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ABSTRACT 9 

In order to understand the climate dynamics of the Mesozoic greenhouse world, it is vital to 10 

determine paleotemperatures from higher latitudes. For the Jurassic and Cretaceous climate, there 11 

are significant discrepancies between different proxies and between proxy data and climate models. 12 

We determined paleotemperatures from Late Jurassic and Early Cretaceous belemnites using the 13 

carbonate clumped isotope paleothermometer and compared these values to temperatures derived 14 

from TEX86 and other proxies. From our analyses, we infer an average temperature of ca. 25 °C for 15 

the upper part of the water column of the Southern Atlantic Ocean. Our data imply that for mid to 16 

high latitudes, climate models underestimate marine temperatures by >5 °C and, therefore, the 17 

amount of warming that would accompany an increase in atmospheric CO2 of more than 4x pre-18 

industrial levels, as is projected for the near future. 19 

INTRODUCTION 20 

Modern anthropogenic CO2 production has resulted in rapid climate change, with near-21 

surface air temperatures in the high latitude regions rising at ca. twice the global average rate 22 

(Screen and Simmonds, 2010). Predictions of how global and polar temperatures will change over 23 
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the next few decades in response to continued CO2 release may be improved by studying past 24 

climate response to elevated CO2 levels. The Late Jurassic to Early Cretaceous (164 to 100 million 25 

years ago) was characterized by extremely high but variable levels of atmospheric CO2 (from ca. 2x 26 

to 8x pre-industrial levels; Wang et al., 2014; Foster et al., 2017), yet reconstructions of marine 27 

temperatures, particularly for the high latitudes, are contradictory (e.g., Huber et al., 1995; Price and 28 

Gröcke, 2002; Bice et al., 2003; Poulsen, 2004; Jenkyns et al., 2012; Price and Passey, 2013; 29 

O'Brien et al., 2017). 30 

The stable oxygen isotope composition of the carbonate remains of marine organisms is the 31 

most extensively used temperature proxy, yet high-latitude sea-surface temperatures (SST) derived 32 

from independent organic geochemical paleothermometers, i.e., TEX86, may be ca. 10 °C warmer 33 

than δ18O-based temperature reconstructions (e.g., Mutterlose et al., 2010; O’Brien et al., 2012) and 34 

up to 6 °C warmer than general circulation model (GCM) predictions (Price and Passey, 2013). 35 

These differences have led some authors to suggest that the high TEX86 SST estimates are too 36 

warm (Hollis et al., 2009; Meyer et al., 2018), and there is an ongoing debate as to which 37 

calibration is appropriate for applications of the TEX86 proxy at specific regions and different 38 

intervals of the geologic record (Kim et al., 2012; Taylor et al., 2013). Conversely, δ18O-based 39 

paleotemperature reconstructions rely on several assumptions, among which is the oxygen isotope 40 

composition of the seawater (δ18Osw; Huber et al., 1995; Price and Gröcke, 2002; Bice et al., 2003), 41 

and the accuracy of these assumptions still needs to be verified. If the interpretation of warm sub-42 

polar paleo-ocean temperatures can be confirmed, they imply that past and future polar warming 43 

may be much greater (i.e., >5 °C) than indicated by climate models. Furthermore, such warm 44 

temperatures test the veracity of claims of Early to mid-Cretaceous polar ice, in particular from 45 

those studies deriving data from locations distal to the poles (Miller, 2009). 46 



Deep Sea Drilling Project Site 511, on the Falkland Plateau (51°00.28'S, 46°58.30’W), is 47 

particularly well suited for studying Jurassic and Cretaceous climate due to its abundant, 48 

exceptionally preserved macrofossils, including belemnites (Jeletzky, 1983; Price and Sellwood, 49 

1997; Price and Gröcke, 2002). The Falkland Plateau was located at approximately 53 °S during the 50 

Late Jurassic–Early Cretaceous (Scotese, 2014; Fig. 1). Mean annual temperatures derived from 51 

GCMs for the Late Jurassic and Early Cretaceous indicate that the temperatures of the Falkland 52 

Plateau region (avg. 10–22 °C) are representative of similar southern hemisphere paleolatitudes 53 

(Lunt et al., 2016). Earlier research at Site 511 used the TEX86H paleotemperature proxy to suggest 54 

that warm sea-surface conditions (26–35 °C) existed during the Late Jurassic–Early Cretaceous 55 

interval (Jenkyns et al., 2012). These paleotemperatures are consistently warmer than 56 

paleotemperature estimates based on δ18Obelemnite, assuming a δ18Osw of -1‰ SMOW (11–21 °C; 57 

