

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at VSB Technical University of Ostrava

https://core.ac.uk/display/218457253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VSB — TECHNICAL UNIVERSITY OF OSTRAVA

FACULTY OF ECONOMICS

DEPARTMENT OF FINANCE

Assessing the Creditworthiness of a Client Using Classification Trees

Posuzování bonity klienta pomocí klasifikačních stromů

Student: Songyang Gao

Supervisor of the bachelor thesis: Mgr. Taťána Funioková, Ph.D.

Ostrava, 2019

The declaration

“I hereby declare that I have elaborated the entire thesis including annexes myself.”

Ostrava dated………

 …………………………………

 SONGYANG GAO

3

CONTENTS

1 Introduction ... 5

2 Description of the CART Decision Tree methodology ... 7

2.1 Overview of alternative regression and classification methods 7

2.1.1 Regression ... 7

2.1.2 Logistic regression .. 9

2.1.3 Discriminant analysis .. 10

2.1.4 One Rule Method .. 11

2.1.5 Bayesian Method .. 11

2.2 Recursive partitioning ... 12

2.2.1 If-then rules and conditional probability distribution 13

2.2.2 CART algorithm and notation ... 14

2.2.3 Decision tree generation ... 19

2.2.4 Decision tree pruning .. 20

2.2.5 Cross Validation .. 22

2.3 Performance evaluation .. 24

3 Implementation of the CART Algorithm in R .. 26

3.1 R and R Studio .. 26

3.2 Package rpart ... 28

3.3 Other used packages and functions ... 31

4. Application for Classification and Prediction .. 32

4

4.1 Credit scoring .. 32

4.2 Description of data .. 35

4.3 Growing phase .. 38

4.3.1 Root tree .. 38

4.3.2 First split ... 40

4.3.3 Second split ... 45

4.3.4 Maximal tree ... 48

4.4 Pruning phase .. 49

4.5 10 fold cross-validation... 51

4.6 Optimal tree .. 53

4.7 Final evaluation ... 55

5 Conclusion .. 57

Bibliography

Declaration of Utilisation of Results from a Bachelor Thesis

List of Annexes

5

1 Introduction

Credit scoring, also known as credit rating and credit evaluation, is a social

intermediary service that provides credit information to the society or provides

decision-making reference for the unit itself. Originally produced in the United States

in the early 20th century.

The credit-granting process leads to a choice between two actions—give this new

applicant credit or refuse this applicant credit. Credit scoring tries to assist this decision

by finding what would have been the better rule to apply on a sample of previous

applicants. The advantage of doing this is that we know how these applicants

subsequently performed. We can improve the found rule and apply it to new applicant.

The structure of thesis is the following.

Chapter 1 is a brief introduction to the thesis.

Chapter 2 is the description of the CART decision tree methodology. In this chapter,

we briefly describe also other methods. Then CART method is the only one we use to

classify and predict the data. Then it is the notation of the CART we use to explain the

algorithm.

Chapter 3 is the implementation of the CART algorithm in R. We just briefly

describe programming language R and R studio. This chapter includes a list of the

notation about the packages and function we will use in the application part to build an

optimal model to describe it and use for the prediction.

Chapter 4 shows the application for classification and prediction. In this chapter,

we simply explain the credit scoring and describe the data we used to analyze. Then in

the growing phase, we describe the way of splitting for the first two splits in detail and

describe how to build the maximal tree. As for the accuracy of the prediction, we show

how the classes can be predicted and how the confusion matrices can be generated.

With pruning phase, we can get the optimal tree within expectations. We introduce

penalty to control the bias-variance trade-off and to apply structural risk minimization.

Finally, we evaluate the performance of the model with the testing data.

6

Chapter 5 is the conclusion. It shows our prediction result.

7

2 Description of the CART Decision Tree methodology

Classification and regression trees (CART) are machine‐learning methods for

constructing prediction models from data. The models are obtained by recursively

partitioning the data space and fitting a simple prediction model within each partition.

As a result, the partitioning can be represented graphically as a decision tree.

Classification trees are designed for dependent variables that take a finite number of

unordered or ordered values, with prediction error measured in terms of

misclassification cost. Regression trees are for dependent variables that take continues

values, with prediction error typically measured by the squared difference between the

observed and predicted values. Machine learning is the process of automatically

discovering patterns and trends in data that go beyond simple analysis. There is a great

deal of overlap between learning algorithms and statistics and most of the techniques

used in learning algorithms can be placed in a statistical framework. Statistical models

usually make strong assumptions about the data and, based on those assumptions, they

make strong statements about the results.

2.1 Overview of alternative regression and classification

methods

We will introduce only five alternative methods in the subchapter. Three of them

based upon analysis of variance: linear regression, logistic regression and diskriminant

anaysis and two other methods: one rule method and Bayesian method, based upon

frequency tables similarly as the recursive partitioning is.

2.1.1 Regression

Regression analysis is a statistical analysis method that determines the quantitative

relationship between two or more variables. The application is very extensive. It is one

8

of the most known modeling techniques and often one of the preferred techniques for

people to learn predictive models. In this technique, the dependent variable is

continuous, the independent variable can be continuous or discrete.

The regression analysis is divided into one-way (simple) regression and multiple

regression analysis according to the variables involved. According to expected

relationship between independent variables and dependent variables it can be divided

into linear regression analysis and nonlinear regression analysis. If in the regression

analysis, only one independent variable and one dependent variable are included, and

the relationship between the two can be approximated by a straight line, this regression

analysis is called a simple linear regression analysis. If two or more independent

variables are included in the regression analysis and there is a linear correlation between

the independent variables, it is called multiple linear regression analysis.

The multiple linear regression (MLR) serves to predict one continuous dependent

(criterion) variable Y with use of one or more independent explanatory (predictor)

variables, X1... X𝑛 . It will estimate a linear

equation of the form:

Y = β0 + β1X1+ . . . + β𝑛X𝑛

where β 0 ,..., β 𝑛are unknown parameters and values of Y are then predicted by

𝑦𝑖 = β0 + β1X𝑖1+ . . . + β𝑛X𝑖𝑛 + ε𝑖 ,

where ε it the model’s error term (also known as the residuals).

𝑋𝑖 can be continuous or categorical. For categorical variables we have to create

numerical dummy variables to represent every category of the explanatory variable (it’s

coded with 1 if the case falls in the category and with 0 if not.) Ex post MLR analysis

makes number of assumptions: linear relationship between dependent

and explanatory variables, residuals should be normally distributed with mean=

0, independent variables are not highly correlated with each other. The flaw of this

method is, that it assumes a continuous dependent variable Y, so I could take any value

from -∞ to +∞. This is the reason why to prefer logistic regression for classification

problem.

9

2.1.2 Logistic regression

Logistic regression (or logit regression) is a generalized linear model and therefore

has many similarities with MLR. The dependent variable of logistic regression can be

two-category or multi-category, but the two-category is more commonly used and

easier to explain. The most commonly used in practice is the logistic regression of the

two classifications, the so-called binary logistic regression (BLR). It means the type of

the dependent variable belongs to the binary (1 / 0, true / false, yes / nom, good/bad)

variable and we use logistic regression to calculate the probability of "event=Success"

and "event=Failure". Their model forms are basically the same, both have β0 +

 β1X1+ . . . + β𝑛 X𝑛 , the difference is that their dependent variables are different,

directly uses β0 + β1X1+ . . . + β𝑛X𝑛 as the dependent variable, Y = β0 +

β1X1+ . . . + β𝑛X𝑛 and logistic regression assigns β0 + β1X1+ . . . +β𝑛X𝑛to a hidden

state p which always falls in the range of 0 and 1. Suppose we think of the binary target

variable Y in term of an underlying probability P, then the model is

P = 𝑒β0+β1X1+⋯+β𝑛X𝑛1

Then we determine the dependent variable according to the size of p and 1-p. value

via the logit transformation:

ln
𝑝

1 − 𝑝
= β0 + β1X1 +. . . + βnXn

where,

P or (1 − P)

is an odds ratio, and

ln
𝑝

1 − 𝑝

is the log odds (log of the odds ratio).

Compared to MLR, logistic regression does not apply so many assumptions. For

BLR, the dependent variable has to be binary, little or no collinearity among the

independent variables, observations should not come from repeated measurements or

matched data (observations are independent of each other), linearity of independent

10

variables and log odds, and a large sample size is required.

2.1.3 Discriminant analysis

Discriminant analysis was developed in the 1930s as a statistical method for

discriminating models of unknown categories using samples of known categories. In

recent years, discriminant analysis has been widely used in the disciplines of natural

sciences, sociology, and economic management. The distinguishing analysis is

characterized by summarizing the regularity of the classification of objective objects

based on the data information of several samples of each category that has been

mastered and historically, and establishing the discriminant formula and discriminant

criterion. When a new sample point is encountered, the category to which the sample

point belongs can be discriminated based on the discriminant formula and the criterion.

The discriminant analysis is distinguished according to the number of discriminating

groups, and can be divided into two groups of discriminant analysis and multi-group

discriminant analysis.

In the binary classification case the discriminant functional analysis is referred to

as Fisher linear discriminant analysis (LDA). The aim is to find the linear combination

of predictor variables to separate two groups,

e.g. bad and good clients:

Y = W1 · X1 + W2 · X2+ . . . +W𝑛 · X𝑛,

Where 𝑊𝑖 are unknown weights. A measure of separation is how different are the

mean values of Y for those two different groups, E (Y |"event=Success") and E (Y

|"event=Failure"). We want the difference

E (Y |"event=Success")− (Y |"event=Failure") to be maximal. The LDA analysis

is identical to MLR analysis for this simple case and so we require similar

assumptions to be met.

11

2.1.4 One Rule Method

The One rule, or 1R method, is a very simple rule-based classification algorithm

that generates only one rule for each predictor in the data. It assumes discrete attributes

(X1... X𝑛). If we have continuous variable, then we can use a binning to transform it to

a discrete variable. For every attribute a modal class is determined along with its relative

frequency. The aim is to choose the attribute which perform the highest relative

frequency of the modal class. In other words, the “One Rule” is the rule with the

smallest total error. At the end we classify a new object on the rule basis of a single

attribute.

