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Abstract

The main aim of this dissertation is the study of di�erent ways in which additive combinatorics
may be used to tackle some problems arising in multiplicative number theory. Speci�c prob-
lems studied here concern computational complexity of calculating values of number-theoretic
functions, sums of dilates and exponential sums.

The main part of the thesis deals with the following problem: Suppose that for some
natural number n and some prime number p we are given the set of residues mod p of all
its divisors and we would like to know which of those residues correspond to prime factors
of n. An algorithm which approximately solves this problem for p and n satisfying some
natural conditions is presented and it is proved that there are plenty of such numbers. One
interesting feature of the proof is that it relies on additive combinatorics. The proposed
algorithm consists of two algorithms, which performed one after another lead to the solution.
Failure of the �rst part implies the structural properties captured by the notion of additive
energy of the set which are then used by the second, more intricate part based on techniques
from Fourier analysis.

The main theorem of this part states that for a squarefree integer n satisfying some
constraints and a prime number p satisfying some other technical conditions if we are given the
set of residues modulo p of all divisors of n (denoted Ap), there exists an e�cient deterministic
algorithm which �nds a set B such that Γp ⊂ B ⊂ Ap (where Γp denote the set of residues of
prime divisors of n) and |B| < ε|Ap|.

All conditions appearing in the assumptions are very weak and in fact occur for almost
every squarefree number n and for enough primes p in order to be practical. In this way, we
show that for all but o(x) squarefree numbers less than x and a suitable p (dependent only
on x, not on n), the set B from theorem can be found. We also give an application of this
result to the algorithm which �nds factorization of a given number using an oracle for values
of functions σk(n). In fact, the search for deterministic reductions of factorization to some
other number-theoretic problems was our original motivation to study this problem.

In the next part of the thesis the problem concerning exponential sums is studied. More
speci�cally the following expression

s(a/q) =
τ∑
r=1

e

(
a2r

q

)
,

where e(x) := exp (2πix) and τ is multiplicative order of an element corresponding to number
2, is considered. Absolute value of this sum is estimated. The results we obtained in this line
of research are the following. We give an upperbound with a better constant than previously
known ([15]) and provide some new examples where this bound is close to being tight.

In the last part of the thesis bounds for the size of sums of dilates are considered. Sums
of dilates are sets of the form

λ1 ·A+ · · ·+ λh ·A,
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where for any scalar λ and any sets of integers A,B we take the notation λ ·A = {λa : a ∈ A}
and A+B = {a+ b : a ∈ A, b ∈ B}. Series of results giving upper-bounds on the size of this
set is proved under the small doubling condition, namely A satis�es |A+A| < K|A| for some
constant K.

The most general bound obtained here has the formK
O
(

rh
log(h)

+h log(h)
)
|A|, where r denotes

the maximal number of bits of coe�cients and h is the number of summands. It consists an
improvement over the result from [6].

Our next theorem applies to the case when K is much smaller than h. It shows that then
the dependence on h becomes polynomial under those assumptions. Hence it improves on a
previous theorem in such circumstances.

Our last theorem considers the case when Λ - the set of λi coe�cients - has some additive
structure. In such a setting a spectacular improvement is possible. If we denote by L the
doubling constant of Λ, then the bound takes the form KO((h+r)L logL)|A|.

Gªównym celem pracy jest badanie ró»nych sposobów, w jakie kombinatoryka addyty-
wna mo»e by¢ wykorzystana do radzenia sobie z pewnymi zagadnieniami pojawiaj¡cymi si¦
w multiplikatywnej teorii liczb. Konkretne problemy badane przez nas dotycz¡ zªo»ono±ci
obliczeniowej obliczania warto±ci funkcji teorioliczbowych, sum dylatacji i sum eksponencjal-
nych.

Najwa»niejsza cz¦±¢ pracy dotyczy nast¦puj¡cego problemu: Przypu±¢my, »e dla pewnej
liczby naturalnej n i pewnej liczby pierwszej p jest nam dany zbiór reszt modulo p wszystkich
dzielników liczby n i chcieliby±my stwierdzi¢, które z nich odpowiadaj¡ jej czynnikom pier-
wszym. Przedstawiony jest algorytm rozwi¡zuj¡cy ten problem dla p i n speªniaj¡cych pewne
naturalne warunki i zostaje pokazane, »e jest wiele takich liczb. Interesuj¡c¡ cech¡ przed-
stawionego dowodu jest to, »e wymaga on u»ycia kombinatoryki addytywnej. Proponowany
algorytm skªada si¦ z dwóch algorytmów, które wykonane jedna po drugiej prowadz¡ do
rozwi¡zania. Niepowodzenie pierwszego z nich wskazuje na istnienie strukturalnych wªas-
no±ci zbioru przekªadaj¡cych si¦ na jego energi¦ addytywn¡, które mog¡ by¢ nast¦pnie wyko-
rzystane w drugiej bardziej skomplikowanej cz¦±ci algorytmu opartej na technikach analizy
fourierowskiej.

Gªówne twierdzenie w tej cz¦±ci mówi, »e dla bezkwadratowej liczby caªkowitej n speªni-
aj¡cej pewne ograniczenia i liczby pierwszej speªniaj¡cej pewne inne techniczne warunki je±li
znamy zbiór reszt modulo p wszystkich dzielników n (oznaczamy ten zbiór Ap), to istnieje
efektywny deterministyczny algorytm zwracaj¡cy zbiór B taki, »e Γp ⊂ B ⊂ Ap (gdzie Γp
oznacza zbiór reszt modulo p czynników pierwszych liczby n) oraz |B| < ε|Ap|

Wszystkie warunki pojawiaj¡ce si¦ w zaªo»eniach twierdzenia s¡ bardzo sªabe i zachodz¡
dla prawie ka»dej liczby bezkwadratowej n oraz wystarczaj¡co wielu liczb pierwszych p, aby
mo»liwe byªo jego praktyczne zastosowanie. Pokazujemy równie» zastosowanie tego wyniku do
algorytmu, który znajduje rozkªad na czynniki danej liczby przy u»yciu wyroczni na warto±ci
funkcji σk(n). Wªa±nie poszukiwanie deterministycznych redukcji faktoryzacji do innych prob-
lemów teorioliczbowych stanowiªo oryginaln¡ motywacj¦ do badania tego zagadnienia.

W kolejnej cz¦±ci pracy badany jest problem dotycz¡cy sum eksponencjalnych. Dokªadniej,
nast¦puj¡ce wyra»enie

s(a/q) =
τ∑
r=1

e(
a2r

q
),

gdzie e(x) := exp (2πix) i τ jest multiplikatywnym rz¦dem elementu grupy odpowiadaj¡cego
liczbie 2, jest rozwa»ane. Oszacowana jest jego warto±¢ bezwzgl¦dna. Wynik osi¡gni¦ty przez
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nas w tej kwestii jest nast¦puj¡cy. Podajemy górne oszacowanie z lepsz¡ staª¡ ni» dotychczas
znana ([15]) oraz dostarczamy nowych przykªadów sytuacji, w których oszacowanie jest bliskie
realizacji.

W ostatniej cz¦±ci pracy rozwa»ane s¡ oszacowania na wielko±¢ zbioru sum dylatacji.
Zbiory sum dylatacji to zbiory postaci

λ1 ·A+ · · ·+ λh ·A,

gdzie dla dowolnego skalara λ i dowolnych zbiorów liczb caªkowitych A,B przyjmujemy notacj¦
λ·A = {λa : a ∈ A} oraz A+B = {a+b : a ∈ A, b ∈ B}. Seria wyników daj¡cych oszacowania
górne wielko±ci tego zbioru jest udowodniona przy zaªo»eniu maªego podwojenia, czyli dla A
speªniaj¡cego |A+A| < K|A| dla pewnej staªej K.

Najogólniejsze oszacowanie osi¡gni¦te przez nas jest postaci K
O
(

rh
log(h)

+h log(h)
)
|A|, gdzie

r oznacza maksymaln¡ liczb¦ bitów w zapisie wspóªczynników λi, natomiast h jest liczb¡
sumowanych skªadników. Ten wynik stanowi wzmocnienie wyniku z [6].

Nasze nast¦pne twierdzenie stosuje si¦ do przypadku, gdy K jest znacznie mniejsze ni»
h. Pokazuje ono, »e zale»no±¢ od h staje si¦ przy takich zaªo»eniach wielomianowa. Stanowi
wzmocnienie poprzedniego twierdzenia w takich wypadkach.

Ostatnie twierdzenie dotyczy sytuacji gdy Λ - zbiór wspóªczynników λi - ma pewn¡ struk-
tur¦ addytywn¡. W tym wypadku spektakularne wzmocnienie oszacowania jest mo»liwe. Je±li
oznaczymy przez L staª¡ podwojenia zbioru Λ, to oszacowanie to przyjmuje wygodn¡ posta¢
KO((h+r)L logL)|A|.
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Introduction

Additive combinatorics is concerned with subsets of integers or other commutative groups and
their behavior under addition. More precisely, it studies sumsets.

De�nition 0.0.1. For two subsets A and B of an abelian group the set

A+B := {a+ b : a ∈ A, b ∈ B}

is called the sumset.

In particular, we can take the second set to be −B and then the set

A−B := {a− b : a ∈ A, b ∈ B}

is called the di�erence set.

Both notions are often studied in the special case when A = B.In this case, the notion of
a doubling constant is introduced.

De�nition 0.0.2. For the subset A of an abelian group the value K = |A+A|
|A| is called the

doubling constant of A.

Doubling constant can be viewed as the simplest measure of an additive structure of a
given set. The sets with small doubling constant, i.e. bounded by some constant independent
of size of A, are seen as additively structured. Properties of those sets are extensively studied
in additive combinatorics.

Operation of taking sumset (or di�erence set) of sets can be iterated. In such situations,
it is often convenient to use the following abbreviation.

De�nition 0.0.3. For the subset A of an abelian group the set

hA := A+ . . .+A︸ ︷︷ ︸
h times

is called the h-fold sumset of the set A.

It should not be confused with a simpler object that is also studied in this dissertation
which is de�ned below.

De�nition 0.0.4. For the subset A of an abelian group G and a scalar λ ∈ G the set

λ ·A = {λ · a : a ∈ A}

is called the dilate of A by λ.

