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Environmental change and biotic interactions both govern the evolution of the biosphere, 1 

but the relative importance of these drivers over geological time remains largely unknown. 2 

Previous work suggests that, unlike environmental parameters, diversity dynamics differ 3 

profoundly between the Palaeozoic and post-Palaeozoic eras. Here we use the fossil record 4 

to test the hypothesis that the influence of ocean chemistry and climate on the ecological 5 

success of marine calcifiers decreased throughout the Phanerozoic eon. Marine calcifiers 6 

build skeletons of calcite or aragonite, and the precipitation of these calcium carbonate 7 

polymorphs is governed by the magnesium-to-calcium ratio and temperature in abiotic 8 

systems. We developed an environmental forcing model based on secular changes of ocean 9 

chemistry and temperature and assessed how well the model predicts the proliferation of 10 

skeletal taxa with respect to calcium carbonate polymorphs. Abiotic forcing governs the 11 

ecological success of aragonitic calcifiers from the Ordovician to the Middle Jurassic, but 12 

not thereafter. This regime shift coincides with the proliferation of calcareous plankton in 13 

the mid-Mesozoic. The deposition of biomineralizing plankton on the ocean floor buffers 14 

CO2 excursions and stabilizes Earth’s biochemical cycle, and thus mitigates the evolutionary 15 

impact of environmental change on the marine biota.  16 

Dramatic shifts in the success of dominant animal groups in Earth history abound in the fossil 17 

record1 and there are numerous Phanerozoic-scale macroevolutionary trends. Traits such as 18 

body size, the metabolic rate of dominant taxonomic groups, and physiological buffering 19 

capacity have increased over the course of the Phanerozoic2-5. As a consequence, biotic 20 

interactions may have increased as well6-9. In contrast, climate and seawater composition 21 

show a cyclical behaviour rather than Phanerozoic-scale trends10,11. The biosphere has 22 

evolved to cushion some environmental variability: for example, the buffering of ocean 23 
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chemistry has increased due to the mid-Mesozoic ascent of calcifying plankton12. 24 

Perturbations of the carbon cycle have fallen in amplitude, particularly since the mid-25 

Mesozoic13 (Fig. 1d), and extinction rates have decreased towards the present14 (Fig. 1e). 26 

Accordingly, we hypothesize that the evolutionary importance of the abiotic environment, 27 

relative to intrinsic, biotic factors, has declined through geological time. 28 

We tested this hypothesis using the vast fossil record of marine calcifiers. In the inorganic 29 

formation of calcium carbonate (CaCO3), high Mg/Ca ratios and high temperatures have been 30 

shown to favour the precipitation of aragonite over calcite, and vice versa15. Across the 31 

Phanerozoic, tectonically driven changes in sea water chemistry and climate have caused 32 

aragonite and calcite favouring conditions to alternate, giving rise to episodes of “aragonite 33 

seas” and “calcite seas”10,16 (Fig. 1b). The skeletal mineralogy of calcifying organisms is 34 

strongly tied to phylogenetic history, but the de novo acquisition of biominerals, skeletal 35 

composition, skeletal production, and growth rates of many marine calcifiers are affected by 36 

the Mg/Ca ratio and temperature of the surrounding sea water17-21, analogous to inorganic 37 

CaCO3 formation. If aragonite and calcite seas were influential in the evolution of marine 38 

calcifiers, we expect a correspondence of aragonite sea conditions with greater success of 39 

aragonitic taxa.  40 

Aragonite - calcite seas and the success of marine calcifiers 41 

We combine a model of past Mg/Ca ratios22 (Fig. 1b) with δ18O temperature 42 

reconstructions23 (Fig. 1c) to quantify aragonite sea intensity (ASI) in 85 post-Cambrian stages. 43 

The ASI is parametrized from experimental data15 via multiple regression. We contrast ASI 44 

with a measure of the environmental occupancy, or success, of aragonitic genera relative to 45 

all calcifying genera (SCORara), calculated with the Summed Common species Occurrence Rate 46 
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(SCOR)24. Given that novel acquisitions of calcium carbonate skeletons are rare and that 47 

switches in skeletal mineralogy are largely restricted to a few clades20,21,25, changes in SCORara 48 

reflect predominantly the differential success of aragonitic taxa, rather than changing 49 

mineralogies within calcifying clades (Supplementary Materials S6). Although the lower 50 

preservation potential of aragonitic taxa may lead to underestimate the abundance of 51 

aragonitic taxa26, we find that the completeness of the record of aragonitic and calcitic genera 52 

is not significantly different (Wilcoxon signed-rank test: p = 0.28, Supplementary Materials 53 

