
Video Quality Management over the Software
Defined Networking

Is-Haka Mkwawa, Alcardo Alex Barakabitze and Lingfen Sun
School of Computing, Electronics and Mathematics, Plymouth University, UK

E-mail: {is-haka.mkwawa,AlcardoAlex.barakabitze,l.sun}@plymouth.ac.uk

Abstract—Dynamic Adaptive Streaming over HTTP (DASH)
or MPEG-DASH is a popular technique that allows video quality
adaptation for high quality streaming over the Internet. However,
with bandwidth fluctuations, DASH performs poorly due to
annoying frequent number of stalls. Software Defined Networking
(SDN) has emerged as an attractive technology which has found
its way into datacentres. Since one of the main goals of the
SDN architecture is to make the network programmable and
accelerate network innovation by utilizing its control plane,
this paper has used the SDN control plane to propose a video
quality management scheme based on the traffic intensity under
DASH. Experimental results obtained by using Mininet and
OpenDaylight controller have shown that the proposed scheme
can significantly reduce the number of frequently annoying stalls
and their duration by at least 84% and 94%, respectively. This
has been achieved by switching network flows from high to low
congested network paths within an SDN architecture.
Keywords—Software Defined Networking, Quality of Experi-

ence, OpenFlow, Multimedia Communication, Multimedia Ser-
vices, Traffic Intensity, Performance Modelling and Analysis.

I. INTRODUCTION

Recently, Cisco has released the complete Visual Network-

ing Index (VNI) Global IP Traffic Forecast for 2015-2020. It

projects that, globally, IP video will represent 82% of all traffic

by 2020. Annual global IP traffic will reach 2.3 Zettabytes

per year by 2020 [1]. With such an unprecedented amount of

data, researchers in both industry and academia are posed with

pressing challenges on how to handle such traffic and at the

same time provide acceptable Quality of Experience (QoE) in

multimedia communication and services.

As a measure to address these challenges, Software Defined

Networking (SDN) has emerged to be one of the promising

solutions. One of the main goals of SDN is to make the

network programmable at the control plane by decoupling the

network control plane and the forwarding plane from conven-

tional switches and routers. The SDN architecture accelerates

network innovation by using the OpenFlow protocol [2], also

known as a Southbound API, which is an interface between the

control plane and the forwarding plane. The forwarding plane

provides forwarding functionality under the instructions of the

control plane. The Northbound interface such as RESTful

API Web services connects the control plane and network

applications. The control plane maintains the global SDN

information for management and optimization of the SDN

architecture.

SDN has the ability to provide secure and reliable end-to-

end communications that can satisfy specific transmission re-

quirements [3], therefore, achieving stringent requirements on

network transmission latency for specific networking services

such as video streaming and online gaming.

In SDN, all transactions in the forwarding plane involve

the controller by which a forwarding device such as a switch

or a router has to request for forwarding rules when the first

packet of each flow arrives at the forwarding device. Frequent

communications also involve the controller whenever there is

an update of forwarding rules or statistical data requests by the

controller to the forwarding device. In this context, the SDN

controller becomes the bottleneck in the SDN architecture

and thus, can cause QoE degradation of delivered multimedia

services. It is therefore, crucial to understand the performance

of the SDN architecture under difference traffic patterns,

especially the bursty nature of video streaming.

The European Network on Quality of Experience in Mul-

timedia Systems and Services, Qualinet (COST Action IC

1003) [4] has defined the QoE as the degree of delight or

annoyance of the user of an application or service. It results

from the fulfillment of his or her expectations with respect

to the utility and/or enjoyment of the application or service

in the light of the users personality and current state. The

QoE is influenced by several factors, including technical (e.g.,

network, device, content and applications) and non-technical

ones (e,g., user expectations/preferences, environment and

psychological impacts) [4]. Providing acceptable QoE to end

users should be the ultimate goal for any service and network

provider in order to improve churn rate and business growth.

Since the SDN controller has the global information of the

underlying forwarding devices (e.g., packet loss and available

bandwidth), it is tasked to issue instructions and forwarding

rules in order to modify network flows if needed, and take

different path if network congestion is detected in one of the

forwarding devices due to queuing delay. Modifying network

flows by switching to low congested paths can improve video

quality.