Sometimes, it is useful to restrict ones to attention to the sums of di�erent elements. In
the extreme case it leads to the set of all subset sums.
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De�nition 0.0.5. Let A be a subset of an abelian group. Then P(A) denotes the set of all

subset sums of A, namely

P(A) := {
∑
a∈T

a : T ⊂ A}.

A di�erent way to measure additive structure of a set is by its additive energy.

De�nition 0.0.6. Let G be an abelian group and A ⊂ G a �nite subset. The energy of A is

de�ned by

E(A) = |{(a1, a2, a3, a4) ∈ A4 : a1 − a2 = a3 − a4}|.

We can think of a set with large additive energy as being in a sense structural. One can
also consider more general energy between two sets.

De�nition 0.0.7. Let G be an abelian group and A,B ⊂ G �nite subsets. The energy between

A and B is de�ned by

E(A,B) = |{(a1, a2, b1, b2) ∈ A2 ×B2 : a1 − b1 = a2 − b2}|.

Additive energies can be expressed by cardinalities of intersections of A and translates of
B in a way given by the next lemma (Lemma 2.9 from [30]).

Lemma 0.0.8. Let A,B be subsets of an abelian group G. Then we have the identities

E(A,B) =
∑

x∈A+B

|A ∪ ({x} −B)|2 =
∑

y∈A−B
|A ∪ (B + {y})|2 =

=
∑

x∈(A−A)∪(B−B)

|A ∪ ({z}+A)||B ∪ ({z}+B)|. (1)

The proof is based on the fact that intersections |A ∪ ({x} − B)| and |A ∪ (B + {y})|
count the number of solutions of equation a + b = x and a − b = y respectively (where
a ∈ A, b ∈ B and x, y are given). The following fact can be deduced using Cauchy-Szwarz
inequality (Corollary 2.10 from [30]).

E(A,B) ≤ E(A)
1
2E(B)

1
2 . (2)

The relation between additive energy and doubling is described by a very important result
�rst proved by Balog and Szemerédi (with exponential dependence on K). First version with
polynomial dependence on K was provided by Gowers. We quote the version with currently
the best known dependence on K.

Theorem 0.0.9 (Balog-Szemerédi-Gowers, [27]). Let be a subset of an abelian group such

that E(A) = 1
K |A|

3. Then there exists A′ ⊂ A such that |A′| = Ω( 1
K |A|) and

|A′ −A′| = O(K4|A′|).

In �nite abelian groups, it is convenient to use the notion of a Fourier transform to examine
additive properties of sets. In this setting it is convenient to use the following notion.

De�nition 0.0.10. Characteristic function of a set A is the function that takes the value 1

for elements of A and value 0 otherwise. It is usually denoted by A(x) or 1A(x).
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De�nition 0.0.11. Discrete Fourier transform (with size p) of a function f : Fp → C is a

function

f̂(γ) =
∑
x∈Fp

f(x)e
2πi
p
xγ
.

Discrete Fourier transform enjoys the following nice property.

Lemma 0.0.12 (Parseval identity).∑
x∈Fp

|f(x)|2 =
1

p

∑
x∈Fp

|f̂(x)|2.

This fact is particularly useful when applied to the characteristic function of the set A ⊂
Fp.

Corollary 0.0.13. ∑
x∈Fp

|Â(x)|2 = p|A|. (3)

Mostly the case when f is a characteristic function A(x) of some subset A of Fp is studied.
If the set A has some large nontrivial Fourier coe�cients |Â(ξ)| (for ξ 6= 0) it is considered
to be additively structured. To see the link between Fourier transform and additive energy,
note that the following identity holds (see for example [30]):

E(A) =
1

p

∑
ξ

|Â(ξ)|4.

This approach generalizes so that Fourier transforms can be used to count the number of
solutions of any linear equation in Fp.

One classical theorem that we are going to repeatedly use is Plünnecke inequality.

Proposition 0.0.14 (Plünnecke inequality, [21]). If |A+A| ≤ K|A| or |A−A| ≤ K|A|, then

|mA− nA| ≤ Km+n|A| (4)

for all non-negative integers m,n.

It tells us that control over the size sumset or di�erence set leads to some control over the
size of iterated sumsets.

Another way of describing additive properties of a set is by covering it with a more struc-
tured set. Typical examples of sets that are considered structured are arithmetic progressions
and its generalization.

De�nition 0.0.15. Let M = (m1, . . . ,md) and N = (n1, . . . , nd) be elements of Zd such that

mj ≤ nj for every j. Then the discrete box is a set of the form

[M,N ] := {(x1, . . . , xd) ∈ Zd : mj ≤ xj ≤ nj for all 1 ≤ j ≤ d}

Let G be an abelian group and d be a positive integer. Generalized arithmetic progression of

rank d is a set of the form

P = g + v · [M,N ],

where a ∈ G, v ∈ Gd and [M,N ] is a discrete box.
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It should be noted that the same set can be represented as an arithmetic progression
in many ways, but we will only consider arithmetic progressions with g, v,M,N explicitly
given. Low-rank arithmetic progression are usually considered the most structured. However,
in some situations the other extreme case given by the following de�nition turns out to be
useful.

De�nition 0.0.16. For a subset T = {t1, . . . , t|T |} of an abelian group G the set Span(T ) =

(t1, . . . , t|T |){−1, 1}|T | is called a span of T .

The set P(A) can also be seen as an arithmetic progression with [M,N ] = {0, 1}|A|.
Sumsets and iterated sumsets are often more structured than the original set. That is why

they are also sometimes treated as structured. One well-known example of a covering result
is the following lemma.

Lemma 0.0.17 (Ruzsa covering lemma, [24]). For any non-empty sets A,B in an abelian

group G one can cover B by |A+B|
|A| translates of A−A.
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Chapter 1

Application to the hardness of

computing values of number-theoretic

functions

In this chapter we deal with the following problem: Suppose that for some natural number
n and some prime number p we are given the set of residues mod p of all its divisors and we
would like to know which of those residues correspond to prime factors of n. It is based on
the paper [9] For convenience we introduce the following notation:

Notation 1.0.1. A would stand for the set of all divisors of n. Ap would stand for the set of

residues mod p of elements of A. Similarly, Γ would stand for the set of prime factors of n
and Γp would stand for the set of residues mod p of elements of Γ. Also, Zp stands for Z/pZ.

Ideally, we would like to �nd Γp, but we were unable to achieve that goal. Moreover,
it seems to be impossible to get in general with an algorithm using only the information
on residues mod p (see Section 1.6). Therefore, we focus on a simpler but still useful task
of �nding B, a small subset of Ap containing Γp. For our application (see Section 1.5) it
turns out to be good enough. We �rmly believe that possibly some more applications of this
approach could be found in the future. In the sequel, we are going to provide two algorithms
(Brand(Ap) and Bstruct(Ap)) to �nd such a set B. For brevity, we will denote resulting sets
obtained from A with those algorithms by Brand and Bstruct respectively.

Before we formulate our main theorem, let us provide some de�nitions which are essential
to fully explain its meaning and the idea behind its proof. First, let us recall some basic
number-theoretic functions. We will need them to express properties of numbers which make
our argument to work.

De�nition 1.0.2. ω(n) denotes the number of prime divisors of a number n.

De�nition 1.0.3. P (m) denotes the greatest prime divisor of an integer m.

Another important number-theoretic functions are σk(n)

De�nition 1.0.4.

σk(n) =
∑
d|n

dk.

The problem we look at arise naturally when studying the deterministic reduction of
factorization to computing the values of σk(n). We detail this application in Section 1.5.
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We are going to present an algorithm which is deterministic, but works only for some
inputs. We next show that for a randomly chosen input the algorithm is almost certain to
work properly. To formalize this statement we will need the notion of natural density.

De�nition 1.0.5. Natural density of a set X of integers is the following limit (if it exists)

lim
n→∞

#{m ∈ N : m < n,m ∈ X}
n

(1.1)

It turns out that the right way of looking at the problem we consider is actually by looking
at numbers as elements of a cyclic group Z∗p. It leads us to consider the set of subset sums
(see De�nition 0.0.5).

After taking logarithms of elements of the set of all divisors of a given number we get the
structure de�ned above with C being the set of prime factors.

Now we are ready to state our result. The main theorem of this chapter is

Theorem 1.0.6. For a given x and ε, ε′ > 0 let p = log x3+o(1) be a prime such that p0.5−ε′ <
P (p − 1) < p0.5+ε′ and P (p − 1)2 - (p − 1) and let n ≤ x be a squarefree integer such

that ω(n) ≤ 2 log log n, n has at most log log x1+o(1) divisors less than p, no pair of distinct

divisors of n is congruent modulo p and the number of its divisors d > p for which d
p−1

P (p−1) is

congruent to q
p−1

P (p−1) or −q
p−1

P (p−1) for some prime divisor q is less then 1
2ε2

ω(n). Let A (and

Ap) denote the set of divisors of n (and their residues modulo p) and let Γ (and Γp) denote
the set of prime divisors of n (and their residues modulo p). Then there exists a deterministic

algorithm with running time Oε(p
0.5+ε′+o(1)) = O((log x)1.5+ε′+o(1)) which �nds a set B such

that Γp ⊂ B ⊂ Ap and |B| < ε|Ap|.

Close inspection of the proof shows that one can take ε to be as small as Θ((log log x)−
1
12 ).

Although the statement is a bit technical, we are going to show that all conditions appear-
ing in the assumptions are very weak and in fact occur for almost every squarefree number n
and for enough primes p in order to be practical. The most interesting novelty in the proof
is the heavy use of additive combinatorics in a problem arising from multiplicative number
theory. We also give an application of this result to the algorithm which �nds factorization
of a given number using an oracle for values of functions σk(n). In fact, the search for deter-
ministic reductions of factorization to some other number-theoretic problems was our original
motivation to study this problem.

1.1. Preliminaries

Let us brie�y recall some results from computational number theory, group theory and Fourier
analysis. Reader may as well skip this part if he's familiar with those concepts. Concepts
from additive combinatorics and analytic number theory are introduced in sections 3 and 4
respectively, where they are used.

Lemma 1.1.1. Addition (or subtraction) of two numbers on at most n bits can be performed

with O(n) bit operations.