S3). The strength of abiotic controls on marine calcifiers is assessed by estimating linear 54 

models of SCORara against ASI using generalised least squares (GLS) to account for temporal 55 

autocorrelation, and by convergent cross mapping (CCM) to detect causal coupling27 56 

(Methods).  57 

Visual inspection of the SCORara and ASI time series suggests an association in the Ordovician 58 

– Carboniferous and again in the early Mesozoic, but not for most of the Mesozoic and 59 

Cenozoic (Fig. 1a). A linear model of SCORara against ASI is significant in the Palaeozoic 60 

(R2 = 0.15, p = 0.017, Table 1), and not in the Mesozoic – Cenozoic (R2 < 0.01, p = 0.68), 61 

suggesting a decreasing dependence of ecological success on relevant environmental 62 

conditions in the Mesozoic. In the entire Ordovician – Pleistocene data, the linear relationship 63 

is not significant (R2 < 0.01, p = 0.70), however the sharp rise of SCORara across the Permian-64 

Triassic makes estimating linear models across this boundary problematic.  65 

We used a Bayesian approach to identify the timing of the changes in the relationship 66 

between SCORara and ASI (see Methods). This analysis identifies the Permian-Triassic 67 

boundary as the strongest change point of the entire Phanerozoic time series (supported by 68 

100 % posterior probability; Fig. 2a, purple bar). When evaluating only the Palaeozoic time 69 
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series, the Carboniferous – Permian boundary shows the strongest change (73% probability; 70 

Fig. 2a, red bars), whereas no unambiguous single change point is found for the Mesozoic – 71 

Cenozoic time series (all probabilities <25%; Fig. 2a, green bars).  72 

To evaluate the possibility of a gradual change, we fitted linear models of SCORara against ASI 73 

from the Triassic onwards, adding successively more stages towards the present, and 74 

repeated the same process with the Palaeozoic data, separately. The relationship of SCORara 75 

and ASI is consistently strong in the Palaeozoic, with a weakening around the Carboniferous 76 

– Permian boundary (Figure 2b). In the Mesozoic, a positive linear relationship persists up to 77 

the Middle Jurassic, although with lower statistical support. No relationship is supported from 78 

the Late Jurassic onwards. The relationship of SCORara and ASI evolves in a similar way when 79 

SCORara is calculated only in the subset of organisms which are considered especially 80 

responsive to physiochemical changes in the environment (Supplementary Fig. S7)2,25,28.  81 

These results are reinforced by using CCM, a technique developed to detect causal coupling 82 

between time series by quantifying the extent to which a putative response time series can 83 

be used to predict a driver time series27 (see Methods). If this prediction is successful beyond 84 

some appropriate null hypothesis (Methods), we take it as evidence of dynamical coupling. 85 

Applying CCM in expanding time windows, we find a significant dynamical influence of ASI on 86 

SCORara in the Ordovician - Jurassic (Fig. 2c), implying a causal link between aragonite-calcite 87 

sea conditions and SCORara in this part of the record. Following a maximum in the early 88 

Jurassic (Sinemurian), the CCM prediction skill decreases gradually until the Early Cretaceous 89 

and remains low thereafter. This decline indicates a weakening influence of ASI on the success 90 

of marine calcifiers towards the present.  91 
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Our findings corroborate the hypothesis of a decreasing environmental influence on marine 92 

calcifiers’ success. The correlation of aragonite-calcite seas and the success of aragonitic 93 

calcifiers decreased chiefly in two episodes: Around the Carboniferous-Permian boundary, 94 

and in a second episode centred in the Middle Jurassic (Fig 2). Permian seawater had an 95 

unusually high CaCO3 saturation12,29. All else being equal, higher CaCO3 saturation facilitates 96 

calcification30 and tends to shift the CaCO3 polymorph balance in favour of calcite31.  97 

Consequently, calcifiers with a calcitic skeleton performed better than predicted by ASI when 98 

the CaCO3 saturation state rose in the Permian. Calcitic taxa, particularly brachiopods, 99 

became more successful across the Carboniferous – Permian boundary (Supplementary 100 

Fig. S8, a detailed discussion of the relative success of the major taxonomic groups of marine 101 

calcifiers is provided in the Supplementary Materials). The influence of ASI on SCORara 102 

decreased but their correlation remained positive within the Permian (Fig. 2b, Table 1). 103 

