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             This paper proposed a Peer-to-Peer (P2P) local community energy pool and a User Dominated Demand Side 
Response (UDDSR) that can help energy sharing and reduce energy bills of smart community. The proposed UDDSR 
allows energy users within the community to submit flexible Demand Response (DR) bids to Community Energy 
Management Scheme (EMS) with flexible start time, stop time and response durations with regard to users’ comfort 
zones for electric heating systems, electric vehicles and other home appliances, which gives maximum freedom to the DR 
participants. The scheduling of the DR bids, originally a multi-objective optimization problem (maximize the total 
flexible demand and the flexible demand in every interval during the whole DR duration), is transferred to a single 
objective optimization problem (maximize the total demand with penalty for demand imbalance during the whole DR 
duration) that can significantly decrease the computational complexity. Furthermore, to facilitate efficient energy usage 
among neighbourhoods, a local energy pool is also proposed to enable the energy trading among users aiming to 
facilitate the usage of surplus energy within the community. The electricity price of energy pool is determined by the 
real-time demand/supply ratio, and upper/lower limit for the price is configured to ensure the profitability for all the 
participants within the pool. To evaluate the performance of proposed UDDSR and local energy pool, comprehensive 
numerical analysis is conducted. It is found that the energy pool participants without PV can get at least 6.16% savings 
on electricity bill (when PV penetration level equals to 20%). The energy pool participants with PV can get much better 
return (at least 13.4% profit increase) on the PV generation compared to the conventional Feed-in-Tariff. If energy 
users join the UDDSR scheme, the participants can get further return, and the proposed UDDSR can provide a constant 
load reduction/increase during the every time interval of the whole DR event. If Battery Energy Storage System (BESS) 
is included in the DR operation, the usage efficiency of customers’ flexible loads can achieve more than 85%. 

1. NOMENCLATURE
Time-dependent non-negative parameters.𝑎(𝑡)

 Time-dependent non-negative parameters.b(t)
A binary value denoting the scheduling of the bi(t)
appliances (appliance=OFF if  and bi(t) = 1
appliance=ON if ).bi(t) = 0
Time-dependent non-negative parameters.c(t)
the real-time TOU price.d(t)

 The energy feed into/purchase from the grid of ei(t)
participant i .

 The energy bought from energy pool.eB
i (t)

The aggregated amount of energy that m users are pm(t)
selling to the pool.

  The aggregated demand amount of the left p(n ‒ m)(t)
 users that are requesting energy from the (n ‒ m)

pool.
 The Feed-in-Tariff (FIT).pF

The t-th time slot.t
The ratio of the aggregated supplier and demand at γn(t)
time t in the energy pool.
The penalty factor refers to the impact of balancing δ
the allocated power at the time interval for the 
objective function.

 The charging efficiency.ηc

The discharging efficiency.ηd

 The unit price of subsidy for normal participants.χ
 The unit price of subsidy for BESS.χB

 The credit allocated to participant i.CU
i
 The credit allocated to BESS.CU

B
 The credit ( ) or bill ( ) of 𝐶𝑖(𝑡) Ci(t) ≥ 0 Ci(t) < 0

participant  at time t.i
 The capacity of BESS at time t.EBt

(t)
 The maximum BESS capacity.EBt

 The sum of scheduled power at time interval t ED(t)
during the DR event.
The lower limit of demand change required by DR 𝐸𝐿𝐿
scheme 
The upper limit of demand change required by DR 𝐸𝑈𝐿
scheme 

 The number of time intervals in one UDDSR event.𝑁'

 The aggregated local load profile.Pn(t)
 The charging/discharging rate of BESS at time t,Pb

t
The BESS maximum charging rate,Pb

c
 The BESS maximum discharging rate andPb

d
 The rating power of participant’s appliance,Pi(t)

 The charging/discharging state of BESS, andSB
t

2. Introduction
    Continuous development of  information, communication, 
automation and control technologies provides a solid 
foundation for “Smart Grid” implementation [1]. 
Accommodating increasingly Distributed Generators (DGs), 
Electric Vehicles (EVs), Heat Pumpers (HPs) on modern 
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power grid without significant customer-funded network 
reinforcement is one of the anticipated benefits of smart grid 
[2, 3]. It was anticipated that the HPs would take large share 
of domestic heating systems and the EVs will hit 60% in the 
UK if the 80% carbon emission cutting target was to be 
achieved by 2050 [4, 5]. The anticipated electrification of 
transportation and heating will lead to a dramatic increase of 
peak electric demand which correspondingly raises the 
operational challenges to network operators. The 
conventional approach of solving the operational challenges 
is network reinforcement that requires significant 
investments and a long lead time. A number of alternative 
approaches have been proposed to defer the network 
reinforcement through the smart grid technologies such as 
Demand Side Response (DSR), Direct Load Control (DLC) 
and Time of Use (TOU) Tariff. The most common 
mechanism of the proposed approaches is to shed the loads 
during peak-time by providing all kinds of subsidies to 
customers. It is agreed that such mechanism is an essential 
way to balance the electricity demand, but there are 
concerns that the customers’ perception to DSR or other 
similar schemes could be passive if the schemes are lack of 
flexibility and comfortability-concern for 
customers/participators. 

