtain the following matrix A with M(A) conforming to \Phi 2
C :

A =

\left[      
0 0 1 0 1 0 1 0 1 0 1 1
0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0 0 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1

\right]      .

By adding the first and third rows to the fifth row, we see that this matrix represents
H12. Therefore, \Phi 

2
C \npreceq \Psi , and by Lemma 8.2 we may assume that | C1| \leq 1.

Since \Phi CX \npreceq \Psi , Lemma 8.3 implies that \Psi is equivalent to a template with
C = \emptyset . Hence we will assume from now on that C = \emptyset .

Since C0 = \emptyset , we have X0 = \emptyset . Also, we have seen that \Lambda | X1 is trivial. Therefore,
\Lambda is trivial. By performing elementary row operations on every matrix respecting \Psi ,
we may assume that A1 is of the following form, with Y0 = V0\cup V1, with Y1 = Y \prime 

1\cup Y \prime \prime 
1 ,

and with the stars representing arbitrary binary matrices:

Y \prime 
1 Y \prime \prime 

1 V0 V1

I \ast 0 Q
0 0 I \ast 

By Lemma 6.1, we must have V0 = \emptyset . Thus, A1 is of the form

Y \prime 
1 Y \prime \prime 

1 Y0

I P1 P0

Also, by elementary row operations, we may assume that \Delta | Y \prime 
1 is trivial.

We will now show that | \Delta | \leq 2. Suppose otherwise. Then \Delta contains a subgroup
\Delta \prime isomorphic to (\BbbZ /2\BbbZ )\times (\BbbZ /2\BbbZ ). Repeatedly perform y-shifts and operation (11),
and then perform operation (2) to obtain the following template:

(\emptyset , \emptyset , Y \prime \prime 
1 \cup V1, \emptyset , [\emptyset ],\Delta \prime , \{ 0\} ).

By Lemma 8.4, if C \prime = Y \prime \prime 
1 \cup V1, then every matroid conforming to the following
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EVEN-CYCLE AND EVEN-CUT MATROIDS 59

template is a minor of a matroid conforming to \Psi :

(C \prime , \emptyset , \emptyset , \emptyset , [\emptyset ],\Delta \prime , \{ 0\} ).

The latter template is equivalent to \Phi 2
C since \Delta \prime \sim = \langle [1, 0], [0, 1]\rangle . By contradiction,

we deduce that | \Delta | \leq 2. Therefore, there is at most one nonzero element \=x \in \Delta .
Let Y1,i consist of the elements y \in Y \prime \prime 

1 such that \=xy = i. Similarly, let Y0,i consist
of the elements y \in Y0 such that \=xy = i. Thus, A1 is of the following form, where
Y1 = Y \prime 

1 \cup Y1,0 \cup Y1,1 and where Y0 = Y0,0 \cup Y0,1:

Y \prime 
1 Y1,0 Y1,1 Y0,0 Y0,1

I AY1
BY1

AY0
BY0

By Lemma 7.1, each row of BY1
consists either entirely of 0's or entirely of 1's.

Any duplicate columns in either [I| AY1 ] or BY1 produce the same columns in a matrix
virtually conforming to \Psi . Therefore, we may assume that | Y1,1| \leq 1, that every
column of AY1

contains at least two nonzero entries, and that no column of AY1
is a

copy of another. Since we are only considering templates to which simple matroids
conform, we may assume that no column of AY0

is a copy of another and also that no
column of BY0 is a copy of another. By Lemma 7.2, either Y1,0 or Y1,1 is empty. If
| Y1,0| \geq 2, then AY1 contains one of the submatrices below, all of which are forbidden
by Lemma 7.3. Therefore, | Y1,0| \leq 1.

\left[  1 1
1 1
0 1

\right]  ,

\left[  1 0
1 1
0 1

\right]  ,

\left[    
1 0
1 0
0 1
0 1

\right]    .

By Lemma 7.5, if | Y1,0| = 1, then Y0,1 = \emptyset . By Lemma 7.6, if | Y1,1| = 1, then
each column of AY0 contains at most two nonzero entries.