Although CaCO3 saturation state probably remained high during the Triassic32, ASI continued 104 

to affect SCORara in the early Mesozoic, but not thereafter. 105 

The role of calcifying plankton 106 

In the mid-Mesozoic, the Earth-Life system was revolutionised by the rise of calcifying 107 

plankton12. Before the widespread occurrence of planktonic calcifiers, CaCO3 precipitation 108 

was largely confined to the continental shelves and linked to the success of benthic calcifiers 109 

such as corals and brachiopods. The evolutionary success of calcifying plankton, especially of 110 

coccolithophores33, shifted the carbonate factory from the shelves to the open ocean. 111 

Calcareous tests sink to the ocean floor and either dissolve or accumulate, depending on the 112 

local CaCO3 saturation state. Since the proliferation of planktonic calcifiers, changes in the 113 

atmospheric and oceanic CO2 content have been compensated on geologically short time 114 
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scales by increased CaCO3 deposition or dissolution in the deep sea34. The evolutionary impact 115 

of episodes of severe climatic change with associated ocean acidification such as the 116 

Palaeocene-Eocene Thermal Maximum has been less severe than comparable events in the 117 

Palaeozoic and early Mesozoic35,36, possibly a consequence of the increased ocean 118 

buffering12,37  119 

Producing a skeleton out of sync with aragonite-calcite sea conditions may be costly especially 120 

when CaCO3 secretion is impeded by ocean acidification. Enhanced ocean buffering after the 121 

proliferation of calcifying plankton can explain the diminished response of marine calcifiers 122 

to changing aragonite-calcite sea conditions after the mid-Jurassic. Several key events in the 123 

evolution of calcifying plankton fall into the Middle – Late Jurassic. Planktonic foraminifera 124 

first appear in the fossil record during the Lower Jurassic, but the first known deep water 125 

carbonate oozes composed of planktonic foraminifera date back to the Middle Jurassic38,39. 126 

The thick-walled coccolithophore genus Watznaueria diversified in the early Middle Jurassic, 127 

resulting in an increase of coccolith flux to the sediment by two orders of magnitude40. 128 

Nannofossil deposits from the Tethys ocean show that coccolithophores colonised the open 129 

ocean during the Late Jurassic and became abundant enough to affect the marine carbonate 130 

system41. 131 

A new evolutionary regime 132 

Beyond skeletal mineralogy, there is evidence for a wider regulatory change of evolutionary 133 

patterns and environmental state shifts in the mid-Phanerozoic. Devastating extinctions in 134 

the Late Permian – early Mesozoic overturned the taxonomic composition of marine 135 

calcifiers36,42 and favoured the survival of active and physiologically buffered animals28,43. As 136 

a consequence, the dominant, modern marine biota are less vulnerable to abiotic stressors 137 
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than their Palaeozoic counterparts43, and individual energy budgets of bivalves and 138 

gastropods increased throughout the early Mesozoic3,5. This rise in available metabolic energy 139 

may have helped absorb the cost of secreting a shell out of sync with aragonite-calcite sea 140 

conditions. 141 

The Mesozoic rise of plankton such as foraminifera38, coccolithophores, and dinoflagellates44 142 

had an additional effect on the bio-geosphere: tests of phytoplankton act as ballast, 143 

increasing its sinking velocity and increasing the depth at which organic carbon is oxidised, 144 

which in turn can explain the much lower prevalence of anoxia on Mesozoic and Cenozoic 145 

shelves45. Increasing oxygenation of shallow ocean water is indicated from the Jurassic 146 

onwards by iodine-to-calcium ratios46 (Fig. 1f). Well-oxygenated shelves stabilise the carbon 147 

cycle by reducing the impact of sea level changes on the burial capacity of organic carbon13, 148 

thus decreasing the potential for catastrophic environmental change. Increasing oxygen 149 

availability also allows for higher metabolic rates and more active modes of life in the shelf 150 

biota, as has been inferred for the mid-Mesozoic47 and may have increased the pace of 151 

escalation in evolution48. The onset of a persistent diversity rise in the Middle Jurassic agrees 152 

with this interpretation (Fig. 1g). 153 

Our results specify the long-held notion that “the evolutionary milieu in which taxa find 154 

themselves changed substantially” from the Palaeozoic to the modern world49: We found a 155 

prominent decrease in environmental influence on the ecological success of marine calcifiers, 156 

although some 80 million years after the end of the Palaeozoic. This regime shift was caused 157 

by a number of abiotic and biotic revolutions in the Earth-Life system. Of all the factors 158 

contributing to this pattern, the onset of the modern carbon cycle via deep-sea CaCO3 159 

sedimentation was likely the most consequential for marine calcifying organisms. The high-160 
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level taxonomic composition of marine life changed towards a “modern” biota after the end-161 