2.1.5 Bayesian Method

The Naïve Bayes classifier technique is based on the well-known Bayes rule:

P(B|A) = P(A|B) ·
P(B)

P(A)

Despite the fact it is a simple method, it can outperform more sophisticated

classification methods. Given a set of independent variables𝑥1, … , 𝑥𝑛 continuous or

categorical and a binary dependent variable Y (Success/Failure), we want to construct

the posterior probability for "event=Success” and for "event=Failure”:

𝑃(𝑆𝑢𝑐𝑐𝑒𝑠𝑠|𝑥1, … , 𝑥𝑛) = 𝑃(𝑥1, … , 𝑥𝑛|𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑠) ∙ 𝑃(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑠),

and

𝑃(𝐹𝑎𝑖𝑙𝑢𝑟𝑒|𝑥1, … , 𝑥𝑛) = 𝑃(𝑥1, … , 𝑥𝑛|𝐹𝑎𝑖𝑙𝑢𝑟𝑒) ∙ 𝑃(𝐹𝑎𝑖𝑙𝑢𝑟𝑒).

Since this approach assumes that the conditional probabilities of the independent

variables are statistically independent we can rewrite the first formula as

𝑃(𝑆𝑢𝑐𝑐𝑒𝑠𝑠|𝑥1, … , 𝑥𝑛) = 𝑃(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑠) ∏ 𝑃(𝑥𝑖|𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑠)

𝑛

𝑖=1

We classify a new object with a class (Success/Failure) that achieves the highest

posterior probability.

12

2.2 Recursive partitioning

Recursive partitioning, or CART is a statistical method for multivariate

analysis. Recursive partitioning creates a decision tree that strives to correctly

classify group members by dividing them into subgroups based on several binary

independent variables. This process is called a recursive process because each

subgroup can be split indefinitely until the segmentation process terminates after

reaching a certain stopping criterion.

The aim of CART is to build a classification or regression tree for predicting

continuous dependent variable (regression) or categorical predictor variable

(classification). In general, the purpose is to determine a set of if-then rules that

enable the most accurate prediction of classification of cases. There are numerous

methods which can be used for classification problems. The process of building

a classification tree can be characterized as some basic steps.

➢ Firstly, specifying the criteria for predictive accuracy. The most

accurate prediction is defined as the prediction with the minimum costs which

can be measured in terms of proportion of misclassified cases. Sometimes more

accurate classification is desired for some classes than others. There are

numerous approaches how to include some kind of penalty in the incorrect

classification.

➢ The second step is to select the splits on the predictor variables that

generate the highest improvement in predictive accuracy. This is usually

measured with some type of node impurity measure representing level of

homogeneity of cases in nodes. It can be defined, for example by using Gini

index, information gain, or 𝜒2.

➢ Let the tree grow and decide when to stop splitting. In principal,

splitting could continue until all cases are perfectly classified or predicted.

However, we do not want end up with a tree structure that is too complex. Some

algorithms apply a reasonable stopping rule. One way to control splitting is to

13

specify minimum number of cases or objects in terminal nodes. Another way

is to allow splitting to continue until all terminal nodes are pure or contain no

more than a specified minimum fraction of cases in one or more classes.

➢ The last step is to prune the generated tree and select the “right-sized”

tree. I will describe this step in more detail in connection with the algorithm I

use in the next Chapter.

2.2.1 If-then rules and conditional probability distribution

We can think of a decision tree as a collection of if-then rules. The process of

converting a decision tree into an if-then rule is like: constructing a rule from the root

node of the decision tree to each path of the leaf node. The characteristics of the internal

nodes correspond to the conditions of the rules, and the classes of the leaf nodes

correspond to the conclusion of the rules. The path of the decision tree or its

corresponding if-then rule set has an important property: mutual exclusive and

completeness. Each instance is covered by a path or a rule, and is only covered by a

path or a rule. It refers to the condition that the feature of the instance is consistent with

the feature on the path or the instance satisfies the rule.

The decision tree essentially abstracts a set of classification rules from the training

data set. What I need is a decision tree with less contradiction to the training data, and

it has good generalization ability. From another perspective, the decision tree is a

conditional probability model estimated by the training data set. There are infinite

number of conditional probability models for classes based on feature space partitioning.

The conditional probability model I choose should not only have a good fit to the

training data, but also have a good prediction of the unknown data.

The decision tree has the loss function to represent this goal. As described below,

the loss function of the decision tree is a regularized maximum likelihood function, and

the decision tree strategy is to minimize the loss function as the objective function. The

14

decision tree learning algorithm in reality adopts a heuristic method, approximation.

Solve this optimization problem, and the resulting decision tree is sub-optimal.

2.2.2 CART algorithm and notation

The classification and regression tree (CART) model was proposed by Breiman et

al. in 1984 and is a widely used decision tree learning method. CART is also composed

of feature selection, tree generation and pruning, which can be used for classification.

The tree assumes that the decision tree is a binary tree, the values of the internal

node features are "yes" and "no".

The decision tree algorithm is a recursive selection of the optimal feature, and the

training data is segmented according to the feature, so that there is a best classification

process for each sub-data set. This process corresponds to the division of the feature

space. Corresponding to the construction and start, the root node is constructed, all

training data is placed at the root node, and an optimal feature is selected. According to

this feature, the training data set is divided into subsets, so that each subset has the best

classification under current conditions. If these subsets can already be classified

correctly, then construct the leaf nodes and assign them to the corresponding leaf nodes;

if there are still subsets that cannot be of basically correct classification, then select new

optimal features for these subsets, continue to segment them, build corresponding nodes,

and proceed recursively until all training data subsets are correctly classified or have

no suitable features. Finally, each subset is assigned to the leaf node, that is, there is a

clear class. This generates a decision tree.

The decision tree generated by the above method may have a good classification

ability for the training data, but – for an unknown test data it may not have a good

classification ability, that is, the fitting phenomenon may occur. I need to generate

candidates for optimal tree from the bottom. Pruning on the tree makes it simpler, so

that it has better generalization ability. Specifically, it removes the sub-segmented leaf

15

nodes and makes them fall back to the parent node, even higher node. That is, then

change the parent node or higher node to a new leaf node.

The decision tree is a basic classification and regression method. The decision tree

model is a tree structure. In the classification problem, it represents the process of

classifying instances based on independent values. It can also be considered as a

conditional probability distribution defined in feature space and class space. Its main

advantage is that the model is clear, and the classification speed is fast. When learning,

training data, the decision tree model is established according to the principle of

minimizing the loss function. In the prediction, the new data is classified by the decision

tree model. The ideas of these decision tree are mainly derived from the CART

algorithm proposed by Breiman et al (1984), the ID3 algorithm proposed by Quinlan

(1986) and the C4.5 algorithm (1993).

The classification decision tree model structure that describes the classification of

instances. The decision tree consists of nodes and directed edges. There are two types

of nodes: internal nodes and leaf nodes. The inner node represents a feature or attribute,

and the leaf node represents a class. Generally, an internal node (also known as an inner

node or branch node) is any node of a tree that has child nodes. Similarly, a leaf node

(also known as an outer node or terminal node) is any node that does not have child

nodes. The height of a tree is the length of the longest path to a leaf and the depth of a

node is the length of the path to its root.

The Fig 2.1 is a schematic diagram of a decision tree with 5 leaf nodes [marked

with 8,18,19,5,3] and4 internal nodes [marked with1,2,4,9]. Number of leaf nodes

corresponds to number of splits in the tree. I can see four (five minus one) splits in the

figure. The height is 4 and depth of node marked with 8 is 3.

The number 33 means that 33% of learning data are “Yes” class. The number 67

means that 67% of these learning data are “No” class. And sum of percentages in node

2 and 3, namely 58% (income is low) and 42% (income is not low) is equal to 100%

which is in node 1.

16

Figure2.1 Classification tree example generated with rattle package in R Studio

The CART algorithm consists of the following two steps:

The decision tree is generated based on the training data set, and the generated

decision tree should be as large as possible.

In the Fig 2.2. We divide our original data into two groups, training data set and

testing data set. And split the training data to two parts named training data and

validation data. The validation data set is for evaluation. In the end, we evaluate the

performance of the model with the testing data.

17

Figure 2.2 Data split

Source: https://medium.freecodecamp.org/how-to-get-a-grip-on-crossvalidations-

bb0ba779e21c

Pruning the generated tree and selecting the best subtree by cross-validation. At

mean time, it reduces the size of decision trees by removing sections of the tree that

provide little hard to classify instances. Pruning reduces the complexity of the final

classifier, and hence improves predictive accuracy by the reduction of overfitting.

In this subsection I introduce the basic notation and terminology which will be

easy to describe the CART algorithm in detail.

Assume I have n predictor variables 𝑋1, 𝑋2, … , 𝑋𝑛, these can be both categorical

and numerical. Suppose the cases fall into 𝐽 classes:𝐶1, … , 𝐶𝐽. The construction of a

classifier is based on a learning sample of 𝑁 cases. Every case 𝑥 from the learning

data set can be represented by a vector of predictor variables and its true class.

Learning data set (𝑁 cases):

https://medium.freecodecamp.org/how-to-get-a-grip-on-crossvalidations-bb0ba779e21c
https://medium.freecodecamp.org/how-to-get-a-grip-on-crossvalidations-bb0ba779e21c

18

(𝑥11, 𝑥12, … , 𝑥1𝑛, 𝑗1)

⋮

(𝑥𝑁1, 𝑥𝑁2, … , 𝑥𝑁𝑛, 𝑗𝑁)

Let 𝑁𝑗 be number of cases in class 𝑗, then proportion 𝑁𝑗/𝑁, 𝑗 = 1, … , 𝐶 is a

relative frequency of class 𝐶𝑗. A population proportion of class𝐶𝑗, referred to as the

prior class probability, is denoted by 𝜋𝑗.

For given a classifier 𝑑—classification rule represented by a classification tree—

I obtain structure of subsets represented by nodes. Let 𝑡 be a node, then 𝑑(𝑡) is a

class assigned to node 𝑡 by the classifier𝑑, 𝑁𝑡 is number of observations in node 𝑡,

and 𝑁𝑗(𝑡) the number of class 𝑗 cases in 𝑡.

