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ABSTRACT

HTTP adaptive streaming (HAS) has become the de-facto
standard for video streaming to ensure continuous multime-
dia service delivery under irregularly changing network con-
ditions. Many studies already investigated the detrimental
impact of various playback characteristics on the Quality of
Experience of end users, such as initial loading, stalling or
quality variations. However, dedicated studies tackling the
impact of resolution adaptation are still missing. This pa-
per presents the results of an immersive audiovisual quality
assessment test comprising 84 test sequences from four dif-
ferent video content types, emulated with an HAS adaptation
mechanism. We employed a novel approach based on system-
atic creation of adaptivity conditions which were assigned to
source sequences based on their spatio-temporal characteris-
tics. Our experiment investigates the resolution switch effect
with respect to the degradations in MOS for certain adapta-
tion patterns. We further demonstrate that the content type
and resolution change patterns have a significant impact on
the perception of resolution changes. These findings will help
develop better QoE models and adaptation mechanisms for
HAS systems in the future.

Index Terms— Quality of Experience, Video Quality,
Resolution Switch, HTTP Adaptive Streaming

1. INTRODUCTION

Today, HTTP Adaptive Streaming (HAS) is the most popu-
lar method of streaming videos to end user devices over the
web infrastructure. It is cost-effective and ensures multimedia
service constancy and stability. HAS adapts the video play-
back according to the network characteristics. This is typi-
cally achieved by switching between representations of dif-
ferent bitrate and resolution of video. The impact of such
resolution changes during the playout on the users’ perceived
quality is an important factor; previous work [1] has already
shown how the Quality of Experience (QoE) can be influ-
enced by buffering events or variations in quality over time.
QoE also significantly affects decisions on the preference to

use a service or not [2]. Negatively affected QoE due to unsta-
ble network conditions may trigger a chain reaction, starting
from individual service abandonment up to users leaving their
service/content providers (i.e., user churn) in the long term.

Video resolution switch phenomena and their effects on
QoE have not yet been fully investigated. The main objective
of this work is to provide a systematic analysis of resolution
changes and their impact on QoE. We present the results of
a quality assessment test which investigates resolution switch
effects. In our work. the term resolution switch corresponds
to the video player switching from one played resolution to
another. We also define adaptivity as an overall effect, i.e. the
sum of resolution switch events in a sequence. With the aid of
our systematic approach, it is possible to analytically investi-
gate adaptivity patterns with respect to their Mean Opinion
Score (MOS).

We begin by describing related work in Section 2.We then
propose a novel theoretical framework for the assessment of
resolution adaptivity in Section 3. Our audiovisual test setup
is explained in Section 4. In Section 5 we interpret the results
of our assessment. Finally, in Section 6 we discuss our find-
ings and list future work. The paper is concluded in Section 7.

2. RELATED WORK AND MOTIVATION

Although the detrimental effects of various playback impair-
ments such as initial loading, stalling or quality variations
have been widely investigated (e.g., comprehensive surveys
are found in [1,3]), there is still a need for dedicated and sys-
tematic studies to tackle the impact of resolution adaptation.
However, it is not just the obvious effects on video player that
contribute to user QoE: our literature analysis focuses on the
key influencing factors on QoE for HAS adaptivity.

Human perception system characteristics play a key role
in subjective quality assessment tasks. Cranley et al. [4] em-
phasize that human visual perception is able to adapt to a spe-
cific video quality only after a few seconds. The authors noted
that impairment effects become more annoying if the quality
changes happen frequently in a very short time period. Al-
though HAS is technically capable of changing the quality
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every few seconds while streaming, in practice, adaptation is
carried out more slowly to prevent large quality variation pe-
riods or oscillations. The authors of [5] investigated up to six
quality changes in a 20-second video, which in the light of the
aforementioned considerations is beyond realistic.