  Previous studies carried out on the management of 
EV/PHEV and heating demands have confirmed the active 
impact on network operation and network reinforcement 
deferral [1, 6-14]. A distributed center-free demand 
management system using Karush-Kuhn-Tucker (KKT) 
conditions for PHEV/EV charging management is proposed 
in [1]. The proposed approach optimized the charging 
scheduling of the PHEV/EV considering the departure time 
of EV and global convergence constraint. Compared to the 
centralized management methodologies proposed in [6] and 
[7], the distributed management approach has the advantage 
of  laying down the computation burden of network control 
centre for scheduling the charging of PHEV/EV. [8] and [9] 
presented the distributed demand management approaches 
which are different from the approach of [1]; the two 
management approaches managed the EV/PHEVs based on 
the broadcasted DSR signals sent by network operators or 
aggregators. Such control methodologies can make the 
distributed EMS respond to the DSR request more actively 
but extra computation load is required on the network 
operator and the aggregator side. Similar research has been 
carried out on managing the electric heating systems (e.g. air 
source heat pumps) to assist the network operation in [10-
13]. [10] proposed a demand response system using heat 
pumps to maintain the transmission-level network voltage 
stability. It forms the demand response strategy as a multi-
objective optimization problem and uses a two-step 
optimization procedure to solve the problem. This method 
considers the end-use comforts as the constraints within an 
automatic resource control strategy realized by strained 
optimal power flow. [11-13] presented several dynamic DR 
strategies to reschedule the heat pumps operations with 
regard to price signals and network constraint signals. 
However, the willingness of customers to participate in the 
DR scheme are less considered in the aforementioned DR 
strategies. [15] highlighted that only about 13% customers 

might accept the DLC program based on a total of 1,499 
households from one state in Australia. The main barrier to 
joining the DLC program for the householders is the distrust 
of energy companies; householders are resistant to shift the 
control of the appliances to energy companies [15]. 

Therefore, a UDDSR strategy is proposed in this paper 
that allows householders to opt-in/out the DR scheme 
dynamically and submit elastic DR bids for DR events. In 
comparison with the aforementioned DR strategies, the 
UDDSR divides one DR event into multiple small DR 
events with small time slots so that householders can select 
the timeslot(s) they want to participate based on their 
availabilities and comfortabilities. The DR bids submitted 
by householders can have flexible start/stop time and 
flexible response durations during the whole DR event and 
customers have the rights to accept/reject the final 
dispatching notices broadcasted by the UDDSR. 

Moreover, to further satisfy the users within the 
community and enhance the distribution network’s 
reliability, Peer-to-Peer (P2P) trading is considered as an 
effective supplement for EMS with DR capability, of which 
the DR scheme can support the network operation during 
peak-time and P2P can facilitate the renewable energy usage 
in all-day operation[16-18]. [17] proposed a community 
based electricity market so the surplus renewable energy can 
be traded among neighbourhoods within the market. [19] 
proposed a decentralized renewable generation management 
and demand response system focusing on the power 
distribution network. The proposed receding horizon control 
for energy trading inspired the bidding strategy presented  in 
our paper. [20] proposed a stock-exchange-model based 
local electricity trading platform. This platform allows 
market participants submit, withdraw and adjust their orders 
in certain time periods (e.g. five minutes before dispatching). 

   In this paper, a P2P energy trading pool is proposed 
allowing a flexible trading among the participants. For the 
proposed trading pool, this paper modelled the dynamic 
functions of real-time price using the Surplus-to-Demand 
ratio rather than the aggregated electricity profile used in 
[17]. This modification simplifies the electricity price model 
and ensures the electricity price is always lower than the 
TOU price but higher than the feed-in-tariff so energy users 
can be effectively motivated to participate into the trading. 

The contributions of this paper are summarized as below:
 This paper presents a full picture of a smart 

community that is capable of UDDSR and P2P 
trading. The proposed EMS does not control any 
devices directly. It merely acts as an agent for 
exchanging the information among users for P2P 
trading and between users and DR providers for 
DR scheme, which gives the users the maximum 
autonomy.

 This paper proposes the approach for simplifying 
the UDDSR problem by transferring a multi-
objective optimization problem to a single 
objective Mixed Integer Linear Programming 
(MILP) problem, which substantially reduces the 
computational complexity. 

 The proposed electricity pricing model for P2P 
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trading reduces the price fluctuation in a real-time 
electricity market by introducing the surplus-to-
demand ratio to the pricing function, and reduces 
the bills for consumers, producers and prosumers 
in the community. 

The rest of the paper is organized as follows. Section 3 
presents the infrastructure of the proposed EMS, the 
associated P2P trading mechanism and the BESS operation 
mechanism. Section 4 presents the emerging UDDSR 
system and the optimization approach. Section 5 
demonstrates the effectiveness of the proposed EMS with 
two case studies, and the conclusion is drawn in section 6.