Recall that a binary matroidM conforms to \Phi C if there is some binary coextension
N of M on ground set E(M) \cup \{ e\} such that N\setminus e is graphic. Thus, checking if a
binary matroid conforms to \Phi C amounts to checking if some row can be added to the
matrix to make the resulting matroid graphic. There are four cases to check:

Case I. | Y1,0| = 1.
Case II. | Y1,1| = 1.
Case III. Y1,0 = Y1,1 = Y0,1 = \emptyset .
Case IV. Y1,0 = Y1,1 = \emptyset and Y0,1 \not = \emptyset .
In the diagrams of matrices below, we will use the abbreviations n.p.c. and z.p.c.

to stand for ``nonzero entries per column"" and ``zeros per column,"" respectively.
Case I. Since | Y1,0| = 1, the arguments above imply that Y1,1 = Y0,1 = \emptyset . We

study the matrix AY0 . Let X = R \cup S, where R is the set of rows where AY1 has its
nonzero entries. We will show that \Psi \preceq \Phi C by appending to every matrix virtually
conforming to \Psi a row indexed by d so that the resulting matroid is graphic. The
row indexed by d also has a 1 in the column indexed by Y1,0, and we will add this
row to every row in R. After the row indexed by d has been added to every row in
R, the entire resulting matrix (with rows indexed by B \cup d and columns indexed by
E) will have at most two nonzero entries per column and will therefore represent a
graphic matroid. The form of AY0

itself (without the row indexed by d) is determined
by Lemma 7.4.

First, we study AY0
when | R| = 2.
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60 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

d 0 0 1 \cdot \cdot \cdot 1
R 0 1 n.p.c. 2 n.p.c.
S \leq 2 n.p.c. \leq 1 n.p.c \leq 1 n.p.c.

Next, we study AY0 when | R| = 3.

d 0 0 0 1 \cdot \cdot \cdot 1
R 0 1 n.p.c. 2 n.p.c. 3 n.p.c.
S \leq 2 n.p.c. \leq 1 n.p.c 0 \leq 1 n.p.c

Next, we study AY0 when | R| \geq 4. Here, J denotes a matrix where every entry is
a 1.

d 0 0 0 1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1
R 0 1 n.p.c. 2 n.p.c. 1 z.p.c. J
S \leq 2 n.p.c. \leq 1 n.p.c 0 0 \leq 1 n.p.c

Case II. Since | Y1,1| = 1, the arguments above imply that | Y1,0| = \emptyset and that
each column of AY0

has at most two nonzero entries. We study the matrix BY0
. By

Lemma 7.7, the submatrices below, with the column to the left of the vertical line
contained in BY1

, and the column to the right of the vertical line contained in BY0
,

are forbidden.

\biggl[ 
0 1
0 1

\biggr] 
,

\biggl[ 
1 0
0 1

\biggr] 
,

\biggl[ 
1 0
1 0

\biggr] 
.

This fact, along with Lemma 7.4, determines the form of BY0
.

Let X = R\cup S, where R is the set of rows where BY1
has its nonzero entries. We

will show that \Psi \preceq \Phi C by appending to every matrix virtually conforming to \Psi a row
indexed by d so that the resulting matroid is graphic. The row indexed by d also has
a 1 in the column indexed by Y1,0, and we are adding this row to every row in R, as
well as to every row indexed by an element of B  - X where the nonzero element \=x of
\Delta is used.

First, we study the case when R = \emptyset .

Y0,1 Y0,0

d 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
S \leq 1 n.p.c. AY0

(\leq 2 n.p.c.)

Now we study the case when R \not = \emptyset . Here J denotes a matrix where every entry
is a 1.

Y0,1 Y0,0

d 1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
R 1 z.p.c. J AY0

S 0 \leq 1 n.p.c. (\leq 2 n.p.c.)

Case III. Since Y1,0 = Y1,1 = Y0,1 = \emptyset , we have Y1 = Y \prime 
1 and Y0 = Y0,0. The

submatrices below are forbidden from AY0
because by deleting the rest of Y0 and

contracting the elements of Y0 indexing the two given columns, we produce one of the
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EVEN-CYCLE AND EVEN-CUT MATROIDS 61

submatrices forbidden by Lemma 7.3.