Theorem 1.1.2 (Schönhage - Strassen, [28]). Multiplication of two numbers on at most k
bits can be performed with O(k log k log log k) bit operations. In particular it is O(k1+o(1)).

Corollary 1.1.3. Division (with the remainder) of the number N on at most k bits by the

number D on at most k bits can be performed with O(k(log k)2 log log k) bit operations (in

particular it is O(k1+o(1))).
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Lemma 1.1.4. Values of a polynomial of degree k at a given point can be found with k
multiplications and k additions using Horner scheme.

Lemma 1.1.5. Greatest common divisor of polynomials f, g ∈ Fp[X] can be found with Euclid

algorithm with O(deg(f)deg(g)) operations in Fp.

Lemma 1.1.6. Exponentiation modulo p to the exponent k can be performed with O(log k)
operations in Fp.

We recall some basic facts about the structure of Z∗p. The previous lemma implies that
the homomorphism mentioned below can be computed e�ciently.

Lemma 1.1.7. If p− 1 = qe11 · · · q
ek
k is a prime powers factorization, then

Z∗p ' Zp−1 ' Zqe11 × · · · × Zqekk .

For every q|(p− 1)

a 7→ a
p−1
q

is a group homomorphism Zp−1 → Zq.

In order to work with the additive notation we will need to take discrete logarithms. It
should be stressed that for clarity of discussion in the analysis of the algorithm we consider
logarithms starting from early stages of algorithm, before we actually compute them.

De�nition 1.1.8. Let b, g ∈ Fp. Discrete logarithm of g to the base b is the residue class mod

ord(b) of the smallest positive integer k such that bk = g. We denote it with logb(g).

Although the best known algorithms for computing discrete logarithms are usually con-
sidered exponential and therefore ine�cient, they are su�cient for our purposes.

Theorem 1.1.9 (Pollard, [22]). Discrete logarithm modulo p can be found with O(
√
p) oper-

ations in Fp.

Another advanced computational procedure needed in our algorithm is Fourier transform
(see De�nition 0.0.11 and discussion following it).

Theorem 1.1.10 (Bluestein, [4]). Discrete Fourier transform with size N can be computed

with O(N logN) arithmetical operations.

1.2. Algorithms

In this section we present an algorithm which solves the problem stated in the introduction,
therefore proving Theorem 1.0.6. The algorithm consists of two algorithms, which performed
one after another lead to the solution. They are based on two simple observations. We include
them as the next two lemmas.

The idea behind the �rst one is to look for properties of prime numbers which distinguish
them from the composite ones. To be more speci�c, we are interested in properties which are
preserved after taking residues mod p. One such property is the large number of multiples in
the set of divisors. Algorithm 1.2.2 is based on this lemma.

Lemma 1.2.1. If a ∈ Γ, then there exist at least 2ω(n)−1 elements b ∈ A such that ab(mod p) ∈
Ap.
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Proof. For every b ∈ A which is not a multiple of a (for a ∈ Γ there are 2ω(n)−1 such b's)
ab ∈ A holds, hence also ab(mod p) ∈ Ap.

Algorithm 1.2.2 is called Brand to emphasize the intuition given by considering an output
with its input being a random set of a given size (then asymptotically almost surely Brand is
empty). When we apply Algorithm 1.2.2 to Ap ⊂ Zp all elements of Γp are included in Brand
and the intuition suggests that typically there should be not much more. But Brand may be
too big.

Algorithm 1.2.2. Brand(Ap)
For every a ∈ Ap:

1. set Da = 0

2. For every b ∈ Ap:

(a) check whether ab ∈ Ap,
(b) if it's true set Da = Da + 1.

3. if Da ≥ 1
2 |Ap|, add a to the set Brand.

The idea behind the second lemma is to realize that the problem is really about P(C)
of some set C in the cyclic group Zp−1 and look for other settings where the corresponding
problem is easy to solve. It turns out that one such setting is the semigroup of natural
numbers under addition.

Lemma 1.2.3. Let C ⊂ N. Then there exists a deterministic algorithm which given P(C)
(|P(C)| = N) �nds C with running time O(N logN). Moreover, C can be a multiset and it

does not change the conclusion.

Proof. See Algorithm 1.2.4.

Algorithm 1.2.4. C (S)

1. Sort the elements of S in nondecreasing order.

2. Set D := ∅ and C := ∅.

3. Move 0 from S to D.

4. Until |C| = log(|S|)
log 2 :

(a) Set x - the smallest element still in S.

(b) For all elements d in D move x+ d from S to D.

(c) Add x to C.

This algorithm can be easily adapted to handle also sets containing negative integers.
It is going to be important that we can easily generalize this problem (and its solution) to
multisets (no changes in the algorithm needed). Notice that in the algorithm given below if
an input S is the set of subset sums then the set T from the step 1 is also the set of subset
sums (but with some elements replaced with their negations).

Algorithm 1.2.5. F (S)
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1. Find min(S) and set T = {s−min(S) : s ∈ S}.

2. Apply Algorithm 1.2.4 with T as input to �nd C̄ = C(T ).

3. For every c ∈ C̄:

(a) if c ∈ S and c > 0 - add c to F .

(b) if −c ∈ S and c < 0 - add −c to F .

Corollary 1.2.6. Let C ⊂ Z. Then there exists a deterministic algorithm which given S =
P(C) (|P(C)| = N) �nds a set F such that C ⊂ F and |F | < 2|C| with running time

O(N logN). Moreover, C can be a multiset and it does not change the conclusion (elements

of multisets are counted with multiplicity).

Proof. Algorithm 1.2.5 does the job, since the addition of the constant (which is an element of
the input set S) only changes the signs of some elements g ∈ C. Absolute values of elements
of C are found in step 2.

In order to adapt this algorithm to the setting of cyclic group it is desirable to contain the
set in some short interval. To perform this task it is convenient to work with a group of prime
order. Therefore, we would like to have at least a large subgroup of prime order. To �nd the
sought-after interval e�ciently, we need to use Fourier transform. In order to optimize its
computational complexity we would not like this prime to be too large. This are the reasons
for our assumptions on P (p− 1).

Algorithm 1.2.7. Bstruct(Ap)

1. Set q = P (p− 1).

2. For every a ∈ Ap compute ā := a
p−1
q .

3. For every a ∈ Ap compute discrete logarithm ã := q
p−1 logg(ā) (for some generator g of

the group Z∗p). Set Lq = { q
p−1 logg(ā) : a ∈ A} ⊂ Zq.

4. Find using Fourier transform d ∈ {1, . . . , q − 1} such that for all ã ∈ Lq elements d · ã
are contained in the interval [− q log(2)

log(|Ap|) ,
q log(2)

log(|Ap|) ].

5. Find the set F using Algorithm 1.2.5 for Z with d ·Lq (with elements treated as integers)

as an input.

6. For every c ∈ F put all corresponding a ∈ Ap into the set Bstruct (if a|n as integers

include a only if it's prime).

Observe that if d ∈ Zq is such that dA ⊂ [− q log(2)
log(|Ap|) ,

q log(2)
log(|Ap|) ], then it corresponds to a

large Fourier coe�cient, namely Â(d) is greater than |A|2 (say) if x is large enough. Hence in

step 5 of Algorithm 1.2.7 we �rst �nd all Fourier coe�cients larger than |A|2 . There are at
most p

|A| of them because of Parseval identity. Then we can check for all of them whether
they satisfy the condition.

Now the analysis of computational complexity of those algorithms is straightforward. First
algorithm needs only O(|A|2) operations in Fp. The most costly step of the second algorithm

is step 4, which takes O(p
1
2

+o(1)) operations in Fp. Step 3 takes O(p
1
4

+o(1)|A|) operations.
To �nd all divisors which can possibly be prime we need to perform those two algorithms.

At least one of them should give us desired set. Justi�cation of this statement �nishes the
proof of Theorem 1.0.6 and it is our main objective in the next section.
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1.3. If Brand Fails, then Bstruct Works

In this section we present the heart of our proof. This is the part where additive combinatorics
come into play. For theoretical consideration it is simpler to look at the set of discrete
logarithms of elements of the set Ap. We will denote this set by L.

Notation 1.3.1. Let L := {logg(a) : a ∈ Ap}.

Note that to optimize computational complexity of Algorithm 1.2.7, we perform expo-
nentiation �rst and then take discrete logarithms. Exposition becomes clearer with those
operations in reversed order, since then we can phrase structural properties of Ap in additive
language. Later we work with corresponding subset of integers under addition what makes
additive notation more natural here.

Let us now recall the notion of additive energy (see De�nition 0.0.6). The next lemma
shows that Algorithm 1.2.2 can only fail for Ap, such that L, the set of discrete logarithms of
its elements, is additively structured. We give here slightly strengthened version of the result
from [16] with a simple proof.

Lemma 1.3.2 (Katz-Koester). Let 0 < ρ < 1 and suppose X and Y are two subsets of G,
and suppose

X ⊂ {z ∈ G : |(z + Y ) ∩ Y | ≥ ρ|Y |}.

Then
E(X)

|X|3
E(Y )

|Y |3
≥ ρ4 |X|

|Y |
.

Proof. We have

ρ|Y ||X| ≤
∑
z∈X
|(z + Y ) ∩ Y | = |{(y1, y2, z) ∈ Y 2 ×X : y1 − y2 = z}| =

=
∑
y∈Y
|Y ∩ ({y} −X)| ≤ |Y |

1
2E(X,Y ) ≤ |Y |

1
2E(X)

1
4E(Y )

1
4 . (1.2)

The �rst inequality follows from the condition satis�ed by X, the second follows from Cauchy-
Schwarz inequality and the third is an application of (2). Taking fourth powers we obtain the
claimed inequality.

Applying this lemma with X = {logg(b) : b ∈ Brand} (recall that Brand is the output of
Algorithm 1.2.2), Y = L and ρ = 1

2 we obtain the bound for the additive energy of L or its
large subset L1. Namely, at least one of those sets satis�es

E(L1) ≥ κ
√
ε|L1|3

for some explicit constant κ. In each case there is at least some large subset L1 ⊂ L (namely

|L1| > c(ε)|L|) with E(L1) ≥ |L1|3
K(ε) . For ε = Θ((log p)−

1
12 ) we have c(ε) = Ω((log p)−

1
12 ) and

K(ε) = O((log p)
1
24 ).

