¹ Southern high latitude warmth during the Jurassic–Cretaceous:

2 New evidence from clumped isotope thermometry

3 Madeleine L. Vickers¹, David Bajnai², Gregory D. Price³, Jolien Linckens², Jens Fiebig²

4 ¹ Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350

5 Copenhagen, Denmark

⁶ ² Institute of Geosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany

7 ³ School of Geography, Earth & Environmental Sciences, University of Plymouth, PL4 8AA

8 Plymouth, United Kingdom

9 ABSTRACT

10 In order to understand the climate dynamics of the Mesozoic greenhouse world, it is vital to 11 determine paleotemperatures from higher latitudes. For the Jurassic and Cretaceous climate, there 12 are significant discrepancies between different proxies and between proxy data and climate models. We determined paleotemperatures from Late Jurassic and Early Cretaceous belemnites using the 13 14 carbonate clumped isotope paleothermometer and compared these values to temperatures derived 15 from TEX₈₆ and other proxies. From our analyses, we infer an average temperature of ca. 25 °C for 16 the upper part of the water column of the Southern Atlantic Ocean. Our data imply that for mid to 17 high latitudes, climate models underestimate marine temperatures by >5 °C and, therefore, the 18 amount of warming that would accompany an increase in atmospheric CO₂ of more than 4x pre-19 industrial levels, as is projected for the near future.

20 INTRODUCTION

Modern anthropogenic CO₂ production has resulted in rapid climate change, with near surface air temperatures in the high latitude regions rising at ca. twice the global average rate
 (Screen and Simmonds, 2010). Predictions of how global and polar temperatures will change over

the next few decades in response to continued CO₂ release may be improved by studying past
climate response to elevated CO₂ levels. The Late Jurassic to Early Cretaceous (164 to 100 million
years ago) was characterized by extremely high but variable levels of atmospheric CO₂ (from ca. 2x
to 8x pre-industrial levels; Wang et al., 2014; Foster et al., 2017), yet reconstructions of marine
temperatures, particularly for the high latitudes, are contradictory (e.g., Huber et al., 1995; Price and
Gröcke, 2002; Bice et al., 2003; Poulsen, 2004; Jenkyns et al., 2012; Price and Passey, 2013;
O'Brien et al., 2017).

31 The stable oxygen isotope composition of the carbonate remains of marine organisms is the 32 most extensively used temperature proxy, yet high-latitude sea-surface temperatures (SST) derived 33 from independent organic geochemical paleothermometers, i.e., TEX₈₆, may be ca. 10 °C warmer 34 than δ^{18} O-based temperature reconstructions (e.g., Mutterlose et al., 2010; O'Brien et al., 2012) and up to 6 °C warmer than general circulation model (GCM) predictions (Price and Passey, 2013). 35 36 These differences have led some authors to suggest that the high TEX₈₆ SST estimates are too warm (Hollis et al., 2009; Meyer et al., 2018), and there is an ongoing debate as to which 37 38 calibration is appropriate for applications of the TEX₈₆ proxy at specific regions and different intervals of the geologic record (Kim et al., 2012; Taylor et al., 2013). Conversely, δ^{18} O-based 39 40 paleotemperature reconstructions rely on several assumptions, among which is the oxygen isotope composition of the seawater ($\delta^{18}O_{sw}$; Huber et al., 1995; Price and Gröcke, 2002; Bice et al., 2003), 41 42 and the accuracy of these assumptions still needs to be verified. If the interpretation of warm sub-43 polar paleo-ocean temperatures can be confirmed, they imply that past and future polar warming 44 may be much greater (i.e., >5 °C) than indicated by climate models. Furthermore, such warm 45 temperatures test the veracity of claims of Early to mid-Cretaceous polar ice, in particular from 46 those studies deriving data from locations distal to the poles (Miller, 2009).

