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ABSTRACT: Cheap and readily available aqueous formaldehyde was used as a formylating reagent in a homologation reaction
with nonstabilized diazo compounds, enabled by UV photolysis of bench-stable oxadiazolines in a flow photoreactor. Various
aliphatic aldehydes were synthesized along with the corresponding derivatized alcohols and benzimidazoles. No transition-metal
catalyst or additive was required to affect the reaction, which proceeded at room temperature in 80 min.

Following the discovery of the Buchner−Curtius−Schlot-
terbeck reaction over a century ago,1 the interactions

between carbonyl compounds and diazo compounds have
been extensively studied.2,3 These methods constitute a
powerful synthetic tool for C−C bond formation, especially
for the extension of carbon chains and for the construction and
decoration of ketones.4−6 However, the controlled formation
of aldehyde products using diazo chemistry is not a simple
task; carbonyl groups and diazo compounds are highly reactive
coupling partners. The reliable and safe generation of
nonstabilized diazo compounds is currently an area of intense
research,7−10 and one our laboratory has been interested in
due to the application of flow chemistry as an enabling
technology11−13 to overcome the safety issues traditionally
associated with diazo compounds.14−16 Following the pioneer-
ing work from Warkentin and co-workers,17,18 we have recently
published two reports on the use of oxadiazolines as bench-
stable, nonstabilized diazo compound precursors and their
application in protodeboronative and oxidative C(sp2)−C(sp3)
cross-coupling with boronic acids19 and aldehyde C−H
functionalization to afford unsymmetrical ketones.20

During this work, two reports in the literature caught our
attention (Scheme 1). Kingsbury and co-workers demon-
strated a Lewis acid catalyzed double homologation reaction
by combining ex situ prepared diazo compounds and the flash-
pyrolyzed preparation of anhydrous formaldehyde (Scheme 1,
A),21 and Hu et al. reported an interesting three-component

coupling of aryldiazoacetate, aniline, and aqueous form-
aldehyde (Scheme 1, B).22 Both of these reactions passed
through, but did not stop at, the aldehyde oxidation state on
the way to a final product, either the doubly homologated
ketone or the α-aryl serine derivative. These examples
encouraged us to control the homologation reaction and
stop at the aldehyde product in as simple a manner as possible
and without the use of a protecting group strategy. Herein, we
report the controlled homologation of nonstabilized diazo
compounds generated from bench-stable precursors in flow to
form aldehydes and their derivatives (Scheme 1, C).
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Scheme 1. Examples of homologation reactions involving
diazo and carbonyl compounds
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Our investigation began by combining 2-tetralone oxadiazo-
line 1a with different sources of formaldehyde under UV
irradiation (Table 1). Common formaldehyde surrogates

trioxane and dioxolane both delivered only trace amounts of
the desired aldehyde product 3a despite almost complete
conversion of the oxadiazoline starting material (entry 1 and
2).23 While we established our first success using a stock
solution of monomeric formaldehyde created via thermolysis
of paraformaldehyde,24 resulting in a 55% yield of the desired
aldehyde (entry 3), practical considerations of the procedure
and the propensity of the stock solution to polymerize without
warning on warming above −78 °C made this an unattractive
approach. We then turned our attention to formalin, a 37%
aqueous solution of formaldehyde, which pleasingly gave a
modest isolated yield (48%) of the target aldehyde (3a, entry
4).25 Lowering the reaction temperature to 10 °C led to a
diminished conversion and yield (entry 5), while a decrease in
the reaction concentration did not result in an improved yield
despite a higher conversion (entry 6). Elongating the residence
time to 80 min improved both conversion (87%) as well as
yield (60%) (entry 7). Formaldehyde ratio changes were
ineffective (entry 8 and 9). Similarly, switching to tetrahy-
drofuran also marginally lowered the yield to 41%, while with
dichloromethane this dropped to 12% (entry 10 and 11).
After multiple reaction optimization attempts, we accepted

the isolated yield of aldehyde of around 50%, albeit with a
higher conversion of the oxadiazoline. On further examination
of the crude sample mixture, along with the required aliphatic
aldehyde we found a significant amount of hydrated material
was also present. At no time did we observe more than 10% of
the doubly homologated ketone. We presume that formation
of the hydrate, due to the presence of a large amount of water
in the reaction media, acts as an in situ protecting group, and
this, coupled with a very low concentration of diazo compound

throughout the course of the reaction, disfavors double
homologation. We further observed that over an extended
period of time the corresponding carboxylic acid product was
formed, most likely as a result of an aerobic oxidative
transformation, which is not uncommon for aldehydes of this
type.
Also owing to the volatility of some of the aldehydic

products, we decided to directly reduce the crude mixture with
sodium borohydride (NaBH4), thereby converting the
products into the corresponding alcohol (4a), resulting in an
improved yield of 60% over two steps (Table 2, entry 1). We
also saw this procedure as a way of storing these unstable
aliphatic aldehydes through recycling via a secondary oxidation
process back to aldehydes should this be necessary. To further
exemplify the method and to better capture the unstable and
sometimes volatile small-molecule products, the crude
aldehydes were additionally subjected to oxidative condensa-
tion with o-phenylenediamine following a modified procedure
originally reported by Jiao et al.26 This procedure gave 2-
substituted benzimidazole (5a) from 1,2,3,4-tetrahydronaph-
thalene-2-carbaldehyde (3a) via in situ generated aliphatic
aldehyde in an overall 72% isolated yield (Table 2, entry 1).
With these various conditions in hand, we set about

examining the scope of the reactions (Table 2). Tetrahy-
dropyran substrate (1b) was able to produce the correspond-
ing aldehyde (3b) in a 48% yield while providing 53% of
alcohol (4b) and 76% benzimidazole (5b). Similarly,
tetrahydrothiopyran (1c), tetrahydrothiophene (1d), and
cyclohexyldioxolo (1e) derivatives all underwent these three
individual transformations to give products (3c−e, 4c−e, and
5c−e) in reasonable yields (entries 3, 4, and 5). As for
nitrogen-based functional groups, Boc-protected amine (1f)
and N-pyrimidinyl piperidine (1g) were also tolerated (entry 6
and 7). Bulky 2-adamantyl aldehyde (3h) was isolated in 68%
yield, together with 75% of 2-adamantanemethanol (4h) and
79% of 2-adamantylbenzimidazole (5h). Lastly, cyclobutyl
oxadiazoline (1i) did not give useful isolated yields owing to
aldehyde and alcohol volatility (3i and 4i), although the
formation of 2-cyclobutylbenzimidazole was achieved in 59%
yield (5i).
Except for methoxynaphthalene substrate (3j, entry 10), the

α-methyl aldehydes we obtained have displayed a tendency
toward hydration or aerobic oxidation, thus resulting in low
crude NMR yields and difficulty in isolation (3k−p), which is
well-known for similar materials. The efficiency of the reaction
was generally better represented by comparing the yield of
alcohols and benzimidazoles. In some cases, such as 5-hydroxy-
2-methylpentanal (3k), homologated product was identified as
81% of the hydrated form when only 4% of aldehyde was
observed in NMR analysis, even though 66% of alcohol
product (4k) was isolated over two steps. Pyridine (1l) and
furan (1m) were all successfully homologated into the
corresponding products (4l,m, 5l,m), respectively (entries 12
and 13). Alkyne- and alkene-substituted oxadiazolines (1n, 1o)
both gave reasonable isolated yields as aldehyde derivatives
(4n, 5n,o), with alkyne substrate produced lower yield
arguably owing to larger steric hindrance (5o). Even though
2-cyclopropylpropanal (3p) and 2-cyclopropylpropan-1-ol
(4p) were not able to give good isolated yields, the formation
of 69% of 2-(1-cyclopropylethyl)benzimidazole (5p) proved
the effectiveness of oxadiazoline as a successful diazo precursor
for homologation. Many of these products can be thought of as
branched, or iso, aldehydes which would be difficult to prepare

Table 1. Optimization of Aldehyde Formation

entrya formaldehyde source
ox
(M)

tR
(min) T (°C)

conv
(%)

yield
(%)

1 dioxolane 0.1 40 20 99 0
2 trioxane 0.1 40 20 96 2
3 thermolyzed

paraformaldehyde
0.1 40 20 67 55

4 37% aq 0.1 40 20 78 48
5 37% aq 0.1 40 10 72 41
6 37% aq 0.05 40 10 80 39
7 37% aq 0.1 80 20 87 60

(50)b

8c 37% aq 0.1 80 20 86 58
9d 37% aq 0.1 80 20 87 56
10e 37% aq 0.1 80 20 78 41
11f 37% aq 0.1 80 20 79 12

aReaction conditions: oxadiazoline (0.4 mmol), formalin (0.3 mL, 37
wt %, 4.0 mmol), 2-methyltetrahydrofuran (4 mL). NMR yields
calculated with 1,3,5-trimethoxybenzene as an internal standard.
bIsolated yield. c100 equiv of formaldehyde was used. d5.0 equiv of
formaldehyde was used. eTetrahydrofuran was used instead of 2-
methyltetrahydrofuran. fDichloromethane was used instead of 2-
methyltetrahydrofuran.
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Table 2. Scope and Derivatization of Oxadiazolines and Aqueous Formaldehyde

aReaction conditions: oxadiazoline (1.0 equiv, 0.1 M), formaldehyde (10 equiv, 37 wt % in H2O, 1.0 M) in 2-methyltetrahydrofuran. bAldehyde
reduced directly with NaBH4 (10 equiv, 0.5 M) in ethanol. cAldehyde reacted with o-phenylenediamine (1.5 equiv, 0.075 M) in toluene. dNMR
yield, calculated using 1,3,5-trimethoxybenzene as an internal standard. eNot determined due to volatility or product contamination. f81% of the
product identified as the hydrated form.
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through traditional methods such as hydroformylation,
particularly in the presence of alkenes or alkynes.
The homologation reaction of oxadiazolines obtained from

ketones has provided us with satisfying results toward α,α-
disubstituted branched aliphatic aldehydes. However, similar
oxadiazolines generated from aldehydes are difficult to obtain,
which therefore obstructed the access toward linear aldehydes.
To overcome this difficulty, we applied an alternative route to
diazo compounds generated from hydrazones, prepared from
the corresponding benzaldehydes according to our previously
reported procedure.27,28 With the help of a glass static mixer
chip, an ethyl acetate solution of diazo compound was
combined with 37 wt % aqueous formaldehyde solution in
line, and the resulting homologated aldehyde product was
collected in the output stream and purified (Table 3, 7a−c) or

extracted and reduced directly to the corresponding alcohol in
good yields (8a−c). No attempt was made to further exemplify
this procedure, although it should be noted that the method
does overcome classical issues associated with phenacetalde-
hyde preparation.
We present a mild, operationally straightforward procedure

for the overall homologation of ketones and aryl aldehydes via
nonstabilized diazo compounds in flow. The route comple-
ments other homologation methods while avoiding expensive
and reactive transition-metal catalysts and uses formalin as a
cheap and readily available source of carbon.