Probability of node 𝑡 for future observations is then estimated by the formula

𝑃(𝑡) = ∑ 𝜋𝑗

𝐶

𝑗=1

𝑁𝑗(𝑡)

𝑁𝑗

Similarly, given node 𝑡, the probability of class 𝑗 in the node t is estimated by

𝑃(𝑗|𝑡) = 𝜋𝑗

𝑁𝑗(𝑡)

𝑁𝑗
∑ 𝜋𝑖

𝐶

𝑖=1

𝑁𝑖(𝑡)

𝑁𝑖

When I set the prior probabilities 𝜋𝑗 equal to observed class relative frequencies

in the sample, that is, 𝜋𝑗 =
𝑁𝑗

𝑁

𝑃(𝑡) = ∑
𝑁𝑗

𝑁

𝐶

𝑗=1

𝑁𝑗(𝑡)

𝑁𝑗
=

𝑁𝑡

𝑁

And

𝑃(𝑗|𝑡) =
𝑁𝑗(𝑡)

𝑁𝑡

19

2.2.3 Decision tree generation

The decision tree generation algorithm recursively generates the decision tree until

it cannot continue. The solution to this problem is to consider the complexity of the

decision tree and simplify the generated decision tree.

In the classification process, assuming J classes, the goodness of split criterion is

measured by an impurity function𝑓𝑖𝑚𝑝(𝑝1, … 𝑝𝐽), where 𝑝𝑗 represents the probability

that the sample cases belong to class j The CART algorithm I used in the thesis.

Gini impurity function

𝑓𝐺𝑖𝑛𝑖(𝑝1, … 𝑝𝐽) = ∑ 𝑝𝑖

𝐽

𝑖=1

⋅ (1 − 𝑝𝑖) = 1 − ∑ 𝑝𝑖
2.

𝐽

𝑖=1

That is, impurity of a node 𝑡 is given by

𝐼(𝑡) = ∑ 𝑃

𝐽

𝑖=1

(𝑖|𝑡) ⋅ (1 − 𝑃(𝑖|𝑡)) = 1 − ∑ 𝑃

𝐽

𝑖=1

(𝑖|𝑡)2.

For the two-class classification problem, if the probability that the sample point

belongs to the first class is p, then the Gini index of the probability distribution is:

𝐺𝑖𝑛𝑖(𝑝) = 2𝑝(1 − 𝑝)

And so the impurity of a node 𝑡 simplifies to,

𝐼(𝑡) = 2 ∙ 𝑃(1|𝑡) ∙ (1 − 𝑃(1|𝑡)) = 2 ∙ 𝑃(1|𝑡) ∙ 𝑃(2|𝑡).

If I split node 𝑡 into two child nodes 𝑡𝐿 and 𝑡𝑅, I define the decrease in impurity

as follows:

𝛥(𝑡, 𝑡𝐿 , 𝑡𝑅) = 𝐼(𝑡) − 𝑃(𝑡𝐿) ⋅ 𝐼(𝑡𝐿) − 𝑃(𝑡𝑅) ⋅ 𝐼(𝑡𝑅)

I select the split that maximize𝛥(𝑡, 𝑡𝐿 , 𝑡𝑅). In other words, I select the split that

minimize 𝑃(𝑡𝐿) ⋅ 𝐼(𝑡𝐿) + 𝑃(𝑡𝑅) ⋅ 𝐼(𝑡𝑅)

20

According to the training data set, starting from the root node, recursively perform

the following operations on each node to construct a binary decision tree (maximal if

possible).

2.2.4 Decision tree pruning

The pruning of the decision tree is often achieved by minimizing the loss function

or cost function of the decision tree as a whole. CART mean the so-called cost-

complexity pruning.

If the cost of misclassifying a class j object as a class i object is the same I define

misclassification rate (or misclassification cost) as

𝑅(𝑡) =1- max
𝑗=1,...,𝐶

𝑃(𝑗|𝑡) .

In general, I can define the cost of misclassifying a class j object as a class i object

in terms of 𝐶(𝑖|𝑗) function, where

 𝐶(𝑖|𝑗) {
 ≥ 0 i ≠ j
= 0 i = j

 (2.1)

 When defining the estimate 𝑅(𝑡) of the expected misclassification cost, given

the node t, by

𝑅(𝑡) = min
𝑖

∑ 𝐶(𝑖|𝑗)𝑃(𝑗|𝑡)𝐶
𝑗=1 .

For a tree T, let 𝑇̃ denote a set of leaf nodes, then I define a misclassification cost

of the tree T by

𝑅(𝑇) = ∑ 𝑅(𝑡)

𝑡∈𝑇̃

Let the number of leaf nodes in the tree be |T|. The 𝑅(𝑇) shows the prediction

error of the model on the training data, that is, the degree of fitting of the model to the

21

training data, |T| indicates the complexity of the model. Let |T| be the number of nodes

in a tree T with misclassification error𝑅(𝑇) . I define the cost-complexity measure

𝑅𝛼(𝑇) as

 𝑅𝛼(𝑇) = 𝑅(𝑇) + 𝛼|𝑇| (2.2)

 The parameter ɑ≥0 is so-called complexity parameter which represents penalty

on the complexity of tree T measured by |T|.

Let 𝑇(𝛼) be the smallest tree T for which 𝑅𝛼(𝑇) is minimal. It can be shown

that all possible values of α in [0, +∞) can be grouped into m intervals:

𝐼1 =[0,𝛼1]

𝐼2 =(𝛼1, 𝛼2]

…

𝐼𝑚−1 =(𝛼𝑚−2, 𝛼𝑚−1]

𝐼𝑚 =(𝛼𝑚−1, +∞)

Such that for every α∈ 𝐼𝑖, the same 𝑇(𝛼) is chosen.

At the end of the pruning phase I have obtain m trees 𝑇(𝛼1),…, 𝑇(𝛼𝑚). If the size

of the tree does not bother me at all I set α= 0. On the other hand, if I do not want the

tree to be too complex, I set α= +∞. Obviously, 𝑇(0)= 𝑇(𝛼1) is the maximal tree and

𝑇(+∞) = 𝑇(𝛼𝑚) is the root tree.

The pruning phase selects the model with the smallest loss function, that is, the

subtree with the smallest loss function. When the value is determined, the larger the

subtree, the better the fit with the training data, but the more complex the model is.

It can be seen that the decision tree generation only considers the better fitting of

the training data by improving the (or). The decision tree pruning also considers

reducing the model complexity by selected loss function.

22

2.2.5 Cross Validation

Cross Validation, sometimes called Rotation Estimation, is a practical way to

statistically cut data samples into smaller subsets, which was proposed by Seymour

Geisser.

In a given modeling sample, take most of the samples to build the model, leaving

a small part of the sample to be forecasted with the model tree created, and the

prediction error of this small part of the sample. This process continues until all samples

are forecasted once and only once.

The basic idea of cross-validation is to group the original datasets in a sense, one

part as a train set and the other part as a validation set or test set. First, build the training

set pair. The classifier trains and then test the verification set to test the model obtained

by the training as a performance indicator for evaluating the classifier.

If the given sample data is sufficient, a simple way to make model selection is to

randomly set the data set.

Evaluation in the different complexity models learned, choose the model with the

smallest prediction error for the verification set. Since the verification set has enough

data, it is also effective to use it to select the model.

However, in many practical applications, the data is not sufficient. In order to

select a good model, the cross-validation method can be used. The basic idea of cross-

validation is to test the data repeatedly. The set is combined into a training set and a test

set, and on this basis, training, testing, and model selection are repeated.
⚫ Simple cross-validation
The simple cross-validation method is: first randomly divide the given data into

two parts, one part as the training set and the other part as the test set (for example, 66%

of the data is the training set and 33% of the data is the test set); The training set trains

the model under various conditions (for example, different number of parameters) to

obtain different models; evaluates the test errors of each model on the test set, and

selects the model with the smallest test error.
⚫ 10 fold cross validation

23

(Assume the priors 𝜋𝑗 to be estimated from the data) I choose V--fold cross

validation method, namely 10--fold cross validation to choose an optimal model. The

learning data set is randomly divided into 10 subsets of the same size (as nearly as

possible). Then the data is trained in 9 of 10 subsets. I use the remaining subset to test

the model; repeat this process for possible choices; finally select the model with the

smallest average test error in an evaluation.

At the end of the pruning phase number of models was generated, candidates for

optimal model. Each of them corresponds to a level of complexity parameter α. Because

any value from (α1, α2> generates the same model, 𝑇(𝛼2) , also value of √𝛼1 ∙ 𝛼2

generates 𝑇(𝛼2). I choose the following representative (typical value) for every model:

β1=0

β2 =√𝛼1𝛼2

…

𝛽𝑚 =+∞.

I repeat the following procedure 10--times for every level of cp from {β1… βm}:

Table 2.1. 10 fold cross-validation

Let subseti be a new testing data set. Using the new learning data set to construct

a classifier with respect to given β, tree T(i) (β). Find the predicted class for each case in

subseti and compute misclassification error for those predictions, R (T(i) (β))

At the end of this process for every level of cp=β, where β is from {β1, … βm},

values R (T(1)(β)),…, R (T(10)(β)) are generated. Let

R𝐶𝑉(β) =
1

10
∑ T(i)(β)

10

𝑖=1

be an estimator of true misclassification rate of tree T(β) with standard error of

Learning data set

 Subset1 Subset2 Subset3 Subset4 Subset5 Subset6 Subset7 Subset8 Subset9 Subset10

1 TEST TRAIN TRAIN TRAIN TRAIN TRAIN TRAIN TRAIN TRAIN TRAIN

2 TRAIN TEST TRAIN TRAIN TRAIN TRAIN TRAIN TRAIN TRAIN TRAIN

 … … … … … … … … … …

10 TRAIN TRAIN TRAIN TRAIN TRAIN TRAIN TRAIN TRAIN TRAIN TEST

24

SE𝐶𝑉(β) = √
R𝐶𝑉(β)(1 − R𝐶𝑉(β))

𝑁
.