Ecological validity refers to how useful and valid results
from a laboratory study are when they are applied in real life.
Experiments with artificial settings or test scenarios based on
an imaginary situation produce decontextualized results and
may not be implemented in daily life, as recently discussed
in [6]. In the domain of QoE, it is known that short-term video
quality prediction models (e.g., as shown in [7, 8]) can obtain
high performance, but the ecological validity of these models
is questionable, especially for longer video durations and their
applicability on HAS algorithms. Finally, a recent study [9]
revealed that millennials (18–34) tend to spend around 14
hours per week on video streaming services and that longer
video durations are more preferable.

Traditional testing methods show short, non-entertaining
stimuli, with repeating contents, which is known to bore
users. Having users be immersed and entertained is one of
the key factors to get more ecologically valid results from a
lab-based quality test. However, it seems that there is a lack
of application of this paradigm. When they are immersed,
users feel “sucked” into the media [10]. It may make them
less aware of their surroundings, be more enjoyed, and help
reduce stress during an experiment. Pinson et al. [11] first
suggested a new test method: a source stimulus should be
used only once so that the subjects can focus on the content
rather than evaluating the same sequences over and over. In
the same work, it is also proven that in an immersive test de-
sign, boredom and fatigue can be significantly reduced. Rob-
itza et al. [12] successfully applied the immersive test design
for HAS QoE. They note that stimuli should be entertaining
and meaningfully complete for a more ecologically valid test.

Using different content types with various characteristics
helps in developing more general statements about QoE. Con-
tent may differ in genre and enjoyability, but also in technical
parameters such as spatiotemporal complexity, the latter hav-
ing a significant impact on the quality of compressed video
encodes. In [13, 14] the only content is computer-generated
graphics. Also some studies such as [5] did not analyse the
impact of content on their obtained results. In one study [15]
investigating an adaptive streaming model, the authors chose
seven content types having almost the same spatiotemporal
complexity, although video stimuli are from different genres.
Consequently the work failed to explain a logical relation-
ship between spatiotemporal characteristics and the content
type. Additionally the impact of quality switches is not inves-
tigated.

Rodriguez et al. [7] modelled the impact of video quality
level switching. However, the authors assumed that the im-
pact of a switch would be the same, no matter if it happened
in good or bad quality regions. Our results however will show
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Fig. 1. Conceptual framework for QoE in HAS services.

that the impact is more complex. Finally, Liu et al. [16] in-
vestigated the quality level variation factors depending on av-
erage level, number of quality changes and average change
magnitude. However, the underlying quality metric they use
does not model the impact of quality switches. Also, their
work assumes a 1:1 relationship between bitrates and resolu-
tions, which is not constant in practice.

3. CONCEPTUAL QoE FRAMEWORK

From the points insufficiently tackled in previous literature
we developed a conceptual framework (see Figure 1). It com-
prises all steps in the transmission chain – from the source to
the user – and highlights the factors that need to be investi-
gated to fully understand the impact of adaptivity on QoE. It
may guide in creating a study setup, interpreting our results
and developing our future agenda. In our framework, we sim-
plified concepts from [17], but added specific parameters for
our investigation purpose.

The Encoding Level is the primary phase for the prepa-
ration of videos. It emphasizes the non-linear relationship
between encoding parameters and QoE. By encoding param-
eters we mean the combined configuration of video bitrate,
framerate, resolution and the codec chosen for different HAS
video representations. On the Receiver Level, we look at ef-
fects of unstable network conditions, shown as typical HAS
impairments. Specifically, we focus on adaptivity – together
with its parameters. The Presentation Level is about how mul-
timedia is presented on the user side. It denotes viewing con-
ditions and types of devices. Our subjective test has been
designed with a focus on that level. The Perception Level is
about the way humans consume multimedia services. Influ-
ence factors in this level are subjective: for example, they
depend on whether people can visually adapt to the impair-
ments, perceive any impairments at all or really pay atten-
tion to what is happening on the screen. Those are aspects



that seem intangible at first, but are very important for con-
sideration in future work. Finally, the Quality of Experience
Level is where the sense of quality is formed after perception.
Quality awareness is a cognitive gate component between the
Perception and Quality of Experience level. It relates to user
anticipation, content preference, enjoyment and immersion as
a function of the subjects’ desired quality features [10]. In or-
der to have an understanding of the users perceived quality,
the preceding levels in our framework should be well under-
stood first. This is where our test comes into play.