3. System Infrastructure

A. Overview of the Proposed EMS
Considering the local users installed with renewables, 

EVs and BESS in the secondary distribution network, a 
schematic diagram of such network associated with the 
proposed EMS and energy pool is presented in Figure 1. The 
information flow (dashed lines in Figure 1) transmit the 
distribution network status, DR request, price signals and 
control signals among network operators, EMS, energy pool 
and end users. The local energy pool, a trading and 
transaction system, is used as a local energy market for 
trading the surplus energy and BESS stored energy in local 
network among neighbourhoods. The EMS, a coordinator 
between network operator and end users, will exchange the 
DR information between network operator and the domestic 
users to help dispatch the DR event. It should be noted that 
the EMS will not involve in the daily operation and energy 
trading of end users except when the DR events are 
triggered. When a DR request is generated by network 
operator (e.g. in the circumstance that a voltage violation is 
detected in the distribution network by the network operator 
SCADA), the EMS will broadcast the DR request to the end 
users once the request is received from network operator. 
After collecting the bids from the end users, the EMS will 
schedule the bids to ensure the dispatching of the DR event 
and report the aggregated demand to network operator. If 
the network operator agrees the dispatching of the 
aggregated demand after completing the congestion 
calculation or security analysis, the operator will release the 
dispatching command to EMS in advance, and the EMS will 
let end users to execute the DR event. During the DR event, 
the EMS will monitor if the agreed demand is actually 
delivered by the end users and subsequently report the states 
of DR execution to the network operators before any 
transaction is processed. 

In addition, to ensure the UDDSR program is executed 
properly, a framework entitled “smart energy hub” (S.E. 
Hub) is adopted, which has been presented in [21-23]. Each 
domestic user can be represented as a single S.E.Hub that 
has bi-directional communication capability in the cloud 
computing infrastructure. In the proposed S.E.Hub 
framework, the SE.Hub is able to communicate with both 
the Gas and Electricity utilities/operators. Since only 
electricity is considered in this paper and there is an EMS 
between the end users and the network operator, we assume 
the EMS will act as a gateway between them to enable the 
information exchange but under a same framework. 

B. User Dominated Demand Side Response System

Fig. 1. Schematic diagram of smart grid system composed 
of EMS and local energy pool

Extensive research has been conducted on designing DR 
program and the associated optimization algorithms. Most 
of research activities assume the interruptible 
loads/generators will respond to the DR event in a full cycle 
once they accept the DR requests. Some research considers 
the availabilities of interruptible devices and the user 
comfortabilities during the DR events but the common way 
they adopted to maintain the user comfortabilities is using 
the user comfort zone as the constraints when scheduling the 
interruptible devices for DR events. There is very limited 
research investigating the scenario that users partially roll 
into the DR event for a certain period of time which is 
highly likely to happen in reality (e.g. a heating system can 
be turned off for five minutes without causing any 
discomforts to users, but thirty minutes’ or an hour’s 
interruption of heating system will surely disturb users’ 
comfort).

Table 1 Customer Bidding Format
Symbol Description Units

ID User ID N/A
T1 Earliest starting time (min)
T2 Latest ending time (min)
D Maximum interrupting durations (mins)
S Type of appliances 0 = ‘interruptible’

1 = ‘shiftable’
P Power of interrupted device (kW)

Therefore, a UDDSR program aiming at maximizing the 
flexibilities of DR participants is proposed in this paper. The 
proposed program allows users to submit flexible bids for 
DR events following the format shown in Table 1. The bid 
includes the earliest starting time and latest ending time of 
users’ interruptible devices, the maximum sum of 
interruption durations within one DR event and the power of 
their appliances. The symbol ‘S’ denotes the type of 
appliances. UDDSR divides the appliances into two 
categories: 1) interruptible appliances (e.g. heating system) 
and 2) shiftable appliances (e.g. EV and wash machine). The 
interruptible appliances allow UDDSR to turn them off 
within the allowable duration instead of shifting the demand 
to a later time slot. For shiftable appliances like EV, 
UDDSR will shift the charging activity to a later time slot. It 
should be noted that we assume the local EV owners have 
their own smart home EMS and the EMS will be able to 
optimize the scheduling of EV charging on their own once 
their bids to UDDSR are accepted. 
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Fig. 2. UDDSR flow chart
The EMS acts as the aggregator for the DR event. The 

whole process of executing one UDDSR event is presented 
as in Figure 2.  Once the EMS receives the request from the 
network operator, the EMS will broadcast the DR request 
(including event start/end timestamps, DR price per kWh 
and the upper/lower limits of DR request received from 
system operator) to the DR participants. DR participants will 
decide if they will participate in the event regarding to their 
availabilities. If they decide to participate into the DR event, 
they will submit their flexible bids to EMS. Each participant 
is allowed to submit more than one bid regarding to the 
number and power of interruptible appliances. Participants 
can also submit an aggregated bid to EMS. All the bids 
submitted by participants should follow the format shown in 
Table I. After receiving all the bids from participants, the 
EMS will schedule the participants’ bids and pack an 
aggregated DR bid whose power at each time interval of the 
DR event bid is even. If the scheduled bids are larger than 
the upper limits or lower than the lower limits, the EMS 
cannot process the DR request. Otherwise, the aggregated 
bid will be sent to the network operator by the EMS. If the 
aggregated bid is accepted by network operator, the EMS 
will broadcast the fixed DR request with appliance operation 
schedule to every selected participant. After dispatching the 
operation schedule, participants will be credited by the EMS 
through the proposed energy pool transaction system. Since 
this paper does not focus on the ancillary service market 
research, we assume the network operator will always 
accept the aggregated bids if they are within the upper and 
lower limits.