47	Deep Sea Drilling Project Site 511, on the Falkland Plateau (51°00.28'S, 46°58.30'W), is
48	particularly well suited for studying Jurassic and Cretaceous climate due to its abundant,
49	exceptionally preserved macrofossils, including belemnites (Jeletzky, 1983; Price and Sellwood,
50	1997; Price and Gröcke, 2002). The Falkland Plateau was located at approximately 53 °S during the
51	Late Jurassic-Early Cretaceous (Scotese, 2014; Fig. 1). Mean annual temperatures derived from
52	GCMs for the Late Jurassic and Early Cretaceous indicate that the temperatures of the Falkland
53	Plateau region (avg. 10-22 °C) are representative of similar southern hemisphere paleolatitudes
54	(Lunt et al., 2016). Earlier research at Site 511 used the TEX ₈₆ ^H paleotemperature proxy to suggest
55	that warm sea-surface conditions (26–35 °C) existed during the Late Jurassic–Early Cretaceous
56	interval (Jenkyns et al., 2012). These paleotemperatures are consistently warmer than
57	paleotemperature estimates based on $\delta^{18}O_{belemnite}$, assuming a $\delta^{18}O_{sw}$ of -1‰ SMOW (11–21 °C;
58	Price and Gröcke, 2002). Another study, undertaken on Barremian to Aptian sediments from two
59	outcrops in northern Germany, also shows that $\delta^{18}O_{belemnite}$ -derived paleotemperatures (12–16 °C)
60	are consistently cooler than TEX ₈₆ -based estimates (26–32 °C; Mutterlose et al., 2010). Jenkyns et
61	al. (2012) argue that the offset is due to TEX_{86} recording sea surface temperatures, whereas
62	belemnites record temperatures from deeper water, possibly from below the thermocline.
63	In this study, we apply the carbonate clumped isotope paleothermometer to exceptionally
64	well-preserved belemnite rostra from Site 511. This proxy provides seawater temperature estimates
65	independent of $\delta^{18}O_{sw}$ (Price and Passey, 2013; Wierzbowski et al., 2018). In addition to
66	constraining high latitude temperatures, we set out to resolve the uncertainties associated with
67	previous δ^{18} O-based belemnite temperature reconstructions.
60	

68 **MATERIALS AND METHODS**

69 Stratigraphy and samples

70 The lithology of the sampled section of Site 511 consists of grey-black, thinly laminated 71 mudstones and soft, grey claystones, which were deposited in a periodically anoxic, low-energy, 72 shallow (< 400 m) basin (Basov and Krasheninnikov, 1983; Jeletzky, 1983). 73 A geothermal gradient of 7.4 °C/100 m has been determined (Langseth and Ludwig, 1983) at Site 511, thus, for the samples analyzed in this study, we can estimate a maximum burial 74 75 temperature of ca. 50 °C. At elevated temperatures, diffusion of carbon and oxygen isotopes in the 76 carbonate mineral lattice may reset the initial bond-ordering (e.g., Henkes et al., 2014). However, 77 theoretical calculations based on laboratory experiments provide evidence that solid-state diffusion, 78 even in wet and high-pressure conditions, is insignificant below 100 °C burial temperatures on a 79 timescale of 100–160 Ma (Passey and Henkes, 2012). Thus, it is unlikely that the belemnite rostra 80 analyzed in this study were affected by solid-state reordering. 81 Eleven belemnites (Belemnopsis sp.) were selected for maximum stratigraphic coverage and 82 were geochemically screened to include the best-preserved samples, as indicated by available trace 83 element concentrations (i.e., low Fe and Mn; high Sr and Mg concentrations; Price and Gröcke,

84 2002; Supplemental Information) and cathodoluminescence analyses (Figure 5 of Price and

Sellwood, 1997). Subsamples were derived avoiding the margins and apical zone, as these areas are
much more susceptible to diagenetic overgrowth and cementation, respectively than the rest of the
belemnite (e.g., Ullmann et al., 2015). In addition, we made electron backscatter diffraction (EBSD)
analyses and secondary electron microscopy (SEM-BSE) images of selected rostra at the Goethe

- 89 University Frankfurt (Supplemental Information).
- 90 Clumped Isotope Analyses

91 Carbonate digestion (90 °C), CO₂ purification (cryotraps and GC) and subsequent
92 measurement procedures (ThermoFisher MAT 253) are identical to the techniques described in
93 Wierzbowski et al. (2018). Raw isotope values were calculated using the IUPAC isotopic

parameters, and are projected to the CO₂ reference frame ($\Delta_{47 (RFAC)}$; Petersen et al., 2019). To

95 verify the consistency and precision of the clumped isotope measurements, six carbonate standards

96 (ETH1–4, MuStd, Carrara) were analyzed along the samples (Data S1). We used the in-house

97 Wacker et al. (2014) calibration to convert $\Delta_{47 (RFAC)}$ values to temperatures (Supplemental

98 Information; Petersen et al. 2019). Temperature uncertainties are based on external 1SE (including

99 *t*-value) that is always larger than or identical to the best attainable internal precision as represented

100 by the shot noise limit (0.004–0.005‰).