Price and Gröcke, 2002). Another study, undertaken on Barremian to Aptian sediments from two 58 

outcrops in northern Germany, also shows that δ18Obelemnite-derived paleotemperatures (12–16 °C) 59 

are consistently cooler than TEX86-based estimates (26–32 °C; Mutterlose et al., 2010). Jenkyns et 60 

al. (2012) argue that the offset is due to TEX86 recording sea surface temperatures, whereas 61 

belemnites record temperatures from deeper water, possibly from below the thermocline. 62 

In this study, we apply the carbonate clumped isotope paleothermometer to exceptionally 63 

well-preserved belemnite rostra from Site 511. This proxy provides seawater temperature estimates 64 

independent of δ18Osw (Price and Passey, 2013; Wierzbowski et al., 2018). In addition to 65 

constraining high latitude temperatures, we set out to resolve the uncertainties associated with 66 

previous δ18O-based belemnite temperature reconstructions. 67 

MATERIALS AND METHODS 68 

Stratigraphy and samples 69 



The lithology of the sampled section of Site 511 consists of grey-black, thinly laminated 70 

mudstones and soft, grey claystones, which were deposited in a periodically anoxic, low-energy, 71 

shallow (< 400 m) basin (Basov and Krasheninnikov, 1983; Jeletzky, 1983). 72 

A geothermal gradient of 7.4 °C/100 m has been determined (Langseth and Ludwig, 1983) 73 

at Site 511, thus, for the samples analyzed in this study, we can estimate a maximum burial 74 

temperature of ca. 50 °C. At elevated temperatures, diffusion of carbon and oxygen isotopes in the 75 

carbonate mineral lattice may reset the initial bond-ordering (e.g., Henkes et al., 2014). However, 76 

theoretical calculations based on laboratory experiments provide evidence that solid-state diffusion, 77 

even in wet and high-pressure conditions, is insignificant below 100 °C burial temperatures on a 78 

timescale of 100–160 Ma (Passey and Henkes, 2012). Thus, it is unlikely that the belemnite rostra 79 

analyzed in this study were affected by solid-state reordering. 80 

Eleven belemnites (Belemnopsis sp.) were selected for maximum stratigraphic coverage and 81 

were geochemically screened to include the best-preserved samples, as indicated by available trace 82 

element concentrations (i.e., low Fe and Mn; high Sr and Mg concentrations; Price and Gröcke, 83 

2002; Supplemental Information) and cathodoluminescence analyses (Figure 5 of Price and 84 

Sellwood, 1997). Subsamples were derived avoiding the margins and apical zone, as these areas are 85 

much more susceptible to diagenetic overgrowth and cementation, respectively than the rest of the 86 

belemnite (e.g., Ullmann et al., 2015). In addition, we made electron backscatter diffraction (EBSD) 87 

analyses and secondary electron microscopy (SEM-BSE) images of selected rostra at the Goethe 88 

University Frankfurt (Supplemental Information). 89 

Clumped Isotope Analyses  90 

Carbonate digestion (90 °C), CO2 purification (cryotraps and GC) and subsequent 91 

measurement procedures (ThermoFisher MAT 253) are identical to the techniques described in 92 

Wierzbowski et al. (2018). Raw isotope values were calculated using the IUPAC isotopic 93 



parameters, and are projected to the CO2 reference frame (∆47 (RFAC); Petersen et al., 2019). To 94 

verify the consistency and precision of the clumped isotope measurements, six carbonate standards 95 

(ETH1–4, MuStd, Carrara) were analyzed along the samples (Data S1). We used the in-house 96 

Wacker et al. (2014) calibration to convert ∆47 (RFAC) values to temperatures (Supplemental 97 

Information; Petersen et al. 2019). Temperature uncertainties are based on external 1SE (including 98 

t-value) that is always larger than or identical to the best attainable internal precision as represented 99 

by the shot noise limit (0.004–0.005‰). 100 

RESULTS 101 

Electron Microscopy 102 

All investigated rostra, excluding the areas adjacent to the apical line and the surface, are 103 

made up of optical calcite and the c-axis of the calcite grains point radially outwards (Figs. S1-S4). 104 

The distribution of the crystallographic a-axes also follows a pattern. This is analogous to pristinely 105 

preserved rostra (Stevens et al., 2017). Our EBSD and SEM-BSE analyses suggest that 106 

recrystallization, which would change the original orientation of the biogenic calcite grains, did not 107 

occur in the sampled areas. 108 

Clumped Isotope Analyses 109 

The ∆47 (RFAC) values range between 0.690(±0.011)‰ and 0.707(±0.015)‰. The 1SE 110 

uncertainty for the clumped isotope measurements, calculated from 4–6 replicate analyses are 111 

between 0.004‰ and 0.015‰ (mean 0.010‰). The ∆47 (RFAC) values yield seawater temperatures 112 

ranging between 21 °C and 28 °C (mean 25 °C) and show no significant stratigraphic trend (Fig. 2). 113 