C. Local Energy Pool
The local energy pool is used to facilitate the usage of 

surplus renewable generations by allowing the trading 
among neighborhoods. Energy end users join the energy 
pool voluntarily and are assumed to accept an in-common 
market clear price decided by the surplus-to-demand ratio. 
An electricity pricing model is proposed in [17] as follows, 
including one external element the real-time TOU price  𝑑(𝑡)
referring to the wholesale market price or the contracted 
TOU and one internal element regarding to the 𝑞(𝑡,𝑃𝑛(𝑡)) 
aggregated local energy profile:

          (1) 𝜆(𝑡,𝑃𝑛(𝑡)) = {𝑑(𝑡) + 𝑞(𝑡,𝑃𝑛(𝑡))   ,𝑃𝑛(𝑡) > 0
𝑑(𝑡) ‒ 𝑞(𝑡,𝑃𝑛(𝑡))   , 𝑃𝑛(𝑡) ≤ 0

 s.t. 
      (2)𝑞(𝑡,𝑃𝑛(𝑡)) = 𝑎(𝑡) ∙ |𝑃𝑛(𝑡)|2 + 𝑏(𝑡) ∙ |𝑃𝑛(𝑡)| + 𝑐(𝑡)

 where ,  and  are time-dependent non- 𝑎(𝑡)  𝑏(𝑡) 𝑐(𝑡)
negative parameters and   denotes the aggregated local 𝑃𝑛(𝑡)
load profile. 

The price model (1) assumed that end users are willing to 
pay a higher price than market price when there is positive 
aggregated load profile. One of the users’ key motivations to 
participate in such a program is  to save on electricity bills, 
however, users in a less DER penetrated network will 
possibly pay a higher bills when deploying such model [24]. 
To enhance users’ motivations, a surplus-vs-demand based 
pricing model that ensures a lower price than market price is 
proposed in this paper as below:

                 (3)𝜆(𝑡,𝛾𝑛(𝑡)) = 𝑑(𝑡) ‒ 𝑞(𝑡,𝑃𝑛(𝑡))   
 s.t. 

               (4)𝑞(𝑡,𝛾𝑛(𝑡)) = 𝑎(𝑡) ∙ 𝛾𝑛(𝑡)2 + 𝑏(𝑡) ∙ 𝛾𝑛(𝑡)

            (5){𝑞(𝑡,𝛾_𝑛 (𝑡)) +  𝑝𝐹 < 𝑑(𝑡),  if 𝑑(𝑡) >  𝑝𝐹

𝑑(𝑡) ‒ 𝑞(𝑡,𝑃𝑛(𝑡)) = 𝑝𝐹,  𝑖𝑓 𝑑(𝑡) ≤  𝑝𝐹

                         (6)𝛾𝑛(𝑡) = 𝑝𝑚(𝑡)/𝑝(𝑛 ‒ 𝑚)(𝑡)
where  denotes the ratio of the aggregated supplier 𝛾𝑛(𝑡)

and demand at time  in the energy pool,   denotes the  𝑡 𝑝𝑚(𝑡)
aggregated amount of energy that  users are selling to the 𝑚
pool,   denotes the aggregated demand amount of 𝑝(𝑛 ‒ 𝑚)(𝑡)
the left  users that are requesting energy from the (𝑛 ‒ 𝑚)
pool,  denotes the Feed-in-Tariff (FIT). 𝑝𝐹

Equation (4) is considered as a dynamic price function 
that has been discussed in [25]. Equation (5) is to ensure the 
sum of dynamic pricing part (related to the surplus-vs-
demand ratio) and the Feed-in-Tariff price should be always 
lower than the contracted electricity retail price, when the 
retail price is higher than the FIT. When retail price is lower 
than FIT, the pool price will be equal to the FIT. The 
proposed pricing model would be able to maintain the 
electricity price of the energy pool lower than the market 
price but higher than the FIT. 
  The credit/bill of customers who participate in the energy 
pool will be calculated by EMS using equations (7-8) after 
clearing the energy pool at the end of each dispatch interval. 

   (7)   𝐶𝑖(𝑡) = {𝜆(𝑡,𝛾𝑛(𝑡)) ∙ 𝑒𝑖(𝑡)                                                      ,𝑒𝑖(𝑡) ≥ 0 
‒ 𝜆(𝑡,𝛾𝑛(𝑡)) ∙ 𝑒𝐵

𝑖 (𝑡) ‒ 𝑑(𝑡) ∙ (𝑒𝑖(𝑡) ‒ 𝑒𝐵
𝑖 (𝑡)), 𝑒𝑖(𝑡) < 0

  s.t.
                                 (8)𝑒𝑖(𝑡) ≥ 𝑒𝐵

𝑖 (𝑡)
where  denotes the credit ( ) or bill (𝐶𝑖(𝑡) 𝐶𝑖(𝑡) ≥ 0 𝐶𝑖(𝑡)

) of participant  at time t,  denotes the energy < 0 𝑖 𝑒𝑖(𝑡)
feed into/ purchase from the grid of participant i;  𝑒𝐵

𝑖 (𝑡)
denotes the energy bought from energy pool. 