Permian catastrophe1, but the Palaeozoic evolutionary regime may have persisted well into 162 

the Mesozoic. 163 
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Figures 300 

 301 

Figure 1: Environmental and biotic changes across the Ordovician – Neogene 302 

(a) ASI (aragonite sea intensity, blue) and SCORara (relative Summed Common species 303 

Occurrence Rate of aragonitic genera, black), in 85 Ordovician – Pleistocene stages. 304 

Shaded areas represent 2 standard errors around the mean with 305 

the ASI error envelope being based on the temperature component (Methods). Stages 306 
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with only one measurement are drawn as solid dots, stages without observations 307 

(circles) have been averaged from the neighboring stages. 308 

Legend: O = Ordovician, S = Silurian, D = Devonian, C = Carboniferous, P = Permian, T 309 

= Triassic, J = Jurassic, K = Cretaceous, Pg = Palaeogene, N = Neogene and Quaternary, 310 

Ma = Million years ago. The blue – red transitions and the vertical bar mark the time 311 

when the relationship between ASI and SCORara decreased most strongly (See Fig. 2b, 312 

c). 313 

(b) Modelled Mg/Ca ratio from ref. 22 (blue line) and a compilation of Mg/Ca proxy data 314 

(black dots, see Supplementary Materials S1). The bar at the top delineates calcite and 315 

aragonite sea intervals as predicted by ref. 16.  316 

(c) Mean stage-level tropical shallow water temperatures calculated from oxygen isotope 317 

measurements compiled in ref. 23. Stages with only one measurement are drawn as 318 

solid dots, stages without observations have been averaged from the neighbouring 319 

stages and are shown as circles. Shaded areas represent 2 standard errors around the 320 

mean. 321 

(d) Periodic changes in the envelope of third-order δ13C variations, reprinted from ref. 13 322 

with permission of the American Journal of Science. The grey area highlights the 323 

variability. 324 

(e) Genus-level, sampling-standardised extinction proportions (circles, see Methods) with 325 

long-term trend line (brown; LOESS regression with a smoothing span of 0.1). 326 

(f) Box plots showing the variability of iodine-to-calcium (I/Ca) ratios from shallow water 327 

carbonates within sampling localities, reprinted from ref. 46 with permission from 328 
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AAAS. I/Ca ratios are considered a proxy for oxygenation, with higher I/Ca ratios 329 

indicating better oxygenation. 330 

(g) Sampling-standardised marine genus-level diversity (circles, see Methods) with long-331 

term trend line (brown; LOESS regression with a smoothing span of 0.1). 332 

  333 
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 334 

Figure 2: Changing relationship of SCORara and ASI.  335 

(a) Bayesian posterior probabilities for changes in the linear regression of SCORara against ASI 336 

for the entire time series (purple bar), the Palaeozoic (red) and the Triassic – Pleistocene 337 
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(green). The strength of correlation between SCORara and ASI changed around the 338 

Carboniferous – Permian boundary and at the Permian – Triassic boundary, whereas no 339 

distinct point of change is found in the Mesozoic – Cenozoic time series.   340 

(b) Linear models of SCORara against ASI in windows of increasing length for the Palaeozoic 341 

and for the Mesozoic – Cenozoic. Expanding windows start with the first six stages and all 342 

data are plotted at the last stage of the respective window. Black line = slope; blue 343 

area = R2; diamonds = p-values; only p-values < 0.1 are shown. The boxes at the bottom 344 

of the graph indicate the gap for the first five stages (hatched pattern), and whether linear 345 

models were generated using ordinary least squares (OLS), or generalised least squares 346 

(GLS, see Methods). These results demonstrate a strong positive correlation between 347 

SCORara and ASI for the Palaeozoic time series, and a strong, although less robust positive 348 

correlation in the early Mesozoic that weakens with the inclusion of data from the Middle 349 