It is more convenient to use some more restrictive notion of additive structure and work
with sets satisfying the condition |L+L| ≤ K|L| or |L−L| ≤ K|L| (look at the De�nition 0.0.1
and the discussion following it) for some constant K (the so called sets with small doubling).
Another, even more restrictive notion of additive structure is the one given by the following
de�nition.
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De�nition 1.3.3. Let K ≥ 1. A subset H of an abelian group G is said to be a K-approximate

group if it is symmetric (H = −H), contains neutral element, and H +H can be covered by

at most K traslates of H.

We will need this notion as well.
The three de�nitions are not exactly equivalent, but some sort of equivalence between

them is captured by the following de�nition (we follow here Green's exposition [13]).

De�nition 1.3.4. Suppose that A and B are two �nite subsets of an abelian group G and

that K ≥ 1 is a parameter. Then we write A ∼K B to mean that there is some x such that

|A ∩ (B + x)| ≥ max (|A|,|B|)
K . We say that A and B are roughly equivalent with parameter K.

The relation between the three notions is described by the theorem below.

Theorem 1.3.5. For every i, j ∈ {1, 2, 3} and every set Ai (and parameter Ki) that satis�es

the condition (i) there exists a set Aj roughly equivalent to Ai with parameter Kij which

satis�es the condition (j) with parameter Kj, where Kij and Kj depend polynomially on Ki.

(1) E(A1) ≥ |A1|3
K1

(2) |A2 −A2| ≤ K2|A2|

(3) A3 is K3-approximate group.

Proof. (1) ⇒ (2) follows from Balog-Szemerédi-Gowers Theorem (here K2 = K4
1 and K1,2 =

K1).
(2) ⇒ (1) follows with A1 = A2 and K1 = K2 from the fact that

E(A) ≥ |A|4

|A−A|
,

which is a simple application of Cauchy-Schwarz inequality.
(3) ⇒ (2) and hence (3) ⇒ (1) is easily seen to be satis�ed with A2 = A3 and K2 = K3.
To see that (2) ⇒ (3) holds with K3 = K3

2 and K2,3 = K2
2 take A3 = A2 − A2 and

apply Ruzsa covering lemma (with A = A2 and B = A3). The result follows, since |A2| <
|A2 −A2| < K2

2 |A2| and |A2 −A2 +A2| < K3
2 |A2| by Plünnecke inequality.

The same argument coupled with (1) ⇒ (2) implies (1) ⇒ (3) with K1,3 = (K4
1 )2 = K8

1

and K3 = (K4
1 )3 = K12

1 .

Using this theorem we can �nd some large more structural subset in our original set,
namely the set L2 ⊂ L1 such that |L2| > c(ε)|L1| and |L2−L2| < K2(ε)|L2|. We can also �nd
a small superset L2 ⊂ H which is a translate of K3(ε)-approximate group and |H| < K2,3|L2|.
For ε = Θ(log p)−

1
12 we have c(ε) = Ω(log p)−

1
24 andK2,3 = O(log p)

1
3 , whileK2 = O((log p)

1
6 )

and K3 = O((log p)
1
2 ).

The main advantage of approximate groups over other notions is that it is well-behaved
under homomorphisms.

The following lemma appears as an exercise in [30].

Lemma 1.3.6. Let G,G′ be abelian groups, H ⊂ G a K-approximate group and φ : G→ G′

- a homomorphism. Then φ(H) is a K-approximate group.

Proof. Let x1, . . . , xK ∈ G be such that H + H is covered by x1 + H, . . . , xk + H. Then
φ(x1) + φ(H), . . . , φ(xK) + φ(H) covers φ(H) + φ(H). Clearly, φ(eG) = φ(eG′) and φ(−a) =
−φ(a).
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Applying the last lemma to the set H and a homomorphism φ : Z∗p → Zq de�ned by

a 7→ logg(a
p−1
q ), we see that φ(H) is K(ε)-approximate group.

Now, we have got an additively structured set in a large group of prime order. In such a
setting we can observe that this set can be compressed to a short interval.

De�nition 1.3.7. The diameter diamL of a set L (in Z or Zm) is de�ned as the smallest

integer l for which there exist some a, d such that L ⊂ a, a+ d, . . . , a+ ld.

Theorem 1.3.8 (Green-Ruzsa, [14]). Let q be a prime and let H ⊂ Zq be a set with |H| = αq

and |2H| = K|H|. Suppose that α ≤ (16K)−12K2
. Then the diameter of H is at most

12α
1

4K2

√
log (

1

α
)q.

We emphasize the fact that small doubling is really needed here (large additive energy is
not enough). Obviously, K-approximate group satis�es |H+H| ≤ K|H|. Using this theorem,
we can therefore �nd an arithmetic progression P such that |P | ≤ p1−δ(ε) for some δ(ε) > 0
and H (and hence also L2) is contained in P . It is straightforward to verify that the condition
α ≤ (16K)−12K2

holds for α = q−
1
3

+o(1) and K = Θ((log p)
1
2 ).

Next lemma will bring us back to the set L (or more precisely φ(L), which is equal to
the set Lq in step 3 of Algorithm 1.2.7). Roughly speaking, it shows that a structure of
P(C) enables us to control the whole set, when only some part is controlled. The fact that
L = P(C) is crucial here and it is the only part of the proof where we use it.

Lemma 1.3.9. Let L = P(C) be a subset (L is possibly a multiset) of Zq and let L′ ⊂ L
be such that |L′| ≥ ε|L| (elements counted with multiplicity) and diamL′ ≤ q1−δ. Then

there exists a constant K(ε) > 0 such that L is contained in K(ε) translates of a set D with

diamD ≤ 2q1−δ.

Proof. Let P be a symmetric arithmetic progression such that some translate x of P contains
L′ (without loss of generality we can assume that P has the common di�erence 1, otherwise
we can multiply every element by d−1). We are going to construct m = d2

ε e translates xi+2P
such that C ⊂ X + 2P for X = {x1, . . . , xm}. For each gj ∈ C either gj belongs to some
xi + P (and then gj + L′ ⊂ xi + x + 2P and L′ − gj ⊂ xi + x + 2P ) for some xi already
put in X or there are |L′| = ε|L| elements of L which are of the form gj + a′ or a′ − gj and
are not captured by any translate yet. Then we add gj and −gj to the set X. We need to
add new translates at most d1

ε e times, because it increases by ε|A| the number of elements of
A covered. If X is a set of translates covering all g ∈ C, then P(X) are translates covering
P(C) (and there are 2|X| of them).

Lemma 1.3.10. Let L ⊂ Zq be a set with diamA = q1−δ. Then there exist d ∈ Z∗q such

that dL ⊂ [−2q1− δ
2 , 2q1− δ

2 ]. Generally, if L is contained in K translates of a set D with

diamD = q1−δ, then there exists d ∈ Z∗q such that dL ⊂ [−2q1− δ
2K , 2q1− δ

2K ]

Proof. Let a ∈ L be any element. By Pigeonhole Principle, there exist d < q
δ
2 such that da ∈

[q1− δ
2 , q1− δ

2 ] (there exist two elements d1a, d2a in one interval of length q1− δ
2 , their di�erence

satis�es the condition). For such d the conclusion holds. To prove the second statement,

use multidimensional Pigeonhole Principle to �nd d < q
δ
2 such that dai ∈ [q1− δ

2K , q1− δ
2K ] for

i = 0, . . . ,K − 1, where ai +D are given translates.
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Using the last two lemmas we see that we can �nd d such that dL ⊂ [−2q
1− δ(ε)

2K(ε) , 2q
1− δ(ε)

2K(ε) ]

what proves that a suitable d in step 4 of Algorithm 1.2.7 can be found, since p
δ(ε)

2K(ε) >
log(|Ap|)

log(2)
if n is large enough. It �nishes the proof of Theorem 1.0.6, since the number of elements
a ∈ Ap corresponding to the same c ∈ F is small by our assumptions (speci�cally the last,
more technical one).

1.4. There are Plenty of Numbers Satisfying the Conditions

First of all, observe that the fact that for all but o(x) numbers n ≤ x the number of prime
divisors is right follows from the classical result quoted below.

Theorem 1.4.1 (Erd®s-Kac, [12]). Denote by N(x; a, b) the number of integers m belonging

to the interval [3, x] for which the following inequality holds:

a ≤ Ω(m)− log logm√
log logm

≤ b, (1.3)

where a < b are real numbers with additional possibilities a = −∞ and b =∞. Then, with x
tending to in�nity, we have

lim
x→∞

N(x; a, b)

x
=

1√
2π

∫ b

a
exp (− t

2

2
)dt. (1.4)

It is easy to observe that a typical number cannot have to many small divisors. We will
need this fact later.

Lemma 1.4.2. There are o(x) numbers n ≤ x such that the number of divisors of n smaller

than (log x)4 is greater than C(log log x).

Proof. It follows from the fact that∑
n<(log x)4

x

n
= O(x log log x).

It is possible to �nd for x large enough the prime with the desired properties of p− 1. To
prove that we need two classical results from analytic number theory. We are going to need
the following de�nitions.

De�nition 1.4.3. The von Mangoldt function is de�ned as

Λ(n) =

{
log p when n = pkfor some prime p and k ≥ 1
0 otherwise.

The function π(x; q, a) counts the primes not exceeding x in the residue class a modulo q.

π(x; q, a) =
∑

p≤x,p≡a(mod q)

1.

The function ψ(x; q, a) is de�ned similarly.

π(x; q, a) =
∑

n≤x,n≡a(mod q)

Λ(n).
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Lemma 1.4.4 (Mertens, [17]). We have

|
∑
p≤n

log p

p
− log n| ≤ 2.

Theorem 1.4.5 (Bombieri - Vinogradov, [31]). Let x and Q be any two positive real numbers

with x1/2 log−A x ≤ Q ≤ x1/2. Then∑
q≤Q

max
y<x

max
1≤a≤q
(a,q)=1

∣∣∣∣ψ(y; q, a)− y

ϕ(q)

∣∣∣∣ = O
(
x1/2Q(log x)5

)
.

This leads to the following statement.