■ EXPERIMENTAL SECTION
General Information. All batch reactions were performed under

an atmosphere of nitrogen using oven-dried glassware unless
otherwise stated. UV flow reactions were performed using a Vaportec
E-series and UV-150 system. Hydrazone flow reactions were
performed using a Uniqsis FlowSyn platform. Reagents were
purchased from Sigma-Aldrich, Alfa Aesar, Acros, and Fluorochem
and were used as supplied unless stated otherwise. 2-Methyltetrahy-
drofuran (2-MeTHF, anhydrous, inhibitor free, ≥99.9%) and
tetrahydrofuran (THF, anhydrous, inhibitor free, ≥99.9%) were
purchased from Sigma-Aldrich and used as supplied. Workup solvents
were employed directly from commercial sources, i.e., Sigma-Aldrich,

unless stated otherwise. Petroleum ether refers to the fractions of
petroleum ether collected between 40 and 60 °C b.p.

Flash column chromatography was performed using a Biotage SPX
system with single-use disposable silica columns of the appropriate
size (SiliaSep Flash Cartridges, 4 or 12 g of 40−60 μm ISO04/012).
Analytical thin-layer chromatography (TLC) was performed using
silica gel 60 F254 precoated glass-backed plates and visualized by
ultraviolet radiation (254 nm) and appropriate dip (typically
potassium permanganate or ninhydrin).

1H NMR and 13C{1H} NMR spectra were recorded on a 600 MHz
Bruker DRX-600 spectrometer. Chemical shifts (δ) are referenced to
the residual solvent as CDCl3 or DMSO-d6 in parts per million
(ppm). Signals are reported with the descriptions of their environ-
ments (e.g., ArH, NH, OH). Coupling constants J are quoted in hertz
(Hz). Proton and carbon multiplicity is recorded as singlet (s),
doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br) or
a combinations thereof. All compounds examined were dried in vacuo
to remove residual solvents. Spectra are assigned as fully as possible
using 1H-tCOSY, DEPT-135, HSQC, and 1H NOESY where
appropriate to facilitate structural determination. Multiple signals
arising from (pseudo)axial/equatorial positions are suffixed, for
example, Ha and Ha′. 1H NMR signals are reported to two decimal
places and 13C signals to one decimal place.

Infrared spectra were recorded neat on a PerkinElmer Spectrum
One FTIR spectrometer with a universal ATR sampling accessory;
selected peaks are reported.

Low-resolution mass spectrometry was performed on a Advion
Expression CMS spectrometer. High-resolution mass spectrometry
(HRMS) was performed using positive or negative electrospray
ionization (ESI+) by the Mass Spectrometry Service for the
Chemistry Department at the University of Cambridge.

Melting points were recorded on a Stanford Research Systems
OptiMelt automated melting point system.

The oxadiazolines 1a−p were synthesized according to the
precedent literature procedure without further modifications.19 The
hydrazones 6a−c were synthesized according to the precedent
procedure published by our group.28

All compounds listed in the paper are >95% purity. Some products
appear to be very hydroscopic and, therefore, contain 0.2−0.5 molar
equiv of water (2−5 wt %) in the 1H NMR spectra as shown below.
Volatile compounds are reported with minor solvents. Inseparable
impurities are noted.

Synthesis of Aliphatic Aldehydes. General Procedure A for
the Synthesis of Aliphatic Aldehydes. A solution of the appropriate
oxadiazoline (1.0 equiv, 0.05 mmol/mL) and formaldehyde (10 equiv
of aqueous solution, 37% w/w) in 2-MeTHF (0.5 mol/mL) was
pumped (0.125 mL min−1, tR = 80 min) through a Vaportec UV-150
photochemical reactor (10 mL, FEP tubing) while being irradiated by
a 310 nm UV lamp (output power: 9W) held at 20 °C. The reactor
output was monitored using a Mettler Toledo FlowIR instrument
(SiComp head, bands of interest: CO stretch signal at 1750−1700
cm−1 for methyl acetate, generated by the decomposition of
oxadiazoline). Once the FlowIR detector showed the signal of the
reaction slug, the output stream was collected in a sealed sample vial
containing a biphasic solution of dichloromethane and brine with
stirring to separate excess formaldehyde and other potential
impurities. The collected material was rested, and the organic phase
was separated and concentrated under reduced pressure. The
remaining residue was purified via flash silica gel column
chromatography with appropriate eluent combination to give the
desired product.

1,2,3,4-Tetrahydronaphthalene-2-carbaldehyde (3a). General
Procedure A was followed using 5′-methoxy-5′-methyl-3,4-dihydro-
1H,5′H-spiro(naphthalene-2,2′-[1,3,4]oxadiazole) (92 mg, 0.4 mmol,
1.0 equiv) and formaldehyde (0.3 mL, 37 wt % in H2O, 4 mmol, 10
equiv). The crude mixture was purified via flash column
chromatography (0−20% EtOAc in petroleum ether) to give the
titled product as a transparent oil (32 mg, 50%). 1H NMR (600 MHz,
CDCl3) δ 9.80 (d, J = 1.2 Hz, 1H, HCO), 7.13 (dt, J = 6.3, 3.5 Hz,
3H, HAr), 7.10 (q, J = 4.1, 3.5 Hz, 1H, HAr), 3.04−2.95 (m, 2H,

Table 3. Homologation of Aldehydes with Aqueous
Formaldehyde via Hydrazine

aAldehyde extracted with ethyl acetate then reduced directly with
NaBH4 (10 equiv, 0.5 M) in ethanol.
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ArCH2CH2), 2.94−2.82 (m, 2H, ArCH2), 2.75−2.68 (m, 1H,
HCOCH), 2.26−2.19 (m, 1H, ArCHa), 1.84−1.75 (m, 1H,
ArCHa′); 13C{1H} NMR (151 MHz, CDCl3) δ 203.9 (HCO),
136.1 (CAr), 134.4(CAr), 129.4(CArH), 129.0(CArH), 126.2(CArH),
126.1(CArH), 47.0 (HCOCH), 28.6 (ArCH2CH2), 28.2 (ArCH2CH),
23.1 (Ca); HRMS (ESI) calcd for C11H12ONa

+ [M + Na]+ 183.0780,
found 183.0775; IR νmax (film) 2904, 2851, 1723, 1702, 1432, 1110,
1042 cm−1. The data presented are consistent with literature
precedent.29

Tetrahydro-2H-pyran-4-carbaldehyde (3b). General procedure A
was followed using 3-methoxy-3-methyl-4,8-dioxa-1,2-diazaspiro[4.5]-
dec-1-ene (74 mg, 0.4 mmol, 1.0 equiv) and formaldehyde (0.3 mL,
37 wt % in H2O, 4 mmol, 10 equiv). The crude mixture was purified
via flash column chromatography (0−15% EtOAc in petroleum ether)
to give the titled product as a volatile transparent oil (23 mg, 48%):
1H NMR (600 MHz, CDCl3) δ 9.68 (d, J = 1.0 Hz, 1H, HCO), 4.00−
3.92 (m, 2H, OCHa + OCHb), 3.48 (ddd, J = 11.5, 10.7, 2.6 Hz, 2H,
OCHa′ + OCHb′′), 2.55−2.36 (m, 1H, HCOCH), 1.89−1.83 (m, 2H,
OCHc + OCHd), 1.70 (dtd, J = 13.7, 10.7, 4.2 Hz, 2H, OCHc′ +
OCHd′); 13C{1H} NMR (151 MHz, CDCl3) δ 203.0 (HCO), 66.8
(Ca + Cb), 46.9 (HCOCH), 25.8 (Cc + Cd); LRMS (ESI, m/z) 115.2
([M + H]+, 100); IR νmax (film) 2968, 1879, 1720, 1279, 1201, 1135,
1080, 924 cm−1. The data presented are consistent with literature
precedent.30

Tetrahydro-2H-thiopyran-4-carbaldehyde (3c). General proce-
dure A was followed using 3-methoxy-3-methyl-4-oxa-8-thia-1,2-
diazaspiro[4.5]dec-1-ene (81 mg, 0.4 mmol, 1.0 equiv) and
formaldehyde (0.3 mL, 37 wt % in H2O, 4 mmol, 10 equiv). The
crude mixture was purified via flash column chromatography (0−20%
EtOAc in petroleum ether) to give the titled product as a volatile
transparent oil (29 mg, 56%): 1H NMR (600 MHz, CDCl3) δ 9.59 (s,
1H, HCO), 2.67 (dt, J = 10.2, 3.6 Hz, 4H, SCH2), 2.34−2.22 (m, 3H,
HCOCH + CHa + CHb), 1.75 (dtd, J = 14.3, 10.2, 4.5 Hz, 2H, CHa′+
CHb′); 13C{1H} NMR (151 MHz, CDCl3) δ 203.3 (HCO), 49.3
(HCOCH), 27.6 (SCH2), 27.2 (Ca + Cb); HRMS (ESI) calcd for
C6H11OS

+ [M + H]+ 131.0528, found 131.0531; IR νmax (film) 2918,
2849, 2369, 1724, 1239, 1130, 1088, 983 cm−1. The data presented
are consistent with literature precedent.31

Tetrahydrothiophene-3-carbaldehyde (3d). General procedure A
was followed using 3-methoxy-3-methyl-4-oxa-7-thia-1,2-
diazaspiro[4.4]non-1-ene (37 mg, 0.2 mmol, 1.0 equiv) and
formaldehyde (0.16 mL, 37 wt % in H2O, 2.0 mmol, 10 equiv). An
85% NMR yield was calculated using 1,3,5-trimethoxybenzene (11
mg, 0.066 mmol, 0.33 equiv) as an internal standard. The crude
mixture was purified via flash column chromatography (0−20%
EtOAc in petroleum ether) to give the titled product as a colorless
volatile oil (17 mg, 75%) with less than 10% of dichloromethane: 1H
NMR (600 MHz, CDCl3) δ 9.63 (d, J = 1.3 Hz, 1H, HCO), 3.16 (dd,
J = 10.9, 5.0 Hz, 1H, SCHcCH), 3.09−3.04 (m, 1H, HCOCH), 2.98
(dd, J = 10.9, 7.0 Hz, 1H, SCHcCH), 2.91−2.85 (m, 1H, SCHbCH2),
2.85−2.78 (m, 1H, SCHbCH2), 2.38 (td, J = 12.7, 5.9 Hz, 1H,
CHCHa), 2.12 (dq, J = 13.4, 6.9 Hz, 1H, CHCHa′); 13C{1H} NMR
(151 MHz, CDCl3) δ 201.3 (HCO), 55.1 (HCOCH), 31.1 (Cc), 30.9
(Cb), 30.5 (Ca); LRMS (ESI, m/z) 117.1 ([M + H]+, 100); IR νmax
(film) 2944, 1720, 1416, 1235, 1028, 956 cm−1. The data presented
are consistent with literature precedent.32