101 **RESULTS**

102 Electron Microscopy

All investigated rostra, excluding the areas adjacent to the apical line and the surface, are made up of optical calcite and the c-axis of the calcite grains point radially outwards (Figs. S1-S4). The distribution of the crystallographic a-axes also follows a pattern. This is analogous to pristinely preserved rostra (Stevens et al., 2017). Our EBSD and SEM-BSE analyses suggest that recrystallization, which would change the original orientation of the biogenic calcite grains, did not occur in the sampled areas.

109 Clumped Isotope Analyses

110 The $\Delta_{47 (RFAC)}$ values range between 0.690(±0.011)‰ and 0.707(±0.015)‰. The 1SE

111 uncertainty for the clumped isotope measurements, calculated from 4–6 replicate analyses are

between 0.004‰ and 0.015‰ (mean 0.010‰). The $\Delta_{47 (RFAC)}$ values yield seawater temperatures

113 ranging between 21 °C and 28 °C (mean 25 °C) and show no significant stratigraphic trend (Fig. 2).

114 The average uncertainty for the reconstructed temperatures is ± 4 °C. Steeper-sloped calibrations

115 yield indistinguishable temperatures within $\pm 1SE$ (Data S1).

116 **DISCUSSION**

117	The Δ_{47} -derived temperature range (21–28 °C, mean 25 °C) for the entire section is higher
118	than those temperatures reconstructed via stable oxygen isotope paleothermometry (11–19 $^{\circ}$ C,
119	mean 16 °C, assuming $\delta^{18}O_{sw}$ = -1‰ SMOW; Price and Gröcke, 2002), and cooler, and rarely
120	within error, of SST estimates derived from TEX ₈₆ (25–31 °C; Fig. 2; Jenkyns et al., 2012). In this
121	study, as in Jenkyns et al. (2012), we calculate TEX_{86} temperatures using the TEX_{86} ^H calibration
122	(Kim et al., 2010). Given the shallow-water and high latitude setting of Site 511 $\text{TEX}_{86}^{\text{H}}$ may yield
123	maximum SST estimates (Schouten et al., 2013; Taylor et al., 2013). In contrast to TEX ₈₆ ^H , the
124	linear calibration used of O'Brien et al. (2017) yield ca. 2-3 °C warmer temperatures, whereas the
125	calibrations that assume a non-surface export depth of GDGTs (Kim et al., 2012; Schouten et al.,
126	2013) yield ca. 5–6 °C cooler estimates (Fig. 2). Although the TEX_{86}^{H} proxy is likely the most
127	appropriate for a high latitude setting such as Site 511, there is ongoing discussion and revision of
128	the various calibrations, and ongoing debate as to which calibration should be applied (e.g., Ho et
129	al., 2014; Inglis et al., 2015). The difference between the TEX ₈₆ ^H and the Δ_{47} -derived temperatures
130	for Site 511 may be partially resolved by considering a seasonal bias in either proxy. It has been
131	postulated that belemnites, as nektonic cephalopods, reflect mean annual temperatures (MAT; Price
132	and Sellwood, 1997; Mutterlose et al., 2010), while TEX ₈₆ may indicate summer temperatures,
133	rather than MAT (Leider et al., 2010; Hollis et al., 2012). Nevertheless, our Δ_{47} temperatures
134	suggest that belemnites were calcifying their rostra in the upper part of the water column (<200 m
135	depth), and are broadly consistent with TEX86-derived SSTs, given the uncertainties listed above.
136	Such an interpretation is in alignment with an assumed predator lifestyle in the photic zone for
137	belemnites (Klug et al., 2016).