Jurassic onwards. 350 

(c) Predicting ASI from SCORara with convergent cross mapping (CCM) for expanding time 351 

series. All included time series start with the first Ordovician stage and all data are plotted 352 

at the last stage of their respective window. The CCM prediction skills (solid black line) 353 

can be interpreted as the strength of dynamical influence of ASI on SCORara. The dashed 354 

red line shows the 95th percentile of 500 random surrogate time series, which we take as 355 

a significance criterion. Time windows shorter than the Ordovician – Middle Triassic did 356 

not pass the CCM convergence test and were not included (see Methods). The CCM skill 357 

shows a sustained drop when Jurassic – Early Cretaceous stages are added, which implies 358 

a continuously weakening dynamical influence of ASI on SCORara. 359 
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Tables 360 

Table 1: Linear models with GLS 

(d) Generalised least squares linear models of SCORara against ASI in the entire data set and 

in temporal subsets. N denotes the number of observations, ε denotes the error term of 

the regression, with AR indicating autoregressive errors and ind. indicating independent 

errors. φ denotes the autocorrelation of the error at lag = 1. In models with 

autocorrelated error terms, R2 is calculated from the log-likelihoods of the model and the 

corresponding null model (Methods). Models with independent errors are equivalent to 

an ordinary least squares linear model. 

  N ε φ Intercept Slope R2 p 

entire data set 85 AR 0.93 0.45 0.05 0.00 0.70 

Palaeozoic 38 AR 0.57 0.13 0.25 0.15 0.017 

Ordovician - Carboniferous 29  ind. - 0.07 0.60 0.59 < 0.001 

Permian 9  ind. - 0.05 0.28 0.68 0.006 

Mesozoic - Cenozoic 47 AR 0.68 0.65 0.04 0.00 0.68 

         
 

 361 

 362 
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Methods 363 

Fossil and palaeoenvironmental data were grouped into 85 Ordovician to Pleistocene geological 364 

stages. To achieve more uniform stage durations, we combined stages shorter than 1 million years 365 

(myr) with neighbouring stages (Table S4). Consequently, the two Early Triassic stages were combined, 366 

as were the four Pleistocene stages. All analyses were carried out in R, version 3.4.150 367 

Fossil data. We used the Paleobiology Database (PBDB, https://paleobiodb.org/) to assess the global 368 

fossil record of marine calcifiers. The PBDB records occurrences of fossil organisms and the geological 369 

setting in which they were preserved. For our analysis, we relied on internal PBDB information on 370 

stratigraphy, taxonomy, mineralogy, life habits, preservation, lithification, and palaeocoordinates 371 

(Table S3). All Phanerozoic occurrence data were downloaded on 24 January 2017 with standard 372 

settings. Cambrian occurrences were later omitted as ASI could only be calculated in the Ordovician – 373 

Pleistocene due to the insufficient Cambrian palaeotemperature record. We also excluded 374 

occurrences from non-marine settings and occurrences that could not be assigned with confidence to 375 

a geological stage. We only included occurrences that were identified to genus level and that could be 376 

reliably assigned to an invertebrate animal phylum, Foraminifera, Chlorophyta, Rhodophyta, or 377 

calcifying “Problematica”. Occurrences of plankton (coccolithophores, planktonic foraminifera, 378 

planktonic gastropods or planktonic tentaculites) were omitted. We followed the classification of 379 

skeletal mineralogy in the PBDB and considered calcifiers as “aragonitic” if their dominant mineralogy 380 

was aragonite and no secondary mineral was listed. The skeletal mineralogies recorded in the PBDB 381 

are based on the protocol described in ref. 25, from which we deviated in few exceptions – labechiid 382 

and Palaeozoic chaetetid sponges were classified as possessing a high Mg calcite skeleton (Balthasar 383 

et al., unpublished).  384 

As aragonite is thermodynamically instable at Earth surface conditions and eventually dissolves or 385 

recrystallizes to calcite, aragonite has a lower preservation potential than calcite26,51. Most 386 

occurrences of aragonite preservation are therefore concentrated in the youngest stages. We 387 
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minimized this time-dependant bias by excluding all occurrences from collections with aragonite 388 

preservation and unlithified sediments, but kept the 19 % of data which had no information on their 389 

preservation recorded to avoid excessive loss of fossil data (see Supplementary Text S3). Barring some 390 

potential undeclared occurrences of aragonite preservation, the record of aragonitic taxa used herein 391 

thus consists of specimens that have been recrystallized to the stable calcite polymorph or that have 392 

been preserved in another way, e.g. by silicification.  393 

Aragonite sea intensity (ASI). We developed a proxy for the degree to which aragonite precipitation 394 

is favoured relative to calcite precipitation in the non-biogenic environment based on the joint 395 

influence of temperature (T) and the Mg/Ca ratio on CaCO3 formation in experiments52. We conducted 396 

a multiple linear regression of the mole percent of aragonite present in every experiment against the 397 

temperature and Mg/Ca ratio under which the experiments were conducted (see figure 1 in ref. 15). 398 