Firstly, we are looking for βmin with the smallest cross-validation error RCV (βmin).

Note that choice of βmin can be affected by the seed of the random number generator to

separate learning data set into 10 subtest. Small changes can be large changes in number

of terminal nodes in optimal tree. To choose the simplest tree whose accuracy is

comparable to 𝑅𝑐𝑣(βmin), 1-SE rule is applied to select the right sized tree: An optimal

tree, T (β𝑜𝑝𝑡), is the tree corresponding to βopt where βopt is the maximum β satisfying

R𝐶𝑉(β) ≤ R𝐶𝑉(β𝑚𝑖𝑛) + SE𝐶𝑉(β𝑚𝑖𝑛).

Finally, I consider βopt to be an optimal model.

2.3 Performance evaluation

One of the techniques used to summarize the performance of a classification model

is a confusion matrix. In the field of machine learning, especially statistical

classification problems, confusion matrices, also known as error matrices, are a specific

table layout that allows visualization of the performance of an algorithm. Usually

supervised learning algorithms (in unattended learning) are often referred to as Match

matrix). Each row of the matrix represents an instance in the predictive class, and each

column represents an instance in the actual class (and vice versa). The name comes

from the fact that it is easy to see if the system confuses two classes. It is a special

contingency table with two dimensions ("actual value" and "predicted value").

25

Table 2.2 confusion matrix

 Actual Values

 positive negative Total
Pr

ed
ic

te
d

va
lu

es

positive
TP

True positive

FP

False positive
TP+FP

negative
FN

Flase negative

TN

True negative
FN+TN

 Total TP+FN FP+TN TP+FP+FN+TN

True Positive (TP): Actual is positive, and is predicted to be positive. False

Negative (FN): Actual is positive, but is predicted negative. True Negative (TN): Actual

is negative, and is predicted to be negative. False Positive (FP): Actual is negative, but

is predicted positive.

The accuracy of a classification is then measure in terms of ACC, defined as:

𝐴𝐶𝐶 =
𝐹𝑃 + 𝐹𝑁

TP + FP + FN + TN
.

26

3 Implementation of the CART Algorithm in R

In Chapter 4, the CART algorithm would be applied. In the thesis, we use R studio

and R program language to solve given classification problem. Let me briefly introduce

what is R and the packages we would use in the application. And we describe the

packages what we need.

3.1 R and R Studio

R is a programming language and totally free software environment for statistical

computing and graphics supported by the R Foundation for Statistical Computing. The

R language is widely used among statisticians and data miners for developing statistical

software and other analysis for date sets. R is highly extensible through the use of user-

submitted packages for specific functions or special areas of study. Due to its S heritage,

R has stronger object-oriented programming facilities than the other statistical

computing languages. Extending R is also eased by its lexical scoping rules. Another

strength of R is static graphics, which can produce publication-quality graphs, including

mathematical symbols. Dynamic and interactive graphics are available through

additional packages.

. R Studio is a free and open-source integrated development environment for R, a

programming language for statistical computing and graphics. R Studio was founded

by JJ Allaire, creator of the programming language ColdFusion. Hadley Wickham is

the Chief Scientist at R Studio. That is, to build a classification tree and calculate

prediction results.

We can download R and R Studio from internet.

(https://cran.r-project.org/ and

https://www.rstudio.com/products/rstudio/download/)

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/

27

 A screenshot from the R studio is shown in Fig 3.1.

Figure 3.1 The screenshot of the R studio

The upper left window is a plane text editor: the source editor. This is where we

write the code. Our code will not be evaluated until we “run” them to console. The area

under the source editor is console, where our code from the source is evaluated by R.

we can also use the console to preform quick calculations that we don’t need to save.

The upper right is the environment/ history. Here we can see what objects are in our

working space (environment) or view our command history. The last one is file/ plots/

packages / help. Here we can see file directories, view plots, download packages and

access R help. In general, if we want to use any non-standard packages in R studio, like

rpart we have to install the package

install.packages("rpart")

and then attach the package

library("rpart")

Note that function library is possibly the most common function call in R.

28

3.2 Package rpart

In 1999, R package rpart (algorithm of Recursive trees) was the first time

introduced to the public (Therneau and Atkinson, 1997). You can find more information

including reference manual (https://cran.r-project.org/web/packages/rpart/index.html).

And it is continuously updated. The section is intended to give a short overview of the

methods found in the rpart routines, which implement many of the ideas found in the

CART book and programs of Breiman, Friedman, Olshen and Stone (1993).

The data we use in the application part is csv format. It can be imported to R studio

as a data frame object. We can sue the function read.csv for this purpose. We use

package rpart to analyze the data set in terms of this command, namely to find a

maximal tree:

maxtree <- rpart(formula= Y ~ .,

 data=MYDATA,

 method = "class",

 parms = list(prior = c(N1/N,N2/N),

 split = "gini",

 loss=matrix(c(0,1,1,0),

ncol=2)

),

 control = rpart.control(minsplit =0,

 cp=0.00,

 xval=10)

https://cran.r-project.org/web/packages/rpart/index.html

29

)

 Let me describe the parameters involved in rpart now, I will use the

notation introduced in Chapter 2 to explain the rpart. There a lot of functions in this

package. We will use the following function: rpart, rpart.control,

prune.rpart, summary.raprt, predict.rpart, printcp,

plot.rpart, plotcp.

 Parameters appearing in rpart function:

• data: data parameter is a data frame object with our training data

set.

• formula: It represents our model, as we want to classify Y

according to X1 ,…, Xn we use formula = Y~ X1 +… +Xn , or simply

formula=Y~. If data contains only predictor Y and independent

variables X1,…, Xn.

• method: The splitting rule depends on a type of a tree model. We

can build trees based upon "anova" (regression), "poisson" or "exp"

approach. If method is missing then the routine tries to make an intelligent

guess. If Y is a factor then method = "class" is assumed, otherwise

method = "anova" is assumed.

• parms

➢ prior: For classification splitting, the list can contain any

of: the vector of prior probabilities πi(component prior) .The priors

must be positive and sum to 1and the default priors are proportional

to the data counts N1/N N2/N.

➢ split: The splitting index can be Gini or information. The

losses default to 1, and the split defaults to Gini. In the thesis, I only

use the Gini index (2.3.1) to describe the data.

30

➢ loss: Loss=matrix(c(0,1,1,0), ncol=2). The command

matrix (c(0,1,1,0), ncol=2) represents the 2×2 matrix

(
0 1
1 0

). The loss matrix introduced in Chapter 2.

When we want to get different misclassification of class 1 as class 2

and class 2 as class 1, in terms of function 𝐶(𝑖|𝑗) (2.1). In general, a loss

matrix L (component loss) which represents penalty has a form of

(
𝐶(1|1) 𝐶(1|2)
𝐶(2|1) 𝐶(2|2)

). It must have zeros on the diagonal and positive off-

diagonal elements.

• control

➢ minsplit: The minimum number of observations in a

node for which the routine will even try to compute a split. And the

minimum number of observations that must exist in a node in order

for a split to be attempted. That is, if we want to build a maximal

tree we should set minisplit= 0.

➢ cp: cp represents α in formula (2.2). It already control the

pruning phase. As mentioned above, so we have to set cp =0 to

obtain the maximal tree.

➢ xval: The number of cross-validations. In the thesis, we use

10-fold cross validation, so we set xval=10.

• printcp: Displays the cp table for fitted itree object. Using this

command, we would get table which summarize the pruning phase graphs

with data generated by V-fold cross-validation function.

• plotcp: It provides a graphical representation to the cross validated

error summary which is output of printcp function. The cp values are

plotted against the geometric mean to depict the deviation until the

minimum value is reached.

• prune: It allows us to generate a subtree for given value of cp.

31

• summary: It summarizes the output or rpart function.

• predict: It is used to predict values of given target variable data

set. In the command, we only write the object and the data set based on.

3.3 Other used packages and functions

• rattle: To draw trees we use rattle package, for root node we use

rpart.plot. Rattle is a package written in R providing a graphical

user interface to very many other R packages that provide functionality for

data mining.

• sample: Takes a sample of the specified size from the elements of

X using either with or without replacement.

• set.seed: Set the seed of R‘s random number generator, which is

useful for creating simulations or random objects that can be reproduced. In

the application, we use set.seed(160) to select the specific data set and

make the whole process reproducible.

32

4. Application for Classification and Prediction

Credit scoring, also known as credit rating and credit evaluation, is a social

intermediary service that provides credit information to the society or provides

decision-making reference for the unit itself. Originally produced in the United States

in the early 20th century. Later extended to a variety of financial products and various

assessment objects. Due to the different objects and requirements of credit scorings, the

content and methods of credit scoring are also quite different. The credit scoring is an

individual or company financial history that indicates whether the person or company

can repay the debt, based on the amount and whether the debtor repaid the previous

debt in a timely manner.

In this chapter, we will use the method we described to analysis the data sets and

show the result of prediction.

4.1 Credit scoring

Credit-scoring techniques assess the risk in lending to a special consumer. It is an

evaluation by a lender of a borrower and incarnates the circumstances of both and the

lender’s view of the possibly future financial scenarios. Some lenders will evaluate an

individual as creditworthy and others will not. One of the perennial dangers of credit

scoring is that this may cause to be the proposal, and there will be those who can get

credit from all financial intermediaries and those who cannot. Explaining someone as

uncreditworthy causes offense. It will be better for the lender to describe the reality,

which is that the position of lending to this consumer represents a risk that the lender is

not willing to deal.

Credit scoring have two definitions, narrow and broad. The narrow credit scoring

refers to an independent third-party credit scoring agency that evaluates the creditor's

ability and willingness to repay the principal and interest of the debt in full, and uses a

33

simple scoring symbol to indicate its default risk and the severity of the loss. The broad

credit scoring is an overall assessment of the ability and willingness of the scoring

object to perform relevant contracts and economic commitments.

Credit scoring is an inevitable outcome of the development of the market economy.