All three records from Site 511 show less than 7 °C variability across the entire Late
Jurassic and Early Cretaceous interval, although the low sampling resolution means it is not
possible to derive more detailed information on Jurassic and Cretaceous climate evolution. These

141	data confirm warm Late Jurassic-Early Cretaceous high latitude ocean temperatures, possibly
142	precluding the likelihood of substantial land ice, and are consistent with estimated MATs from
143	fossil plant assemblages from the Antarctic Peninsula (Francis and Poole, 2002). The most likely
144	mechanism to account for such warmth observed at Site 511 is high atmospheric greenhouse gas
145	concentrations and high polar heat transport. The shallow meridional temperature gradients of the
146	past greenhouse climates pose a significant challenge to numerical climate models (Huber and
147	Caballero, 2011), in that increased greenhouse gases may yield warm Polar Regions, but also
148	overheat the Tropics. MATs for the Cretaceous derived from coupled ocean-atmosphere climate
149	models provide estimates for 53 °S ranging from 12 °C to 21 °C (Zhou et al., 2008; Donnadieu et
150	al., 2016). The higher of these estimates are generated with 2240 ppm p CO ₂ (8 x pre-industrial
151	levels; Donnadieu et al., 2016). These atmospheric CO2 concentrations typically exceed estimates
152	of Cretaceous p CO ₂ derived from fossil leaf stomatal index measurements, isotope-based or
153	geochemical model estimates (Wang et al., 2014; Foster et al., 2017).
154	Furthermore, it is crucial to consider the magnitude of a non-CO ₂ component of local
155	climate change, before proxies from a single site are interpreted in a global context (Lunt et al.,
156	2016). GCM output indicates warm conditions during the Cretaceous at Site 511 when compared to
157	the Eocene (Lunt et al., 2016), with almost invariable modeled global mean temperatures over the
158	same period, when pCO_2 is kept constant. This suggests that contributions from other processes
159	(e.g., paleogeography) may account for some of the observed warmth. Despite these findings and
160	those of others (Donnadieu et al., 2016), the role of paleogeography in regulating climate remains
161	less than clear.
162	Such warm temperatures at Site 511 challenge our understanding of how the ocean-
163	atmosphere system operated in the past (Poulsen, 2004) and may also have important implications

164 for the prediction of future climates as they imply we may be underestimating future climate change

in such regions (Spicer et al., 2008). Proposed mechanisms to increase the transfer of heat toward the poles (Schmidt and Mysak, 1996), including sensible and latent heat transfer via the atmosphere and heat transfer via the oceans (Hotinski and Toggweiler, 2003), are hence implied. As Site 511 was situated in a seaway open to the southwest (Fig. 1), increased heat transfer via warm ocean currents can only be derived from the Pacific. Thus, other processes, including heat transfer via the atmosphere, might also be important for this region.

171 These new warm Δ_{47} -derived temperature reconstructions also have implications for basinscale hydrologies. In conjunction with the δ^{18} Obelemnite data (Price and Sellwood, 1997; Price and 172 Gröcke, 2002), we can estimate $\delta^{18}O_{sw}$, assuming the temperature dependence of oxygen isotope 173 174 fractionation between belemnite calcite and seawater corresponds to Kim and O'Neil (1997). The δ^{18} O-temperature equation of Kim and O'Neil (1997) indicates that δ^{18} O_{sw} may have averaged 175 176 +1.0% SMOW (1SE = 0.7\%; Fig. 2, Data S1), heavier than the global average for an ice-free world 177 (-1% SMOW; Shackleton and Kennett, 1975). This could suggest that the semi-enclosed basin in which Site 511 was located was dominated by evaporation; alternatively, it is quite possible that the 178 179 Kim and O'Neil (1997) calcite equation is not applicable to belemnite calcite.

180 CONCLUSIONS

181 This proxy-to-proxy intercomparison reduces the uncertainty on temperature estimates for 182 the Mesozoic high southern latitudes. Our Δ_{47} -derived temperatures, although slightly cooler, are consistent with the TEX₈₆^H reconstructions for sea-surface temperatures. The new Δ_{47} data, in 183 conjunction with δ^{18} O_{belemnite} data imply local δ^{18} O_{sw} values of ca. 1.0(±0.7) ‰ SMOW, indicating a 184 185 strong role of evaporation on the Falkland Plateau, which was a semi-enclosed basin during the Late 186 Jurassic and Early Cretaceous. The warm reconstructed paleotemperatures, if extrapolated 187 poleward, reinforce evidence of temperate polar conditions and lack of polar ice. If these warm 188 ocean temperatures, occurring when pCO_2 in Earth's atmosphere were also high, prove accurate,