Corollary 1.4.6. Let ε > 0. Then there exist e�ciently computable constants X1(ε), δ(ε) > 0,
such that, if x > X1, we have ∑

p≤x,x
1
2−ε<P (p−1)<x

1
2+ε

1 > δ(ε)
x

log x
.

Proof. It su�ces to lowerbound the sum
∑

x
1
2−ε<q<x

1
2 (log x)−B

π(x; q, 1). By Bombieri-Vingradov

theorem (and trivial observations that π(x; q, a) log x ≥ ψ(x; q, a) and log p
log x ≤ 1)

∑
x
1
2−ε<q<x

1
2 (log x)−B

π(x; q, 1) log x ≥ x

log x

∑
x
1
2−ε<q<x

1
2 (log x)−B

log q

q − 1
+O(

x

log x
).

The last sum is equal ε log x+O(1) by Mertens' theorem.

To ensure that P (p− 1)2 - (p− 1) we need the following lemma.

Lemma 1.4.7. There are O

(
x
1
2+2ε

log x

)
numbers n ≤ x such that q2|(n − 1) for some prime

number q > x
1
2
−ε. In particular, for ε < 1

4 there are o( x
log x) such prime numbers.

Proof. We simply count ∑
x
1
2−ε<q<x

1
2

x

q2
= O

(
x

1
2

log x
x2ε

)
, (1.5)

since there are O

(
x
1
2

log x

)
primes in this range and for any �xed q there are at most x

x2(
1
2−ε)

=

x2ε numbers divisible q2.

Now, we will prove that given such a prime p we can expect di�erent divisors of n to give
di�erent residues. In the proof we are going to use the following lemma which is a discrete
analogue of integration by parts (lemma 2.5.1 in [2]).

Lemma 1.4.8. Let (an)n∈N be the sequence of complex numbers, A(t) :=
∑

n≤t an and let

f : [1, x]→ C be a C1-class function. Then:∑
n≤x

anf(n) = A(x)f(n)−
∫ x

1
A(t)f ′(t)dt. (1.6)
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Lemma 1.4.9. Let ε > 0. For a given prime number such that p > (log x)2+ε the set of

numbers n ≤ x such that there exists a pair of distinct divisors of n congruent modulo p
respectively has size o(x).

Proof. Clearly, there are o(x) number n < x divisible by p. We need to bound the size of
the set of numbers n such that there exist a pair d1, d2 such that d1|n, d2|n and d1 − d2 is
divisible by p. For n not divisible by p at least one such pair d1, d2 (if it exists) must consist
of relatively prime numbers. Therefore, the size of the set can be crudely bounded by the
following expression ∑

r<x
p

∑
d< x

rp

x

d(d+ rp)
(1.7)

To bound those sums we can use the following bound for the series
∑

n≥1
1

n(n+r) with param-
eter r. ∑

n≥1

1

n(n+ r)
=
∑
n≥1

1

r
(
1

n
− 1

n+ r
) =

1

r

r∑
n=1

1

n
= O(

log r

r
) (1.8)

Using (1.8) with parameter rp we can bound (1.7) by∑
r<x

p

x(log rp)

rp
= O(

x(log x)2

p
),

using Lemma 1.4.8 to get the last inequality.

What has left to show is that a condition set on d
p−1

P (p−1) 's is satis�ed by typical n. First

we deal with possible obstruction caused by a divisor which satis�es d
p−1

P (p−1) ≡ ±1.

Lemma 1.4.10. Let p be a prime number and let I ⊂ Z∗p be such that |I| ≤ pδ. If log x =

o(p1−δ), then the set of numbers n < x such that there exists a number d > p which satis�es

d ≡ a for some a ∈ I and d|n has size o(x).

Proof. It follows from ∑
1≤r x

p

x

a+ pr
= O(

x

p
log (

x

p
)).

Using this fact we can prove what we need. Notice that for our purposes the assumption
in the next theorem could be strengthened to P (p− 1) > (log x)

3
2
−ε.

Lemma 1.4.11. Let ε > 0. Let p be a prime number with p ≥ (log x)3 such that P (p −
1) > (log x)2−log 2+ε For all but o(x) numbers n ≤ x the set of divisors d of n such that

d
p−1

P (p−1) ≡ q
p−1

P (p−1) (mod p) for some q > p prime divisor of n has size o((log x)log 2).

Proof. We can estimate the number of triples consisting of a number n ≤ x and a pair (d1, d2)

of relatively prime divisors of n such that d1 > p, d2 > p which satis�es d
p−1

P (p−1)

1 ≡ d
p−1

P (p−1)

2 .
Let I ⊂ Z∗p be a subgroup of P (p− 1)-th powers and let Id ⊂ Z∗p be a coset of this subgroup

containing d. We know that |I| ≤ p−1
P (p−1) .

∑
d≤x

1

d

∑
a∈Id

∑
1≤r≤x

p

x

a+ rp
= O(

x p
P (p−1)(log x)2

p
) = O(

x(log x)2

P (p− 1)
). (1.9)
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All divisors d for which d
p−1

P (p−1) ≡ ±q
p−1

P (p−1) (mod p) holds for some q > p which is a prime
divisor of n are either relatively prime to q (�rst kind) or they are of the form ds, where s < p
and d is either q or a divisor of the �rst kind (then we call them divisors of the second kind).
The number of the divisors of the �rst type can be bounded by O((log x)log 2−ε) for all but at
most o(x) numbers n ≤ x using (1.9) and the assumption on P (p − 1). Taking into account
the divisors of the second kind raises this number only (log log x)1+o(1) times for all but o(x)
numbers n ≤ x by Lemma 1.4.2.

1.5. Application

Here we present an application of our result to deterministic polynomial-time reduction of fac-
torization to computing σ1(n), . . . , σM (n). This reduction is only proved to work for numbers
forming a dense set (not necessarily for all numbers). The reduction is already polynomial-
time in its simplest form. If a su�ciently e�cient polynomial factoring algorithm is used
(namely Shoup's Algorithm for polynomial with linear factors) it can be made to run in time
O((τ(n))2 log n log logn log log log n). Then our main result only reduces implied constant in
O() notation.

It is worth noting here that probabilistic polynomial-time reductions to computing σk(n)
(for a single k) are known [3]. Much more is known about the similar problem concerning
Euler totient function φ(n). There exists a probabilistic polynomial-time reduction which
can be easily derandomized under Extended Riemann Hypotheses [19]. Moreover, it can be
shown unconditionally to work in deterministic polynomial time for the dense set of integers
[7]. There is also unconditional subexponential-time reduction proved to work for any integer
[32]. Paper [1] provides extensive survey of problems studied and results obtained in this area.

Algorithm 1.5.1. N (n, P1, P2, . . . , PM )

1. For every k = 1, . . . ,M compute Sk = (−1)k+1

k (Pk +
∑k−1

i=1 (−1)iPk−iSi).

2. Set as m the greatest k such that Sk 6= 0.

3. Set as W ∈ Z[X] the polynomial W (X) = Xm +
∑m

i=1(−1)iSiX
m−i.

4. Factor the polynomial W (X) in Z[X].

5. If the result consists of linear terms (X−di) (for i = 1, . . . ,m), sort di in nonincreasing

order.

6. For each i check whether dj |di for some j < i; if not, check with what multiplicity di
divides n and write out di with that multiplicity.

Theorem 1.4.1 implies that in Algorithm 1.5.1 parameter M = b(log n)log 2+o(1)c can be
used and the algorithm would still work for the numbers from the set of natural density equal
1.

We prove

Theorem 1.5.2. There exists a deterministic algorithm which using an oracle for monic

polynomial W with all divisors of a given number m as roots computes the factorization of n
for numbers n belonging to the set of natural density 1 (it uses the oracle at most twice) with

running time O((τ(n))2 log n log logn log log log n). In particular, for n belonging to this set

this time is (log n)1+2 log 2+o(1).
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We can assume that n is squarefree because of the following observation.

Lemma 1.5.3. The set of natural numbers n ≤ x divisible by a square of an integer larger

than log log x is of cardinality o(x).

Proof. The cardinality of the considered set can be upperbounded by

x
∑

log log x≤d<
√
x

1

d2
+O(

√
x) (1.10)

(as b x
d2
c = x

d2
+O(1)) which is o(x) because of the convergence of the series

∑ 1
d2
.

Divisibility by squares of the numbers smaller than log log n can be checked by trial division
with (log n)1+o(1) bit operations. If pα||n the values of functions σk(

n
pα ) can be determined

using formula σk(
n
pα ) = σk(n)

σk(pα) at the cost of O(k log n) bit operations.
All divisors which can possibly be prime numbers can be found with Algorithm 1.5.4. To

�nd the factorization of n perform the last step of Algorithm 1.5.1 on elements of B.

Algorithm 1.5.4. S(W )

1. Find a prime number p of the order (log n)3+o(1) with P (p− 1) = p0.5+o(1).

2. Factor Wp with Shoup algorithm and �nd set of residues A.

3. Find the set B with Algorithm 1.2.2.

4. If |B| > ε|A|, �nd the set B with Algorithm 1.2.7.

5. For every element in B perform Hensel lift to the residue modulo pe (with e = d logn
log p e).

We need to de�ne some special types of symmetric polynomials.

De�nition 1.5.5. Elementary k-th symmetric polynomial of variables x1, . . . , xm is given by

sk(x1, . . . , xm) =
∑

1≤i1<...<ik≤m
xi1 · · ·xik . (1.11)

k-th Newton function of variables x1, . . . , xm is given by

pk(x1, . . . , xm) =
m∑
i=1

xki . (1.12)

Function σk(n) is equal to pk(d1, . . . , dτ(n)), where d1, . . . , dτ(n) are all divisors of n.
The correctness of the algorithm follows from the two sets of identities given below. For

a nice proof see [18].

Lemma 1.5.6 (Newton identities). For 1 ≤ k ≤ m the following identity holds:

pk +

k−1∑
i=1

(−1)ipk−isi + (−1)kksk = 0, (1.13)

and for m < k:

pk +

m∑
i=1

(−1)ipk−isi = 0. (1.14)
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Lemma 1.5.7 (Vieta's formulas). Let R be an unique factorization domain and let amx
m +

. . .+a0 ∈ R[X] be a polynomial with m roots x1, . . . , xm (in the �eld of fractions of R). Then
the following holds

sk(x1, . . . , xm) = (−1)k
am−k
am

. (1.15)

To bound its running time we need the following two results from algorithmic number
theory.