Since we focus on the pricing mechanism of the local 
energy pool, the computation for clearing the market or 
adjusting the price based on real-time information are not 
included, but this is an important part in the energy pool 
research and will be performed in the future research work.  

D. Battery Energy Storage System
BESS or Distributed Storage System (DSS) is considered 

as the key equipment in future microgrids [26-29]. It is 
assumed that a BESS is included in the proposed microgrid 
and follows the model and constraints described below [26, 
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27]:

           (9)𝐸 𝐵𝑡
(𝑡 + ∆𝑡) = {𝐸𝐵𝑡

𝑡 + 𝑃𝑏
𝑡 ∙ 𝜂𝑐 ∙ ∆𝑡     𝑖𝑓 𝑃𝑏

𝑡 ≥ 0

𝐸𝐵𝑡
𝑡 +

𝑃𝑏
𝑡

𝜂𝑑 ∙ ∆𝑡             𝑖𝑓 𝑃𝑏
𝑡 < 0

s.t. 
  if                              (10)𝑃𝑏

𝑑 ≤ 𝑃𝑏
𝑡 ≤ 0 𝑃𝑏

𝑡 < 0
   if                              (11)0 ≤ 𝑃𝑑

𝑡 ≤ 𝑃𝑏
𝑐 𝑃𝑏

𝑡 ≥ 0
                                   (12)0 ≤ 𝐸𝐵𝑡

𝑡 ≤ 𝐸𝐵𝑡

where  is the capacity of BESS at time t,  is the 𝐸𝐵𝑡
(𝑡) 𝑃𝑏

𝑡

charging/discharging rate of BESS at time t,  is the 𝜂𝑐

charging efficiency,  is the discharging efficiency,  is 𝜂𝑑 𝑃𝑏
𝑐

the BESS maximum charging rate,  is the BESS 𝑃𝑏
𝑑

maximum discharging rate and  is the maximum BESS 𝐸𝐵𝑡

capacity. 
 The BESS within the microgrid will participate in the 
energy pool transactions aiming to maximize its profits by 
arbitrage trading. The objective function of BESS can be 
described as below:

                        (13)𝑀𝑎𝑥  ∑𝑁
𝑡 = 1𝑃𝑏

𝑡 ∙ 𝜆(𝑡,𝛾𝑛(𝑡))
The objective function of BESS relates to real-time 

energy pool price (3) and should satisfy the equations (9-
12). The optimization of BESS operation is a MILP problem 
and can be solved by most market-available solvers (e.g. 
IBM CPLEX and Gurobi). Since the energy pool price is 
determined by the surplus-vs-demand ratio, the profit will be 
influenced by an inappropriate scheduling of BESS 
operation resulting from the error of the forecasting surplus 
generation and energy demand [27]. Model Predictive 
Control (MPC) can be adopted, which have been widely 
used in microgrid management to minimize the influence of 
forecasting error of generation and demands and to achieve 
promising performance [14, 27, 29, 30].  .

4. UDDSR OPTIMIZATION AND OPERATION
Section 2 has presented the system infrastructure of a 

community with a local energy pool, and the pricing 
mechanism of the pool has been discussed. The mechanism 
of the proposed UDDSR program has also been presented in 
the previous section. In this section, the detailed 
optimization of the proposed UDDSR is performed and 
associated operation approach is presented. 

A. UDDSR Optimization Approach
Since the offers of each DR participant are start/stop 

flexible, EMS will be in charge of scheduling the bids to 
maximize the usage of received bids and make sure the 
aggregated bids at every time interval within the DR event 
should be even (which makes the load reduction amount 
during the DR event is constant). The optimal scheduling of 
DR offers will be achieved once the profit (allocated power) 
at each time interval t of the DR event will not increase by 
increasing or shifting the allocable power at/among any DR 
time intervals. This can be described as the objective 
function below.

Max 𝐸𝐷(𝑡) = ∑𝑁
𝑖 = 0P𝑖 ∙ 𝑏𝑖(𝑡)   𝑡∀𝑇

Max 𝐸𝐷(𝑡 + 1) = ∑𝑁
𝑖 = 0P𝑖 ∙ 𝑏𝑖(𝑡)   𝑡∀𝑇

….                                             (14)
Max 𝐸𝐷(𝑡 + 𝑇) = ∑𝑁

𝑖 = 0P𝑖 ∙ 𝑏𝑖(𝑡)   𝑡∀𝑇

s.t.
                         (15)∑𝑇

𝑡 = 0P𝑖 ∙ 𝑏𝑖(𝑡) ≤ 𝐸𝑖   𝑖∀𝑁
where  denotes the sum of scheduled power at time 𝐸𝐷(𝑡)