1,4-Dioxaspiro[4.5]decane-8-carbaldehyde (3e). General proce-
dure A was followed using 3-methoxy-3-methyl-4,9,12-trioxa-1,2-
diazadispiro[4.2.48.25]tetradec-1-ene (102 mg, 0.4 mmol, 1.0 equiv)
and formaldehyde (0.3 mL, 37 wt % in H2O, 4 mmol, 10 equiv). The
crude mixture was purified via flash column chromatography (0−20%
EtOAc in petroleum ether) to give the titled product as a colorless
volatile oil (44 mg, 65%): 1H NMR (600 MHz, CDCl3) δ 9.64 (d, J =
1.3 Hz, 1H, HCO), 3.94 (dd, J = 5.3, 3.4 Hz, 4H, OCH2CH2O), 2.25
(ttd, J = 9.7, 4.1, 1.4 Hz, 1H, HCOCH), 1.97−1.91 (m, 2H, CHc +
CHd), 1.80−1.71 (m, 4H, CHc′ + CHd′ + CHe + CHf), 1.61−1.56 (m,
2H, CHe + CHf);

13C{1H} NMR (151 MHz, CDCl3) δ 204.2 (HCO),
108.2 (OCO), 64.5 (Ca), 64.5 (Cb), 48.4 (HCOCH), 33.5 (Cc + Cd),
23.4 (Ce + Cf); LRMS (ESI, m/z) 171.4 ([M + H]+, 100); IR νmax
(film) 2949, 2881, 1722, 1447, 1362, 1239, 1142, 1104, 1033, 948,

881 cm−1. The data presented are consistent with literature
precedent.33

tert-Butyl 4-Formylpiperidine-1-carboxylate (3f). General proce-
dure A was followed using tert-butyl 3-methoxy-3-methyl-4-oxa-1,2,8-
triazaspiro[4.5]dec-1-ene-8-carboxylate (57 mg, 0.2 mmol, 1.0 equiv)
and formaldehyde (0.16 mL, 37 wt % in H2O, 2.0 mmol, 10 equiv). A
58% NMR yield was calculated using 1,3,5-trimethoxybenzene (11
mg, 0.066 mmol, 0.33 equiv) as an internal standard. The crude
mixture was purified via flash column chromatography (0−20%
EtOAc in petroleum ether) to give the titled product as a colorless oil
(21 mg, 49%): 1H NMR (600 MHz, CDCl3) δ 9.65 (s, 1H, HCO),
3.97 (br s, 2H, NCHc + NCHd), 3.02−2.81 (m, 2H, NCHc′ +
NCHd′), 2.47−2.36 (m, 1H, HCOCH), 1.98−1.80 (m, 2H, CHa +
CHb), 1.59−1.50 (m, 2H, CHa′ + CHb′), 1.44 (s, 9H, C(CH3)3);
13C{1H} NMR (151 MHz, CDCl3) δ 203.1 (HCO), 154.8 (NCOO),
79.8 (C(CH3)3), 48.1 (HCOCH), 43.0 (br, Cc + Cd), 28.5
(C(CH3)3), 25.3 (Ca + Cb); LRMS (ESI, m/z) 214.3 ([M + H]+,
100); IR νmax (film) 2927, 1726, 1688, 1418, 1365, 1273, 1232, 1168,
1128, 958, 864, 769 cm−1. The data presented are consistent with
literature precedent.34

Adamantane-2-carbaldehyde (3h). General procedure A was
followed using 5′-methoxy-5′-methyl-5′H-spiro[adamantane-2,2′-
[1,3,4]oxadiazole] (94 mg, 0.4 mmol, 1.0 equiv) and formaldehyde
(0.3 mL, 37 wt % in H2O, 4 mmol, 10 equiv). The crude mixture was
purified via flash column chromatography (0−20% EtOAc in
petroleum ether) to give the titled product as a white solid (45 mg,
68%): 1H NMR (600 MHz, CDCl3) δ 9.73 (s, 1H, HCO), 2.44−2.37
(m, 3H, HCOCH + HCOCHCH), 2.01−1.67 (m, 12H, CHb + CHc
+ CHd);

13C{1H} NMR (151 MHz, CDCl3) δ 206.1 (HCO), 56.7
(HCOCH), 38.0 (Cb), 37.2 (Cd), 33.7 (Cb′), 28.3 (Ca), 28.0 (Cc),
27.6 (Cc′); HRMS (ESI) calcd for C11H17O

+ [M + H]+ 165.1274,
found 165.1271; IR νmax (film) 2936, 2896, 1752, 1463, 1190, 1076,
912 cm−1; mp 164−166 °C. The data presented are consistent with
literature precedent.35

4-(6-Methoxynaphthalen-2-yl)-2-methylbutanal (3j). General
procedure A was followed using 2-methoxy-5-(2-(6-methoxynaph-
thalen-2-yl)ethyl)-2,5-dimethyl-2,5-dihydro-1,3,4-oxadiazole (126 mg,
0.4 mmol, 1.0 equiv) and formaldehyde (0.3 mL, 37 wt % in H2O, 4
mmol, 10 equiv). The crude mixture was purified via flash column
chromatography (0−20% EtOAc in petroleum ether) to give the
titled product as a transparent oil (55 mg, 57%) together with 7% of
oxidized carboxylic acid: 1H NMR (600 MHz, CDCl3) δ 9.65 (d, J =
1.8 Hz, 1H, HCO), 7.68 (dd, J = 8.5, 3.4 Hz, 2H, HAr), 7.55 (d, J =
1.8 Hz, 1H, HAr), 7.30 (dd, J = 8.4, 1.8 Hz, 1H, HAr), 7.16−7.10 (m,
2H, HAr), 3.92 (s, 3H, OCH3), 2.88−2.75 (m, 2H, HCOCH +
ArCHa), 2.41 (qd, J = 6.9, 1.8 Hz, 1H, ArCHa′), 2.19−2.10 (m, 1H,
ArCH2CHb), 1.78−1.70 (m, 1H, ArCH2CHb′), 1.18 (d, J = 7.1 Hz,
3H, CHCH3);

13C{1H} NMR (151 MHz, CDCl3) δ 205.0 (HCO),
157.4 (CAr), 136.6 (CAr), 133.2 (CAr), 129.2 (CAr), 129.0 (CArH),
127.7 (CArH), 127.1 (CArH), 126.5 (CArH), 119.0 (CArH), 105.8
(CArH), 55.3 (OCH3), 45.6 (HCOCH), 33.0 (Ca), 32.1 (Cb), 13.4
(CHCH3); HRMS (ESI) calcd for C16H19O2

+ [M + H]+ 243.1385,
found 243.1386; IR νmax (film) 2933, 1721, 1634, 1606, 1483, 1390,
1264, 1229, 1031, 850 cm−1.

Synthesis of Alcohols. General Procedure B for the Synthesis
of Alcohols. The reaction slug from general procedure A was directly
collected into a round-bottom flask containing NaBH4 (10 equiv) in
EtOH (0.5 mmol/mL) and stirred for a further 1 h. The resulting
mixture was then quenched with ice−water, extracted with ethyl
acetate (2 × 20 mL), and washed with brine (2 × 20 mL). The
organic phase was combined, dried over MgSO4, filtered, and
concentrated under reduced pressure. The remaining residue was
purified via flash column chromatography with appropriate eluents to
give the desired alcohol.

(1,2,3,4-Tetrahydronaphthalen-2-yl)methanol (4a). General pro-
cedure B was followed using 5′-methoxy-5′-methyl-3,4-dihydro-
1H,5′H-spiro[naphthalene-2,2′-[1,3,4]oxadiazole] (92 mg, 0.4
mmol, 1.0 equiv), formaldehyde (0.3 mL, 37 wt % in H2O, 4
mmol, 10 equiv), and sodium borohydride (153 mg, 4.0 mmol, 10
equiv). The crude mixture was purified via flash column
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chromatography (10−40% EtOAc in petroleum ether) to give the
titled product as a transparent oil (39 mg, 60%): 1H NMR (600 MHz,
CDCl3) δ 7.09 (app. p, J = 2.2 Hz, 4H, HAr), 3.69−3.59 (m, 2H,
HOCH2), 2.93−2.79 (m, 3H, ArCH2CH + ArCHa), 2.52 (dd, J =
16.3, 10.7 Hz, 1H, ArCHa′), 2.06−1.95 (m, 2H, ArCH2CH2), 1.55−
1.39 (m, 2H, HOCH2CH + CH2OH);

13C{1H} NMR (151 MHz,
CDCl3) δ 136.8 (CAr), 136.0 (CAr), 129.3 (CArH), 128.9 (CArH),
125.7 (CArH), 125.7 (CArH), 67.8 (HOCH2), 37.1 (HOCH2CH),
32.5 (ArCH2), 28.8 (Ca), 26.0 (ArCH2CH2); HRMS (ESI) calcd for
C11H14Ona

+ [M + Na]+ 185.0937, found 185.0931; IR νmax (film)
3370, 2918, 1494, 1453, 1436, 1065, 1022, 900 cm−1. The data
presented are consistent with literature precedent.36

(Tetrahydro-2H-pyran-4-yl)methanol (4b). General procedure B
was followed using 3-methoxy-3-methyl-4,8-dioxa-1,2-diazaspiro[4.5]-
dec-1-ene (74 mg, 0.4 mmol, 1.0 equiv), formaldehyde (0.3 mL, 37 wt
% in H2O, 4 mmol, 10 equiv), and sodium borohydride (153 mg, 4.0
mmol, 10 equiv). The crude mixture was purified via flash column
chromatography (10−40% EtOAc in petroleum ether) to give the
titled product as a transparent oil (25 mg, 53%): 1H NMR (600 MHz,
CDCl3) δ 3.99 (ddt, J = 11.5, 4.6, 1.1 Hz, 2H, OCHa + OCHb), 3.51
(d, J = 6.5 Hz, 2H, HOCH2), 3.41 (td, J = 11. 5, 2.1 Hz, 2H, OCHa′ +
OCHb′), 1.79−1.73 (m, 1H, HOCH2CH), 1.68−1.64 (m, 2H, CHc +
CHd), 1.38−1.32 (m, 2H, CHc′ + CHd′); 13C{1H} NMR (151 MHz,
CDCl3) δ 68.1 (HOCH2), 67.8 (Ca + Cb), 37.7 (HOCH2CH), 29.4
(Cc + Cd); LRMS (ESI, m/z) 115.3 ([M − H]−, 100); IR νmax (film)
3368, 2918, 2847, 1652, 1443, 1235, 1140, 1031, 1012, 984, 849
cm−1. The data presented are consistent with literature precedent.30