From the perspective of economics, the theory of information asymmetry lays a

theoretical foundation for the emergence of credit evaluation. The problem of

information asymmetry exists in a large number of transactions between banks and

enterprises, between enterprises, and in the capital market. In order to reduce the harm

caused by information asymmetry - credit risk, credit scoring came into being. Due to

the continuous development of the market economy, enterprises began to invest in the

capital market in order to achieve development. There are a wide range of information

asymmetry in the process of bank credit, commercial transaction and capital market

transactions. Through credit evaluation, qualitative analysis, quantitative calculation

and measurement of the default probability of borrowers may be made. Asymmetry can

play an important role.

The credit scoring is essentially a way of dividing the borrower into different

groups according to its characteristics and assessing the credit of different groups. In

the late 1960s, the emergence of credit cards made banks and other credit card issuers

aware of the importance of credit scoring. The surge in the number of people applying

for credit cards every day makes it impossible to manually analyze the credit risk of

applicants in terms of both economic and human resources, so the automated loan

review technology came into being. Using credit scores, financial institutions have

found that it can better predict default rates and reduce loan default rates by 50% or

more.

In the 1980s, the success of credit scorecards prompted banks to apply the

technology extensively to personal consumer loans, home loans, and small business

loans. In credit card modeling techniques, Logistic regression models and linear

programming models are undoubtedly the two pillars of traditional methods. In recent

34

years, with the advancement of technology, analytical methods such as artificial

intelligence technologies, such as expert systems and neural networks, have emerged

and are being introduced into credit card modeling. The focus of international credit

research has shifted from looking for the smallest data base with default rates to looking

for profit-maximizing customer groups.

The credit scoring was originally judged manually by the loan officer. Credit

analysts read the applicant form and classify the customer, and the classification basis

is usually 3C, 4C or 5C: characteristics of individuals and family members, asset status,

collateral, income ability, market environment, etc. The current credit score is based on

statistical methods, using linear regression, and with the help of computers,

mathematically classifying customers, such as logistic regression and classification tree

models. Most scorecard modelers use one or a combination of technologies.

In all cases, whatever the techniques used, the important point is that there is a

very huge sample of previous customers with their application details and consecutive

credit history available. All the techniques use the sample to recognize the connections

between the proportion of the consumers and how “good” or “bad” their consecutive

history is. Many of the methods lead to a scorecard, where the characteristics are given

a score and the total of these points says whether the risk of a consumer being bad is

too great to accept.

It can be said that credit means risk, and the risk of credit is generated along with

the generation of credit activities. The analysis and evaluation of credit risk have also

undergone profound changes: from empirical judgment to index calculation, from

qualitative argumentation to quantitative analysis. Generally calculated to the digital

model judgment and so on. Credit risk assessment can be divided into two main

categories: factor analysis and model analysis.

35

4.2 Description of data

The Home Equity dataset (HMEQ) contains baseline and loan performance

information for 5,960 recent home equity loans. A home equity loan is a loan where the

obligor uses the equity of his or her home as the underlying collateral. The target (BAD)

is a binary variable indicating whether an applicant eventually defaulted or was

seriously delinquent. This adverse outcome occurred in 1,189 cases (19.94%).

(Source: https://www.kaggle.com/ajay1735/hmeq-data)

For each applicant, 12 input variables were recorded, we can see the detail in the

Table 4.1.

• BAD: 0 = applicant paid loan (Good applicant); 1 = applicant

defaulted on loan or seriously delinquent (Bad applicant)

• LOAN: Amount of the loan request, it ranges from 1100 to 89900

(numerical variable)

• MORTDUE: Amount due on existing mortgage ,5053 unique values

(numerical variable)

• VALUE: Value of current property, 5381 unique values (numerical

variable)

• REASON: DebtCon = debt consolidation; HomeImp = home

improvement

• JOB: Occupational categories (other 40%, profExe 21%, office 16%,

Mgr 13%, the other 10%)

• YOJ: Years at present job, it ranges from 0 to 26 years

• DEROG: Number of major derogatory reports (0 76%, 1 7%, the

other 17%)

• DELINQ: Number of delinquent credit lines (0 70%, 1 11%, the other

19%)

https://www.kaggle.com/ajay1735/hmeq-data

36

• CLAGE: Age of oldest credit line in months, 5314 unique values

(numerical variance)

• NINQ: Number of recent credit inquiries

• CLNO: Number of credit lines

• DEBTINC: 4693 unique values (numerical variable)

We can use function read.csv to read the whole data as data frame Dftotal.

DfTotal <- read.csv("./Data/hmeq.csv")

Table 4.1 HEMQ data sets (first 30 observations)

As you can see in Tab 4.1, our data set classify missing values. But because CART

algorithm is an algorithm that handle missing values we do not need to delete lanes with

missing values. There can be also work in the model building (see the details in the

Breiman). We need to divide the data set in two parts randomly. There are 5,970

applicants in the entire data set. According to the principle of separate data, it is divided

into training data set (2/3 of total) and testing data set (1/3 of total). In the training data

number BAD LOAN MORTDUE VALUE REASON JOB YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC

1 1 1100 25860 39025 HomeImp Other 10.5 0 0 94.36667 1 9

2 1 1300 70053 68400 HomeImp Other 7 0 2 121.8333 0 14

3 1 1500 13500 16700 HomeImp Other 4 0 0 149.4667 1 10

4 1 1500

5 0 1700 97800 112000 HomeImp Office 3 0 0 93.33333 0 14

6 1 1700 30548 40320 HomeImp Other 9 0 0 101.466 1 8 37.11361

7 1 1800 48649 57037 HomeImp Other 5 3 2 77.1 1 17

8 1 1800 28502 43034 HomeImp Other 11 0 0 88.76603 0 8 36.88489

9 1 2000 32700 46740 HomeImp Other 3 0 2 216.9333 1 12

10 1 2000 62250 HomeImp Sales 16 0 0 115.8 0 13

11 1 2000 22608 18

12 1 2000 20627 29800 HomeImp Office 11 0 1 122.5333 1 9

13 1 2000 45000 55000 HomeImp Other 3 0 0 86.06667 2 25

14 0 2000 64536 87400 Mgr 2.5 0 0 147.1333 0 24

15 1 2100 71000 83850 HomeImp Other 8 0 1 123 0 16

16 1 2200 24280 34687 HomeImp Other 0 1 300.8667 0 8

17 1 2200 90957 102600 HomeImp Mgr 7 2 6 122.9 1 22

18 1 2200 23030 19 3.711312

19 1 2300 28192 40150 HomeImp Other 4.5 0 0 54.6 1 16

20 0 2300 102370 120953 HomeImp Office 2 0 0 90.99253 0 13 31.5885

21 1 2300 37626 46200 HomeImp Other 3 0 1 122.2667 1 14

22 1 2400 50000 73395 HomeImp ProfExe 5 1 0 1 0

23 1 2400 28000 40800 HomeImp Mgr 12 0 0 67.2 2 22

24 1 2400 18000 HomeImp Mgr 22 2 121.7333 0 10

25 1 2400 17180 HomeImp Other 0 0 14.56667 3 4

26 1 2400 34863 47471 HomeImp Mgr 12 0 0 70.49108 1 21 38.2636

27 0 2400 98449 117195 HomeImp Office 4 0 0 93.81177 0 13 29.68183

28 1 2500 15000 20200 HomeImp 18 0 0 136.0667 1 19

29 1 2500 25116 36350 HomeImp Other 10 1 2 276.9667 0 9

30 0 2500 7229 44516 HomeImp Self 0 0 208 0 12

37

set, 3178 applicants (79.98%) were in class 0 (good applicant) and 795 applicants

(20.02%) were in class 1 (bad applicant). In the testing data set, 1592 applicants

(80.12%) were in class 0 (good applicant) and 395 applicants (19.88%) were in class 1

(bad applicant).

For choosing the data group we need to set the random generator

set.seed(160)

and so choose rows representing our training data set:

rowsTRAINVALID <- sample(x = 1:5970,size = 3973)

And then we assign our training data set to variable DfTRAINVALID as follows

DfTRAINVALID <- DfTotal[rowsTRAINVALID,]

Then we assign the testing data set to variable DfTest

DfTest <- DfTotal[-rowsTRAINVALID,]

Table 4.2 Frequencies and percentages

 0 (Good) 1 (Bad) Total

Training 3178

(79.98%)

795

(20.02%)

3973

Testing 1592

(80.12%)

395

(19.88%)

1987

Total 4770

(79.89%)

1200

(20.11%)

5970

We want to find out how the target variable BAD can be predicted by values of 11

independent variables (LOAN, MORTDUE, VALUE, REASON, JOB, YOJ, DEROG,

DELINQ, CLAGE, NINQ, CLNO, DEBTINC).

38

4.3 Growing phase

 In this chapter, we will use R studio to generate classification trees.

4.3.1 Root tree

Before we introduce the maximal tree generated by rpart package let us describe

how the first splits are generated to better understand the idea of recursive partitioning

method. As I mentioned in Chapter 3. We need to change the parameter in rpart

function. That is, we set the cp=0 and minsplit=0 to build the maximal tree.

maxtreeA <- rpart(formula = BAD~.,

 data = DfTRAINVALID,

 method = "class",

 parms = list(

 split = "gini",

 loss=matrix(c(0,1,1,0),ncol=2)

),

 control = rpart.control(

 cp = 0.0,

 minsplit = 0,

 xval=10

)

)

Note that the new setting may not ensure that the maximal tree in found, since the

depth of rpart package generated tree in limited to 30. We describe the original data

39

set is nothing but a root tree 𝑇𝑟𝑜𝑜𝑡 , consisting of one node without any splits.

Classification and regression trees can be generated in R with rpart package. We can

draw (small) decision trees with packages rpart.plot and rattle. Here is the root

tree in terms of proportions and frequencies.

Figure 4.1 Root tree

Let me denote the node by 𝐴1 and use the follow notation (similar notation will

be applied for all the nodes):

𝑛𝐴1
, the number of observations in node 𝐴1.

𝑝(𝐴1) = 1 = 100% , probability of 𝐴1 (for future observations); this node

includes 100% of the data.