The average uncertainty for the reconstructed temperatures is ±4 °C. Steeper-sloped calibrations 114 

yield indistinguishable temperatures within ±1SE (Data S1). 115 

DISCUSSION 116 



The Δ47-derived temperature range (21–28 °C, mean 25 °C) for the entire section is higher 117 

than those temperatures reconstructed via stable oxygen isotope paleothermometry (11–19 °C, 118 

mean 16 °C, assuming δ18Osw = -1‰ SMOW; Price and Gröcke, 2002), and cooler, and rarely 119 

within error, of SST estimates derived from TEX86 (25–31 °C; Fig. 2; Jenkyns et al., 2012). In this 120 

study, as in Jenkyns et al. (2012), we calculate TEX86 temperatures using the TEX86H calibration 121 

(Kim et al., 2010). Given the shallow-water and high latitude setting of Site 511 TEX86H may yield 122 

maximum SST estimates (Schouten et al., 2013; Taylor et al., 2013). In contrast to TEX86H, the 123 

linear calibration used of O'Brien et al. (2017) yield ca. 2–3 °C warmer temperatures, whereas the 124 

calibrations that assume a non-surface export depth of GDGTs (Kim et al., 2012; Schouten et al., 125 

2013) yield ca. 5–6 °C cooler estimates (Fig. 2). Although the TEX86H proxy is likely the most 126 

appropriate for a high latitude setting such as Site 511, there is ongoing discussion and revision of 127 

the various calibrations, and ongoing debate as to which calibration should be applied (e.g., Ho et 128 

al., 2014; Inglis et al., 2015). The difference between the TEX86H and the Δ47-derived temperatures 129 

for Site 511 may be partially resolved by considering a seasonal bias in either proxy. It has been 130 

postulated that belemnites, as nektonic cephalopods, reflect mean annual temperatures (MAT; Price 131 

and Sellwood, 1997; Mutterlose et al., 2010), while TEX86 may indicate summer temperatures, 132 

rather than MAT (Leider et al., 2010; Hollis et al., 2012). Nevertheless, our Δ47 temperatures 133 

suggest that belemnites were calcifying their rostra in the upper part of the water column (<200 m 134 

depth), and are broadly consistent with TEX86-derived SSTs, given the uncertainties listed above. 135 

Such an interpretation is in alignment with an assumed predator lifestyle in the photic zone for 136 

belemnites (Klug et al., 2016). 137 

All three records from Site 511 show less than 7 °C variability across the entire Late 138 

Jurassic and Early Cretaceous interval, although the low sampling resolution means it is not 139 

possible to derive more detailed information on Jurassic and Cretaceous climate evolution. These 140 



data confirm warm Late Jurassic–Early Cretaceous high latitude ocean temperatures, possibly 141 

precluding the likelihood of substantial land ice, and are consistent with estimated MATs from 142 

fossil plant assemblages from the Antarctic Peninsula (Francis and Poole, 2002). The most likely 143 

mechanism to account for such warmth observed at Site 511 is high atmospheric greenhouse gas 144 

concentrations and high polar heat transport. The shallow meridional temperature gradients of the 145 

past greenhouse climates pose a significant challenge to numerical climate models (Huber and 146 

Caballero, 2011), in that increased greenhouse gases may yield warm Polar Regions, but also 147 

overheat the Tropics. MATs for the Cretaceous derived from coupled ocean-atmosphere climate 148 

models provide estimates for 53 °S ranging from 12 °C to 21 °C (Zhou et al., 2008; Donnadieu et 149 

al., 2016). The higher of these estimates are generated with 2240 ppm pCO2 (8 x pre-industrial 150 

levels; Donnadieu et al., 2016). These atmospheric CO2 concentrations typically exceed estimates 151 

of Cretaceous pCO2 derived from fossil leaf stomatal index measurements, isotope-based or 152 

geochemical model estimates (Wang et al., 2014; Foster et al., 2017). 153 

Furthermore, it is crucial to consider the magnitude of a non-CO2 component of local 154 

climate change, before proxies from a single site are interpreted in a global context (Lunt et al., 155 

2016). GCM output indicates warm conditions during the Cretaceous at Site 511 when compared to 156 

the Eocene (Lunt et al., 2016), with almost invariable modeled global mean temperatures over the 157 

same period, when pCO2 is kept constant. This suggests that contributions from other processes 158 