4. EXPERIMENT SETUP

In this section we will present the technical setup of our test,
which systematically addresses adaptivity as a function of res-
olution switches. We took special care to include the above-
mentioned considerations on ecologically valid conditions,
immersive source video selection and assignment of condi-
tions based on spatiotemporal characteristics.

4.1. Source Stimuli

Many existing databases do not take into account factors such
as immersiveness and enjoyment. Our 43 original videos
were obtained from various online portals, choosing the popu-
lar genres sports, cooking, sightseeing and music videos. Due
to the fact that such sequences have already been compressed
by the content provider, only 4K (3840× 2160) sources were
chosen to ensure a high enough bitrate. We additionally
checked every video for its quality to be pristine (e.g., pres-
ence of camera noise or shakiness, compression artifacts).
The 43 videos were then cut to logically complete test scenes
of 45 seconds length, resulting in 84 source clips (from here
on: SRCs).

4.2. Conditions (Adaptivity Patterns)

Our test conditions (i.e. the way the resolution switches oc-
cur over time) were based on three resolution levels: 240p,
480p and 1080p. We first defined three reference conditions
with those constant resolutions; all other conditions had one
or two resolution switch in them. For our systematic design
we considered the following adaptivity patterns, 21 in total:

• Reference conditions: 1080, 480, 240

• Single drop or increase: 1080 → 240, 1080 → 480, 240
→ 1080, 480→ 1080, 240→ 480, 480→ 240

• Symmetrical drop: 1080→ 240→ 1080, 1080→ 480→
1080, 480→ 240→ 480

• Fluctuations: 1080 → 240 → 480, 480 → 240 → 1080,
240→ 1080→ 480, 480→ 1080→ 240

• Constant drop or increase: 1080 → 480 → 240, 240 →
480→ 1080
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Fig. 2. Spatial Information values for all source sequences.

• Symmetrical increase: 480 → 1080 → 480, 240 → 480
→ 240, 240→ 1080→ 240

As can be seen, the conditions allow comparisons against
each other, which we will detail in Section 5.

4.3. SRC–Condition Assignment

Spatiotemporal characteristics play a key role in comparing
different contents in terms of how much spatial detail and
motion there is. Especially in our test design, every SRC is
shown only once, hence, it needs to be made sure that their
characteristics are equally spread out. While they may orig-
inate from the same original content (e.g. a longer sports
sequence), individual portions of the clip may differ in their
characteristics. We hypothesize that these characteristics have
a direct impact on the visibility of resolution switches.

We first calculated the Spatial Information (SI) values (ac-
cording to ITU-T Rec. P.910) for every frame in our SRCs.
From those, we obtained an SI density function, as shown in
Figure 2, giving us the entire range of SI values in our test. By
looking at the thresholds of the 33% and 66% quantile (47.8
and 71.1), we can then classify any SI values as high, middle
or low.

For the allocation of our SRCs to the conditions, we first
calculated the average SI for each third of every SRC, i.e.
from 0–15, 15–30 and 30–45 s. We then assigned the average
SI to the above-mentioned classes high, middle or low. For
example, if one SRC was split into three parts and had the
average SI values 33.5, 50.9, 79.2, it was classified as L→M
→ H. The same procedure was repeated with the SRCs split
in half (i.e., from 0–22.5 and 22.5–45 s).

These SI characteristics were then systematically paired
with the conditions under the following rules: 1) Each con-
dition should have a SRC with an SI characteristic match-
ing that condition. For example for a condition with 240
→ 480, there would be a SRC with the SI characteristic
L → M. 2) There should be the inverse condition for that
characteristic, e.g. M → L should be assigned to the SRC
in the previous case. 3) Two SRCs with constant-high and
constant-low SI would be mapped to the condition, too, re-
spectively. This lead to four SRCs being applied to every



condition (21 conditions× 4 SRCs = 84 sequences).