𝑝(1|𝐴1) = 0.2002 = 795/3973, probability of applicant defaulted on loan or

seriously delinquent in node 𝐴1 (for future observation).

𝑝(0|𝐴1) = 0.7998 = 3178/3973, probability of applicant paid loan in node 𝐴1

(for future observations).

Because there is no rule, we can see the whole node classified as class 0. 𝑑(𝐴1) =

0, the class assigned to 𝐴1, which is nothing but the modal class. And 79.98% is the

correct, so the misclassification rate 𝑅(𝑇𝑟𝑜𝑜𝑡) = 20.02%.

If a node is a pure node, then its risk is zero. When I look for a rule to split the

node I want its sons to be as pure as possible. I apply Gini impurity function in the

following form to quantify purity of a node:

𝐼(𝐴) = 𝑝(1|𝐴) ⋅ (1 − 𝑝(1|𝐴)) + 𝑝(0|𝐴) ⋅ (1 − 𝑝(0|𝐴)) =

40

= 1 − 𝑝(1|𝐴)2 − 𝑝(0|𝐴)2.

That is,

𝐼(𝐴1) = 1 − 𝑝(1|𝐴1)2 − 𝑝(0|𝐴1)2 = 1 − (0.7998)2 − (0.2002)2 = 0.3202.

4.3.2 First split

If I use the second row in the Tab 4.11, when I set the cp=0.06—we will describe

it in detail in Chapter 3—then I can get the first split tree. With the help of function

prune(),

firsttree <- prune(tree = maxtreeA,cp = 0.06)

The first tree is relatively simple, so we can use command

summary(firsttree)

to see detail of the first tree (Fig 4.3)

We can draw the tree with function fancyrpartplot(), which is nothing but

graphs of R object firsttree:

n= 3973

node), split, n, loss, yval, (yprob)

 * denotes terminal node

1) root 3973 795 0 (0.7998993 0.2001007)

 2) DELINQ< 1.5 3610 584 0 (0.8382271 0.1617729) *

 3) DELINQ>=1.5 363 152 1 (0.4187328 0.5812672) *

We have to choose a rule for the first split now. We can use 11 different rules for

the first binary split. Let me start with variables with DELINQ which depends on

whether it is less than 1.5 which means the number are 0 and 1. In the Figure 4.2, 91%

of the total are less than 1.5 which represents the integers more than 1. The other (9%)

are more than 1.5. In the node 2, I use the DEBTINC as the judgement.

Then in the node 2 and node 3, we can get the minimal amount of

41

0.91(1 − 0.842 − 0.162) + 0.09(1 − 0.422 − 0.582) = 0.2885

That is, in this first tree, I can achieve lower impurity because of 0.32> 0.2885.

But if I set other different rule for the split. Then I can’t get the results the impurity

lower than 0.32. So the DELINQ< 1.5 is the rule to split.

Figure 4.2 The first tree

42

 Figure 4.3 Description of first tree

• Prediction of single case

We can already use this small tree for classification. As mentioned in Chapter 3,

we use function predict()for this purpose. We show and describe the use of a tree-

based classification for one particular case from the data set.

Dfonecase <- DfTRAINVALID[1,]

Using the above formula to get one row of data set,

Table 4.3 First row of DfTrainvalid data set

The first number is the order of the data. Next is the 12 variables of this applicant.

Then we need to predict if the applicant can pay the loan. Firstly, we set parameter

type to “class”.

43

predict(object = firsttree,newdata = Dfonecase ,type =

"class")

Secondly, if we set parameter type= "prior", we can see also the probability

of both classes for this single case.

predict(object = firsttree,newdata = Dfonecase ,type =

"prior")

Table 4.4 Prediction of first row

0 (Good) 1 (Bad)

0.8382 0.1618

As we can see in the Tab 4.4, the percentage of 83.82% classified as class 0, which

represents a high probability that the applicant is a good client. The percentage of 16.18%

classified as class 1, which represents a low probability that the applicant is a bad client.

That is how we can apply this method to our data set. The next few commands are

to classify and predict the first tree.

predict(object = firsttree,newdata = DfTRAINVALID)

table(predict(object = firsttree,newdata =

DfTRAINVALID,))

And summarize it in Tab 4.5.

We can get such output. There are 3610 applicants classified as class 0 (good

applicant), they account for 90.86% of the total. There are 363 applicants classified as

class 1(bad applicant), they account for 9.14% of the total.

44

Table 4.5 The output of first prediction

 0 (Good) 1 (Bad)

Number 3610 363

Proportion 0.9086 0.0914

Percent 90.86% 9.14%

The result of the prediction is actually the data in the Node 2 and Node 3 (Fig 4.2).

After this, we can calculate misclassification rate after first split for the training

data set.

Max.A.Train.predict <- table(predict(object =

firsttree,newdata = DfTRAINVALID,type =

"class"),DfTRAINVALID$BAD)

We use our training data trainvaild with 3973 observations. There are 3178

applicants who can pay the loan and 795 applicants who cannot pay the loan in truth.

When we use the command to predict whether they will be able to pay the loan or not

we classify 3610 applicant of them as being able to pay the loan and 363 applicants as

not being able to pay the loan. The summary of this prediction can be seen in Tab 4.6.

45

Table 4.6 Misclassification matrix

 Actual Values

 0 (Good) 1 (Bad) Total

Pr
ed

ic
te

d

va
lu

es

0

(Good)

3026

(76.16%)

584

(14.70%)

3610

(90.86%)

1

(Bad)

152

(3.83%)

211

(5.31%)

363

(9.14%)

 Total
3178

(79.99%)

795

(20.01%)

3973

(100%)

The table includes cross-tabulation of predicted values of variable BAD and actual

values of this variable. We can see that 3026+211 = 3237 applicants were classified

correctly. On the other hand, we have 584 applicants who cannot pay the loan but we

classify them as being able and 152 applicants who are able to pay the loan and we

classify them as bad applicants. The misclassification error of this classification is

𝑅(𝑇𝑓𝑖𝑟𝑠𝑡) =
584 + 152

3026 + 584 + 152 + 211
= 18.53%

and so the accuracy of this classification is 100% - 18.53%=81.47%.

4.3.3 Second split

That is, we use the same idea to apply for the second split. By using the similar

formulas,

secondtree <- prune(tree = maxtreeA,cp = 0.04)

fancyRpartPlot(secondtree)

predict(object = secondtree,newdata = DfTRAINVALID)

46

table(predict(object = secondtree,newdata =

DfTRAINVALID,type = "class"))

Figure 4.4 The second split

It can be seen that in the second tree we have added a judgment path (DEBTINC

< 46). When the judgement path is increased, there is no doubt that this will make the

analysis more accurate.

Table 4.7 Prediction after second split

 0 (Good) 1 (Bad)

Number 3565 408

Proportion 0.8973 0.1027

Percent 89.73% 10.27%

There are 3565 applicants classified as class 0 (good applicant), they account for

89.73% of the total. There are 408 applicants classified as class 1(bad applicant), they

account for 10.27% of the total.

47

For this condition, we need to know what the misclassification rate is, we still use

our training data trainvaild with 3973 observations. There are 3178 applicants who

can pay the loan and 795 applicants who cannot pay the loan in truth. We classify 3565

applicant of them as being able to pay the loan and 408 applicants as not being able to

pay the loan. The summary of this prediction can be seen in Tab 4.8.

Table 4.8 Misclassification matrix

 Actual Values

 0 (Good) 1 (Bad) Total

Pr
ed

ic
te

d

va
lu

es

0

(Good)

3026

(76.16%)

539

(13.57%)

3565

(89.73%)

1

(Bad)

152

(3.83%)

256

(6.44%)

408

(9.27%)

 Total
3178

(79.99%)

795

(20.01%)

3973

(100%)

The table includes cross-tabulation of predicted values of variable BAD and actual

values of this variable. We can see that 3026+256 = 3282 applicants were classified

correctly. On the other hand, we have 539 applicants who cannot pay the loan but we

classify them as being able and 152 applicants who are able to pay the loan and we

classify them as bad applicants. The misclassification error of this classification is

𝑅(𝑇𝑠𝑒𝑐𝑜𝑛𝑑) =
539 + 152

3026 + 539 + 152 + 256
= 17.39%

So the accuracy of this classification is 100% - 17.39%=82.61%. It can be seen

that the accuracy of the second tree is increased 82.61%-81.47%= 1.14%compared to

48

the first tree. Later we will use function predict() to calculate misclassification

errors for even more complex trees.

4.3.4 Maximal tree

There are 761 leaf nodes in the maximal tree. nsplit represents the number of

splits. It is in the Table 4.10 when real error is 0. The nsplit for the maximal tree is

380. And there are 796 nodes of the maximal tree. The height of this tree is 28. It

represents the maximal number of questions for the clients to classify her or him.

Now we show the maximal tree performance evaluation shown in. We use our

training data Trainvaild with 3973 observations for this purpose. There are 3178

applicants who can pay the loan and 795 applicants who cannot pay the loan in truth.

We create and describe the confusion matrix for prediction with maximal tree now.

When we use the model found in previous subchapter to predict whether they will be

able to pay the loan or not we classify 3178 applicant of them as being able to pay the

loan and 795 applicants as not being able to pay the loan. The summary of this

prediction can be seen in Tab 4.9.

Table 4.9 Maximal tree prediction of train data set

 Actual Values

 0 (Good) 1 (Bad) Total

Pr
ed

ic
te

d

va
lu

es

0

(Good)

3178

(79.99%)

0

(0%)

3178

(79.99%)

1

(Bad)

0

(0%)

795

(20.01%)

795

(20.01%)

 Total
3178

(79.99%)

795

(20.01%)

3973

(100%)

49

The table includes cross-tabulation of predicted values of variable BAD and actual

values of this variable. We can see that 3178+795 = 3973 applicants were classified

correctly. This is just the whole of training data set. That’s why the misclassification

error of this classification is

𝑅(𝑇𝑚𝑎𝑥) =
0 + 0

3178 + 0 + 0 + 795
= 0

and the accuracy of this classification is 100%. Obviously, it can be concluded that

the maximum tree is much more accurate than the previous example of the first two

trees. Because the largest tree has added all the judgment conditions, so there is no

misclassification error.