Dynamic adaptive streaming over HTTP (DASH) is cur-

rently a popular technology for video streaming over the

Internet because it allows video quality adaptation based on

the network conditions. However, DASH has negative impact

on video quality in a scenario that requires frequently bitrates

and resolution switching [5]. It was also found to perform

poorly under the presence of bursty traffic [6]. To mitigate the

disadvantages of DASH, video quality management scheme

based on the traffic intensity could be used to complement the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/218562396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DASH in a scenario whereby all the SDN network flows are

congested.

To this end, this paper proposes a traffic intensity based

video quality management scheme over an SDN architecture.

Traffic intensity has also been used in telecommunications

industry to improve the call blocking rate by introducing a

threshold on the emergency and general calls [7].

The main point of focus in this study is on the performance

of the control plane and particularly the OpenFlow protocol.

The Mininet [8], a network emulator is used to create network

of virtual hosts, switches, controllers, and links. The OpenDay-

light controller [9] is used as an SDN controller which allows

developers to write network applications that can easily work

across a wide variety of forwarding devices and southbound

protocols.

The preliminary results show that the proposed video quality

management scheme over an SDN architecture can signifi-

cantly reduce the number of stalls and their duration by more

than 84% and 94%, respectively.

The rest of this paper is organized as follows. Section II

provides the related work relevant to this research. Section III

describes the experimental setup which included the testbed

and video sequences used in the experiment. The proposed

video quality management scheme based on the traffic inten-

sity is presented in Section IV. Results and discussions are

outlined in Section V. Conclusions and future work in Section

VI concludes this paper.

II. RELATED WORK

The OpenFlow protocol is an open interface protocol used

by the SDN controller to control the forwarding devices.

Forwarding devices in the SDN are also known as OpenFlow

forwarding devices such as OpenFlow switches and routers.

The controller is commonly implemented remotely on a PC

securely connected to forwarding devices. The forwarding

devices hold flow tables which contain, packet headers for

matching incoming packets, list of actions which must be

followed to handle matched packets and collection of statistics

for each flow such as number of packets and bytes received

and transmitted. Fig. 1 depicts the packet flow through an

OpenFlow forwarding device (OpenFlow Ver 1.3). The table-

miss flow entry must specify how to handle packets that

are unmatched, and the forwarding device may decide to

send packets to the controller, drop them or direct them to

a subsequent table.

Most of the SDN performance studies have been con-

ducted under simulation experiments and analytical modelling.

Jarschel et al. [10] proposed a model to estimate the packet

loss probability and sojourn time for the SDN controller.

The model based on the queuing theory captured the packet

delay caused by the processing in the controller instead

of the processing by just the forwarding device. Although

the analytical model results were successfully validated by

simulation based on OMNET++, the model did not capture

the delay and packet loss caused by the ability of the control

Packet In
Start at table 0

Match in 
table n?

Update counters
Execute instructions:

• update action set
• update packet/match set �elds
• update metadata

Goto-
Table n?

Execute action 
set

Yes

Yes

No No

Table-
miss �ow 

entry 
exists?

Drop packet

No

Yes

Fig. 1. The packet flow through an OpenFlow forwarding device

plane to modify network flows within a forwarding device or

among the connected forwarding devices.

Authors in [11] developed a network visualization and per-

formance prediction (NVPP) tool for SDN based on queuing

theory analytical models. It predicts a network performance

arising from traffic variations and a real time view of a

network. This is the only paper that has been found to im-

plement analytical models in the virtualized SDN architecture.

However, the the proposed model has not been validated by

either simulation or real world experiments.

The scalability of the SDN control plane was modeled and

evaluated in [12]. Three SDN structures of the control plane,

i.e. centralized, decentralized and hierarchical structures, were

investigated and analyzed, and their scalabilty were compared.

However, the proposed model has not been validated by

simulation or real world experiments.

Liotou et al. [13] introduced the framework of an SDN

based QoE service to guarantee QoE level for on demand

services of Over The Top (OTT) applications by monitoring

network parameters via an SDN controller. This framework

also proposed the mapping of QoS parameters to QoE. How-

ever, the framework was neither simulated nor implemented

in SDN emulators.

The SDN was used in [14] to propose a bandwidth man-

agement scheme to optimize the overall QoE under mul-

tiple streaming sessions. The proposed scheme tailored the

bandwidth allocation based on the video content and playout

buffer instead of equally allocating bandwidth among the

competing network flows. However, the paper did not propose

any procedure on how to deal with the congested network

flows.