We only used experiments that produced > 1 % calcite and > 1 % aragonite. This yields the equation 399 

 400 

(1) 𝐴𝑆𝐼 = −119.61 + 46.57 ×
𝑀𝑔

𝐶𝑎
+ 4.30 × 𝑇 401 

To infer past ASI for the Ordovician – Pleistocene, palaeotemperatures were calculated from a 402 

Phanerozoic δ18O compilation23, including only measurements from fossil brachiopods, bivalves and 403 

planktonic foraminifera from 35° south to 35° north, because measurements from higher latitudes are 404 

unavailable for most of the Phanerozoic. For the δ18O (‰ PDB) to T(°C) transfer function, we calculated 405 

palaeotemperatures assuming a Phanerozoic trend of increasing δ18O as in equation (2) from ref. 23. 406 

The Mg/Ca ratio ratios were taken from a Phanerozoic model of seawater composition and digitised 407 

from fig. 2.A of ref. 22 in steps of 2 million years using the R package digitize. For the Mg/Ca data, the 408 

mean from all observations falling into a geological stage was taken. ASI was calculated with average 409 

Mg/Ca data and with every individual temperature observation using equation (1). Mean and standard 410 

error of all ASI were calculated for each stage, and the resulting ASI was normalised to values between 411 

0 and 1. No temperature data was available for the Hettangian and for the Hauterivian stage. We 412 
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calculated ASI for these stages with the mean temperature of the two neighbouring stages, 413 

respectively. 414 

SCORara. Evolutionary success is widely assessed by diversity. Although species diversity and 415 

abundance of higher taxonomic ranks or ecological groups are tightly coupled53, we prefer a direct 416 

measure of occupancy to assess the ecological success of individual genera. We apply  the Summed 417 

Common species Occurrence Rate (SCOR), which is driven by the most widespread and common 418 

taxa24. SCOR reflects the actual abundance of a group of taxa with good accuracy54. The cumulative 419 

SCOR of a set of m genera is calculated as  420 

(2) SCOR =  ∑ −ln (1 −
𝑦𝑖

𝑘
)𝑚

𝑖=1  421 

where genus i is present in yi subsets out of a total of k occupied localities. We defined a locality as a 422 

cell in a global penta-hexagonal grid with 6240 hexagonal and 12 pentagonal grid cells, with an area 423 

of ca. 40,800 km2. The grid was generated using the hexagrid() function in the icosa package55. The 424 

contribution of a genus to SCOR thus depends solely on the number of cells it was sampled in.  425 

Repeated sampling within a cell does not increase SCOR. SCORara reflects the ecological occupancy of 426 

aragonitic taxa, relative to all calcifiers occurring at kall localities.  SCORara is generated by dividing the 427 

SCOR of aragonitc taxa with k = kall by the SCOR of all calcifying genera, again with k = kall. To get the 428 

relative success of major taxonomic groups, we divided the group SCOR by the SCOR of all calcifiers. 429 

For every stage, we calculated SCOR using all genera recorded in the PBDB fossil data recorded in that 430 

respective stage. 431 

We calculated the variance of any SCOR metric with the delta method24,56 432 

(3) Var(SCOR) =  ∑
𝑦𝑖
𝑘

(1−
𝑦𝑖
𝑘

)∗𝑘

𝑚
𝑖=1  433 

and can approximate the variance of SCORara using the means and variance of aragonitic SCOR and the 434 

SCOR of all calcifiers, assuming they are independent: 435 
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(4) Var(SCOR𝑎𝑟𝑎) = (
𝑎𝑟𝑎𝑔𝑜𝑛𝑖𝑡𝑖𝑐 𝑆𝐶𝑂𝑅

𝑎𝑙𝑙 𝑐𝑎𝑙𝑐𝑖𝑓𝑖𝑒𝑟 𝑆𝐶𝑂𝑅
 )2 × (

𝑉𝑎𝑟(𝑎𝑟𝑎𝑔𝑜𝑛𝑖𝑡𝑖𝑐 𝑆𝐶𝑂𝑅)