4.4. Video Encoding and Test Sequence Generation

For encoding the final sequences, we chose to simulate HAS
offline. We first divided the SRC clips into two or three
equally sized parts, depending on the condition assigned to
them. These parts were then encoded with ffmpeg and x264
and downscaled (if necessary) to match the condition pattern.
x264 was set to use a Constant Rate Factor of 23 to ensure
constant quality across the encode, with a one-pass encod-
ing mode. The maximum bitrate was constrained for differ-
ent resolutions – similar to what popular video streaming ser-
vices implement: 400 kbps for 240p, 1.5 Mbps for 480p and
5.5 Mbps for 1080p. After that, the parts were upscaled to
1080p and concatenated to form the final processed video se-
quences (PVSes). Audio was not compressed during the PVS
generation and played throughout the whole sequence.

4.5. Test Environment and Protocol

Our test was conducted in a standards-compliant environment
(according to ITU-T Rec. P.910). The sequences were shown
on a 42” LCD display with 1920× 1080 resolution. Subjects
were seated 3H (three times the height of the display) from
the monitor.

First, subjects were introduced to the topic. They were
then checked for visual acuity and colour blindness and had
to fill out a simple demographic questionnaire. For the main
experiment part, each PVS was presented after another, with
a randomized playlist for each subject in order to minimize
ordering effects. Before the actual PVSes were shown, we
displayed five “training” clips whose ratings were not taken
into consideration later. Subjects were asked to rate the vi-
sual quality of the stimuli. The ratings themselves were given
on a standard Absolute Category Rating (ACR) scale with la-
bels from Bad to Excellent (see ITU-T P.910), using the open
source AVRate software. Finally, subjects filled a post-test
questionnaire on what they had seen.

5. RESULTS

In our test, 30 subjects took part, 20 of which female. Their
age ranged from 19 to 51 (average: 30). In order to eliminate
unreliable viewers, we used the following procedure [12]: We
first calculated the Pearson correlation between each subject’s
vote and the overall MOS for every PVS. Then, once a sub-
ject’s correlation was below 0.70, they were removed from the
pool and the procedure repeated. This lead to the exclusion
of three subjects, meaning that our shown results are based on
27 assessors,

Our overall range of MOS is 1.48–4.70 (average: 3.13),
showing a good use of the rating scale, which stems from a

Table 1. MOS impact for one resolution switch, averaged
over all content types.

Ref. Resolution Switching Pattern MOS Impact

1080 1080→ 240 -1.66
1080 1080→ 480 -0.49
480 480→ 1080 0.45
480 480→ 240 -1.12
240 240→ 1080 1.31
240 240→ 480 1.36

balanced test. In the following, we will explain the impact of
certain experimental factors on the subjective ratings.

5.1. Impact of Conditions

First we want to verify that the chosen conditions have the
expected impact on the overall ratings. Figure 3 shows all
MOS values, grouped by condition, with the different content
types highlighted. We can see that the pattern indeed has a
strong effect on the ratings over the entire range of conditions.

Our systematic approach makes it possible to directly
compare one pattern against another. This is especially
useful when comparing, for example, a reference condition
(e.g., continuous 1080P) against a condition with a resolution
change (e.g. 1080-480). Here we can directly formulate the
impact of the switch on the MOS, by subtracting the MOS of
the switching condition from the MOS for the reference. In
the above case, this is 4.50−4.01 = −0.49. Thus, we can say
that generally, when switching from 1080 to 480, this incurs
a MOS impact of −0.49.

Table 1 shows an overview of the different MOS im-
pacts identified for the patterns with one switch. It shall be
noted that these values correspond to averages over all content
types, however, we believe that those will be more useful for a
content-independent modelling of QoE. From this table it can
be seen that the depth (as measured in vertical pixels, i.e., 600
and 840) of the switch has a significant impact, as shown by
an ANOVA between the depth and ratings (p < 0.02). Gen-
erally, we also observe that a change in resolution is worse
when it occurs at a lower level.