Theorem 1.5.8 (Shoup, [29]). Let f be a polynomial over Zp of degree m which is a product

of m distinct monic polynomials of degree 1. Then f can be factored deterministically with

O(p
1
2 (log p)2m1+o(1)) operations in Zp.

Lemma 1.5.9 ([2]). Hensel lift of a root of polynomial f modulo p to a root modulo pk can

be found with O(deg(f)(k log p)1+o(1)) operations.

Factorization can be found with Algorithm 1.5.4. Computing the coe�cients of the
polynomial modulo p can be performed in time O((τ(n))2 log n log log n log log log n). Fac-
torization of a polynomial with distinct roots over Fp can be done with Shoup algorithm

in time (log n)
3
2

+log 2+o(1). Algorithms 1.2.2 and 1.2.7 work in time (log n)2 log 2+o(1) and
O((log n)1.08+log 2+o(1)) respectively. Hensel lift can be performed in time

o((τ(n))2 log n log logn log log log n).

In this last bound we used our main result to reduce the number of Hensel lifts needed so
that their cost does not dominate computational complexity of the algorithm.

From this result we can deduce the following.

Corollary 1.5.10. There exists a deterministic algorithm which for almost every n if the

values of functions σ1(n), . . . , σb(logn)log 2+o(1)c(n) are given, computes the full factorization of

n in time O((log n)1+2 log 2+o(1)).

Proof. Values of σk(
n
pα ) can be computed e�ectively. After computing the residues of σk(n)

modulo pd
logn
log p
e coe�cients of the polynomial can be found in time O((log n)1+2 log 2+o(1)). The

rest proceeds exactly as in the previous proof.

The approach presented here does not seem to extend to the cases of a single σk(n) or
φ(n) mentioned in the beginning of this section, neither is it possible to work for any integer
as it critically relies on n having the right number of prime factors. On the other hand, it does
appear to be possible to signi�cantly reduce the amount of information used by algorithm. It
is not needed to know residues of all divisors, knowing a large fraction of them should su�ce.

1.6. Open Problems

The problem considered here leads to the following questions: For a dissociated set C (a
dissociated set is a set with all subset sums distinct) in an abelian group G, is C determined
uniquely by S = P(C) ? Can we �nd it e�ciently?

In general, already the answer to the �rst question is negative, as the following examples
show.

P({2, 5}) = P({5, 7}) in Z10
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P({3, 5, 6, 7}) = P({1, 9, 13, 15}) = Z17 \ {2} in Z17

The �rst example illustrates the obstruction caused by even order of the group and in the
second one the set P(C) almost covers the whole group.

So, probably the right question to ask would be rather: Under what conditions is C
determined uniquely by S = P(C) ? (Under what conditions can we �nd it e�ciently?)
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Chapter 2

Exponential sums

In this chapter we present results published in [10]. Bounding exponential sums is a very
active area of research. Here we consider the special case of sums over subgroups generated
by 2. If the order of a subgroup is large, then there is a general result proved by Bourgain,
Glibichuk and Konyagin, which gives a good upper bound.

Theorem 2.0.1 ([5]). Let F = Fp be a �nite �eld of prime order, and let H be a multiplicative

subgroup of F such that |H| ≥ pδ for some 0 < δ < 1. Then if p is su�ciently large depending

on δ, for some ε(δ) > 0 we have

sup
ξ∈Zp\{0}

∣∣∣∣∣∑
x∈H

e(xξ)

∣∣∣∣∣ ≤ p−ε|H|.
Throughout the rest of this paper we concentrate on small subgroups. This line of inves-

tigation was essentially started by the work of Molteni [20]. We are going to use the following
notation. For some �xed odd integer q:

• τ := ordq(2)

• L := blog2(q)c

• e(x) := exp (2πix)

• s(a/q) :=
∑τ

r=1 e(a2r/q)

When subgroups are small much less cancellation is expected. In fact, Kaczorowski and
Molteni provided in�nitely many examples showing that in general the cancellation may be
as small as some explicit constant.

Theorem 2.0.2 ([15]). There exists a positive constant c and a sequence of integers q →∞
such that

max
(a,q)=1

|s(a/q)| ≥ τ − c+O

(
1

q

)
.

Moreover c ≤ 2
∑∞

r=1 sin2 ( π2r ) = 3.394 . . ..

They also proved the following upper bound.

Theorem 2.0.3 ([15]). If τ ≥ κ(L+ 1) + 2 for a nonnegative integer κ and q > 3, then

max
(a,q)=1

|s(a/q)| < τ − κ− 1.
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We improve the above bound. Here is the main result of this part of the dissertation.

Theorem 2.0.4. If τ ≥ κ(L+ 4) + 5 for some positive integer κ, then

max
(a,q)=1

|s(a/q)| < τ − 2(κ+ 1). (2.1)

2.1. Proof of Theorem 2.0.4

The following fact plays a key role in the proof of Theorem 2.0.3.

Lemma 2.1.1 ([15]). Suppose ζ = e(θ) for some real number θ with <(ζ) ≤ 0 and ζ 6= −1.
Then:

|ζ2 − 1| < |ζ − 1| or |ζ4 − 1| < |ζ2 − 1|.

Similarly, our proof relies on the following lemma.

Lemma 2.1.2. Suppose ζ = e(θ) for some real number θ with <(ζ) ≤ 0 and ζ 6= −1. Then

|ζ + ζ2 + ζ4 + ζ8 + ζ16| < 3.

Proof. Let f(θ) = |ζ + ζ2 + ζ4 + ζ8 + ζ16|. Based on the well known Euler identity ez =
cos z + i sin z, we have

f(θ) := ((sin 2πθ + sin 4πθ + sin 8πθ + sin 16πθ + sin 32πθ)2

+ (cos 2πθ + cos 4πθ + cos 8πθ + cos 16πθ + cos 32πθ)2)
1
2 . (2.2)

In order to prove the lemma, it su�ces to show that values of the function f on the interval
[1
4 ,

3
4 ] are less than 3 (except of the point θ = 1

2). Repeatedly using the formulae sin (2x) =

2 sin (x) cos (x) and cos (2x) = 2 cos (x)2 − 1, and then using substitution x = cos 2πθ we get
the following polynomial

w(x) = 32768x15 + 16384x14 − 122880x13 − 53248x12

+ 184320x11 + 66560x10 − 140800x9 − 39680x8 + 57728x7

+ 11200x6 − 12320x5 − 1216x4 + 1240x3 + 12x2 − 48x+ 5. (2.3)

We need to show that it is bounded by 9 on the interval (−1, 0]. By standard tools (we used
wxMaxima 16) one can verify that the 14 roots of w′(x) are: −1.057176 . . ., −0.948631 . . .,
−0.855344 . . ., −0.720103 . . ., −0.531527 . . ., −0.344771 . . ., −0.123226 . . ., 0.148074 . . ., 0.266689 . . .,
0.405528 . . ., 0.631112 . . ., 0.794703 . . ., 0.907195 . . ., 0.960809 . . ..

Only the points −0.948631 . . ., −0.855344 . . ., −0.720103 . . ., −0.531527 . . ., −0.344771 . . .,
−0.123226 . . . belong to the considered interval. The polynomial w(x) takes the values
0.8492539 . . ., 5.0979332 . . ., 0.0739295 . . ., 7.3947072 . . ., 2.1874524 . . . and 8.8596675 . . . at
those points; furthermore w(−1) = 9 and w(0) = 5. Hence w(x) < 9 for any x ∈ (−1, 0].
Since f(θ) =

√
w(cos 2πθ) the assertion follows.

The graphs of f(θ) and w(x) in the relevant ranges are shown at Figures 1 and 2, respec-
tively.
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Figure 2.1: Values of trigonometric polynomial and its derivative.

Figure 2.2: Values of corresponding algebraic polynomial and its derivative.

Lemma 2.1.3. Let (a, q) = 1 and q > 5. Then for any integer m ≥ 0 there exists an integer

l such that m ≤ l < L+m and

s5(a2l/q) :=

∣∣∣∣e(2la

q

)
+ e

(
2l+1a

q

)
+ e

(
2l+2a

q

)
+ e

(
2l+3a

q

)
+ e

(
2l+4a

q

)∣∣∣∣ < 3.

Proof. Without loss of generality we may assume that m = 0 (otherwise 2ma should be
considered instead of a). If <e(2La/q) ≤ 0 for some 0 ≤ L < L, then the claim follows from
Lemma 2.1.2. Further we assume that <e(2La/q) > 0 for any 0 ≤ L < L. Denote by θ the real
number satisfying |θ| < 1

4 and e(2L−1a/q) = e(θ). Then the numbers e(2la
q ) for 0 ≤ l ≤ L− 1

are equal to e( θ
2k

) for L − 1 ≥ k ≥ 0, correspondingly. In particular e(a/q) = e(θ/2L−1) and
so

1

q
≤
∣∣∣∣ θ

2L−1

∣∣∣∣ < 1

2L+1
<

1

q
,

which leads to a contradiction.

Now we are ready to prove Theorem 2.0.4.
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Proof. By Lemma 2.1.3 and the assumption of the theorem there exists a number l0 such that

s5(a2l0/q) < 3. By the periodicity of e(2la) it follows that s(a/q) =
∑l0+τ−1

l=l0
e
(

2la
q

)
. We

divide the set of summand indices into intervals: {l0, l0 + 1, l0 + 2, l0 + 3, l0 + 4} and at least κ
intervals of length L+ 4. By the previous lemma each interval contains some number l such
that s5(2la/q) < 3; furthermore it can be chosen from the �rst L elements of the interval.
Hence using the triangular inequality we get

|s(a/q)| < τ − 5(κ+ 1) + 3(κ+ 1) = τ − 2(κ+ 1).

The above proof di�ers from the proof of Theorem 2 by considering the sum of �ve
consecutive summands instead of only two. Apart from that, the argument is analogous.

2.2. Further Improvement

If we consider taking more than 5 summands, we can improve the result, however, the argu-
ment becomes more technical. The next theorem is an example of such an improvement.