Q1 =

\left[      
1 1
1 1
1 0
1 0
0 1

\right]      , Q2 =

\left[      
1 0
1 0
1 1
0 1
0 1

\right]      , Q3 =

\left[        
1 0
1 0
1 0
0 1
0 1
0 1

\right]        , Q4 =

\left[        
1 0
1 0
1 0
1 1
1 1
1 1

\right]        .

If every column of AY0
has at most two nonzero entries, then \Psi \sim \Phi 0 \preceq \Phi C and

can be discarded. Thus, we may assume that there is a column of AY0
with at least

three nonzero entries. Let H be the submatrix of AY0
consisting of all the columns

with at most two nonzero entries.
Let y be an element of Y0 such that AY0 [X, \{ y\} ] has a maximum number of

nonzero entries among all elements of Y0. Let X = R\cup S, where (AY0
)r,y = 1 for each

r \in R and (AY0
)s,y = 0 for each s \in S. We will prove the following.

Claim 8.5. Let v be a column of AY0
such that v| R has at least two zeros. Then

either v has at most two nonzero entries or v| R has exactly two zeros and v| S is a
zero vector.

Proof. If there is a column v of AY0
such that v| R has exactly two zeros, then if

| R| = 3, the fact that Q2 is forbidden implies that v has at most two nonzero entries.
If | R| > 3, then the fact that Q1 is forbidden implies that v| S is a zero vector. Now,
if there is a column v of AY0 such that v| R has at least three zeros, then since Q4 is
forbidden, v| R has at most two nonzero entries. Since Q1, Q2, and Q3 are forbidden
(corresponding to when v| R has two, one, or zero nonzero entries), v has at most two
nonzero entries.

Suppose there are two elements other than y that index columns v1 and v2 of AY0

with | R| nonzero entries. Since Q2 is forbidden, v1| R and v2| R each have at most
one zero. Since we are only considering simple matroids conforming to \Psi , we have
that v1| R and v2| R each have exactly one zero. If v1| R and v2| R have their zeros in
different rows, then again since Q2 is forbidden, the nonzero entries in v1| S and v2| S
must be in the same row. Thus, we may divide this case into three subcases:

1. There is at least one column other than the one indexed by y with | R| nonzero
entries, and all such columns have a zero in the same row r of R.

2. There are at least two columns other than the one indexed by y with | R| 
nonzero entries, and all such columns have a nonzero entry in the same row
s of S.

3. No column other than the one indexed by y has | R| nonzero entries.
In subcase 1, we need to determine the structure of the columns v such that v| R

has at least two zeros. In fact, by Claim 8.5, either v is a column of H or v| R has
exactly two zeros and v| S is a zero vector. If v is not a column of H but is such that
v| R has exactly two zeros, then we must have | R| \geq 5. Since Q1 is forbidden, v has a
zero in the row indexed by r. Therefore, AY0

[X,Y0 - y] has the following form, where
J denotes a matrix where every entry is a 1:

R - r J 1 z.p.c.
r 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0 H
S \leq 1 n.p.c. 0

Below, we append the row d to the matrix, where d also has a 1 in the entry in the
column of y. By adding d to every row in R - r, we see that the resulting matroid is
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62 KEVIN GRACE AND STEFAN H. M. VAN ZWAM

graphic. Thus, in this subcase, \Psi \preceq \Phi C .

d 1 \cdot \cdot \cdot 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
R - r J 1 z.p.c.

r 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0 H
S \leq 1 n.p.c. 0

We now consider subcase 2. Suppose there is some column v of AY0 such that v| R
has two zeros. If v has more than two nonzero entries, then Claim 8.5 implies that
v| S is a zero vector. By Lemma 7.8, along with the facts that Q1 is forbidden and
that we are only considering templates to which simple matroids conform, no such
column v can exist. Therefore, AY0

[X,Y0  - y] has the following form:

R 1 z.p.c.
s 1 \cdot \cdot \cdot 1 H

S  - s 0

Below, we append the row d to the matrix, where d also has a 1 in the entry in the
column of y. By adding d to every row in R \cup \{ s\} , we see that the resulting matroid
is graphic. Thus, in this subcase, \Psi \preceq \Phi C .