189	they may indicate that greenhouse gases could have heated the oceans during the Jurassic and
190	Cretaceous more than currently accepted. This suggests that future warming from elevated
191	atmospheric CO ₂ concentrations may be much greater than that predicted by models.
192	ACKNOWLEDGMENTS
193	We thank C. John (Imperial College, London), S. Hofmann, C. Schreiber (Goethe
194	University Frankfurt), N. Löffler, K. Methner, E. Krsnik (Senckenberg BIK-F), D. Gröcke (Durham
195	University), S. Robinson (University of Oxford) and our anonymous reviewers. Funding was
196	provided by a PhD scholarship from the University of Plymouth, UK, and a European Consortium
197	for Ocean Research Drilling (ECORD) grant to M.V.; a UK Natural Environment Research Council
198	(NERC) grant (NE/J020842/1) to G.D.P.; and the European Union's Horizon 2020 research and
199	innovation program under the Marie Skłodowska-Curie grant agreement No. 643084 (BASE-LiNE
200	Earth) to B.D and J.F.
201	REFERENCES CITED
202	Basov, I. A., and Krasheninnikov, V., 1983, Benthic foraminifers in Mesozoic and Cenozoic
203	sediments of the southwestern Atlantic as an indicator of paleoenvironment, Deep Sea
204	Drilling Project Leg 71: Initial Reports of the Deep Sea Drilling Project, v. 71, p. 739-787.
205	Bice, K. L., Huber, B. T., and Norris, R. D., 2003, Extreme polar warmth during the Cretaceous
206	greenhouse? Paradox of the late Turonian δ^{18} O record at Deep Sea Drilling Project Site 511:
207	
207	Paleoceanography, v. 18, no. 2.
207	Paleoceanography, v. 18, no. 2. Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck, JF., 2016, A better-
207 208 209	Paleoceanography, v. 18, no. 2. Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck, JF., 2016, A better- ventilated ocean triggered by Late Cretaceous changes in continental configuration: Nature
208 209 210	Paleoceanography, v. 18, no. 2. Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck, JF., 2016, A better- ventilated ocean triggered by Late Cretaceous changes in continental configuration: Nature communications, v. 7, p. 10316.
208 209 210 211	 Paleoceanography, v. 18, no. 2. Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck, JF., 2016, A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration: Nature communications, v. 7, p. 10316. Foster, G. L., Royer, D. L., and Lunt, D. J., 2017, Future climate forcing potentially without
208 209 210 211 212	 Paleoceanography, v. 18, no. 2. Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck, JF., 2016, A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration: Nature communications, v. 7, p. 10316. Foster, G. L., Royer, D. L., and Lunt, D. J., 2017, Future climate forcing potentially without precedent in the last 420 million years: Nature Communications, v. 8, p. 14845.

213	Francis, J. E., and Poole, I., 2002, Cretaceous and early Tertiary climates of Antarctica: evidence
214	from fossil wood: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 182, no. 1, p. 47-
215	64.
216	Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Pérez-Huerta, A., and Yancey, T. E.,
217	2014, Temperature limits for preservation of primary calcite clumped isotope
218	paleotemperatures: Geochimica et cosmochimica acta, v. 139, p. 362-382.
219	Ho, S. L., Mollenhauer, G., Fietz, S., Martínez-Garcia, A., Lamy, F., Rueda, G., Schipper, K.,
220	Méheust, M., Rosell-Melé, A., and Stein, R., 2014, Appraisal of TEX ₈₆ and TEX ₈₆ ^L
221	thermometries in subpolar and polar regions: Geochimica et Cosmochimica Acta, v. 131, p.
222	213-226.
223	Hollis, C. J., Handley, L., Crouch, E. M., Morgans, H. E., Baker, J. A., Creech, J., Collins, K. S.,
224	Gibbs, S. J., Huber, M., and Schouten, S., 2009, Tropical sea temperatures in the high-
225	latitude South Pacific during the Eocene: Geology, v. 37, no. 2, p. 99-102.
226	Hollis, C. J., Taylor, K. W., Handley, L., Pancost, R. D., Huber, M., Creech, J. B., Hines, B. R.,
227	Crouch, E. M., Morgans, H. E., and Crampton, J. S., 2012, Early Paleogene temperature
228	history of the Southwest Pacific Ocean: Reconciling proxies and models: Earth and
229	Planetary Science Letters, v. 349, p. 53-66.
230	Hotinski, R., and Toggweiler, J., 2003, Impact of a Tethyan circumglobal passage on ocean heat
231	transport and "equable" climates: Paleoceanography, v. 18, no. 1.
232	Huber, B. T., Hodell, D. A., and Hamilton, C. A., 1995, Mid to Late Cretaceous climate of the
233	southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal
234	gradients: Bulletin of the Geological Society of America, v. 107, p. 1164-1191.
235	Huber, M., and Caballero, R., 2003, Eocene El Nino: Evidence for robust tropical dynamics in the"
236	hothouse": Science, v. 299, no. 5608, p. 877-881.