Kleinrouweler et al. [15] have used the global view of the

SDN controller to provide signaling feedback on target bitrates

to DASH players in order to maintain stable video quality

under the SDN architecture and reduce frequent bitrate and

resolution switches. Although this approach was demonstrated

to work efficiently, with increasing bursty background traffic in

the network, it could still result into disturbing and frequent

bitrate and resolution switches. Another disadvantage of the



proposed approach is that, DASH players have to be modified

in order to interface with the proposed service manager for

signaling.

In this paper, the proposed video quality management

scheme based on the traffic intensity over SDN does not need

to modify the DASH players. The scheme is implemented to

interface with the controller through the RESTful API Web

service in order to issue network flows redirection caused by

network congestion.

III. EXPERIMENTAL SETUP

A. SDN testbed

The testbed implemented in this paper is depicted in Fig. 2.

It uses Mininet version 2.2.0 [8] network emulator to create

a network of virtual hosts, switches and links. Mininet was

running in Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic

x86 64) with 1GB of RAM and Intel(R) Xeon(R) CPU E5-

2609 v3 @ 1.90GHz.

S1

S2 S3

S4

H3H1

H2 H4

OpenFlow

OpenDaylight controller

Fig. 2. The SDN testbed

The OpenDaylight Beryllium (Be) controller [9] has been

used as a controller which uses RESTful API Web services

to interface (North-bound) with network applications and the

OpenFlow version 1.3 protocol as an interface (South-bound)

between virtual switches and the controller. The controller was

running under Ubuntu 14.04.5 LTS (GNU/Linux 3.19.0-68-

generic x86 64) with 2GB of RAM and Intel(R) Xeon(R) CPU

E5-2609 v3 @ 1.90GHz.

Mininet and OpenDaylight controller were installed in sep-

arate virtual machines by using VMware ESXi version 6

Hypervisor.

A Python based application that interfaces with the con-

troller via the RESTful API Web services was developed. The

application collects virtual switch port statistics and issues

instructions on how to modify network flows facing network

congestion due to queuing delay and directing it to a path with

low congestion.

The bandwidth of network links connecting all virtual

switches (S1, S2, S3 and S4) is set to 10Gbps and bandwidth

connecting virtual hosts and virtual switches is set to 1Gbps.

YouTube video streaming is performed via the virtual host

H1 to host H4. Host H4 can be reached by five paths, either

S1→S4, S1→S2→S4, S1→S3→S4, S1→S3→S2→S4 and

S1→S2→S3→S4. The remaining hosts H2 and H3 are used
to generate TCP background traffic through virtual switches

S2 and S3, respectively.

B. Video Sequences

TABLE I
ENCODED VIDEO SEQUENCES

Johnny Vidyo BQTerrace

ParkScene BasketballDrive

H264 encoded video sequences used were categorized into

slow, medium and fast movements in order to evaluate the

impact of modifying network flows on the quality of video

streaming of different content types. The Johnny sequence

was categorized as slow movement because the man is talking

while seated and his upper body parts move slowly when

talking. The Vidyo sequence was categorized as medium

movement because the men are talking while seated and their

upper body parts move gently while talking. The BQTer-

race and ParkScene video sequences are categorized as fast

movement videos because motorists and cyclists are moving

in fast motion and the camera was also in motion. The

BasketballDrive video sequence is also categorized as fast

movement due to rapid movements of the basketball players.

Table I depicts the thumbnails of each encoded video sequence

used in the experiment. Video sequences bitrates and frame

rates are listed in Table II. Each video sequence was 2 minutes

long.

TABLE II
VIDEO SEQUENCES PARAMETERS

Video Sequence Bit rate (Kbps) Frame rate (fps) Resolution
Basketball 3547 30 720p
BQTerrace 3114 30 720p
Park Scene 3023 30 720p
Johnny 870 30 720p
Vidyo 890 30 720p

YouTube was used as a DASH server and its API player

was deployed into an Apache 2 Web server in one (H1) of

the SDN virtual hosts. Another virtual host (H4) was used

as a Web-based YouTube client. All encoded videos were

uploaded into YouTube and they were re-encoded into three

quality levels (720p, 480p, 360p). The YouTube API player has



been used to collect relevant information such as the buffering

duration, the number of stalls, the length and time of stalls.

These parameters will be used to evaluate and compare the

performance of the system when DASH is used with and

without the proposed scheme.

IV. VIDEO QUALITY MANAGEMENT SCHEME

The network flow switching scheme is triggered by the

virtual port queue congestion which can occur in any of the

virtual ports connecting the virtual switches and hosts. The

scheme utilizes the following parameters.