Theorem 2.2.1. If τ ≥ κ(L+ 5) + 6 for a nonnegative integer κ, then

max
(a,q)=1

|s(a/q)| < τ − 2.37(κ+ 1). (2.4)

Proof. Let ζ = e(θ) for some real number θ such that −0.999118 ≤ <(ζ) ≤ 0.021. First we
show that

|ζ + ζ2 + ζ4 + ζ8 + ζ16 + ζ32| < 3.63. (2.5)

By almost the same arguments as in the proof of Lemma 2.1.2, we come to the conclusion
that it is enough to bound the polynomial

w(x) = 2147483648x31 + 1073741824x30 − 16642998272x29

− 7784628224x28 + 58250493952x27 + 25300041728x26

− 121701924864x25 − 48637149184x24 + 169030451200x23

+ 61446553600x22 − 164479631360x21 − 53589573632x20

+ 115135741952x19 + 32967491584x18 − 58595868672x17

− 14351925248x16 + 21655027712x15 + 4363173888x14

− 5741977600x13 − 895791104x12 + 1066528768x11 + 115973120x10

− 133433856x9 − 8054272x8 + 10580864x7 + 131264x6

− 484512x5 + 15376x4 + 11160x3 − 704x2 − 110x+ 10 (2.6)

on [−0.999118, 0.021].
Its extrema are approximately at points: −1.074387, −0.989143, −0.971382, −0.939692,

−0.890416, −0.829615, −0.776161, −0.717199, −0.637236, −0.564463, −0.466427, −0.359011,
−0.252928, −0.159027, −0.043114, 0.173648, 0.309891, 0.406477, 0.508774, 0.579395, 0.672828,
0.766044, 0.812919, 0.849519, 0.910000, 0.950689, 0.978700, 0.990701.

For a clearer view, let us �rst calculate the values of the function h(x) = 6 −
√
w(x).

At the �rst 16 points we obtain: −94.6222693 . . ., 4.5876861 . . ., 3.6328312 . . ., 5.9968304 . . .,
3.0354921 . . ., 4.8466566 . . ., 3.9512462 . . ., 4.7487580 . . ., 3.4408042 . . ., 4.3572044 . . ., 2.6267897 . . .,
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5.4964278 . . ., 2.9328713 . . ., 4.0850766 . . ., 2.4415242 . . ., 6.0. At the point −0.999118 it takes
the value 2.3703688 . . .. We see that all the values are greater than 2.37 so w(x) < 3.63 for
x ∈ [−0.999118, 0.021] unless there exists some another minimum of h in this interval.

To exclude this possibility, we consider the second and the third derivative of w(x). The
second derivative has a root 0.0211231 . . ., while the third derivative has roots 0.0683720 . . .
and 0.1498680 . . .. If f has an additional minimum in the interval [−0.999118, 0.021], then
w′ has two additional roots in this interval. As a derivative always has some zero between
two zeros of a function, that would imply that w′′ has 16 roots smaller than 0.02, a root
0.0211231 . . . and 12 roots greater than 0.1736481 . . .. That in turn would imply that w′′′

has 29 roots: 16 roots smaller than 0.0211231 . . ., points 0.0683720 . . . and 0.1498680 . . .,
and 11 roots greater than 0.1736481 . . .. But this is a polynomial of degree 28, so we come
to the contradiction. We conclude that h(x) > 2.37 and thereby w(x) < 3.63 for x ∈
[−0.999118, 0.021].

Now we show that there exists an integer l such that m ≤ l < L+m and

s6(a2l/q) :=

∣∣∣∣∣∣
5∑
j=0

e

(
2l+ja

q

)∣∣∣∣∣∣ < 3.63.

For this purpose we repeat the argument from the proof of Lemma 2.1.3. If <e(2La/q) > 0 for
any 0 ≤ L < L, then the argument is the same. If <e(2La/q) ≤ 0 for some 0 ≤ L < L, then
the claim follows from (2.5) by taking l = L or l = L−1, as cos (2 arccos (0.021)) = −0.999118.

The proof of Theorem 2.2.1 proceeds in the same way as the proof of Theorem 2.0.4.

The graphs for h(x) and the derivative of w(x) in the ranges critical to the twist in the
argument are shown in Figure 3.

Figure 2.3: h(x) for points close -1. Derivative of w(x) for points near 0.

It seems reasonable to conjecture that with this method the constant 2.37 in the bound
(2.4) may be replaced with any number less than the constant c = 3.394 . . . from Theorem
2.0.2.

2.3. Concluding Remarks

We conclude the paper by providing another in�nite family of small subgroups generated by
2 for which the cancellation may be bounded by some constant. The constant is worse than
that in [15], but subgroups are a bit larger.
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Proposition 2.3.1. For q = 23n+1
2n+1 we have

max
(a,q)=1

|s(a/q)| ≥ τ − c′ +O

(
1
√
q

)
with c′ = 4c = 4 · 2

∑∞
r=1 sin2 ( π2r ) = 13.57 . . ..

Observe that Theorem 2.0.4 (with κ = 2) gives in this case max(a,q)=1 |s(a/q)| < τ − 7.11.
Thus the true value of the maximum for such q is in the range [τ − 13.57− ε, τ − 7.11] if only
n is large enough.

Proof. Obviously, we have L = 2n and τ = 6n = 3L. Next, observe that q = 22n− 2n + 1 and
so

22n ≡ 2n − 1 (mod q), 23n ≡ −1 (mod q), 25n ≡ −2n + 1 (mod q), 26n ≡ 1 (mod q).

We are going to bound the di�erence between τ and the real part of the sum. We split the
range of the summation into four intervals: [0, 2n − 1], [2n, 3n − 1], [3n, 5n − 1], [5n, 6n − 1].
We only consider the �rst two sums as the calculations for the other two are analogous. Using
Taylor expansion of a cosine and changing the order of summation (just as in [15]), we arrive
at

2n−1∑
r=0

(
1− cos

(
2π2r

q

))
= −

∞∑
m=1

(−1)m

2m!

(2π)2m

4m − 1

(
q + 2n − 1

q

)2m

+O

(
1

q2

)
(2.7)

and
3n−1∑
r=2n

(
1− cos

(
2π2r

q

))
=

n−1∑
r=0

(
1− cos

(
2π2r(2n − 1)

q

))
=

= −
∞∑
m=1

(−1)m

2m!

(2π)2m

4m − 1

(
q + 1

q

)2m

+O

((
2n

q

)2
)
. (2.8)

Now we write the series as a sum of three parts as in [15]. The �rst part is the same for (2.7)
and (2.8) and equals

Σ1 := −
∞∑
m=1

(−1)m

(2m)!

(2π)2m

4m − 1
= 2

∞∑
r=1

sin2
( π

2r

)
The second part for (2.7) is equal to

Σ2 := −
∑
m<
√
q

(−1)m

(2m)!

(2π)2m

4m − 1

((
1 +

2n − 1

q

)2m

− 1

)
.

Using ex − 1� x we see that |Σ2| � 1√
q .

The second part for (2.8) is the same as in [15] and also smaller than 1√
q . The third part

for (2.7) and (2.8) is negligible (see [15] for details). We infer that
3n−1∑
r=2n

(
1− cos

(
2π2r

q

))
= c+O

(
1

q

)
and

2n−1∑
r=0

(
1− cos

(
2π2r

q

))
= c+O

(
1
√
q

)
.

We conclude that τ − |max(a,q)=1 |s(a/q)|| ≥ 4c+O( 1√
q ).
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Chapter 3

Sums of dilates

In this chapter we explore the sums of dilates. Results presented here were published in [11].
One of the classical results in additive combinatorics is Plünnecke inequality, bounding the
maximal size of the set of sums of k elements of A by Kk|A|. One natural generalization of
the problem of bounding the size of the set of sums of k elements is a problem of �nding a
good bound for the size of set of sums of the form λ1a1 + . . .+ λkak for some given integers
λ1, . . . , λk (in Plünnecke inequality they are all equal ±1), where a1, . . . , ak are elements of
A. Recalling De�nition 0.0.4 we can write it down as λ1 · A+ . . .+ λk · A. In this case until
recently there were no known bounds out of those easily following from Plünnecke inequality,
namely that

|λ1 ·A+ . . .+ λk ·A| ≤ K
∑k
i=1 |λi|.

Breakthrough result was obtained in 2008 by Boris Bukh, who used binary expansion to
get a bound in terms of logarithms of number |λi| rather than those numbers themselves. He
proved

Theorem 3.0.1 ([6]). Let λ1, . . . , λh be given integers and let A ⊂ Z. If either |A+A| ≤ K|A|
or |A−A| ≤ K|A|, then |λ1 ·A+ · · ·+ λh ·A| ≤ Kp|A| where

p = 7 + 12
h∑
i=1

log2(1 + |λi|)

In particular, this result can be presented in the following simpler form:

Corollary 3.0.2. If |A+A| ≤ K|A| and |λi| ≤ 2r then

|λ1 ·A+ · · ·+ λh ·A| ≤ KO(rh)|A|.

Bukh himself supposed that this result can be further improved in case where there are
many summands involved. Slight improvement was recently obtained by Bush and Zhao, who
proved the theorem below.

Theorem 3.0.3 ([8]). If |A+A| ≤ K|A| and |λi| ≤ 2r then

|λ1 ·A+ · · ·+ λh ·A| ≤ K
O

(
(r+h)2

log(r+h)

)
|A|.
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The main innovation in their proof is the use of graph theoretic methods. The main aim
of this paper is to improve this bound using di�erent (more direct) method.

It seems clear that if the set of λi coe�cients have some good additive properties it should
be possible to get some better bounds. Formalizing this intuition is the main focus in the
second part of this chapter. This line of investigation was started by the Schoen and Shkredov,
who proved the following

Theorem 3.0.4 ([26]). Let A ⊂ G be a �nite set and λi ∈ Z \ {0}. Suppose that |A + A| ≤
K|A|, then

|λ1 ·A+ · · ·+ λh ·A| ≤ eO(log8K)(h+log (
∑
i |λi|))|A|.

The novelty here is that the result shows that the problem turns out to be much easier for
some speci�c choice of parameters K and h, i.e. when h is su�ciently large compared to K.