(Tetrahydro-2H-thiopyran-4-yl)methanol (4c). General procedure
B was followed using 3-methoxy-3-methyl-4-oxa-8-thia-1,2-
diazaspiro[4.5]dec-1-ene (81 mg, 0.4 mmol, 1.0 equiv), formaldehyde
(0.3 mL, 37 wt % in H2O, 4 mmol, 10 equiv), and sodium
borohydride (153 mg, 4.0 mmol, 10 equiv). The crude mixture was
purified via flash column chromatography (10−40% EtOAc in
petroleum ether) to give the titled product as a transparent oil (38
mg, 72%): 1H NMR (600 MHz, CDCl3) δ 3.47 (d, J = 6.4 Hz, 2H,
HOCH2), 2.70 (ddd, J = 14.3, 11.9, 2.6 Hz, 2H, SCHa + SCHb),
2.64−2.58 (m, 2H, SCHa′ + SCHb′), 2.07 (dd, J = 13.5, 3.5 Hz, 2H,
CHc + CHd), 1.59 (br s, 1H, OH), 1.57−1.48 (m, 1H, HOCH2CH),
1.39 (dtd, J = 13.1, 11.8, 3.5 Hz, 1H, CHc′ + CHd′); 13C{1H} NMR
(151 MHz, CDCl3) δ 68.4 (HOCH2), 40.2 (HOCH2CH), 30.8 (Ca +
Cb), 28.3 (Cc + Cd); HRMS (ESI) calcd for C6H13O

32S+ [M + H]+

133.0682, found 133.0681; IR νmax (film) 3584, 2924, 1454, 1422,
1273, 1036 cm−1. The data presented are consistent with literature
precedent.37

(Tetrahydrothiophene-3-yl)methanol (4d). General procedure B
was followed using 3-methoxy-3-methyl-4-oxa-7-thia-1,2-
diazaspiro[4.4]non-1-ene (37 mg, 0.2 mmol, 1.0 equiv), formaldehyde
(0.16 mL, 37 wt % in H2O, 2.0 mmol, 10 equiv), and sodium
borohydride (76 mg, 2.0 mmol, 10 equiv). An 89% NMR yield was
calculated using 1,3,5-trimethoxybenzene (11 mg, 0.066 mmol, 0.33
equiv) as an internal standard. The crude mixture was purified via
flash column chromatography (0−40% EtOAc in petroleum ether) to
give the titled product as a colorless oil (18 mg, 77%) with less than
5% of ethyl acetate: 1H NMR (600 MHz, CDCl3) δ 3.64 (dt, J = 6.8,
3.5 Hz, 2H, HOCH2), 2.94 (dd, J = 10.6, 6.8 Hz, 1H, SCHcCH), 2.87
(ddd, J = 7.2, 5.9, 1.6 Hz, 2H, SCHbCH2 + SCHb′CH2), 2.65 (dd, J =
10.6, 7.2 Hz, 1H, SCHc′CH), 2.44 (dpd, J = 8.3, 6.8, 5.5 Hz, 1H,
HOCH2CH), 2.12 (dq, J = 11.9, 5.7 Hz, 1H, CHCHa), 1.85−1.71 (m,
2H, OH + CHCHa′); 13C{1H} NMR (151 MHz, CDCl3) δ 64.8
(HOCH2), 46.7 (HOCH2CH), 33.8 (Cc), 33.4 (Cd), 30.9 (Ca);
LRMS (ESI, m/z) 117.3 ([M − H]−, 100); IR νmax (film) 3336, 2928,
2860, 2355, 1438, 1264, 1210, 1079, 1049, 1028, 967, 945, 885, 684
cm−1. The data presented are consistent with literature precedent.38

(1,4-Dioxaspiro[4.5]decan-8-yl)metanol (4e). General procedure
B was followed using 3-methoxy-3-methyl-4,9,12-trioxa-1,2-
diazadispiro[4.2.48.25]tetradec-1-ene (102 mg, 0.4 mmol, 1.0 equiv),
formaldehyde (0.3 mL, 37 wt % in H2O, 4 mmol, 10 equiv), and
sodium borohydride (152 mg, 4.0 mmol, 10 equiv). The crude
mixture was purified via flash column chromatography (10−40%
EtOAc in petroleum ether) to give the titled product as a transparent

oil (52 mg, 75%): 1H NMR (600 MHz, CDCl3) δ 4.09−3.78 (m, 4H,
OCH2CH2O), 3.46 (d, J = 6.5 Hz, 2H, HOCH2), 1.86 (br s, 1H,
HO), 1.78−1.73 (m, 4H, CHc + CHd), 1.52 (td, J = 13.5, 12.8, 4.6
Hz, 3H, HOCH2CH + OCCHa + OCCHb), 1.26 (dtd, J = 13.5, 12.8,
11.7, 4.0 Hz, 2H, OCCHa′ + OCCHb′); 13C{1H} NMR (151 MHz,
CDCl3) δ 109.1 (OCO), 67.8 (HOCH2), 64.2 (OCH2CH2O), 39.2
(HOCH2CH), 34.2 (Ca + Cb), 26.7 (Cc + Cd); HRMS (ESI) calcd for
C9H16O3Na

+ [M + Na]+ 195.0992, found 195.0987; IR νmax (film)
3460, 2928, 2863, 1106, 1032, 928, 890 cm−1. The data presented are
consistent with literature precedent.39

tert-Butyl 4-(Hydroxymethyl)piperidine-1-carboxylate (4f). Gen-
eral procedure B was followed using tert-butyl 3-methoxy-3-methyl-4-
oxa-1,2,8-triazaspiro[4.5]dec-1-ene-8-carboxylate (57 mg, 0.2 mmol,
1.0 equiv), formaldehyde (0.16 mL, 37 wt % in H2O, 2.0 mmol, 10
equiv), and sodium borohydride (76 mg, 2.0 mmol, 10 equiv). The
crude mixture was purified via flash column chromatography (10−
50% EtOAc in petroleum ether) to give the titled product as a
colorless oil (23 mg, 53%): 1H NMR (600 MHz, CDCl3) δ 4.12 (br s,
2H, NCHc + NCHd), 3.56−3.44 (m, 2H, HOCH2CH), 2.69 (br s,
2H, NCHc′ + NCHd′), 1.75−1.68 (m, 2H, CHa + NCHb), 1.66−1.59
(m, 1H, HOCH2CH), 1.45 (s, 9H, C(CH3)3), 1.20−1.05 (m, 2H,
CHa′ + CHb′); 13C{1H} NMR (151 MHz, CDCl3) δ 155.0 (NCOO),
79.5 (C(CH3)3), 67.8 (HOCH2), 43.8 (br, Cc + Cd), 39.0
(HOCH2CH), 28.7 (br, Ca + Cb), 28.6 (C(CH3)3); HRMS (ESI)
calcd for C11H22O3N

+ [M + H]+ 216.1594, found 216.1591; IR νmax
(film) 3455, 2974, 2924, 2857, 2355, 1693, 1669, 1424, 1366, 1313,
1274, 1247, 1168, 1087, 1039, 962, 864, 769 cm−1. The data
presented are consistent with literature precedent.40

(Adamantan-2-yl)methanol (4h). General procedure B was
followed using 5′-methoxy-5′-methyl-5′H-spiro[adamantane-2,2′-
[1,3,4]oxadiazole] (94 mg, 0.4 mmol, 1.0 equiv), formaldehyde (0.3
mL, 37 wt % in H2O, 4 mmol, 10 equiv), and sodium borohydride
(153 mg, 2.0 mmol, 10 equiv). The crude mixture was purified via
flash column chromatography (10−40% EtOAc in petroleum ether)
to give the titled product as a transparent oil (50 mg, 75%): 1H NMR
(600 MHz, CDCl3) δ 3.74 (d, J = 7.1 Hz, 2H, HOCH2), 1.94−1.90
(m, 1H, HOCH2CH), 1.89−1.84 (m, 4H, CHb), 1.83−1.79(m, 3H,
CHb′ + CHa), 1.79−1.77 (m, 1H, CHa′), 1.75−1.72 (m, 2H, CHb′′),
1.57 (br s, 1H, CHc), 1.55 (br s, 3H, CHc′ + CHd), 1.25 (br s, 1H,
HO); 13C{1H} NMR (151 MHz, CDCl3) δ 65.3 (HOCH2), 47.3
(HOCH2CH), 39.1 (Cb), 38.2 (Cd), 31.9 (Cb′), 29.2 (Ca), 28.4 (Cc),
27.9 (Cc′); HRMS (ESI) calcd for C11H18ONa

+ [M + Na]+ 189.1250,
found 189.1247; IR νmax (film) 3260, 2861, 2849, 1466, 1452, 1066,
1033, 1007, 971 cm−1. The data presented are consistent with
literature precedent.41

4-(6-Methoxynaphthalen-2-yl)-2-methylbutan-1-ol (4j). General
procedure B was followed using 2-methoxy-5-(2-(6-methoxynaph-
thalen-2-yl)ethyl)-2,5-dimethyl-2,5-dihydro-1,3,4-oxadiazole (98 mg,
0.4 mmol, 1.0 equiv), formaldehyde (0.3 mL, 37 wt % in H2O, 4
mmol, 10 equiv), and sodium borohydride (153 mg, 2.0 mmol, 10
equiv). The crude mixture was purified via flash column
chromatography (10−40% EtOAc in petroleum ether) to give the
titled product as a yellow oil (73 mg, 75%): 1H NMR (600 MHz,
CDCl3) δ 7.66 (d, J = 8.4 Hz, 2H, HAr), 7.55 (s, 1H, HAr), 7.33 (dd, J
= 8.3, 1.8 Hz, 1H, HAr), 7.14−7.09 (m, 2H, HAr), 3.91 (s, 3H, OCH3),
3.56 (br s, 1H, HOCHc), 3.54−3.51 (m, 1H, HOCHc′), 2.89−2.79
(m, 1H, ArCHa), 2.78−2.68 (m, 1H, ArCHa′), 1.91−1.80 (m, 1H,
CHb), 1.76−1.66 (m, 1H, CHb′), 1.61−1.50 (m, 2H, HOCH2CH +
OH), 1.02 (d, J = 6.7 Hz, 3H, CHCH3);

13C{1H} NMR (151 MHz,
CDCl3) δ 157.3 (CAr), 137.9 (CAr), 133.1 (CAr), 129.2 (CAr), 129.0
(CArH), 127.9 (CArH), 126.9 (CArH), 126.3 (CArH), 118.6 (CArH),
105.6 (CArH), 68.2 (Cc), 55.3 (OCH3), 35.3 (Ca), 34.9 (Cb), 33.2
(HOCH2CH), 16.5 (CHCH3); HRMS (ESI) calcd for C16H20O2

+ [M
+ H]+ 244.1467, found 244.1463; IR νmax (film) 3342, 2961, 2926,
2850, 1634, 1604, 1484, 1462, 1391, 1263, 1228 cm−1.