interval t during the DR event,  denotes the rating P𝑖(𝑡)
power of participant’s appliance,  is a binary value 𝑏𝑖(𝑡)
denoting the scheduling of the appliances (appliance=OFF if 

 and appliance=ON if ). 𝑏𝑖(𝑡) = 1 𝑏𝑖(𝑡) = 0
  Regarding equation (14) and the market mechanism, it is 
obvious that the complexity of solving this multi-objective 
function (maximizing the flexible loads in every time 
interval and making the allocated loads at every time 
interval as balanced as possible) will increase along with the 
increase of time resolution used in the DR event time 
interval, and the total profit of the whole DR event will be 
decided by the minimum allocated power of all time interval 
t within the DR event. Thus, to reduce the complexity of the 
optimization problem, the multi-objective function is 
transformed into a single objective function by introducing 
the variation of allocated power at each time interval t 
during the DR event. 
To simplify the multi-objective function, the multi-

objective optimization problem can be firstly re-written as a 
dual-objective function as below.

Max                       (16)∑𝑁
𝑖 = 1

∑𝑇
𝑡 = 1P𝑖 ∙ 𝑏𝑖(𝑡)

Min VAR( )                           (17)𝐸𝐷(𝑡)
where equation (16) is to maximize the allocated power 

during the whole DR event, and equation (17) is to minimize 
the variation of allocated power at every time interval of the 
whole DR event. 
  By introducing a penalty factor , a single objective δ
function can be formulated as below:

Max ( )         (18)∑𝑁
𝑖 = 1

∑𝑇
𝑡 = 1P𝑖(𝑡) ∙ 𝑏𝑖(𝑡) ‒ δ ∙ VAR(𝐸𝐷(𝑡))

  The penalty factor  is to increase/decrease the impact of δ
balancing the allocated power at the time interval for the 
objective function. The objective function should also 
satisfy the following constraints. 

…………...(19)∑𝑁
𝑖 = 1

∑𝑇
𝑡 = 1P𝑖(𝑡) ∙ 𝑏𝑖(𝑡) ≤  𝐸𝑈𝐿

…………...(20)∑𝑁
𝑖 = 1

∑𝑇
𝑡 = 1P𝑖(𝑡) ∙ 𝑏𝑖(𝑡) ≥  𝐸L𝐿

   Where  denotes the upper limit of DR scheme, and  𝐸𝑈𝐿 𝐸L𝐿
denotes the lower limits of DR scheme. 
   To solve the objective function (18), since there are non-
linear elements within the functions, and the control 
variables of shiftable/interruptible loads are integer 
variables, the optimization problem of (18) is a MILP 
problem, which can be solved by most market-available 
solvers (e.g. Gurobi, CPLEX and CBC).

B. UDDSR Optimization with BESS 
The operation of BESS will be different from the users’ 

interruptible loads (e.g. electric heaters) and shiftable loads 
(e.g. EV) during UDDSR events. This is due to the fact that 
BESS can perform charging (as a load) and discharging (as 
an energy source) activities in different time intervals within 
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one DR event. The total profit of the DR event in local 
network can be improved by compensating the power of 
time intervals with less available offers or/and shaving the 
power of time intervals with sufficient offers using BESS. 
  The objective function of the UDDSR optimization 
remains unchanged after introducing the BESS into the DR 
event. In the meantime, the operating constraints of BESS, 
i.e. equation (9-12), should be added into the optimization. It 
should be noted that the time interval of the UDDSR event 
is usually much smaller than the conventional DR event, 
which could lead to a relatively high frequency of switching 
the charging/discharging direction of BESS during the 
UDDSR event. Frequently changing the power flow 
directions of BESS will reduce the lifetime of capacitors, 
IGBT and other components inside the BESS inverters. The 
operation constraints of BESS during UDDSR event is 
described as follows. 

, t                         (21)∑𝑁' ‒ 1
𝑡 = 0 (𝑆𝐵

𝑡 ∗ 𝑆 𝐵
𝑡 + 1) ≥ 𝜔 ∀𝑁'

s.t.

                            (22){𝑆𝐵
𝑡 =‒ 1 𝑤ℎ𝑒𝑛 𝑃𝑏

𝑡 ≥  0
𝑆𝐵

𝑡 = 1  𝑤ℎ𝑒𝑛 𝑃𝑏
𝑡 < 0

  where  denotes the charging/discharging state of BESS, 𝑆𝐵
𝑡

and N’ denotes the number of time intervals in one UDDSR 
events,  denotes the power flow changing frequency of  𝜔
every two intervals during certain duration of DR event. The 
presence of Equation (21) and (22) is to maintain the 
changing frequency of charging/discharging power flow 
direction during the UDDSR events. To further explain the  
effects of these two equations, when the operation states (no 
matter charging or discharging) of BESS keep same in every 
time interval during the whole DR event, the value of 

 will always be N’-1, which is only ∑𝑁' ‒ 1
𝑡 = 0 (𝑆𝐵

𝑡 ∗ 𝑆 𝐵
𝑡 + 1)

related to the number of time intervals of DR event. When 
the power flow direction of BESS changes (charging 
changes to discharging or discharging changes to charging) 
during DR event, the value of  at the time interval 𝑆𝐵

𝑡 ∗ 𝑆 𝐵
𝑡 + 1

which power flow changes will be -1. If the BESS 
operational state changes x times during the DR event, the 
value of  will be (N-1-x*2), which can be ∑𝑁' ‒ 1

𝑡 = 0 (𝑆𝐵
𝑡 ∗ 𝑆 𝐵

𝑡 + 1)
used to regulate the changing frequency of BESS 
operational states during the DR event in Equation (21).