𝑎𝑟𝑎𝑔𝑜𝑛𝑖𝑡𝑖𝑐 𝑆𝐶𝑂𝑅
 +  

𝑉𝑎𝑟(𝑎𝑙𝑙 𝑐𝑎𝑙𝑐𝑖𝑓𝑖𝑒𝑟 𝑆𝐶𝑂𝑅)

𝑎𝑙𝑙 𝑐𝑎𝑙𝑐𝑖𝑓𝑖𝑒𝑟 𝑆𝐶𝑂𝑅
 ).         436 

Bayesian change point regression analysis. The relationship of ASI and SCORara changed through time. 437 

We developed statistical methodology to identify change points. In particular, we performed 438 

inference in the Bayesian framework about the unknown parameters of the model yi ~ N(µi, σi
2), 439 

i = 1,…,n, independently, in which n is the overall sample size and  440 

(5)  µi = {
𝛼1 + 𝛽1 𝑥𝑖          𝑖 = 1, … , 𝑛1 

∑ 𝛼𝑗
2
𝑗=1 + ∑ 𝛽𝑗

2
𝑗=1  𝑥𝑖        𝑖 = 𝑛1 + 1, … , 𝑛

 441 

This model allows a distinct linear relationship between yi and the covariate xi in a first and second 442 

part of the time series. The parameter 𝛼2 and 𝛽2 represent the additional intercept and slope in the 443 

second part, added to 𝛼1 and 𝛽1 of the first part. log σi is defined in a similar way, allowing for a 444 

different relationship between the standard deviation σi and the covariate xi in each time series part. 445 

In the Bayesian framework, it is necessary to specify prior distributions for all unknown parameters. 446 

We adopted normal priors with very high variances for all intercept and slope parameters. For the 447 

change point n1, we adopted a discrete uniform prior across integer values from 5 to n – 5, implying 448 

that the change point divides the time series into two sections with at least five data points each.  This 449 

prior distribution expresses considerable uncertainty about the position of the change point before 450 

seeing the data.  As it is impossible to handle the posterior distribution of all these parameters 451 

analytically, we followed the standard approach of sampling from this distribution using a Markov 452 

chain Monte Carlo (MCMC) algorithm57. To do this we used the jags program58, accessed in R through 453 

the R2jags package59. Our posterior inference is based on 100,000 iterations of the MCMC algorithm, 454 

half of which were discarded as burn-in. 455 

After inferring a first change point at the Permian-Triassic boundary, we split the data set into a 456 

Palaeozoic part and a Mesozoic – Cenozoic part. In each of the two parts, we estimated additional 457 

change points with the method described above.  458 
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Generalised least squares. Linear regression with ordinary least squares (OLS) of the form 459 

 (6)  𝑦 =  𝛼 + 𝛽𝑥 + 𝜀 460 

assumes that the errors ε are independent between observations. For our data, the residuals of an 461 

OLS linear model of SCORara against ASI are autocorrelated, which suggests that this assumption of 462 

independent errors does not hold. Generalised least square regression (GLS) can incorporate 463 

autoregressive errors and thus allows us to test for linear relationships between autocorrelated time 464 

series60. Autocorrelated errors ε of order p can be modelled as 465 

(7)  ε𝑖 = ∑ φ𝑗
𝑝
𝑗=1 𝜀𝑖−𝑗 + 𝛿𝑖   466 

with δi ~ N(0,σ2) independently, in which σ is the standard deviation.  We created linear models with 467 

independent and with autocorrelated error terms of the first order using the gls() function of the nlme 468 

R package61, performing maximum likelihood estimation by specifying gls(…, method = “ML”). For 469 

model selection we compared pairs of models with and without autoregressive errors using a 470 

likelihood ratio test62, implemented using the anova.gls() function. We selected the more complicated 471 

model only if the associated p-value was < 0.05 and the likelihood ratio was > 1. In a few instances, 472 

models with autocorrelated errors estimated φ < 0, which we attributed to model overfitting. In these 473 

cases, we chose the model without autocorrelation.  474 

As a goodness-of-fit measure for GLS models, we calculated the likelihood ratio test R2 as 475 

(8) R2 = 1 − exp (−
2

𝑚
(log 𝐿𝑀 − log 𝐿0)) 63,64, 476 

with m being the number of observations, log LM being the log-likelihood of the model, and log L0 being 477 

the log-likelihood of the null model of the form y = 1 + ε, with ε being the error as in equation (7).  478 