• the average arrival rate λij of video packets into port i
of switch j

• the average service rate μij of video packets at port i of
switch j

• the queue size qij of port i of switch j
• the video packet size distribution pij arriving at port i of
switch j

• the average packet loss rate lij at port i of switch j

Via the controller, the average arrival and service rates into

a virtual port is computed by periodically accessing JavaScript

Object Notation (JSON) values of packets and bytes received

and transmitted on each port. The maximum queue size value

is manually set at the beginning of the experiment.

The average packet loss rate is calculated by periodically

retrieving JSON values of packet transmit-errors.

The main goal of the scheme is to avoid the queuing

overflow which will cause packet loss and hence, adversely

affect the quality of video streaming from one host to another.

To track the queue size, the traffic intensity is defined as

below.

ρij = λij/μij (1)

where ρij is the traffic intensity at port i = 1...n of switch
j = 1...m, the traffic intensity can also be described as the
port utilization. If λij ≥ μij , then the queue will overflow,

the goal is to keep λij < μij . In this scheme, the traffic

intensity is categorized into three levels: Low, Medium and

High. The network flow which is in High level of traffic

intensity will be modified and redirected to another path with

Low or Medium traffic intensity if its threshold (Tij ≤ ρij)
has been reached (c.f., Fig. 3). The traffic under investigation is

the video streaming, the rest of the traffic is considered as the

background traffic. The traffic intensity levels are computed

based on the background traffic. When the background traffic

is higher, the available bandwidth for video streaming traffic

will be lower.

The collection of these statistics is possible because the

SDN architecture through the controller has the global view

and information of all the virtual switch port statistics. If

the destination path has high traffic intensity too, then the

redirection will not take place. In this case, other techniques

such as bitrate adaptation scheme can be carried out, however,

the bitrate adaptation is out of the scope of this paper.

If a decision is reached to update the flow based on the

traffic intensity, the SDN controller is instructed by the POST

�ij, �ij, qij,Tij

�ij= �ij/�ij

�ij >= Tij

No

Yes �ij > �kj

Redirect the 
flow to less 

congested port

Yes

No
Use other 
adaptation 
techniques

Fig. 3. Network flow switching

method to update the flow that is congested. A flow is updated

when its identifier is not changed. The flow identifier is made

up of: cookie, table id, priority and match.

V. RESULTS AND DISCUSSION

Extensive experiments have been performed under various

maximum queue sizes and on different video sequences for

three quality levels (720p, 480p, 360p). The average arrival

rates are depicted in Fig. 4 for each quality level. As expected,

the average arrival rate is higher for fast movement video

sequences (BasketballDrive, BQterrace and Parkscene) for

each quality level than medium (Vidyo) and slow (Johnny)

movements sequences. The average service rate is approxi-

mately the same because the average Ethernet frame size for

each sequence was almost the same at 1365 bytes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Johnny Vidyo Parkscene BQterrace BasketballDrive

A
rr

iv
al

 ra
te

 (K
B

ps
)

Video sequence

Average arrival rates

720p
480p
360p

Fig. 4. Average arrival rates

A. DASH without the Proposed Quality Management Scheme

The maximum queue size was set at 400 number packets

and the bandwidth was fixed at 100 Mbps to demonstrate



the behavior of DASH without the proposed video quality

management scheme.

For high level of traffic intensity (ρij ≥ 0.75), Fig. 5 depicts
the number of stalls experienced by each video sequence

at each quality level. If the YouTube client buffer is empty

due to bandwidth fluctuation, the re-buffering will start, this

operation causes stalling. Stalling plays an important role in

the evaluation of video streaming quality.

As expected more number of stalls were experienced for

fast movement video sequences at 720p quality level (Basket-

ballDrive = 15, BQTerrace = 12 and Parkscene = 13) than

for medium (Vidyo = 4) and slow (Johnny = 2) movement

sequences. Similar trend can be observed at 480p and 360p

quality levels. This is because the fast movement sequences

occupy more bandwidth than medium and slow movements

videos due to high bitrates.

 0

 2

 4

 6

 8

 10

 12

 14

 16

Johnny Vidyo Parkscene BQterrace BasketballDrive

N
um

nb
er

 o
f s

ta
lls

Video sequence

Number of stalls at High level traffic intensity

720p
480p
360p

Fig. 5. Number of stalls for High level traffic intensity

The average stalling length in seconds is depicted in Fig.