d 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
R 1 z.p.c.
s 1 \cdot \cdot \cdot 1 H

S  - s 0

We now consider subcase 3. First, suppose that there is a column w of AY0
such

that w| R has at least two zeros and at least three nonzero entries (so | R| \geq 5). By
Claim 8.5, w| R has exactly two zeros and w| S is a zero vector. Since Q2 is forbidden,
every pair of such columns must have zero entries in a common row. By Lemma 7.10,
all such columns must have a zero in the same row r of R. Since Q1 is forbidden, a
column v such that v| has exactly one zero must also have its zero in row r. Since we
are only considering simple matroids, there is at most one such column v. Therefore,
AY0

[X,Y0  - y] has the following form, with or without v:

v
1

H

R - r
... 1 z.p.c
1

r 0 0 \cdot \cdot \cdot 0
0

S
... 0
0

We append the row d to the matrix, where d also has a 1 in the entry in the column
of y. By adding d to every row in R - r, we see that the resulting matroid is graphic.
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v
d 1 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0

1

H

R - r
... 1 z.p.c
1

r 0 0 \cdot \cdot \cdot 0
0

S
... 0
0

Therefore, we may assume that no column w of AY0
exists such that w| R has two

zeros and at least three nonzero entries. Thus, Claim 8.5 implies that AY0
[X,Y0  - y]

is of the following form:

R 1 z.p.c.
H

S 0

We add the row d to the matrix, where d also has a 1 in the entry in the column of y.
By adding d to every row in R, we see that the resulting matroid is graphic. Thus,
in this subcase, \Psi \preceq \Phi C .

d 1 \cdot \cdot \cdot 1 0 \cdot \cdot \cdot 0
R 1 z.p.c.

H
S 0

Case IV. If any column of AY0
has three nonzero entries, then by contracting

that element of Y0,0 we make a column of the identity matrix into a column of AY1

with two nonzero entries. Since Y0,1 is nonempty, this is forbidden by Lemma 7.5.
Therefore, each column of AY0 contains at most two nonzero entries.

The matrices Q5 and Q6 below are forbidden from BY0
because by contracting

one of the corresponding elements of Y0, we obtain, using a column of the identity
matrix, a submatrix forbidden by Lemma 7.7. The matrix Q7 below is forbidden by
Lemma 7.9.

Q5 =

\left[  0 1
0 1
0 1

\right]  , Q6 =

\left[  1 0
1 0
0 1

\right]  , Q7 =

\biggl[ 
1 1 0 0
1 0 1 0

\biggr] 
.

Let y be an element of Y0 such that BY0
[X, \{ y\} ] has a maximum number of

nonzero entries among all elements of Y0,1. Let X = R \cup S, where (BY0
)r,y = 1 for

each r \in R and (BY0)s,y = 0 for each s \in S. If | R| is 0 or 1, then we append to each
matrix A virtually conforming to \Psi a row which is the characteristic vector of Y0,1.
If we add this row to each row of A where \=x has been used as the element of \Delta , we
see that the resulting matroid is graphic. Therefore, we may assume that | R| \geq 2.

Since Q5 is forbidden, each column of BY0
[R, Y0,1] contains at most two zeros.

Since Q6 is forbidden, every column w such that w| R has two zeros must be such that
w| S is a zero vector.

Suppose there are two columns v1, v2 of BY0
, in addition to the column indexed

by y, with | R| nonzero entries. Since Q6 is forbidden, v1| R and v2| R each have at
most one zero. Since we are only considering simple matroids conforming to \Psi , v1| R
and v2| R each have exactly one zero. If v1| R and v2| R have their zeros in different
rows, then again since Q6 is forbidden, the nonzero entries in v1| S and v2| S must be
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in the same row. Thus, we have the same three subcases as we did in Case III. In
each subcase, we will determine the structure of BY0

[X,Y0,1  - y]. Since we are only
considering simple matroids conforming to \Psi , we may assume that no column of BY0

is a copy of another.
Let us consider subcase 1. If there is a column v of BY0 [R, Y0,1] with two ze-

ros, then since Q6 is forbidden, one of the zeros of v must be in row r. Therefore,
BY0

[X,Y0,1  - y] is of the following form, where J denotes a matrix where every entry
is a 1:

R - r 1 z.p.c. J
r 0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0
S 0 \leq 1 n.p.c.