237	Inglis, G. N., Farnsworth, A., Lunt, D., Foster, G. L., Hollis, C. J., Pagani, M., Jardine, P. E.,
238	Pearson, P. N., Markwick, P., and Galsworthy, A. M., 2015, Descent toward the Icehouse:
239	Eocene sea surface cooling inferred from GDGT distributions: Paleoceanography and
240	Paleoclimatology, v. 30, no. 7, p. 1000-1020.
241	Jeletzky, J., 1983, Macroinvertebrate paleontology, biochronology, and paleoenvironments of
242	Lower Cretaceous and Upper Jurassic rocks, Deep Sea Drilling Hole 511, eastern Falkland
243	Plateau: Initial Reports of the Deep Sea Drilling Project, v. 71, p. 951-975.
244	Jenkyns, H., Schouten-Huibers, L., Schouten, S., and Sinninghe Damsté, J., 2012, Warm Middle
245	Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean:
246	Climate of the Past, v. 8, no. 1.
247	Kim, JH., Romero, O. E., Lohmann, G., Donner, B., Laepple, T., Haam, E., and Damste, J. S. S.,
248	2012, Pronounced subsurface cooling of North Atlantic waters off Northwest Africa during
249	Dansgaard–Oeschger interstadials: Earth and Planetary Science Letters, v. 339, p. 95-102.
250	Kim, JH., Van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N.,
251	Hopmans, E. C., and Damsté, J. S. S., 2010, New indices and calibrations derived from the
252	distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface
253	temperature reconstructions: Geochimica et Cosmochimica Acta, v. 74, no. 16, p. 4639-
254	4654.
255	Kim, ST., and O'Neil, J. R., 1997, Equilibrium and nonequilibrium oxygen isotope effects in
256	synthetic carbonates: Geochimica et Cosmochimica Acta, v. 61, no. 16, p. 3461-3475.
257	Klug, C., Schweigert, G., Fuchs, D., Kruta, I., and Tischlinger, H., 2016, Adaptations to squid-style
258	high-speed swimming in Jurassic belemnitids: Biology letters, v. 12, no. 1, p. 20150877.
259	Langseth, M., and Ludwig, W., 1983, A heat-flow measurement on the Falkland Plateau: Initial
260	Reports of the Deep Sea Drilling Project, v. 71, no. SEP, p. 299-303.