C. Crediting Participants of UDDSR event
Customers who participate into the UDDSR event will be 

credited by the network operator or DR agent according to 
their contributions. In order to keep motivating the 
customers, it is assumed that the unit price of subsidy 
allocated to customers is higher than the electricity price 
during the day. The subsidy for BESS is different from that 
for the normal customers, it is calculated based on the sum 
of absolute value of charging and discharging amount. The 
subsidy for the customers and BESS are given as follows.

                        (23)𝐶𝑈
𝑖 = ∑𝑁'

𝑡 = 0𝜒 ∗ 𝑃𝑖(𝑡), 𝑡∀𝑁'

                    (24)𝐶𝑈
𝐵 = ∑𝑁'

𝑡 = 0𝜒𝐵 ∗ |𝑃𝐵(𝑡)|, 𝑡∀𝑁'
where  denotes the credit allocated to participant i,  𝐶𝑈

𝑖
 denotes the unit price of subsidy for normal participants,  𝜒

 denotes the credit allocated to BESS,  denotes the unit 𝐶𝑈
𝐵 𝜒𝐵

price of subsidy for BESS. 
It should be noted that both charging and discharging 

activities of BESS are counted as contributions to the DR 
event, and hence are rewarded accordingly.

5. CASE STUDIES
Simulations are performed to test the validity of the 

proposed local energy pool system and the proposed 
UDDSR mechanism. The quantitative analysis of the 
electricity cost for residents within the energy pool is 
presented in this section. The performance of the proposed 
UDDSR and the earnings of participants obtained from 
UDDSR are discussed. The potential of using BESS to 
participate into the UDDSR is also analysed. For the 
modelling of the energy pool and the UDDSR scheme, 
Python is selected as the programming language and Gurobi 
is used as the optimization solver. Other python statistical 
libraries including Pandas, Numpy and Matplotlib are used. 
The program runs on a computer with Intel Core i7 @ 
3.40GHz CPU and 16GB RAM.

A. Case I : Smart Community with Local Energy Pool
The proposed energy pool is free to join for all users 

within the community. The price of the energy pool is 
related to the wholesale market price as well as the 
demand/supply ratio within the community. 

To evaluate the performance of the proposed energy pool, 
a community with 50 domestic users is used as the test bed. 
The hourly electricity load profile of the domestic users and 
the PV generation profile are collected from the Low 
Carbon London project, whose data are available on the 
website London Datastore. Aiming to perform a 
comprehensive analysis on the energy pool, the PV 
penetration levels of the community at 20%, 50% and 100% 
are respectively analysed.  For the proposed penetration 
level, it is calculated based on the percentage of domestic 
users who installed the roof PV generators each with rating 
power 3.2kW (e.g. for 20% penetration level, there will be 
10 domestic users installed with 3.2kW roof PV generator). 
The wholesale market price is collected from the EPEX day-
ahead market. 

Figure 3 presents the comparison of the energy pool price 
and the wholesale market price when the PV penetration is 
20% in the community over one week. It can be found that 
the pool price is lower than the wholesale market price at the 
most time, and the pool price is determined by the 
demand/supply ratio within the community. When the 
wholesale market price is lower than the preset lower limit 
of the energy pool, the pool clearing price will maintain at 
the lower limit to secure the profitability of the PV owners. 
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Fig. 3. Clearing price of P2P energy pool vs wholesale price 
over one week

To further analyse if the participants can profit from the 
energy pool, numerical analysis on the domestic users’ bills 
is performed. The table of detailed domestic bills using 
wholesale market price and local energy pool is attached in 
Appendix part A. Table 2 provides a summary of the 
savings generated from the energy pool.

Table 2 Numerical Summary of P2P Energy Pool
Average 

Saving(%)
Maximum 
Saving(%)

Minimum 
Saving(%)

Domestic 
with PV 184.8 371.1 8.1

Domestic 
without PV 6.16 11.1 -3.467

From Table 2, it can be found that the domestic users 
without PVs benefit from a 6.16% savings on average on 
their electricity bills after joining the energy pool. 39 out of 
40 domestic users without PV can get savings by joining the 
energy pool and the maximum saving percentage can reach 
11.1%. Only one of them get a negative savings, who will 
pay 3.467% more than the bills calculated based on 
wholesale market price. For the 10 domestic users with PV, 
the profitability has been significantly improved. The 
average profitability for them increased by 184.8% after 
joining the energy pool and one of them received an saving 
of 371%. The significant increase in the profitability is 
because the PV owners can sell their surplus electricity to 
their neighborhoods during the relatively high-price period, 
and the demand/supply ratio is relatively high on in this 
scenario (20% penetration), which helped the PV owners 
secure a good return on their investment. 