Append to every matrix A conforming to \Psi an additional row that is the characteristic
vector of Y0,1. By adding this characteristic vector to each row of A where \=x has been
used as the element of \Delta as well as to each row of R  - r, we see that the resulting
matroid is graphic. Therefore, \Psi \preceq \Phi C .

Now, we consider subcase 2. Then there are columns v1 and v2 of BY0 , other
than the column indexed by y, with | R| nonzero entries. Suppose w is a column of
BY0

such that w| R has two zeros. Since Q6 is forbidden, w must have a zero in each
of the rows where v1 and v2 have their zeros. But then BY0

contains Q7. Therefore,
no column of BY0

[R, Y0,1] has two zeros. Therefore, recalling that each column of
BY0 [R, Y0,1] has at most two zeros, we have that BY0 [X,Y0,1  - y] is of the following
form:

R 1 z.p.c.
s 1 \cdot \cdot \cdot 1

S  - s 0

Append to every matrix A conforming to \Psi an additional row that is the characteristic
vector of Y0,1. By adding this characteristic vector to each row of A where \=x has been
used as the element of \Delta as well as to each row of R \cup \{ s\} , we see that the resulting
matroid is graphic. Therefore, \Psi \preceq \Phi C .

Now, we consider subcase 3. If | R| = 2, then since Q7 is forbidden, BY0
(including

the column indexed by y) is a submatrix obtained by deleting columns or any rows
but the first two of one of the following matrices:

T1 =

\left[       
1 1 0
1 0 0
0 0 0
...

...
...

0 0 0

\right]       , T2 =

\left[       
1 1 0
1 0 1
0 0 0
...

...
...

0 0 0

\right]       .

Append to every matrix A conforming to \Psi an additional row that is the characteristic
vector of Y0,1. If BY0

is a submatrix of Ti, then add this characteristic vector to the
first i rows of A as well as to every row of A where \=x has been used as the element of
\Delta . We see that the resulting matroid is graphic. Therefore, \Psi \preceq \Phi C . Thus, we may
assume that | R| > 2.

Recall that each column of BY0 [R, Y0,1] has at most two zeros. Suppose there is a
column w of BY0

such that w| R has exactly two zeros. Since Q6 and Q7 are forbidden,
all columns of BY0

[X,Y0,1  - y] must have a zero in the same row r of R. Since we
are only considering simple matroids, there is at most one column v where v| R has
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exactly one zero. Therefore, BY0
[X,Y0,1  - y] has the following form, with or without

v:

v
1

R - r
... 1 z.p.c
1

r 0 0 \cdot \cdot \cdot 0
0

S
... 0
0

Append to every matrix A conforming to \Psi an additional row that is the characteristic
vector of Y0,1 and add this characteristic vector to every row of R  - r as well as to
every row of A where \=x has been used as the element of \Delta . We see that the resulting
matroid is graphic.

Therefore, we may assume that every column of BY0 [R, Y0,1  - y] has exactly one
zero. Thus, BY0 [X,Y0,1  - y] is of the following form:

R 1 z.p.c.
S 0

Append to every matrix A conforming to \Psi an additional row that is the characteristic
vector of Y0,1. By adding this characteristic vector to each row of A where \=x has been
used as the element of \Delta as well as to each row of R, we see that the resulting matroid
is graphic. Therefore, \Psi \preceq \Phi C . This completes the proof.

9. Vertical and cyclic connectivity. A matroid M is vertically k-connected
if, for each partition (X,Y ) of the ground set of M with r(X)+ r(Y ) - r(M) < k - 1,
either X or Y is spanning. If a matroid is vertically k-connected, then its dual is said
to be cyclically k-connected. The next hypothesis is similar to Hypothesis 2.1. It is
also found in [4] and is a modification of the same hypothesis of Geelen, Gerards, and
Whittle [1]. It is also believed to be true, but its proof is also forthcoming in future
papers by Geelen, Gerards, and Whittle.