2-Methylpentane-1,5-diol (4k). General procedure B was followed
using 3-(5-methoxy-2,5-dimethyl-2,5-dihydro-1,3,4-oxadiazol-2-yl)-
propan-1-ol (37 mg, 0.2 mmol, 1.0 equiv), formaldehyde (0.16 mL,
37 wt % in H2O, 2.0 mmol, 10 equiv), and sodium borohydride (76
mg, 2.0 mmol, 10 equiv). The crude mixture was purified via flash
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column chromatography (2% MeOH in dichloromethane) to give the
titled product as a colorless oil (16 mg, 66%): 1H NMR (600 MHz,
CDCl3) δ 3.60 (t, J = 6.1 Hz, 2H, HOCH2CH2), 3.48−3.36 (m, 2H,
HOCH2CH), 3.16 (br s, 2H, OH), 1.66−1.56 (m, 2H, HOCH2CH2),
1.54−1.45 (m, 2H, CH2CH2CHCH3), 1.16−1.06 (m, 1H, CHCH3),
0.88 (d, J = 6.7 Hz, 3H, CH3);

13C{1H} NMR (151 MHz, CDCl3) δ
67.8 (HOCH2CH2), 62.8 (HOCH2CH), 35.4 (HOCH2CH2), 29.7
(CH2CH2CHCH3), 29.1 (CHCH3), 16.7 (CH3); HRMS (ESI) calcd
for C6H15O2

+ [M + H]+ 119.1067, found 119.1066; IR νmax (film)
3291, 2932, 2869, 1652, 1455, 1418, 1377, 1104, 1038, 940, 897, 731
cm−1. The data presented are consistent with literature precedent.42

2-Methyl-3-(pyridin-4-yl)propan-1-ol (4l). General procedure B
was followed using 2-methoxy-2,5-dimethyl-5-(pyridin-4-ylmethyl)-
2,5-dihydro-1,3,4-oxadiazole (88 mg, 0.4 mmol, 1.0 equiv), form-
aldehyde (0.3 mL, 37 wt % in H2O, 4 mmol, 10 equiv), and sodium
borohydride (153 mg, 2.0 mmol, 10 equiv). The crude mixture was
purified via flash column chromatography (30−70% EtOAc in
petroleum ether) to give the titled product as a transparent oil (30
mg, 50%): 1H NMR (600 MHz, CDCl3) δ 8.51 (br s, 2H, HAr), 7.12
(d, J = 4.9 Hz, 2H, HAr), 3.51 (dd, J = 5.9, 1.0 Hz, 2H, HOCH2), 2.81
(dd, J = 13.4, 6.0 Hz, 1H, CHa), 2.40 (dd, J = 13.4, 8.4 Hz, 1H, CHa′),
2.03−1.93 (m, 1H, HOCH2CH), 1.75 (br s, 1H, OH), 0.91 (d, J =
6.8 Hz, 3H, CHCH3);

13C{1H} NMR (151 MHz, CDCl3) δ 150.2
(Cpyridine), 149.6 (CpyridineH), 124.8 (CpyridineH), 67.2 (HOCH2), 39.0
(Ca), 37.2 (HOCH2CH), 16.4 (CHCH3); HRMS (ESI) calcd for
C9H14NO

+ [M + H]+ 152.1071, found 152.1075; IR νmax (film) 3353,
2924, 2348, 2185, 1605, 1043 cm−1. The data presented are consistent
with literature precedent.43

3-(Furan-2-yl)-2-methylpropan-1-ol (4m). General procedure B
was followed using 2-(furan-2-ylmethyl)-5-methoxy-2,5-dimethyl-2,5-
dihydro-1,3,4-oxadiazole (84 mg, 0.4 mmol, 1.0 equiv), formaldehyde
(0.3 mL, 37 wt % in H2O, 4 mmol, 10 equiv), and sodium
borohydride (152 mg, 4.0 mmol, 10 equiv). The crude mixture was
purified via flash column chromatography (10−40% EtOAc in
petroleum ether) to give the titled product as a transparent oil (34
mg, 60%): 1H NMR (600 MHz, CDCl3) δ 7.31 (dd, J = 1.9, 0.9 Hz,
1H, HFuran), 6.29 (dd, J = 3.2, 1.9 Hz, 1H, HFuran), 6.02 (dd, J = 3.2,
0.9 Hz, 1H, HFuran), 3.50 (d, J = 6.0 Hz, 2H, HOCH2), 2.73 (dd, J =
14.9, 6.4 Hz, 1H, CHa), 2.54 (dd, J = 14.9, 7.4 Hz, 1H, CHa′), 2.03
(dq, J = 13.2, 6.4 Hz, 1H, HOCH2CH), 1.46 (br s, 1H, OH), 0.94 (d,
J = 6.8 Hz, 3H, CHCH3);

13C{1H} NMR (151 MHz, CDCl3) δ 154.7
(CFuran), 141.2 (CFuranH), 110.3 (CFuranH), 106.3 (CFuranH), 67.6
(HOCH2), 35.4 (Ca), 31.5 (HOCH2CH), 16.5 (CHCH3); HRMS
(ESI) calcd for C8H11O2

− [M − H]− 139.0754, found 139.0753; IR
νmax (film) 3342, 2919, 1595, 1507, 1460, 1381, 1146, 1033, 927
cm−1. The data presented are consistent with literature precedent.44

2-Methylhex-5-en-1-ol (4n). General procedure B was followed
using 2-(but-3-en-1-yl)-5-methoxy-2,5-dimethyl-2,5-dihydro-1,3,4-ox-
adiazole (37 mg, 0.2 mmol, 1.0 equiv), formaldehyde (0.16 mL, 37 wt
% in H2O, 2.0 mmol, 10 equiv), and sodium borohydride (76 mg, 2.0
mmol, 10 equiv). An 88% NMR yield was calculated using 1,3,5-
trimethoxybenzene (11 mg, 0.066 mmol, 0.33 equiv) as an internal
standard. The crude mixture was purified via flash column
chromatography (0−40% EtOAc in petroleum ether) to give the
titled product as a colorless oil (16 mg, 69%): 1H NMR (600 MHz,
CDCl3) δ 5.81 (ddt, J = 17.0, 10.2, 6.6 Hz, 1H, CH2CH), 5.02 (dd,
J = 17.0, 1.9 Hz, 1H, Hb), 4.95 (dd, J = 10.2, 1.9 Hz, 1H, Ha), 3.48
(ddd, J = 45.3, 10.5, 6.1 Hz, 2H, CHCH2OH), 2.18−2.09 (m, 1H,
CH2CHCHc), 2.09−1.99 (m, 1H, CH2CHCHc′), 1.70−1.60 (m,
1H, CH2CHdCHCH3), 1.58−1.47 (m, 1H, CH2CHd′CHCH3), 1.33
(br s, 1H, OH), 1.28−1.16 (m, 1H, CHCH3), 0.93 (d, J = 6.7 Hz, 3H,
CH3);

13C{1H} NMR (151 MHz, CDCl3) δ 139.0 (CH2=CH), 114.6
(CH2CH), 68.3 (CHCH2OH), 35.4 (Cc), 32.4 (Cd), 31.3
(CHCH3), 16.6 (CH3); LRMS (ESI, m/z) 113.5 ([M + H]+, 100);
IR νmax (film) 3436, 2969, 2355, 2316, 1448, 1329, 1046 cm−1. The
data presented are consistent with literature precedent.45

Synthesis of Benzimidazoles. General Procedure C for the
Synthesis of Benzimidazoles. The procedure was a modification of
the literature procedure from Jiao et al.26

The reaction slug from general procedure A was collected into a
round-bottom flask containing a biphasic solution of brine and
toluene with stirring. Upon resting, the toluene phase was syringed
out and injected into another open round-bottom flask charged with
freshly activated 4 Å molecular sieves. The mixture was stirred for
another 1 min before o-phenylenediamine (1.5 equiv) was added. The
reaction mixture was then bubbled with one O2 balloon and stirred at
room temperature (30 °C) for 12 h. Molecular sieves were filtered
over filter paper, and the filtrate was concentrated under vacuum
before being purified via flash chromatography with appropriate
eluent combinations to afford the final benzimidazole derivatives.

2-(1,2,3,4-Tetrahydronaphthalen-2-yl)-1H-benzimidazole (5a).
General procedure C was followed using 5′-methoxy-5′-methyl-3,4-
dihydro-1H,5′H-spiro[naphthalene-2,2′-[1,3,4]oxadiazole] (46 mg,
0.2 mmol, 1.0 equiv), formaldehyde (0.15 mL, 37 wt % in H2O, 2
mmol, 10 equiv), and o-phenylenediamine (32 mg, 0.3 mmol, 1.5
equiv). The crude mixture was purified via flash column
chromatography (10−40% EtOAc in petroleum ether) to give the
titled product as a white solid (36 mg, 72%): 1H NMR (600 MHz,
CDCl3) δ 9.06 (br s, 1H, NH), 7.76 (br s, 1H, HAr), 7.40 (br s, 1H,
HAr), 7.24 (d, J = 5.5 Hz, 2H, HAr), 7.29−7.13 (m, 4H, HAr), 3.41
(tdd, J = 10.3, 5.5, 3.1 Hz, 1H, CCH), 3.35−3.20 (m, 2H,
ArCH2CH), 2.97 (qp, J = 10.3, 5.5 Hz, 2H, ArCH2CH2), 2.48−
2.37 (m, 1H, CHCHa′), 2.14 (dtd, J = 13.0, 10.3, 6.2 Hz, 1H,
CHCHc′); 13C{1H} NMR (151 MHz, methanol-d4) δ 159.8 (CAr),
136.8 (CAr), 136.1 (CAr), 130.0 (CArH), 129.9 (CArH), 127.1 (CArH),
126.9 (CArH), 123.3 (CArH), 115.4 (br, CArH), 36.7 (CCH), 35.4
(ArCH2CH), 30.0 (ArCH2CH2), 29.6 (Ca); One aromatic carbon is
not seen in the 13C{1H} NMR spectrum due to peak broadening;
HRMS (ESI) calcd for C17H17N2

+ [M + H]+ 249.1387, found
249.1392; IR νmax (film) 2921, 1423, 1275, 1009, 993, 932, 743 cm−1.
Mp: 239−241 °C.

2-(Tetrahydro-2H-pyran-4-yl)-1H-benzimidazole (5b). General
procedure C was followed using 3-methoxy-3-methyl-4,8-dioxa-1,2-
diazaspiro[4.5]dec-1-ene (37 mg, 0.2 mmol, 1.0 equiv), formaldehyde
(0.15 mL, 37 wt % in H2O, 2 mmol, 10 equiv), and o-
phenylenediamine (32 mg, 0.3 mmol, 1.5 equiv). The crude mixture
was purified via flash column chromatography (10−40% EtOAc in
petroleum ether) to give the titled product as a transparent oil (31
mg, 76%): 1H NMR (600 MHz, methanol-d4) δ 7.51 (dd, J = 6.1, 3.2
Hz, 2H, HAr), 7.19 (dd, J = 6.1, 3.2 Hz, 2H, HAr), 4.06 (dt, J = 11.5,
3.3 Hz, 2H, OCHc + OCHd), 3.65−3.53 (m, 2H, OCHc′ + OCHd′),
3.24−3.15 (m, 1H, CCH), 2.04−1.92 (m, 4H, CHa + OCHb);
13C{H} NMR (151 MHz, Methanol-d4) δ 159.0 (CAr), 123.3 (CArH),
115.2 (br, CArH), 68.6 (Cc + Cd), 36.8 (CCH), 32.4 (Ca + Cb); one
aromatic carbon is not seen in the 13C{1H} NMR spectrum due to
peak broadening; HRMS (ESI) calcd for C12H15N2O

+ [M + H]+

203.1181, found 203.1184; IR νmax (film) 2958, 2922, 2852, 1457,
1427, 1128, 739 cm−1. Mp: 225−227 °C.