6 for High level of traffic intensity for all video sequences at

each quality level. Due to high bandwidth consumption, fast

movement video sequences experienced longer stalling time

(BasketballDrive = 23 seconds, BQTerrace = 17 seconds and

Parkscene = 20 seconds) than for medium (Vidyo = 9 seconds)

and slow (Johnny = 5 seconds) video sequences. Similar trend

can be seen for 480p and 360p quality levels.

 0

 5

 10

 15

 20

 25

Johnny Vidyo Parkscene BQterrace BasketballDrive

A
ve

ra
ge

 s
ta

ll 
tim

e 
(S

ec
on

d)

Video sequence

Average stalling time at High level traffic intensity

720p
480p
360p

Fig. 6. Average stalling length for High level traffic intensity

For the Medium level of traffic intensity (0.6 ≤ ρij < 0.75),
Fig. 7 illustrates the number of stalls experienced by each

video sequence at each quality level. For the Medium level

of traffic intensity, the number of stalls were less than that of

the High level of traffic intensity, this is because the available

bandwidth is bigger than that of the High level traffic intensity.

There were no video stalls reported for medium and slow

movement video sequences.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Johnny Vidyo Parkscene BQterrace BasketballDrive

N
um

nb
er

 o
f s

ta
lls

Video sequence

Number of stalls at Medium level traffic intensity

720p
480p
360p

Fig. 7. Number of stalls for Medium level traffic intensity

For the Low level of traffic intensity, no stalls were experi-

enced in all video sequences for all levels of quality.

B. DASH with the Proposed Quality Management Scheme

By deploying traffic intensity to trigger the network flow

switching, the traffic intensity threshold of 0.75 was empir-
ically selected. This threshold value performed better than

other thresholds under the same maximum queue size of 400

packets, the bandwidth of 100 Mbps and the selected video

sequences.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Johnny Vidyo Parkscene BQterrace BasketballDrive

N
um

nb
er

 o
f s

ta
lls

Video sequence

Number of stalls for the proposed scheme

720p
480p
360p

Fig. 8. Number of stalls in the proposed scheme

Fig. 8 depicts the number of stalls after the current net-

work flow with High traffic intensity was redirected to a

flow with the Low level of traffic intensity. The number of

stalls were only reported for fast movement video sequences

(BasketballDrive = 2, BQTerrace = 1 and Parkscene = 1),

and only at 720p quality level. The results show that the

number of stalls in the proposed video quality management



scheme is significantly smaller compared to DASH without

the proposed scheme. No stalls were reported once the DASH

video streaming was in the new path with the Low level of

traffic intensity. For demonstration purposes, only High level

traffic intensity was used to compare DASH with and without

the proposed scheme.

Table III compares the number of stalls for DASH with

and without the proposed scheme. The results show that the

number of stalls have been significantly reduced by more than

84% at High level of traffic intensity for all quality levels.

TABLE III
COMPARISON: DASH WITH AND WITHOUT THE PROPOSED SCHEME

Without the scheme With the scheme Reduced (%)
720p 480p 360p 720p 480p 360p 720p 480p 360p

Basketball 15 7 5 1 0 0 93.33 100.00 100.00
BQTerrace 12 6 4 1 0 0 91.67 100.00 100.00
Parkscene 13 9 7 2 0 0 84.62 100.00 100.00
Vidyo 4 3 0 0 0 0 100.00 100.00 NA
Johnny 2 1 0 0 0 0 100.00 100.00 NA

The stall duration also plays a major role in the evaluation

of video quality over DASH, the longer the stalls, the more

annoyed the viewers will be. To this end, the average stall

lengths in seconds for DASH with and without the proposed

scheme are also compared in Table IV. The results have shown

that the average stall length has also been significantly reduced

by more than 94% at High level of traffic intensity for all

quality levels.

TABLE IV
COMPARISON: DASH WITH AND WITHOUT THE PROPOSED SCHEME

Without the scheme With the scheme Reduced (%)
720p 480p 360p 720p 480p 360p 720p 480p 360p

Basketball 23 12 9 1 0 0 95.65 100.00 100.00
BQTerrace 17 9 8 1 0 0 94.11 100.00 100.00
Parkscene 20 8 9 1 0 0 95.00 100.00 100.00
Vidyo 9 5 0 0 0 0 100.00 100.00 NA
Johnny 5 2 0 0 0 0 100.00 100.00 NA

VI. CONCLUSION AND FUTURE WORK

This paper has proposed the video quality management

scheme based on the traffic intensity over the SDN architec-

ture. The experimental results based on the Mininet network

emulator and the OpenDaylight controller have shown to

significantly reduce the number of stalls due to bandwidth

fluctuations. This was achieved by switching the network flows

from High to Low level of the traffic intensity. The number

of stalls and their duration in the DASH paradigm play an

import role in defining the QoE in video streaming over the

Internet. The more the number of stalls and the longer the

stalls duration during video streaming, the more the end user

is getting annoyed.