4.4 Pruning phase

The next step in the process is pruning the tree in an attempt to avoid overfitting.

The pruning process works upwards through the partition nodes from the bottom of the

tree. The decision of whether to prune a node is controlled by the complexity parameter,

introduced in α, which balances the additional complexity of adding the split at the node

against the increase in predictive accuracy that it offers. A higher complexity parameter

leads to more and more nodes being pruned off, resulting in smaller trees.

50

Table 4.10 The cp table generated by printcp

Table 4.11 Adjusted cp table (in terms of α)

You can see the whole tab 4.10 in annexes.

In the Tab 4.10. The first column is the order of a tree. The second column is the

cp parameter used in function rpart introduced in Chapter 3. When we multiply it

by root node error which is 795/3973, we can get the complexity parameter α (function

cp nsplit rel error xerror xstd
1 0.07421384 0 1.000000 1.00000 0.031720
2 0.05660377 1 0.925786 0.97107 0.031371
3 0.02830189 2 0.869182 0.90189 0.030491
.
.

20 0.00287511 82 0.357233 0.61887 0.026116
21 0.00251572 92 0.325786 0.56855 0.025175
22 0.00188679 110 0.280503 0.55472 0.024906
23 0.00167715 132 0.236478 0.54717 0.024757
24 0.00125786 135 0.231447 0.55346 0.024881

.

.
32 0.00050314 363 0.008805 0.59119 0.025606
33 0.00041929 372 0.003774 0.59623 0.025700
34 0.00000000 380 0.000000 0.59623 0.025700

α |T| R(α)
1 0.01485024 1 0.200101 0.20010 0.006347
2 0.01132645 2 0.185250 0.19431 0.006277
3 0.00566323 3 0.173924 0.18047 0.006101
.
.

20 0.00057531 83 0.071483 0.12384 0.005226
21 0.00050340 93 0.065190 0.11377 0.005038
22 0.00037755 111 0.056129 0.11100 0.004984
23 0.00033560 133 0.047319 0.10949 0.004954
24 0.00025170 136 0.046313 0.11075 0.004979

.

.
32 0.00010068 364 0.001762 0.11830 0.005124
33 0.00008390 373 0.000755 0.11931 0.005143
34 0.00000000 381 0.000000 0.11931 0.005143

51

2.2). The third column is number of the splits which means the splits of the trees. The

fourth, fifth and sixth column multiplied by root node error are a misclassification rate

from the learning data set 𝑅(𝛼) , mean misclassification rate generated by cross

validation R𝐶𝑉(β) and its standard error SE𝐶𝑉(β).

The first row represents our root node. As we mentioned above when we set cp to

any value from the interval [0.0742, ∞) then we generate the tree without any splits. In

terms of complexity parameter ɑ ∈ [0.0149, ∞).

In the second row, when we set cp ∈ [0.0566, 0.0742), in terms of complexity

parameter ɑ ∈ [0.0113, 0.0148). I can get the tree with only one split.

In the third row, when we set cp ∈ [0.0283, 0.0566), in terms of complexity

parameter ɑ ∈ [0.0057, 0.0113). I can get the second split.

Similarly, in the 34th row, when we set cp ∈ [0, 0.0004), in terms of complexity

parameter ɑ ∈ [0, 0.00008). We can simply set ɑ=0 to get the maximal tree with 381

terminal nodes.

4.5 10 fold cross-validation

As I described in Table 2.1, I chosen 10 subsets. 9 of them are training data sets,

the other one is testing data set. We are looking for βmin with the smallest cross-

validation error RCV (βmin). If we combine the Table 4.10 and Figure 4.5, we can

choose the 23th as the minimal error tree. That is, when we take α∈ [0.0017, 0.0019).

We can generate the tree with 133 terminal nodes. As I described in the chapter 2.4.2,

we have to choose a representative from the interval, namely, square root of a product

of the limits:

𝛽23 = √𝛼23𝛼22 = √0.00167715 ∙ 0.00188679 = 0.0018.

52

The lower horizontal axis represents the value of cp which is xerror in Tab 4.10.

The lower horizontal is the size of trees which is the |𝑇| in Tab 4.11. And the vertical

axis represents X-val Relative Error. The 23rd point is smaller than the value

represented by the dotted line for the first time, that is, we focus on the 23rd tree.

Figure 4.5 plotcp output

Then use the function,

R𝐶𝑉(𝛽23) =
1

10
∑ T(i)(β)

10

𝑖=1

= 0.54717 ∗ (
795

3973
) =

435

3973
= 0.1095.

Which is R𝐶𝑉(𝛽) shown in Tab 4.11.

SE𝐶𝑉(𝛽23) = √
R𝐶𝑉(β)(1 − R𝐶𝑉(β))

𝑁
=

√(
435

3973)(1 −
435

3973)

3973
= 0.0050.

Which is SE𝐶𝑉(𝛽) shown in Tab 4.11.

Note that choice of βmin can be affected by the seed of the random number

generator to separate learning data set into 10 subtest. Small changes can be large

53

changes in number of terminal nodes in optimal tree. To choose the simplest tree whose

accuracy is comparable to 𝑅𝑐𝑣(βmin), 1-SE rule is applied to select the right sized tree:

An optimal tree, T (β𝑜𝑝𝑡), is the tree corresponding to βopt where βopt is the maximum β

satisfying

R𝐶𝑉(β) ≤ R𝐶𝑉(β𝑚𝑖𝑛) + SE𝐶𝑉(β𝑚𝑖𝑛)

In this output,

R𝐶𝑉(β𝑚𝑖𝑛) + SE𝐶𝑉(β𝑚𝑖𝑛) = 0.1144

If we look at the 20th, 21st, 22nd, 23rd and 24th row,

R𝐶𝑉(𝛽20) = 0.12384

R𝐶𝑉(𝛽21) = 0.113767

R𝐶𝑉(𝛽22) = 0.110999

We can get such the results

R𝐶𝑉(𝛽21) ≤ R𝐶𝑉(β𝑚𝑖𝑛) + SE𝐶𝑉(β𝑚𝑖𝑛)

R𝐶𝑉(𝛽22) ≤ R𝐶𝑉(β𝑚𝑖𝑛) + SE𝐶𝑉(β𝑚𝑖𝑛)

But for the R𝐶𝑉(𝛽20),

R𝐶𝑉(𝛽20) > R𝐶𝑉(β𝑚𝑖𝑛) + SE𝐶𝑉(β𝑚𝑖𝑛)

That is, we can regard the 21th subtree as the optimal tree.

4.6 Optimal tree

The curve in Fig. 4.5 represents the performance of different sizes of trees on a

test sample. In this case, the test sample was obtained by 10 fold cross validation which

we discuss in Chapter 2. For now, we have an honest test base methodology for

determining how well that given trees performs. The lower this curve gets the more

accurate the model is because this is a measure of error.

54

According to 10 fold cross-validation and 1-SE rule, we can finally determine the

21th subtree as the optimal one.

When we set value cp ∈ [0.0025, 0.0029), in terms of α∈ [0.0005, 0.0006), we

can get the optimal tree in R studio. The optimal tree has 92 splits which means it has

93 terminal nodes.

Use the follow formula, we can get the height of the optimal tree is

> nodesopt <- as.numeric(rownames(opttreeA$frame))

> max(rpart:::tree.depth(nodesopt))

[1] 19

That means 19 questions for clients. It is less than 28.

Now we describe the optimal tree performance evaluation. We use our training

data trainvaild with 3973 observations. There are 3178 applicants who can pay

the loan and 795 applicants who cannot pay the loan in truth. We create and describe

the confusion matrix for prediction with optimal tree now. We classify 3359 applicant

of them as being able to pay the loan and 614 applicants as not being able to pay the

loan. The summary of this prediction can be seen in Tab 4.12.

Table 4.12 Optimal tree prediction of train data set

 Actual Values

 0 (Good) 1 (Bad) Total

Pr
ed

ic
te

d

va
lu

es

0

(Good)

3139

(79.01%)

220

(5.54%)

3359

(84.55%)

1

(Bad)

39

(0.98%)

575

(14.47%)

614

(15.45%)

 Total
3178

(79.99%)

795

(20.01%)

3973

(100%)

55

The table includes cross-tabulation of predicted values of variable BAD and actual

values of this variable. We can see that 3139+575 =3714 applicants were classified

correctly. On the other hand, we have 220 applicants who cannot pay the loan but we

classify them as being able and 39 applicants who are able to pay the loan and we

classify them as bad applicants. The misclassification error of this classification is

𝑅(𝑇𝑜𝑝𝑡𝑖𝑚𝑎𝑙) =
220 + 39

3139 + 220 + 39 + 575
= 6.52%

So the accuracy of this classification is 100% - 6.52%=93.48%.

4.7 Final evaluation

Now we start with the final performance evaluation shown in Fig. 2.2 We use our

testing data DfTest with 1987 observations for this purpose. There are 1593

applicants who can pay the loan and 394 applicants who cannot pay the loan in truth.

We create and describe the confusion matrix for prediction with optimal tree now.

When we use the optimal tree model found in previous subchapter to predict whether

they will be able to pay the loan or not we classify 1699 applicant of them as being able

to pay the loan and 283 applicants as not being able to pay the loan. The summary of

this prediction can be seen in Tab 4.13.

Table 4.13 Optimal tree prediction of test data set

 Actual Values

 0 (Good) 1 (Bad) Total

Pr
ed

ic
te

d

va
lu

es

0

(Good)

1524

(76.70%)

175

(8.81%)

1699

(85.81%)

1

(Bad)

69

(3.47%)

219

(11.02%)

283

(14.49%)

 Total
1588

(80.17%)

394

(19.83%)

1987

(100%)

56

The table includes cross-tabulation of predicted values of variable BAD and actual

values of this variable. We can see that 1524+219 =1743 applicants were classified

correctly. On the other hand, we have 175 applicants who cannot pay the loan but we

classify them as being able and 69 applicants who are able to pay the loan and we

classify them as bad applicants. The misclassification error of this classification is

𝑅(𝑇𝑜𝑝𝑡𝑖𝑚𝑎𝑙) =
175 + 64

1524 + 175 + 64 + 219
= 12.06%

So the accuracy of this classification is 100% - 12.06%=87.94%. To summarize,

this model is able to recognize 219 of 394 bad clients from our testing data set, which

is 55.58%, and cannot recognize 69 good clients out of 1593 which is 4.33%. We did

not achieve as high accuracy as we achieved for the training data set which was 93.48%,

but it’s comparable to estimate of truth accuracy based upon cross-validation which

was 10.95%.