The direction of the change appears to have an impact too:
when users start with low resolution, they score any upwards
resolution more positively than if they had experienced a drop
in resolution. This could also be explained by a positional
effect: when low quality is played at the last few seconds of
the sequence, subjects may have given more weight to these
portions. This is also called a “recency effect”. It is visible
in other conditions, too. For example, 480 → 1080, 240 →
480 and 240→ 1080 are scored significantly higher than their
reversed counterparts that started well, but end at low quality.
The same holds true for conditions with only one switch. We
further conducted an ANOVA between the change directions
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(“down” or “up”) and the ratings, which showed a significant
effect (p = 0.04) and confirms our results.

5.2. Impact of Content and other experimental Factors

As mentioned in Section 4, we included different content
types in our experiment to get a more balanced MOS estima-
tion for a given pattern, under the hypothesis that any system-
atic content effect could be averaged out. This is especially
relevant in practical quality monitoring applications, where
the content type may not be known.

However, for correctly analyse the subjective test results,
the content type cannot be neglected: Figure 4 shows the av-
erage ratings for a given content type, considering all con-
ditions, as clearly visible, there is a significant effect of the
content type on the MOS ratings. We conducted a one-way
ANOVA between content type and ratings (p < 0.02) to prove
this effect. A post-hoc test (Tukey HSD) revealed that only
the difference between sports and cooking videos was signif-
icant (p < 0.01). As we will later see in the questionnaire
results, this is due to the visual characteristics of the content
itself, not because of its enjoyability.

5.3. Questionnaire

From our pre- and post-assessment questionnaires we gath-
ered more insight into the MOS ratings: subjects were asked
to rank the four content types according to their liking. Only
13% of the subjects marked “cooking” as first priority. This
contrasts with our quality ratings, where cooking content was
judged significantly higher than others. This leads us to con-
clude that subjects found resolution switches less disturbing
for this content, and that content preference and quality rat-
ings are not necessarily correlated. We attribute these findings
to the visual characteristics of the chosen cooking sequences
which may have made the switches less visible. However, fur-
ther analysis and tests are needed to confirm that hypothesis,
which would require the inclusion of more content types with
varying spatiotemporal characteristics.

6. DISCUSSION

As can be seen from the MOS results, our test is well-
balanced in terms of the range of conditions and content
types. The obtained MOS degradation values in Table 1 can
be used as a component in QoE models, when it is necessary
to quantify the impact of a single switch. Of course – as al-
ways the case for subjective studies – the factors shown here
are just a small part in the big picture of HAS QoE, and we
will conduct further test series in the future. In other words, it
is impossible to design a test in which one can investigate all
factors reliably. However, previous research has rarely been
that systematic: the design of conditions should be done in
such a way that they can be compared against each other.
For future tests we can re-use some of the shown clips as an-
chor points, which will allow us to create a bigger database
of adaptivity conditions that can also be systematically com-
pared.

We could successfully apply an “immersive” paradigm in



our test, meaning that entertaining sequences were used, with-
out repeating the same source. Our results indicate a strong
impact of the content characteristics on the perceived quality.

At this stage, we believe that an attempt to model the im-
pact of resolution switches would result in a too narrow view.
In fact, it would require at least another study to serve as a
database for validating any created model. Hence, our focus
lies on producing a series of complementary tests, in order to
be able to create more robust models in the end. For example,
this process has also been successfully used for the models
standardised by ITU-T.

7. CONCLUSION

In this paper we presented the results of a first study on the im-
pact of resolution changes on user-perceived QoE. We were
motivated by current literature being still inconclusive about
investigating single impairment factors that are typical for
HAS services, with resolution switches being one of them.
Our novel, systematic test design – in which we could com-
pare reference against adaptivity conditions – allowed us to
predict the effect of a specific switch in terms of MOS degra-
dation.

The experiment shown here is just one of a series of tests
that we will conduct, in order to give a full picture on resolu-
tion switches. Our conceptual framework lists all these points
as a guideline for future research: it includes factors such as
switch visibility, positional effects of switches in longer se-
quences, impact of different device types, and – among oth-
ers – socio-economic factors related to user demographics and
pricing.
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