This scheme was implemented as a Northbound network

application in Python utilizing RESTful API Web services pro-

vided by the OpenDaylight controller. The proposed scheme

has shown to be effective in mitigating the disadvantages of

DASH technique attributed to disturbing and frequent bitrates

and resolution switches under bursty background traffic. For

the High level of traffic intensity at 720p quality level, the

number of stalls and their duration were significantly reduced

by more than 84% and 94%, respectively. There were no stalls

occurrences at 480p and 360p quality levels.

Future work will include the performance analysis, mod-

elling and evaluation of Northbound network application re-

sponse time and its impact on the video quality. It is envisaged

that the response time could vary under different loads on the

controller and forwarding devices and hence, could result into

delays and eventually packet losses.

ACKNOWLEDGMENT

The work presented in this paper is partially funded by

the European Union in the context of Horizon2020 Research

and Innovation Programme under Marie Sklodowska-Curie

Innovative Training Networks (MSCA-ITN-2014-ETN), Grant

Agreement No.643072, Network QoE-NET.

REFERENCES

[1] V. N. I. Cisco, “Global mobile traffic forecast update,” 2016.
[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[3] P. Qin, B. Dai, B. Huang, and G. Xu, “Bandwidth-aware scheduling
with sdn in hadoop: A new trend for big data,” IEEE Systems Journal,
vol. PP, no. 99, pp. 1–8, 2015.

[4] K. Brunnström, S. A. Beker, K. De Moor, A. Dooms, S. Egger, M.-N.
Garcia, T. Hossfeld, S. Jumisko-Pyykkö, C. Keimel, M.-C. Larabi et al.,
“Qualinet white paper on definitions of quality of experience,” 2013.

[5] T. Hoßfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia, “Iden-
tifying qoe optimal adaptation of http adaptive streaming based on
subjective studies,” Computer Networks, vol. 81, pp. 320–332, 2015.

[6] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari,
“Confused, timid, and unstable: picking a video streaming rate is hard,”
in Proceedings of the 2012 ACM conference on Internet measurement
conference. ACM, 2012, pp. 225–238.

[7] K. Tanabe, S. Miyata, K. i. Baba, and K. Yamaoka, “Threshold config-
uration of emergency trunk reservation considering traffic intensity for
accepting more general telephone calls,” in Reliable Networks Design
and Modeling, 2014 6th Int. Workshop, Nov 2014, pp. 165–170.

[8] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, p. 19.

[9] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven sdn controller architecture,” in Proceeding of IEEE Int.
Symp. on a World of Wireless, Mobile and Multimedia Networks, 2014.

[10] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and performance evaluation of an openflow architecture,” in
Proceedings of the 23rd international teletraffic congress. International
Teletraffic Congress, 2011, pp. 1–7.

[11] J. Ansell, W. K. G. Seah, B. Ng, and S. Marshall, “Making queueing
theory more palatable to sdn/openflow-based network practitioners,” in
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management
Symposium, April 2016, pp. 1119–1124.

[12] J. Hu, C. Lin, X. Li, and J. Huang, “Scalability of control planes for
software defined networks: Modeling and evaluation,” in IEEE 22nd
International Symposium of Quality of Service, May 2014, pp. 147–152.

[13] E. Liotou, G. Tseliou, K. Samdanis, D. Tsolkas, F. Adelantado, and
C. Verikoukis, “An sdn qoe-service for dynamically enhancing the
performance of ott applications,” in Quality of Multimedia Experience
(QoMEX), 2015 Seventh International Workshop on, May 2015, pp. 1–2.

[14] S. Ramakrishnan, X. Zhu, F. Chan, and K. Kambhatla, “Sdn based qoe
optimization for http-based adaptive video streaming,” in 2015 IEEE
International Symposium on Multimedia (ISM), Dec 2015, pp. 120–123.

[15] J. W. Kleinrouweler, S. Cabrero, and P. Cesar, “Delivering stable high-
quality video: An sdn architecture with dash assisting network elements,”
in Proceedings of the 7th International Conference on Multimedia
Systems, ser. MMSys ’16. New York, NY, USA: ACM, 2016, pp.
4:1–4:10.