Hypothesis 9.1 ([4, Hypothesis 4.6, binary case]). Let \scrM be a proper minor-
closed class of binary matroids. Then there exist k, n \in \BbbZ + and frame templates
\Phi 1, . . . ,\Phi s,\Psi 1, . . . ,\Psi t such that

1. \scrM contains each of the classes \scrM (\Phi 1), . . . ,\scrM (\Phi s),
2. \scrM contains the duals of the matroids in each of the classes \scrM (\Psi 1), . . . ,\scrM (\Psi t),
3. if M is a simple vertically k-connected member of \scrM with an M(Kn)-minor,

then M is a member of at least one of the classes \scrM (\Phi 1), . . . ,\scrM (\Phi s), and
4. if M is a cosimple cyclically k-connected member of \scrM with an M\ast (Kn)-

minor, then M\ast is a member of at least one of the classes \scrM (\Psi 1), . . . ,\scrM (\Psi t).

We claim that Theorems 9.2--9.4 and Corollary 9.5 follow from the proofs of
Theorems 1.1--1.3 and Corollary 1.4. Indeed, the only difference is that Lemma 9.6
must be used instead of Lemma 6.1.

Theorem 9.2. Suppose Hypothesis 9.1 holds. Then there exist k, n \in \BbbZ + such
that a vertically k-connected binary matroid with an M(Kn)-minor is contained in
\scrE \scrX (PG(3, 2)\setminus e, L19, L11) if and only if it is an even-cycle matroid.

Theorem 9.3. Suppose Hypothesis 9.1 holds. Then there exist k, n \in \BbbZ + such
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that a vertically k-connected binary matroid with an M(Kn)-minor is contained in
\scrE \scrX (PG(3, 2)\setminus L,M\ast (K6)) if and only if it is an even-cycle matroid with a blocking
pair.

Theorem 9.4. Suppose Hypothesis 9.1 holds. Then there exist k, n \in \BbbZ + such
that a cyclically k-connected binary matroid with an M\ast (Kn)-minor is contained in
\scrE \scrX (M(K6), H

\ast 
12) if and only if it is an even-cut matroid.

Corollary 9.5. Suppose Hypothesis 9.1 holds. Then there exist k, n \in \BbbZ + such
that a cyclically k-connected binary matroid with an M\ast (Kn)-minor is contained in
\scrE \scrX ((PG(3, 2)\setminus L)\ast ,M(K6)) if and only if it has an even-cut representation with at
most four terminals.

It remains to prove the following lemma.

Lemma 9.6. Let \Phi be a template with C = \emptyset and with \Lambda trivial. Then at least
one of the following holds:

1. There exists k \in \BbbZ + such that no simple vertically k-connected matroid with
an M(Kn)-minor virtually conforms to \Phi , or

2. A1 is of the following form, with Y1 = Y \prime 
1 \cup Y \prime \prime 

1 and each Pi an arbitrary
binary matrix:

Y \prime 
1 Y \prime \prime 

1 Y0

I P1 P0

Proof. By operation (4), we may assume that A1 is of the following form, with
Y0 = V0 \cup V1, with Y1 = Y \prime 

1 \cup Y \prime \prime 
1 , and with each Pi an arbitrary binary matrix:

Y \prime 
1 Y \prime \prime 

1 V0 V1

I P1 0 P0

0 0 I P2

Suppose V0 \not = \emptyset , and let M be a simple binary matroid virtually conforming to
\Phi . Set k > | Y0| + 1. Thus, we have \lambda (Y0) = r(Y0) + r(E(M) - Y0) - r(M) < r(Y0) \leq 
| Y0| < k  - 1. Since \Lambda is trivial and Y1 does not span M(A1), it is not possible for
E(M) - Y0 to be spanning in M . Thus, for M to be vertically k-connected, we must
have Y0 spanning. Thus, r(M) = r(Y0) \leq | Y0| . Since M is simple and binary, we have
| E(M)| \leq 2| Y0|  - 1. Choose n sufficiently large so that | E(M(Kn))| =

\bigl( 
n
2

\bigr) 
> 2| Y0|  - 1.

Then 1 holds.
Therefore, we may assume that V0 = \emptyset . In this case, 2 holds.
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