261	Leider, A., Hinrichs, KU., Mollenhauer, G., and Versteegh, G. J., 2010, Core-top calibration of the
262	lipid-based $U^{K'_{37}}$ and TEX ₈₆ temperature proxies on the southern Italian shelf (SW Adriatic
263	Sea, Gulf of Taranto): Earth and Planetary Science Letters, v. 300, no. 1-2, p. 112-124.
264	Lunt, D. J., Foster, G. L., O'Brien, C. L., Pancost, R. D., and Robinson, S. A., 2016,
265	Palaeogeographic controls on climate and proxy interpretation: Climate of the Past, v. 12,
266	no. 5, p. 1181.
267	Meyer, K. W., Petersen, S. V., Lohmann, K. C., and Winkelstern, I. Z., 2018, Climate of the Late
268	Cretaceous North American Gulf and Atlantic Coasts: Cretaceous Research, v. 89, p. 160-
269	173.
270	Miller, K. G., 2009, Broken greenhouse windows Nature Geoscience, v. 2, p. 465-466.
271	Mutterlose, J., Malkoc, M., Schouten, S., Sinninghe Damsté, J. S., and Forster, A., 2010, TEX86 and
272	stable δ^{18} O paleothermometry of early Cretaceous sediments: Implications for belemnite
273	ecology and paleotemperature proxy application: Earth and Planetary Science Letters, v.
274	298, no. 3, p. 286-298.
275	O'Brien, C. L., Robinson, S. A., Pancost, R. D., Damsté, J. S. S., Schouten, S., Lunt, D. J., Alsenz,
276	H., Bornemann, A., Bottini, C., and Brassell, S. C., 2017, Cretaceous sea-surface
277	temperature evolution: Constraints from TEX_{86} and planktonic foraminiferal oxygen
278	isotopes: Earth-Science Reviews, v. 172, p. 224-247.
279	Passey, B. H., and Henkes, G. A., 2012, Carbonate clumped isotope bond reordering and
280	geospeedometry: Earth and Planetary Science Letters, v. 351, p. 223-236.
281	Petersen, S. V., Defliese, W. F., Saenger, C., Daëron, M., Huntington, K. W., John, C. M., Kelson,
282	J. R., Coleman, A. S., Kluge, T., Olack, G. A., Schauer, A. J., Bajnai, D., Bonifacie, M.,
283	Breitenbach, S. F., Fiebig, J., Fernandez, A. B., Henkes, G. A., Hodell, D., Katz, A., Kele, S.,
284	Lohmann, K. C., Passey, B. H., Peral, M. Y., Petrizzo, D. A., Rosenheim, B. E., Tripati, A.,

285	Venturelli, R., Young, E. D., and Winkelstern, I. Z. 2019, Effects of improved ¹⁷ O correction
286	on inter-laboratory agreement in clumped isotope calibrations, estimates of mineral-specific
287	offsets, and acid fractionation factor temperature dependence: Geochemistry, Geophysics,
288	Geosystems.
289	Poulsen, C. J., 2004, Palaeoclimate: a balmy Arctic: Nature, v. 432, no. 7019, p. 814-815.
290	Price, G.D., and Sellwood, B., 1997, "Warm" palaeotemperatures from high Late Jurassic
291	palaeolatitudes (Falkland Plateau): Ecological, environmental or diagenetic controls?:
292	Palaeogeography, Palaeoclimatology, Palaeoecology, v. 129, no. 3, p. 315-327.
293	Price, G. D., and Gröcke, D. R., 2002, Strontium-isotope stratigraphy and oxygen-and carbon-
294	isotope variation during the Middle Jurassic-Early Cretaceous of the Falkland Plateau,
295	South Atlantic: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 183, no. 3, p. 209-
296	222.
297	Price, G. D., and Passey, B. H., 2013, Dynamic polar climates in a greenhouse world: Evidence
298	from clumped isotope thermometry of Early Cretaceous belemnites: Geology, v. 41, p. 923-
299	926.
300	Schmidt, G. A., and Mysak, L. A., 1996, Can increased poleward oceanic heat flux explain the
301	warm Cretaceous climate?: Paleoceanography, v. 11, no. 5, p. 579-593.
302	Schouten, S., Hopmans, E. C., and Damsté, J. S. S., 2013, The organic geochemistry of glycerol
303	dialkyl glycerol tetraether lipids: a review: Organic geochemistry, v. 54, p. 19-61.
304	Scotese, C. R., 2014, Atlas of Early Cretaceous Paleogeographic Maps, PALEOMAP Atlas for
305	ArcGIS, volume 2, The Cretaceous, Maps 23-31, Mollweide Projection, PALEOMAP
306	Project, Evanston, IL.
307	Screen, J. A., and Simmonds, I., 2010, The central role of diminishing sea ice in recent Arctic
308	temperature amplification: Nature, v. 464, no. 7293, p. 1334-1337.