2-(Tetrahydro-2H-thiopyran-4-yl)-1H-benzimidazole (5c). Gen-
eral procedure C was followed using 3-methoxy-3-methyl-4-oxa-8-
thia-1,2-diazaspiro[4.5]dec-1-ene (40 mg, 0.2 mmol, 1.0 equiv),
formaldehyde (0.16 mL, 37 wt % in H2O, 2.0 mmol, 10 equiv), and o-
phenylenediamine (32 mg, 0.3 mmol, 1.5 equiv). The crude mixture
was purified via flash column chromatography (10−40% EtOAc in
petroleum ether) to give the titled product as a white solid (24 mg,
55%): 1H NMR (600 MHz, methanol-d4) δ 7.51 (br s, 2H, HAr), 7.20
(dd, J = 6.1, 3.1 Hz, 2H, HAr), 4.59 (s, 1H, NH), 3.00 (ddd, J = 12.0,
8.7, 3.3 Hz, 1H, CCH), 2.92−2.85 (m, 2H, SCHc + SCHd), 2.73 (d, J
= 14.0 Hz, 2H, SCHc′ + SCHb′), 2.37 (dd, J = 13.6, 3.1 Hz, 2H, CHa
+ CHb), 2.06 (qd, J = 12.5, 3.2 Hz, 2H, CHa + CHb);

13C{1H} NMR
(151 MHz, methanol-d4) δ 159.7 (CAr), 123.3 (br, CArH), 39.5
(CCH), 33.8 (Ca + Cb), 29.2 (Cc + Cd); two aromatic carbons are not
seen in the 13C{1H} NMR spectrum due to peak broadening; HRMS
(ESI) calcd for C12H15N2S

+ [M + H]+ 219.0956, found 219.0955; IR
νmax (film) 3394, 2924, 1709, 1432, 1274, 1047, 951, 744 cm−1; mp
220−222 °C.

2-(Tetrahydrothiophene-3-yl)-1H-benzimidazole (5d). General
procedure C was followed using 3-methoxy-3-methyl-4-oxa-7-thia-
1,2-diazaspiro[4.4]non-1-ene (38 mg, 0.2 mmol, 1.0 equiv), form-
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aldehyde (0.15 mL, 37 wt % in H2O, 2 mmol, 10 equiv), and o-
phenylenediamine (32 mg, 0.3 mmol, 1.5 equiv). The crude mixture
was purified via flash column chromatography (10−40% EtOAc in
petroleum ether) to give the titled product as a white solid (29 mg,
72%): 1H NMR (600 MHz, methanol-d4) δ 7.55−7.38 (m, 2H, HAr),
7.21−7.13 (m, 2H, HAr), 3.60 (ddd, J = 15.8, 9.7, 6.3 Hz, 1H, CCH),
3.23 (dd, J = 10.4, 6.9 Hz, 1H, CCHCHa), 3.14 (dd, J = 10.4, 9.3 Hz,
1H, CCHCHa′), 2.98 (dd, J = 8.4, 5.0 Hz, 2H, SCH2CH2), 2.52 (dt, J
= 10.4, 5.1 Hz, 1H, CCHCHb), 2.36−2.26 (m, 1H, CCHCHb′);
13C{1H} NMR (151 MHz, methanol-d4) δ 156.4 (CAr), 123.4 (CArH),
115.4 (br, CArH), 45.0 (CCH), 37.0 (Cb), 36.0 (Ca), 31.2
(SCH2CH2); one aromatic carbon is not seen in the 13C{1H} NMR
spectrum due to peak broadening; HRMS (ESI) calcd for C11H13N2S

+

[M + H]+ 205.0805, found 205.0799; IR νmax (film) 2923, 2356,
2348, 2158, 2034, 1420, 740 cm−1; mp 242−244 °C.
2-(1,4-Dioxaspiro[4.5]decan-8-yl)-1H-benzimidazole (5e). Gen-

eral procedure C was followed using 3-methoxy-3-methyl-4,9,12-
trioxa-1,2-diazadispiro[4.2.48.25]tetradec-1-ene (51 mg, 0.2 mmol, 1.0
equiv), formaldehyde (0.15 mL, 37 wt % in H2O, 2 mmol, 10 equiv),
and o-phenylenediamine (32 mg, 0.3 mmol, 1.5 equiv). The crude
mixture was purified via flash column chromatography (10−40%
EtOAc in petroleum ether) to give the titled product as a white solid
(41 mg, 80%): 1H NMR (600 MHz, CDCl3) δ 7.57−7.51 (m, 2H,
HAr), 7.20 (dd, J = 6.1, 3.1 Hz, 2H, HAr), 4.01−3.90 (m, 4H,
OCH2CH2O), 3.02 (tt, J = 11.8, 3.7 Hz, 1H, CCH), 2.21−2.13 (m,
2H, CHCHa + CHCHb), 2.07−1.97 (m, 2H, CHCHa′ + CHCHb′),
1.90−1.83 (m, 2H, CCHc + CCHd), 1.68 (td, J = 13.2, 4.3 Hz, 2H,
CCHc′ + CCHd′); 13C{1H} NMR (151 MHz, CDCl3) δ 157.9 (CAr),
122.4 (CArH), 114.8 (br, CArH), 108.1 (OCO), 64.5 (Ce), 64.4 (Cf),
37.3 (CCH), 34.4 (Cc + Cd), 29.2 (Ca + Cb); one aromatic carbon is
not seen in the 13C{1H} NMR spectrum due to peak broadening;
HRMS (ESI) calcd for C15H19N2O2

+ [M + H]+ 259.1457, found
259.1447; IR νmax (film) 2988, 2945, 1678, 1588, 1402, 1344, 1249,
1219, 1089, 1013, 967, 838, 735 cm−1; mp 230−232 °C.
tert-Butyl 4-(1H-Benzimidazol-2-yl)piperidine-1-carboxylate (5f).

General procedure C was followed using tert-butyl 3-methoxy-3-
methyl-4-oxa-1,2,8-triazaspiro[4.5]dec-1-ene-8-carboxylate (57 mg,
0.2 mmol, 1.0 equiv), formaldehyde (0.16 mL, 37 wt % in H2O,
2.0 mmol, 10 equiv), and o-phenylenediamine (32 mg, 0.3 mmol, 1.5
equiv). The crude mixture was purified via flash column
chromatography (10−40% EtOAc in petroleum ether) to give the
titled product as a white solid (30 mg, 49%): 1H NMR (600 MHz,
CDCl3) δ 10.02 (br s, 1H, NH), 7.71 (br s, 1H, HAr), 7.41 (br s, 1H,
HAr), 7.22 (dd, J = 6.0, 3.1 Hz, 2H, HAr), 4.23 (br s, 2H, NCHc +
NCHd), 3.10 (tt, J = 11.8, 3.8 Hz, 1H, CCH), 2.89 (br s, 2H, NCHc′
+ NCHd′), 2.13−2.04 (m, 2H, CHa + CHb), 1.85 (qd, J = 12.2, 4.3
Hz, 2H, CHa′ + CHb′), 1.47 (s, 9H, C(CH3)3);

13C{1H} NMR (151
MHz, CDCl3) δ 157.0 (CAr), 154.9 (NCOOC(CH3)3), 143.2 (br,
CAr), 122.5 (br, CArH), 119.1 (br, CArH), 110.7 (br, CArH), 80.0
(C(CH3)3), 44.1 (br, Cc + Cd), 37.1 (CCH), 30.9 (br, Ca + Cb), 28.6
(C(CH3)3); HRMS (ESI) calcd for C17H24O2N3

+ [M + H]+

302.1869, found 302.1869; IR νmax (film) 2976, 1692, 1536, 1425,
1366, 1272, 1231, 1166, 1123, 980, 861, 768, 742 cm−1; mp 226−228
°C.
2-[1-(Pyrimidin-2-yl)piperidin-4-yl]-1H-benzimidazole (5g). Gen-

eral procedure C was followed using 3-methoxy-3-methyl-8-
(pyrimidin-2-yl)-4-oxa-1,2,8-triazaspiro[4.5]dec-1-ene (55 mg, 0.2
mmol, 1.0 equiv), formaldehyde (0.16 mL, 37 wt % in H2O, 2.0
mmol, 10 equiv), and o-phenylenediamine (32 mg, 0.3 mmol, 1.5
equiv). The crude mixture was purified via flash column
chromatography (10−40% EtOAc in petroleum ether) to give the
titled product as a white solid (40 mg, 72%): 1H NMR (600 MHz,
CDCl3) δ 9.75 (br s, 1H, NH), 8.30 (d, J = 4.6 Hz, 2H, Hpyrimidine),
7.54 (br s, 2H, HAr), 7.22 (dd, J = 5.9, 3.1 Hz, 2H, HAr), 6.47 (t, J =
4.6 Hz, 1H, Hpyrimidine), 4.86 (d, J = 13.5 Hz, 2H, NCHc + NCHd),
3.22 (tt, J = 11.8, 3.7 Hz, 1H, CCH), 3.10−2.99 (m, 2H, NCHc′ +
NCHd′), 2.19 (d, J = 11.3 Hz, 2H, CHa + CHb), 1.92 (qd, J = 12.4,
3.9 Hz, 2H, CHa′ + CHb′); 13C{1H} NMR (151 MHz, CDCl3) δ
161.7 (Cpyrimidine), 157.9 (CpyrimidineH), 157.2 (CAr), 122.6 (br, CArH),
110.0 (CpyrimidineH), 43.9 (Cc + Cd), 37.3 (CCH), 30.7 (Ca + Cb); two

aromatic carbons are not seen in the 13C{1H} NMR spectrum due to
peak broadening; HRMS (ESI) calcd for C16H18N5

+ [M + H]+

280.1557, found 280.1546; IR νmax (film) 2936, 2346, 1982, 1584,
1541, 1518, 1481, 1456, 1426, 1358, 1304, 1272, 1233, 1105, 1050,
977, 798, 741 cm−1; mp 222−224 °C.

2-(Adamantan-2-yl)-1H-benzimidazole (5h). General procedure
C was followed using 5′-methoxy-5′-methyl-5′H-spiro[adamantane-
2,2′-[1,3,4]oxadiazole] (47 mg, 0.2 mmol, 1.0 equiv), formaldehyde
(0.15 mL, 37 wt % in H2O, 2 mmol, 10 equiv), and o-
phenylenediamine (32 mg, 0.3 mmol, 1.5 equiv). The crude mixture
was purified via flash column chromatography (10−40% EtOAc in
petroleum ether) to give the titled product as a dark yellow solid (40
mg, 79%): 1H NMR (600 MHz, CDCl3) δ 7.57 (br s, 2H, HAr), 7.21
(dd, J = 6.0, 3.1 Hz, 2H, HAr), 3.27 (s, 1H, CCH), 2.66−2.59 (m, 2H,
CHa), 2.08−1.94 (m, 7H, CHc + Cb), 1.87−1.86 (m, 1H, CHc′), 1.83
(br s, 2H, Cd), 1.77−1.70 (m, 2H, Cb);

13C{1H} NMR (151 MHz,
CDCl3) δ 157.2 (CAr), 122.3 (CArH), 44.6 (CCH), 38.4 (Cb), 37.6
(Cd), 33.1 (Cb′), 31.0 (Ca), 27.8 (Cc), 27.7 (Cc′); two aromatic
carbons are not seen in the 13C{1H} NMR spectrum due to peak
broadening; HRMS (ESI) calcd for C17H21N2

+ [M + H]+ 253.1705,
found 253.1700; IR νmax (film) 2922, 1422, 1275, 1009, 993, 743
cm−1; mp 244−246 °C.