We take 0.05 as the alpha level for the statistical significance of linear regressions. 479 

Regression in expanding windows. We assessed the changing strength of a relationship between ASI 480 

and SCORara through time by calculating linear models in windows of expanding length. Due to the 481 
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severe increase of SCORara across the Permian-Triassic boundary, calculating the linear relationship 482 

across the entire data set may be misleading. Instead, linear models were formulated separately in 483 

the Palaeozoic and Mesozoic-Cenozoic. In both cases, the shortest window considered comprised the 484 

first six data points, while the longest window had 38 points in the Palaeozoic and 47 points in the 485 

Mesozoic – Cenozoic. In every window, an OSL and a GLS model was fitted, with autoregressive errors 486 

of the first order incorporated into the GLS model. GLS models were used from the first window 487 

onwards in which ф was positive and a likelihood ratio test comparing the OLS and the GLS model 488 

produced a p-value < 0.05. 489 

Convergent cross mapping. The success of marine calcifiers may be influenced by environmental 490 

parameters other than climate and ocean chemistry, as well as biotic interactions and chance. It is 491 

therefore possible that a causal connection between ASI and SCORara exists even when no linear 492 

relationship is detected. We test for this possibility using CCM, a model-free time series analysis 493 

method based in dynamical systems theory that can detect causal coupling in nonlinear and even 494 

chaotic systems27. It asserts that if two processes are causally linked, then information about the 495 

driver variable can be recovered from the response variable27. CCM indirectly measures the dynamical 496 

influence of the driver variable on the response variable by quantifying the extent to which a state 497 

space reconstruction (time delay embedding) of the response variable can be used to predict the 498 

driver time series. A description of the algorithm can be found in the Supplementary Materials (S2). 499 

To test for a temporally variable influence of ASI on SCORara, we performed CCM analysis on expanding 500 

time windows on the stage level data, under the assumption that these coarse-grained data 501 

contain sufficient dynamical information about Phanerozoic Earth system dynamics (see 502 

Supplementary Materials S2). We used the rEDM R package65 to perform CCM analyses for the main 503 

paper. Because of the limited number of time series points, we used embedding dimension 2 and 504 

embedding lag 1, with zero temporal exclusion radius in the predictions due to the coarse temporal 505 

resolution of the data.  For a given time window, the CCM analysis is convergent if prediction skill 506 
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increases with increasing library size (Supplementary Materials S2). If convergence is achieved, for 507 

each time window of length L, we report the median CCM skill for 500 bootstrapped samples at a 508 

library size L. In addition, to assess the significance of the results, we used surrogate testing with 509 

randomly shuffled surrogates66. The analysis for a given time window was considered significant if the 510 

median prediction skill at the largest library size exceeded the 95th percentile of the median 511 

prediction skills obtained for an ensemble of 500 surrogate CCM analyses (dashed, red line in Fig. 2c), 512 

where each surrogate realization, the driver time series is replaced by a randomly shuffled version of 513 

itself.   514 

Diversity dynamics. We calculated second-for-third extinction proportions67 using classical 515 

rarefaction14,68 with a sampling quota of 500 occurrences per stage and took the mean extinction 516 

proportions over 100 subsampling trials. A sampling-standardised diversity curve was generated with 517 

shareholder-quorum subsampling1 by taking the mean of 100 subsampling iterations, each with a 518 

quorum of 0.7. Following the recommendations in ref. 1, we relied on the reference-based singleton 519 

count, excluded the dominant genus from frequency calculations, and excluded the largest collection 520 

from the single-publication occurrence count. To control for short-term sampling variation, we used 521 

the corrected sampled‐in‐bin richness metric69, except for the first and the last stage, in which no 522 

sampling correction could be made. A locally estimated scatterplot smoothing (LOESS) regression70 523 

has been calculated from these results using a smoothing span of 0.1. Extinction and diversity 524 

computations were performed using the divDyn R package71. 525 

Data availability 526 

The data used to calculate SCORara are available from the Paleobiology Database at 527 

https://paleobiodb.org/. The data used to calculate aragonite sea intensity were taken from ref. 15, 528 

22, and 23. 529 
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Code availability 530 

 The code used to generate the results can be accessed at 531 

https://figshare.com/articles/R_scripts_and_protocols/7199561. 532 

 533 
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