309	Shackleton, N., and Kennett, J., 1975, Paleotemperature history of the Cenozoic and the initiation of
310	Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281,
311	Washington DC, US Government Printing Office, Initial reports of the deep sea drilling
312	project, 743-755 p.:
313	Spicer, R. A., Ahlberg, A., Herman, A. B., Hofmann, CC., Raikevich, M., Valdes, P. J., and
314	Markwick, P. J., 2008, The Late Cretaceous continental interior of Siberia: A challenge for
315	climate models: Earth and Planetary Science Letters, v. 267, no. 1, p. 228-235.
316	Stevens, K., Griesshaber, E., Schmahl, W., Casella, L. A., Iba, Y., and Mutterlose, J., 2017,
317	Belemnite biomineralization, development, and geochemistry: The complex rostrum of
318	Neohibolites minimus: Palaeogeography, palaeoclimatology, palaeoecology, v. 468, p. 388-
319	402.
320	Taylor, K. W., Huber, M., Hollis, C. J., Hernandez-Sanchez, M. T., and Pancost, R. D., 2013, Re-
321	evaluating modern and Palaeogene GDGT distributions: Implications for SST
322	reconstructions: Global and Planetary Change, v. 108, p. 158-174.
323	Ullmann, C., Frei, R., Korte, C., and Hesselbo, S. P., 2015, Chemical and isotopic architecture of
324	the belemnite rostrum: Geochimica et Cosmochimica Acta, v. 159, p. 231-243.
325	Wacker, U., Fiebig, J., Tödter, J., Schöne, B. R., Bahr, A., Friedrich, O., Tütken, T., Gischler, E.,
326	and Joachimski, M. M., 2014, Empirical calibration of the clumped isotope
327	paleothermometer using calcites of various origins: Geochimica et Cosmochimica Acta, v.
328	141, p. 127-144.
329	Wang, Y., Huang, C., Sun, B., Quan, C., Wu, J., and Lin, Z., 2014, Paleo-CO ₂ variation trends and
330	the Cretaceous greenhouse climate: Earth-Science Reviews, v. 129, p. 136-147.

331	Wierzbowski, H., Bajnai, D., Wacker, U., Rogov, M. A., Fiebig, J., and Tesakova, E. M., 2018,
332	Clumped isotope record of salinity variations in the Subboreal Province at the Middle-Late
333	Jurassic transition: Global and Planetary Change.
334	Zhou, J., Poulsen, C., Pollard, D., and White, T., 2008, Simulation of modern and middle
335	Cretaceous marine δ^{18} O with an ocean-atmosphere general circulation model:
336	Paleoceanography, v. 23, no. 3, p. PA3223.
337	

338

339 FIGURE CAPTIONS

- **Figure 1.** Paleogeographic setting of the Deep Sea Drilling Project Site 511. Early Cretaceous
- 341 paleogeographic reconstruction after Scotese (2014).

342	Figure 2. Jurassic and Early Cretaceous temperatures and seawater δ^{18} O from DSDP Site 511. (A)
343	Clumped isotope seawater temperature reconstructions for Site 511 (this study) are compared to
344	those based on $\delta^{18}O_{belemnite}$ (Price and Gröcke, 2002; Price and Sellwood, 1997; plotted using Kim
345	and O'Neil, 1997, with an assumed $\delta^{18}O_{sw}$ of -1‰ SMOW) and TEX ₈₆ (Jenkyns et al., 2012).
346	Infilled green circles represent $\delta^{18}O_{belemnite}$ temperatures from Price and Gröcke (2002), hollow
347	green circles are the belemnites that were also used for clumped isotopes analysis in this study. For
348	TEX ₈₆ temperatures, dotted lines used TEX ₈₆ ^{H,0-200} (Kim et al. 2012., eq. 2), dashed used TEX ₈₆ -linear
349	(O'Brien et al., 2017, eq. 4), and solid line and points used the TEX_{86}^{H} calibration (Kim et al. 2010,
350	eq.10). (B) Reconstructed $\delta^{18}O_{sw}$ values (this study) using the equation of Kim and O'Neil (1997).
351	Error bars represent for $\delta^{18}O_{belemnite}$ and Δ_{47} the 1SE of multiple replicate analyses; for TEX ₈₆ ^H the
352	calibration error; and for $\delta^{18}O_{sw}$ the 1SE. corresponding to the Δ_{47} measurements. Age model
353	construction is described in the Supplemental Information, whereas data for this figure can be found
354	in Data S1.

- 355
- 356

 $\delta^{18}O_{\text{belemnite}}$ (‰ VPDB)