57

5 Conclusion

Credit scoring is the set of decision models and their underlying techniques that

aid lenders in the granting of consumer credit. These techniques determine who will get

credit, how much scores they should get, and what operational strategies will improve

the profitability of the borrowers to the lenders. There are only two actions possible—

accept or reject—then there is no advantage in classifying this performance into more

than two classes—good and bad. Good is any performance that is acceptable to the

lending organization, while bad is performance that means the lender wishes he had

rejected the applicant. That’s why the credit scoring is so important in reality.

In the thesis, we choose the Home Equity dataset which contains baseline and loan

performance information for 5,960 recent home equity loans. Various machine learning

techniques can be used to achieve a more accurate scoring from large data sets. We

decided to use the CART algorithm to build a model to help us predict whether the

applicant can pay the loan or not. The description of methods and algorithm in Chapter

2 and Chapter 3 aims to show how we use R studio for this purpose. Finally, we

developed a model to help to automate the decision making process for home equity

lines of credit. We used 2/3 of the data set to find the optimal model—for both training

and validation--and 1/3 of the data set was used for the final performance evaluation.

The target binary variable (BAD) indicates whether and applicant eventually

defaulted or was seriously delinquent (approximately 20% of cases) or not (approximately 80%

of cases). With the help of optimal model developed in Chapter 4, we can expect our

prediction to be correct with approximately 88% accuracy. One may consider such an

improvement too low. There may have another better solution to improve. But as

Thomas, Edelman and Crook (2002) said, “it is an area in which even a small

improvement in performance can mean a tremendous increase in profit to the lender

because of the volume of lending made by using scoring. Relevant, ubiquitous and

profitable—credit scoring is all of these.”

Of course, there is still room for improvement and further questions may appear.

58

For example, we can take also more complicated loss function into account to

distinguish type of misclassification, take uneven distributed classes into consideration

or try to use ensemble methods to make the model more accurate.

Bibliography

[1] BREIMAN, L., J. H. FRIEDMAN, R. A. OLSHEN and C. J. STONE.
Classification and regression trees.New York: Chapman & Hall, 1993. ISBN 978-
0-412-04841-8.

[2] DALGAARD, Peter. Introductory statistics with R. New York: Springer, c2002.
ISBN 0-387-95475-9.

[3] HAND, J. David and William, E. HENLEY. Statistical Classification Methcxls in
Consumer Credit Scoring: a Review. Journal of the Royal Statistical Society Series
A. 1997, Vol. 160, Issue 3, p. 523. ISSN 0964-1998.

[4] HANG LI. Statistical Learning Method. ISBN-13 978-7302275954
[5] THOMAS, L. C., David B. EDELMAN a Jonathan N. CROOK. Credit scoring and

its applications. Philadelphia: Society for Industrial and Applied Mathematics,
c2002. SIAM monographs on mathematical modeling and computation. ISBN 0-
89871-483-4.

[6] Therneau, T.M. and Atkinson, E.J. (1997). An Introduction to Recursive
Partitioning Using the rpart Routines. Technical Report 61, Section of Biostatistics,
Mayo Clinic, Rochester. URL

[7] HILL, Thomas a Paweł LEWICKI. Statistics: methods and applications. Tulsa:
StatSoft [Tulsa], c2006. ISBN 1-884233-59-7.

Electronic Bibliography
[8] https://www.r-project.org/
[9] https://www.rstudio.com/
[10] KAGGLE HMEQ Data [online] Available on

https://www.kaggle.com/ajay1735/hmeq-data
[11] MEDIUM FREECODE CAMP. MFC How to get a grip on Cross Validations

[online] MFC Available on https://medium.freecodecamp.org/how-to-get-a-grip-

on-crossvalidations-bb0ba779e21c

https://www.r-project.org/
https://www.rstudio.com/
https://www.kaggle.com/ajay1735/hmeq-data
https://medium.freecodecamp.org/how-to-get-a-grip-on-crossvalidations-bb0ba779e21c
https://medium.freecodecamp.org/how-to-get-a-grip-on-crossvalidations-bb0ba779e21c

59

List of abbreviations
CART Classification and regression tree

MLR Multiple linear regression

BLR Binary logistic regression

LDA Linear discriminant analysis

Xi Independent variables

Y Dependent variables

P Probability

Wi Weight

1 R method One rule method

I Impurity

R(T) Misclassification error

cp Complexity parameter

SE Standard error

RCV Cross-validation error

│T│ Number of leaf nodes

60

Declaration of Utilisation of Results from a Bachelor Thesis

Herewith I declare that

- I am informed that Act No. 121/2000 Coll. – the Copyright Act, in particular,

Section 35 –Utilisation of the Work as a Part of Civil and Religious Ceremonies,

as a Part of School Performances and the Utilisation of a School Work – and

Section 60 – School Work, fully applies to my bachelor thesis;

- I take account of the VSB – Technical University of Ostrava (hereinafter as VSB-

TUO) having the right to utilize the bachelor thesis (under Section 35(3))

unprofitably and for own use;

- I agree that the diploma (bachelor) thesis shall be archived in the electronic form

in VSB-TUO’s Central Library. I agree that the bibliographic information about

the diploma (bachelor) thesis shall be published in VSB-TUO’s information

system;

- It was agreed that, in case of VSB-TUO’s interest, I shall enter into a license

agreement with VSB-TUO, granting the authorization to utilize the work in the

scope of Section 12(4) of the Copyright Act;

- It was agreed that I may utilize my work, the bachelor thesis or provide a license

to utilize it only with the consent of VSB-TUO, which is entitled, in such a case,

to claim an adequate contribution from me to cover the cost expended by VSB-

TUO for producing the work (up to its real amount).

Ostrava dated

 ……………………………

SONGYANG GAO

61

List of Annexes

Annexes 1: The optimal tree

Annexes 2: The graphs of data

Annexes 3: The whole cp table generated by printcp

1

Annex 1: The optimal tree

1

Annexes 2: The graphs of data

1

1

1

1

1

1

Annexes 3: The whole cp table generated by printcp

CP nsplit rel error xerror xstd

1 0.07421384 0 1.0000000 1.0000000 0.031720

2 0.05660377 1 0.9257862 0.9710692 0.031371

3 0.02830189 2 0.8691824 0.9018868 0.030491

4 0.02327044 4 0.8125786 0.8691824 0.030053

5 0.01509434 6 0.7660377 0.8226415 0.029401

6 0.01006289 9 0.7207547 0.7786164 0.028754

7 0.00880503 11 0.7006289 0.7773585 0.028735

8 0.00754717 12 0.6918239 0.7572327 0.028428

9 0.00712788 13 0.6842767 0.7459119 0.028253

10 0.00628931 16 0.6628931 0.7371069 0.028114

11 0.00587002 20 0.6377358 0.7333333 0.028055

12 0.00566038 32 0.5647799 0.7257862 0.027935

13 0.00503145 34 0.5534591 0.7106918 0.027692

14 0.00440252 40 0.5232704 0.6905660 0.027361

15 0.00431267 48 0.4867925 0.6729560 0.027065

16 0.00408805 55 0.4566038 0.6729560 0.027065

17 0.00377358 59 0.4402516 0.6339623 0.026387

18 0.00314465 71 0.3949686 0.6138365 0.026025

19 0.00293501 74 0.3849057 0.6188679 0.026116

20 0.00287511 82 0.3572327 0.6188679 0.026116

21 0.00251572 92 0.3257862 0.5685535 0.025175

22 0.00188679 110 0.2805031 0.5547170 0.024906

23 0.00167715 132 0.2364780 0.5471698 0.024757

24 0.00125786 135 0.2314465 0.5534591 0.024881

25 0.00107817 232 0.1081761 0.5522013 0.024856

26 0.00104822 242 0.0968553 0.5522013 0.024856

27 0.00094340 249 0.0893082 0.5547170 0.024906

28 0.00083857 258 0.0805031 0.5597484 0.025004

29 0.00075472 273 0.0679245 0.5660377 0.025127

30 0.00062893 288 0.0553459 0.5836478 0.025464

31 0.00055905 352 0.0150943 0.5911950 0.025606

32 0.00050314 363 0.0088050 0.5911950 0.025606

33 0.00041929 372 0.0037736 0.5962264 0.025700

34 0.00000000 380 0.0000000 0.5962264 0.025700

	1 Introduction
	2 Description of the CART Decision Tree methodology
	2.1 Overview of alternative regression and classification methods
	2.1.1 Regression
	2.1.2 Logistic regression
	2.1.3 Discriminant analysis
	2.1.4 One Rule Method
	2.1.5 Bayesian Method

	2.2 Recursive partitioning
	2.2.1 If-then rules and conditional probability distribution
	2.2.2 CART algorithm and notation
	2.2.3 Decision tree generation
	2.2.4 Decision tree pruning
	2.2.5 Cross Validation

	2.3 Performance evaluation

	3 Implementation of the CART Algorithm in R
	3.1 R and R Studio
	3.2 Package rpart
	3.3 Other used packages and functions

	4. Application for Classification and Prediction
	4.1 Credit scoring
	4.2 Description of data
	4.3 Growing phase
	4.3.1 Root tree
	4.3.2 First split
	4.3.3 Second split
	4.3.4 Maximal tree

	4.4 Pruning phase
	4.5 10 fold cross-validation
	4.6 Optimal tree
	4.7 Final evaluation

	5 Conclusion
	Bibliography
	Declaration of Utilisation of Results from a Bachelor Thesis
	List of Annexes