3.1. Tools

Basic tools we are going to use include primarily the so called Ruzsa calculus. It consists of
inequalities bounding cardinalities of certain sumsets by expressions involving other sumsets.
In our arguments we are going to use the following inequality.

Lemma 3.1.1 (Sum triangle inequality, [24]). For any �nite X,Y, Z ⊂ Z we have

|X + Z| ≤ |X + Y ||Y + Z|
|Y |

.

It is analogous to classical Ruzsa triangle inequality.

Lemma 3.1.2 ([23]). For any �nite X,Y, Z ⊂ Z we have

|X − Z| ≤ |X − Y ||Y − Z|
|Y |

.

It should be remarked that in our approach we could use this inequality in place of sum
triangle inequality. Using sums only makes the exposition a little bit clearer.

We are going to repeatedly use Plünnecke (Proposition 4) inequality as well as Bukh's
theorem (Theorem 3.0.1).

In [26] the theorem of Sanders stated below is used to improve the bound when K is small
compared to k.

Lemma 3.1.3 ([25]). Suppose that G is an abelian group and A,S ⊂ G are �nite non-empty

sets such that |A+S| ≤ K min{|A|, |S|}. Then (A−A)+(S−S) contains a proper symmetric

d(K)-dimensional coset progression P of size exp (−h(K))|A + S|. Moreover, we may take

d(K) = O(log6K) and h(K) = O(log6K log logK).

In the same paper the following corollary is proved, which we will use to continue investi-
gation in this line of reasoning by proving theorem 3.2.2.
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Corollary 3.1.4 ([26]). Let A be a subset of abelian group G such that |A+A| ≤ K|A|. Then

|kA| ≤
(

3ek

K

)O(K log8K)

|A|.

for every k ≥ K.

Covering lemmas turn out to be very useful in bounding sums of dilates. Bukh in his
proof used Ruzsa covering lemma (Lemma 0.0.17).

We use another lemma proved by Chang to improve the bounds when then set of λ
coe�cients has some additive structure. Recall De�nition 0.0.16.

Lemma 3.1.5 (Chang covering lemma, [30]). Suppose that G is an abelian group and A,S ⊂
G are �nite sets with |nA| ≤ Kn|A| for all n ≥ 1 and |A+ S| ≤ L|S|. Then there is a set T
with |T | = O(K log 2KL) such that

A ⊂ Span(T ) + S − S.

3.2. Results

Now we state our �rst theorem.

Theorem 3.2.1. Let |A+A| ≤ K|A| and let |λi| < 2r for i = 1, . . . , h. Then

|λ1 ·A+ · · ·+ λh ·A| ≤ K
O
(

rh
log(h)

+h log(h)
)
|A|.

Proof. Without loss of generality we can assume that h ≥ 16, since otherwise it follows from
theorem 3.0.1. If r ≤ log h, then again the claim follows from theorem 3.0.1. We are going
to show that it holds for every h and r using induction on r with additional assumption that
λ1 = 1.

Let Sλ = λ1 ·A+ · · ·+λh ·A. Take d = b h
log hc. Write λi as a sum dλ′i+αi with 0 ≤ αi < d.

Then with λ′ = (1, λ′2, . . . , λ
′
h) and α = (α1, . . . , αh, d)

|Sλ(A)|
|A|

≤ |Sα(A)|
|A|

|Sλ′(A)|
|A|

by Ruzsa triangle inequality with X = α1 ·A+· · ·+αh ·A, Y = d·A and Z = λ′1 ·A+· · ·+λ′h ·A.
We can bound the �rst term by collecting summands with the αi and then repeatedly

using Ruzsa triangle inequality. Writing ki for the number of summands with αj = i we get

|Sα(A)|
|A|

=
|k11 ·A+ · · ·+ kd−1(d− 1) ·A|

|A|
≤

≤ |(k1 + 1)A|
|A|

|A+ 2 ·A|
|A|

d−1∏
i=2

(
|(ki + 2)i ·A|

|A|
|i ·A+ (i+ 1) ·A|

|A|

)
|d ·A+ d ·A|

|A|

At each step we used Ruzsa triangle inequality twice: �rst time with X(1)
i = kii·A, Y (1

i ) = i·A
and Zi = ki+1(i + 1) · A + · · · + kd−1(d − 1) · A and then the second time with X(2)

i = i · A,
Y

(2)
i = (i+ 1) ·A.
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Using Plünnecke inequality to bound each term with repeated summand and theorem
3.0.1 to bound expressions with di�erent summands we obtain

|Sα(A)|
|A|

≤ K
∑d−1
i=1 (ki+2)+1KO(d log d) ≤ KO(2d+1+h+d log d)

By the de�nition of d we have
|Sα(A)|
|A|

≤ KO(h).

To bound the second term we can use induction assumption. By our additional assumption
(λ1 = 1) there will be only at most h summands. By assumption on h and the de�nition of
d the number of bits in λ's will drop by at least 1

2 log h. Hence

|Sλ(A)|
|A|

≤ KO(h)K
O
(

(r− 1
2

log h) h
log h

+h log h
)
≤ KO

(
rh

log(h)
+h log(h)

)
|A|

Without assumption on λ1 we can use the theorem for the set A + λ1 · A + · · · + λh · A
with (h+ 1) summands, which contains a translate of the original set. It follows that in this
case the claim holds with slightly larger constant implicit in O() notation.

Our next theorem applies to the case when K is much smaller than h. It shows that then
the dependence on h becomes polynomial under those assumptions. Hence it improves on
Theorem 3.0.4 in such circumstances.

Theorem 3.2.2. Let |A+A| ≤ K|A| and let |λi| < 2r for i = 1, . . . , h. If h ≥ K, then

|λ1 ·A+ · · ·+ λh ·A| ≤ (C(K)hf(K))r|A|,

where C(K) = 15e
2K and f(K) = O(K log8K)

Proof. Again we are going to use induction on r with additional assumption that λ1 = 1.
For r = 1 it follows from corollary 3.1.4. To show it for greater r we use binary expansion,
namely we write λi as a sum 2λ′i + αi with αi ∈ {0, 1}. Then with λ′ = (1, λ′2, . . . , λ

′
h) and

α = (α1, . . . , αh, 2) we have (just as in the proof of the previous theorem)

|Sλ(A)|
|A|

≤ |Sα(A)|
|A|

|Sλ′(A)|
|A|

.

We can bound the �rst term using corollary 3.1.4 and the fact that 2 ·A ⊂ A+A by

|Sα(A)|
|A|

≤ |(h+ 2)A|
|A|

≤
(

3e(h+ 2)

K

)O(K log8K)

.

Using induction assumption to bound the second term we get

|Sλ′(A)|
|A|

≤ (C(K)hf(K))r−1.

Multiplying the last two equations we get

|Sλ(A)|
|A|

≤
(

3e(h+ 2)

K

)O(K log8K)

(C(K)hf(K))r−1 = (C(K)hf(K))r.

It �nishes the proof of the claim with additional assumption. We get rid of this assumption
in the same way as in the previous proof.
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Our last theorem considers the case when Λ - the set of λi coe�cients - has some additive
structure. In such setting spectacular improvement is possible.

Theorem 3.2.3. Let |A+A| ≤ K|A| and let Λ ⊂ [2r]. Furthermore, assume that |Λ + Λ| <
L|Λ|. Then

|λ1 ·A+ · · ·+ λh ·A| ≤ KO((h+r)L logL)|A|.

Proof. By Chang covering lemmma (with A = Λ, K = L, S = {0}), we know that there is a

set Γ such that Λ ⊂ Span(Γ) and |Γ| = O(L log 2L). Write each λi as a sum λi =
∑|Γ|

j=1 εi,jγj ,
where εi,j ∈ {−1, 1} for every i, j. Then

|λ1 ·A+ · · ·+ λh ·A| = |
h∑
i=1

(

|Γ|∑
j=1

εi,jγj) ·A| ≤ |
h∑
i=1

|Γ|∑
j=1

εi,jγj ·A| = |
|Γ|∑
j=1

h∑
i=1

εi,jγj ·A|

We can use Ruzsa triangle inequality twice (the �rst time withX1 =
∑h

i=1 εi,1γ1·A, Y1 = γ1·A,
Z = γ1 · A

∑h
i=2 εi,jγj · A, the second time with X2 = γ1 · A and Y2 = γ2 · A ) to bound the

last expression by

|
|Γ|∑
j=1

h∑
i=1

εi,jγj ·A| ≤
|
∑h

i=1 εi,1γ1 ·A+ γ1 ·A|
|A|

|γ1 ·A+ γ2 ·A|
|A|

|γ2 ·A+

|Γ|∑
j=2

h∑
i=1

εi,jγj ·A|

Using Plünnecke inequality to bound the term with repeated (up to sign) summand and
Theorem 3.0.1 to bound the expression with di�erent summands we obtain

|
|Γ|∑
j=1

h∑
i=1

εi,jγj ·A| ≤ KO((h+1)+r)|γ2 ·A+

|Γ|∑
j=2

h∑
i=1

εi,jγj ·A|

Continuing in this way, we can prove by induction that

|
|Γ|∑
j=1

h∑
i=1

εi,jγj ·A| ≤ KO((h+2)+r)|γk ·A+

|Γ|∑
j=k

h∑
i=1

εi,jγj ·A|,

which for k = |Γ| gives the claim (after another application of Plünnecke inequality).

We conclude with a simple lemma showing once again how additive structure of Λ may
in�uence the bounds.

Lemma 3.2.4. For any i, j, if we take λ′i = λi ± λj and λ′k = λk for k 6= i, we have

|Sλ(A)|
|A|

≤ K3 |Sλ′(A)|
|A|

(3.1)

Proof. To see this we use the fact that Sλ(A) ⊂ Sλ′ ∓ λj · A. Let λ′′j = 0 and λ′′k = λ′k for
k 6= j. Now we use Ruzsa triangle inequality with X = Sλ′′ , Y = λj ·A and Z = λj ·A∓λj ·A.

|Sλ(A)|
|A|

≤ |Sλ
′(A)∓ λj ·A|
|A|

≤ |Sλ
′(A)|
|A|

|λj ·A+ λj ·A∓ λj ·A|
|λj ·A|

.

Now (3.1) follows from Plünnecke inequality.
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