(e.g., paleogeography) may account for some of the observed warmth. Despite these findings and 159 

those of others (Donnadieu et al., 2016), the role of paleogeography in regulating climate remains 160 

less than clear. 161 

Such warm temperatures at Site 511 challenge our understanding of how the ocean-162 

atmosphere system operated in the past (Poulsen, 2004) and may also have important implications 163 

for the prediction of future climates as they imply we may be underestimating future climate change 164 



in such regions (Spicer et al., 2008). Proposed mechanisms to increase the transfer of heat toward 165 

the poles (Schmidt and Mysak, 1996), including sensible and latent heat transfer via the atmosphere 166 

and heat transfer via the oceans (Hotinski and Toggweiler, 2003), are hence implied. As Site 511 167 

was situated in a seaway open to the southwest (Fig. 1), increased heat transfer via warm ocean 168 

currents can only be derived from the Pacific. Thus, other processes, including heat transfer via the 169 

atmosphere, might also be important for this region. 170 

These new warm Δ47-derived temperature reconstructions also have implications for basin-171 

scale hydrologies. In conjunction with the δ18Obelemnite data (Price and Sellwood, 1997; Price and 172 

Gröcke, 2002), we can estimate δ18Osw, assuming the temperature dependence of oxygen isotope 173 

fractionation between belemnite calcite and seawater corresponds to Kim and O‘Neil (1997). The 174 

δ18O–temperature equation of Kim and O'Neil (1997) indicates that δ18Osw may have averaged 175 

+1.0‰ SMOW (1SE = 0.7‰; Fig. 2, Data S1), heavier than the global average for an ice-free world 176 

(-1‰ SMOW; Shackleton and Kennett, 1975). This could suggest that the semi-enclosed basin in 177 

which Site 511 was located was dominated by evaporation; alternatively, it is quite possible that the 178 

Kim and O’Neil (1997) calcite equation is not applicable to belemnite calcite. 179 

CONCLUSIONS 180 

This proxy-to-proxy intercomparison reduces the uncertainty on temperature estimates for 181 

the Mesozoic high southern latitudes. Our Δ47-derived temperatures, although slightly cooler, are 182 

consistent with the TEX86H reconstructions for sea-surface temperatures. The new ∆47 data, in 183 

conjunction with δ18Obelemnite data imply local δ18Osw values of ca. 1.0(±0.7) ‰ SMOW, indicating a 184 

strong role of evaporation on the Falkland Plateau, which was a semi-enclosed basin during the Late 185 

Jurassic and Early Cretaceous. The warm reconstructed paleotemperatures, if extrapolated 186 

poleward, reinforce evidence of temperate polar conditions and lack of polar ice. If these warm 187 

ocean temperatures, occurring when pCO2 in Earth’s atmosphere were also high, prove accurate, 188 



they may indicate that greenhouse gases could have heated the oceans during the Jurassic and 189 

Cretaceous more than currently accepted. This suggests that future warming from elevated 190 

atmospheric CO2 concentrations may be much greater than that predicted by models. 191 
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 338 

FIGURE CAPTIONS 339 

Figure 1. Paleogeographic setting of the Deep Sea Drilling Project Site 511. Early Cretaceous 340 

paleogeographic reconstruction after Scotese (2014).  341 



Figure 2. Jurassic and Early Cretaceous temperatures and seawater δ18O from DSDP Site 511. (A) 342 

Clumped isotope seawater temperature reconstructions for Site 511 (this study) are compared to 343 

those based on δ18Obelemnite (Price and Gröcke, 2002; Price and Sellwood, 1997; plotted using Kim 344 

and O’Neil, 1997, with an assumed δ18Osw of -1‰ SMOW) and TEX86 (Jenkyns et al., 2012). 345 

Infilled green circles represent δ18Obelemnite temperatures from Price and Gröcke (2002), hollow 346 

green circles are the belemnites that were also used for clumped isotopes analysis in this study. For 347 

TEX86 temperatures, dotted lines used TEX86H,0-200 (Kim et al. 2012., eq. 2), dashed used TEX86-linear 348 

(O’Brien et al., 2017, eq. 4), and solid line and points used the TEX86H calibration (Kim et al. 2010, 349 

eq.10). (B) Reconstructed δ18Osw values (this study) using the equation of Kim and O'Neil (1997). 350 

Error bars represent for δ18Obelemnite and ∆47 the 1SE of multiple replicate analyses; for TEX86H the 351 

calibration error; and for δ18Osw the 1SE. corresponding to the ∆47 measurements. Age model 352 

construction is described in the Supplemental Information, whereas data for this figure can be found 353 

in Data S1. 354 

 355 

 356 


	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	Stratigraphy and samples
	Clumped Isotope Analyses

	RESULTS
	Electron Microscopy
	Clumped Isotope Analyses

	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES CITED
	FIGURE CAPTIONS