2-Cyclobutyl-1H-benzimidazole (5i). General procedure C was
followed using 7-methoxy-7-methyl-8-oxa-5,6-diazaspiro[3.4]oct-5-
ene (31 mg, 0.2 mmol, 1.0 equiv), formaldehyde (0.16 mL, 37 wt
% in H2O, 2.0 mmol, 10 equiv), and o-phenylenediamine (32 mg, 0.3
mmol, 1.5 equiv). The crude mixture was purified via flash column
chromatography (10−40% EtOAc in petroleum ether) to give the
titled product as a white solid (20 mg, 59%): 1H NMR (600 MHz,
CDCl3) δ 7.56 (dd, J = 6.0, 3.2 Hz, 2H, HAr), 7.21 (dd, J = 6.0, 3.1
Hz, 2H, HAr), 3.80 (p, J = 8.7 Hz, 1H, CCH), 2.58−2.47 (m, 2H, CHa
+ CHb), 2.47−2.38 (m, 2H, CHa′ + CHb′), 2.14−2.01 (m, 1H, CHc),
1.99−1.91 (m, 1H, CHc′); 13C{1H} NMR (151 MHz, CDCl3) δ
158.1 (CAr), 138.6 (br, CAr), 122.3 (CArH), 114.8 (br, CArH), 34.3
(CCH), 28.2 (Ca + Cb), 18.8 (Cc); HRMS (ESI) calcd for C11H13N2

+

[M + H]+ 173.1073, found 173.1069; IR νmax (film) 2942, 1537,
1455, 1419, 1328, 1272, 982, 740 cm−1; mp 186−188 °C. The data
presented are consistent with literature precedent.46

2-[1-(Pyridin-4-yl)propan-2-yl]-1H-benzimidazole (5l). General
procedure C was followed using 2-methoxy-2,5-dimethyl-5-(pyridin-
4-ylmethyl)-2,5-dihydro-1,3,4-oxadiazole (44 mg, 0.2 mmol, 1.0
equiv), formaldehyde (0.16 mL, 37 wt % in H2O, 2.0 mmol, 10
equiv), and o-phenylenediamine (32 mg, 0.3 mmol, 1.5 equiv). The
crude mixture was purified via flash column chromatography (10−
100% EtOAc in petroleum ether) to give the titled product as a yellow
solid (23 mg, 48%): 1H NMR (600 MHz, CDCl3) δ 10.14 (br s, 1H,
NH), 8.40−8.36 (m, 2H, HPyridine), 7.73 (br s, 1H, HAr), 7.34 (br s,
1H, HAr), 7.23 (s, 2H, HAr), 7.00−6.98 (m, 2H, HPyridine), 3.35 (p, J =
7.0 Hz, 1H, CCH), 3.28 (dd, J = 13.4, 7.5 Hz, 1H, CHCHa), 3.00 (dd,
J = 13.4, 6.8 Hz, 1H, CHCHa′), 1.47 (d, J = 6.9 Hz, 3H, CH3);
13C{1H} NMR (151 MHz, CDCl3) δ 157.3 (CAr), 149.5 (CPyridineH),
148.8 (CPyridine), 143.1 (br, CAr), 124.5 (CPyridineH), 122.3 (br, CArH),
110.5 (br, CArH), 41.8 (Ca), 35.9 (CCH), 19.4 (CH3). HRMS (ESI)
calcd for C15H16N3

+ [M + H]+ 238.1344, found 238.1344; IR νmax
(film) 3051, 2969, 1603, 1559, 1535, 1484, 1454, 1419, 1328, 1272,
1219, 1110, 1070, 1043, 993, 907, 843, 795, 768, 747 cm−1; mp 188−
190 °C.

2-[1-(Furan-2-yl)propan-2-yl]-1H-benzimidazole (5m). General
procedure C was followed using 2-(furan-2-ylmethyl)-5-methoxy-
2,5-dimethyl-2,5-dihydro-1,3,4-oxadiazole (42 mg, 0.2 mmol, 1.0
equiv), formaldehyde (0.15 mL, 37 wt % in H2O, 2 mmol, 10 equiv),
and o-phenylenediamine (32 mg, 0.3 mmol, 1.5 equiv). The crude
mixture was purified via flash column chromatography (10−40%
EtOAc in petroleum ether) to give the titled product as a white solid
(34 mg, 75%): 1H NMR (600 MHz, CDCl3) δ 7.53 (dd, J = 6.1, 3.2
Hz, 2H, HAr), 7.30−7.27 (m, 1H, HFuran), 7.23−7.18 (m, 2H, HAr),
6.24 (dd, J = 3.2, 1.9 Hz, 1H, HFuran), 5.96 (d, J = 3.2 Hz, 1H, HFuran),
3.51 (h, J = 7.1 Hz, 1H, CCH), 3.24 (dd, J = 15.0, 7.2 Hz, 1H,
CHCHa), 3.06 (dd, J = 15.0, 7.2 Hz, 1H, CHCHa′), 1.48 (d, J = 7.0
Hz, 3H, CHCH3);

13C{1H} NMR (151 MHz, CDCl3) δ 158.1
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(CFuran), 153.3 (CAr), 141.5 (CFuranH), 122.4 (CArH), 115.1 (br,
CArH), 110.5 (CFuranH), 107.1(CFuranH), 34.6 (Ca), 34.1 (CCH), 19.3
(CH3); one aromatic carbon is not seen in the 13C{1H} NMR
spectrum; HRMS (ESI+): m/z calcd for C14H15N2O

+ [M + H]+

227.1177, found 227.1184; IR νmax (film) 2921, 1423, 1275, 1009,
993, 932, 743 cm−1; mp 180−182 °C.
2-(Hex-5-en-2-yl)-1H-benzimidazole (5n). General procedure C

was followed using 2-(but-3-en-1-yl)-5-methoxy-2,5-dimethyl-2,5-
dihydro-1,3,4-oxadiazole (37 mg, 0.2 mmol, 1.0 equiv), formaldehyde
(0.16 mL, 37 wt % in H2O, 2.0 mmol, 10 equiv) and o-
phenylenediamine (32 mg, 0.3 mmol, 1.5 equiv). The crude mixture
was purified via flash column chromatography (10−40% EtOAc in
petroleum ether) to give the titled product as a white solid (29 mg,
73%). 1H NMR (600 MHz, CDCl3) δ 10.18 (br s, 1H, NH), 7.55 (br
s, 2H, HAr), 7.21 (dd, J = 6.0, 3.1 Hz, 2H, HAr), 5.75 (ddt, J = 17.0,
10.2, 6.6 Hz, 1H, CH2CH), 4.97 (dd, J = 17.0, 1.8 Hz, 1H, Ha),
4.93 (dd, J = 10.2, 1.8 Hz, 1H, Hb), 3.14 (h, J = 7.0 Hz, 1H, CCH),
2.14−2.05 (m, 2H, CH2CHCH2), 2.04−1.97 (m, 1H, CCHCHc),
1.85−1.77 (m, 1H, CCHCHc′), 1.45 (d, J = 7.1 Hz, 3H, CH3);
13C{1H} NMR (151 MHz, CDCl3) δ 159.3 (CAr), 137.9 (CH2CH),
122.3 (CArH), 115.3 (CH2CH), 35.6 (Cc), 34.2 (CCH), 31.6
(CH2CHCH2), 19.8 (CH3); two aromatic carbons are not seen in
the 13C{1H} NMR spectrum; HRMS (ESI) calcd for C13H17N2

+ [M +
H]+ 201.1386, found 201.1379; IR νmax (film) 3074, 2968, 2932,
2736, 1818, 1640, 1538, 1454, 1426, 1330, 1272, 989, 906, 745, 729
cm−1; mp 182−185 °C.
2-(4,4-Dimethylhept-6-yn-2-yl)-1H-benzimidazole (5o). General

procedure C was followed using 2-(2,2-dimethylpent-4-yn-1-yl)-5-
methoxy-2,5-dimethyl-2,5-dihydro-1,3,4-oxadiazole (45 mg, 0.2
mmol, 1.0 equiv), formaldehyde (0.16 mL, 37 wt % in H2O, 2.0
mmol, 10 equiv), and o-phenylenediamine (32 mg, 0.3 mmol, 1.5
equiv). The crude mixture was purified via flash column
chromatography (10−40% EtOAc in petroleum ether) to give the
titled product as a white solid (19 mg, 39%): 1H NMR (600 MHz,
CDCl3) δ 9.68 (br s, 1H, NH), 7.71 (br s, 1H, HAr), 7.38 (br s, 1H,
HAr), 7.21 (dd, J = 6.2, 2.9 Hz, 2H, HAr), 3.29−3.21 (m, 1H,
CCHCH3), 2.12 (dd, J = 14.4, 8.9 Hz, 1H, CHCCHb), 2.07 (dd, J =
16.2, 3.2 Hz, 1H, CHCCHa), 2.02−1.93 (m, 2H, CHCCH2 +
CHCCHa′), 1.72 (dd, J = 14.4, 4.0 Hz, 1H, CHCCHb′), 1.44 (d, J =
7.1 Hz, 3H, CHCH3), 0.92 (d, J = 17.9 Hz, 6H, C(CH3)2);

13C{1H}
NMR (151 MHz, CDCl3) δ 159.7 (CAr), 122.3 (br, CArH), 110.7 (br,
CArH), 82.6 (CHCCH2), 70.5 (CHCCH2), 47.1 (Cb), 34.0
(C(CH3)2), 31.9 (Ca), 31.2 (CCHCH3), 27.3 (C(CH3)2), 27.1
(C(CH3)2), 23.3 (CCHCH3); one aromatic carbon is not seen in the
13C{1H} NMR spectrum; HRMS (ESI) calcd for C16H21N2

+ [M +
H]+ 241.1699, found 241.1690; IR νmax (film) 3311, 2965, 2752,
2367, 1538, 1453, 1424, 1335, 1269, 994, 746 cm−1; mp 191−192 °C.
2-(1-Cyclopropylethyl)-1H-benzimidazole (5p). General proce-

dure C was followed using 2-cyclopropyl-5-methoxy-2,5-dimethyl-2,5-
dihydro-1,3,4-oxadiazole (34 mg, 0.2 mmol, 1.0 equiv), formaldehyde
(0.16 mL, 37 wt % in H2O, 2.0 mmol, 10 equiv), and o-
phenylenediamine (32 mg, 0.3 mmol, 1.5 equiv). The crude mixture
was purified via flash column chromatography (10−40% EtOAc in
petroleum ether) to give the titled product as a white solid (26 mg,
69%): 1H NMR (600 MHz, CDCl3) δ 9.49 (br s, 1H, NH), 7.73 (br
s, 1H, HAr), 7.41 (br s, 1H, HAr), 7.22 (dd, J = 6.1, 3.1 Hz, 2H, HAr),
2.36 (dq, J = 9.6, 7.0 Hz, 1H, CCH), 1.56 (d, J = 7.0 Hz, 3H, CH3),
1.10 (dddd, J = 13.0, 9.6, 8.0, 4.9 Hz, 1H, CHCHCH2), 0.71−0.63
(m, 2H, CHa + CHa′), 0.44−0.38 (m, 1H, CHb), 0.36−0.30 (m, 1H,
CHb′); 13C{1H} NMR (151 MHz, CDCl3) δ 158.7 (CAr), 143.4 (br,
CAr), 133.5 (br, CAr), 122.3 (CArH), 119.4 (br, CArH), 110.4 (br,
CArH), 39.5 (CCH), 19.0 (CH3), 16.6 (CCHCH), 4.8 (Ca), 4.4 (Cb);
HRMS (ESI) calcd for C12H15N2

+ [M + H]+ 187.1230, found
187.1221; IR νmax (film) 2969, 2317, 2135, 1456, 1414, 1274, 1076,
744 cm−1; mp 187−189 °C.
Synthesis of Aldehydes from Aryl Hydrazones. General

Procedure D for the Synthesis of Aldehydes from Aryl Hydrazones.
Conditioning phase: A solution of triethylamine in MeOH (5 mL,
20% v/v) was passed through the column reactor (Omnifit column,
6.6 mm i.d. × 50 mm length), packed with activated MnO2 (1.0 g), at

a flow rate of 1.0 mL/min for 5 min (phase 1), and the reactor output
was monitored using a Flow-IR device. The flow was switched to
EtOAc for 10 min (phase 2). The column was then ready for the
generation of the diazo compound.

Generation phase: A solution of hydrazone (2 mmol, 0.1 M) in
EtOAc (20 mL) was passed through a conditioned column reactor
(Omnifit column, 6.6 mm i.d. × 50 mm length) (phase 3) at a flow
rate of 1.0 mL/min. When the Mettler Toledo FlowIR instrument
(SiComp head) showed that the intensity of the diazo peak (region
2060−2080 cm−1) was stable, 4 mL of the stream of diazo was
combined with 4 mL of aqueous formaldehyde (37 wt %, 1.0 mL/
min) in a UQ5102 Uniqsis Glass Static Mixer at room temperature.
The output stream was extracted with extra EtOAc (20 mL × 2) and
washed with water (20 mL). The combined organic phase was dried
over MgSO4, concentrated under vacuum, and purified over silica gel
using appropriate eluent combinations to yield the desired aldehyde.

2-(4-Chlorophenyl)acetaldehyde (7a). General procedure D was
followed using (4-chlorobenzylidene)hydrazine (0.1 M in EtOAc, 1.0
mL/min) and formaldehyde (37 wt % in H2O, 1.0 mL/min). The
crude mixture was purified via flash column chromatography (0−20%
EtOAc in petroleum ether) to give the titled product as a colorless
liquid (33 mg, 53%): 1H NMR (600 MHz, CDCl3) δ 9.74 (t, J = 2.1
Hz, 1H, HCO), 7.34 (d, J = 8.4 Hz, 2H, HAr), 7.15 (d, J = 8.3 Hz, 2H,
HAr), 3.68 (d, J = 2.1 Hz, 2H, CH2);

13C{1H} NMR (151 MHz,
CDCl3) δ 198.8 (HCO), 133.6 (CAr), 131.1 (CArH), 130.4 (CAr),
129.3 (CArH), 49.9 (CH2); LRMS (ESI, m/z) 155.3 ([35M + H]+,
100). The data presented are consistent with literature precedent.47

2-(3-Bromophenyl)acetaldehyde (7b). General procedure D was
followed using (3-bromobenzylidene)hydrazine (0.1 M in EtOAc, 1.0
mL/min) and formaldehyde (37 wt % in H2O, 1.0 mL/min). The
crude mixture was purified via flash column chromatography (0−20%
EtOAc in petroleum ether) to give the titled product as a colorless
liquid (46 mg, 58%): 1H NMR (600 MHz, CDCl3) δ 9.75 (t, J = 2.1
Hz, 1H, HCO), 7.45 (d, J = 8.0 Hz, 1H, HAr), 7.39 (t, J = 1.8 Hz, 1H,
HAr), 7.24 (t, J = 7.9 Hz, 1H, HAr), 7.15 (d, J = 7.6 Hz, 1H, HAr), 3.68
(d, J = 2.2 Hz, 2H, CH2);

13C{1H} NMR (101 MHz, CDCl3) δ 198.5
(HCO), 134.2 (CAr), 132.8 (CArH), 130.8 (CArH), 130.6 (CArH),
128.4 (CArH), 123.1 (CAr), 50.1 (CH2); LRMS (ESI, m/z) 199.1
([79M + H]+, 100); IR νmax (film) 2827, 1723, 1568, 1474, 1427,
1072, 782, 692 cm−1. The data presented are consistent with literature
precedent.46

2-(o-Tolyl)acetaldehyde (7c). General procedure D was followed
using (2-methylbenzylidene)hydrazine (0.1 M in EtOAc, 1.0 mL/
min) and formaldehyde (37 wt % in H2O, 1.0 mL/min). The crude
mixture was purified via flash column chromatography (0−20%
EtOAc in petroleum ether) to give the titled product as a colorless
liquid (31 mg, 57%): 1H NMR (400 MHz, CDCl3) δ 9.71 (t, J = 2.3
Hz, 1H, HCO), 7.24−7.20 (m, 3H, HAr), 7.19−7.15 (m, 1H, HAr),
3.71 (d, J = 2.3 Hz, 2H, CH2), 2.28 (s, 3H, CH3);

13C{1H} NMR
(100 MHz, CDCl3) δ 199.4 (HCO), 143.3 (CAr), 137.3 (CAr), 130.8
(CArH), 130.7 (CArH), 127.9 (CArH), 126.6 (CArH), 48.9 (CH2), 19.9
(CH3); LRMS (ESI, m/z) 135.3 ([M + H]+, 100); IR νmax (film)
2827, 1723, 1568, 1474, 1427, 1072, 782, 692 cm−1. The data
presented are consistent with literature precedent.48

Synthesis of Alcohols from Aryl Hydrazones. General
Procedure E for the Synthesis of Alcohols from Aryl Hydrazones.
The reaction slug from general procedure D was extracted with extra
EtOAc (20 mL × 2) and washed with water (20 mL). The combined
organic phase was concentrated and redissolved in EtOH (8 mL).
NaBH4 (10 equiv) was added portionwise, and the reaction mixture
was stirred for a further 1 h. The resulting mixture was then quenched
with ice−water, extracted with ethyl acetae (2 × 20 mL), and washed
with brine (2 × 20 mL). The organic phase was combined, dried over
MgSO4, filtered, and concentrated under reduced pressure. The
remaining residue was purified via flash column chromatography with
appropriate eluents to give the desired alcohol.

2-(4-Chlorophenyl)ethan-1-ol (8a). General procedure E was
followed using (4-chlorobenzylidene)hydrazine (0.1 M in EtOAc, 1.0
mL/min), formaldehyde (37 wt % in H2O, 1.0 mL/min), and NaBH4
(152 mg, 10.0 equiv). The crude mixture was purified via flash
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column chromatography (0−20% EtOAc in petroleum ether) to give
the titled product as a colorless liquid (36 mg, 57%): 1H NMR (600
MHz, CDCl3) δ 7.28 (d, J = 8.4 Hz, 1H, HAr), 7.17 (d, J = 8.4 Hz, 1H,
HAr), 3.85 (t, J = 6.6 Hz, 1H, HOCH2), 2.84 (t, J = 6.5 Hz, 1H,
ArCH2), 1.39 (br s, 1H, HO); 13C{1H} NMR (151 MHz, CDCl3) δ
137.2 (CAr), 132.5 (CAr), 130.5 (CArH), 128.8 (CArH), 63.6
(HOCH2), 38.6 (ArCH2); LRMS (ESI, m/z) 157.1 ([35M + H]+,
100); IR νmax (film) 3335, 2932, 1492, 1406, 1090, 1046, 1015, 810
cm−1. The data presented are consistent with literature precedent.49

2-(3-Bromophenyl)ethan-1-ol (8b). General procedure E was
followed using (3-bromobenzylidene)hydrazine (0.1 M in EtOAc, 1.0
mL/min), formaldehyde (37 wt % in H2O, 1.0 mL/min), and NaBH4
(152 mg, 10.0 equiv). The crude mixture was purified via flash
column chromatography (0−20% EtOAc in petroleum ether) to give
the titled product as a colorless liquid (53 mg, 66%): 1H NMR (400
MHz, CDCl3) δ 7.47−7.29 (m, 2H, HAr), 7.22−7.06 (m, 2H, HAr),
3.85 (t, J = 6.5 Hz, 2H, HOCH2), 2.83 (t, J = 6.5 Hz, 2H, ArCH2),
1.56 (s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 141.1 (CAr), 132.2
(CArH), 130.2 (CArH), 129.7 (CArH), 127.8 (CArH), 122.7 (CAr), 63.4
(HOCH2), 38.9 (ArCH2); LRMS (ESI, m/z) 201.0 ([79M + H]+,
100); IR νmax (film) 3333, 2945, 1595, 1567, 1473, 1425, 1200, 1071,
1044, 997, 853, 806, 777, 692, 570 cm−1. The data presented are
consistent with literature precedent.50

2-(o-Tolyl)ethan-1-ol (8c). General procedure E was followed
using (2-methylbenzylidene)hydrazine (0.1 M in EtOAc, 1.0 mL/
min), formaldehyde (37 wt % in H2O, 1.0 mL/min), and NaBH4
(152 mg, 10.0 equiv). The crude mixture was purified via flash
column chromatography (0−20% EtOAc in petroleum ether) to give
the titled product as a colorless liquid (36 mg, 66%): 1H NMR (400
MHz, CDCl3) δ 7.21−7.02 (m, 4H, HAr), 3.84 (t, J = 6.9 Hz, 2H,
HOCH2), 2.90 (t, J = 6.9 Hz, 2H, ArCH2), 2.35 (s, 3H, CH3);
13C{1H} NMR (100 MHz, CDCl3) δ 136.7 (CAr), 136.6 (CAr), 130.6
(CArH), 129.8 (CArH), 126.7 (CArH), 126.2 (CArH), 62.8 (HOCH2),
36.5 (ArCH2), 19.6 (CH3); LRMS (ESI, m/z) 137.3 ([M + H]+,
100); IR νmax (film) 3328, 3017, 2944, 2874, 1604, 1492, 1455, 1379,
1167, 1112, 1040, 938, 853, 741, 612 cm−1. The data presented are
consistent with literature precedent.51
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