To comprehensively evaluate the energy pool 
performance, 50% and 100% PV penetration levels are also 
adopted. The tables of detailed domestic bills using 
wholesale market price and local energy pool at 50% and 
100% penetration level are attached in Appendix part A. 
The summarized table describing the energy pool is given in 
table 3.

Table 3 Bill Savings at 50% and 100% Penetration Level
Average 

Saving(%)
Maximum 
Saving(%)

Minimum 
Saving(%)

Domestic with 
PV ( 50% 

Penetration)
44.75 127.8 6.28

Domestic 17.7 23.7 -2.65

without PV (50% 
Penetration)

Domestic (100% 
Penetration) 13.4 23.69 0.005

For the scenario of 50% PV penetration, compared to the 
scenario of 20% PV penetration, the average profitability of 
domestic users with PV has decreased while the average 
savings of domestic users without PV has increased. 
Resulting from the decrease of the demand/supply ratio 
within the community, the PV owners faced competitions 
with other PV owners within the community, which 
correspondingly decrease the sale price of the electricity 
within the energy pool. However, it is certain that both the 
domestic users with and without PV benefit from the local 
energy pool. When the PV penetration level at the local 
community reaches 100%, there are no pure consumers or 
producers but the prosumers within the community. All the 
residents within the community can trade with each other, 
the average saving/ profitability increase are still at a 
reasonable level (equals to 13.4%) through the proposed 
energy pool pricing strategy. In such kinds of environments, 
it is more important to ensure the participants can secure 
reasonable benefits from the energy pool. If a small number 
of the domestic users occupy large percentages of the 
benefits, it will seriously influence the motivations of other 
domestic users in participating in the energy pool. Thus, it is 
necessary to investigate the distribution of the saving 
percentages of the prosumers. The distribution of the saving 
percentages of 50 domestics is shown in Figure 4. It is 
obvious that the most saving percentages are located 
between 6-12%, and only a very small number of domestic 
users can get high percentage savings. 

Fig. 4. Saving percentage distribution of 50 domestics at 
100% PV penetration level

According to the analysis above, it can be concluded that 
the proposed energy pool has reasonable performance at 
different PV penetration levels of the community. Both 
domestic users with and without PV can benefit from the 
proposed scheme. The PV owners can profit at any 
penetration levels, even at 100%. 

B. CASE II : Smart Community with Local Energy 
Pool and UDDSR (without BESS)

The proposed UDDSR allows participants to submit the 
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demand response bids with customised drop-in and drop-out 
time. They can also define the length of time period they 
want to respond during the whole DR event. Such design 
promises significant flexibility to the participants, and can 
correspondingly facilitate the DR program in theory. 
However, it is still important to evaluate if the proposed 
UDDSR scheme can effectively schedule the customer bid 
to achieve the maximum use of customer controllable 
resources.

To evaluate the proposed UDDSR, a comprehensive 
numerical analysis for the UDDSR with/without BESS is 
conducted in this section. It should be noted that the 
customer bidding format will only contain starting time, 
ending time and total response duration rather than the full 
information biding format given in Table I from 
simplification purpose point of view. We also assume all the 
customer will have the same response rating power during 
the test, the time interval used in the test is 5 minutes and 
the DR event duration is 1 hour. The table of detailed 
bidding information of 50 domestic users is attached in 
Appendix Part B. 

Fig. 5. Maximum allocable loads during DR event

Figure 5 presents the maximum allocable loads in every 
time interval of DR event that are submitted by the 
participants. The proposed UDDSR solving approach is to 
schedule the operation of customer bid to achieve a 
maximum use of customers’ flexible resources, and the 
scheduling for part of the customers are given in Figure 6. 
The dark grey part is the scheduled time slot for every 
participant. The y axis represents the 50 homes and the x 
axis represents 12 time intervals during one DR event. It is 
found that the scheduled power at every time interval is 
12kW, equals to 12kWh in the whole DR event (if the DR 
event lasts 1 hour). Compared with the total allocable 
energy 21.2kWh, only 56.7% energy are scheduled during 
the DR event. This is because the allocable energy at time 
interval 1 is significantly less than the energy at other time 
intervals. 

Fig. 6. Scheduling of selected customers

If the imbalance of different time intervals can be reduced, 
the load scheduling efficiency can be improved. To reduce 
the imbalance, there are two approaches can be adopted: one 
is to encourage customers to allocate more shiftable energy 
to the time interval that is in electricity shortage by paying 
more subsidy to the specific time interval, the other way is 
introduced the BESS or other types of energy storage system 
to compensate the specific time intervals. Both approaches 
are evaluated in the following part. 

Since the focus of this paper is not on the incentive design, 
the load scheduling during DR event is evaluated by 
increasing the allocable energy at the time interval when 
electricity is in shortage rather than investigating the pricing 
strategy of the subsidy. The modified allocable loads at 
different time intervals is shown in Figure 7 (The table of 
detailed bidding information of 50 domestic users in 
improved imbalance situation is attached in Appendix Part 
B). 

Fig. 7. Maximum allocable loads during DR event with 
improved imbalance

The scheduled power at each time interval can be 
increased to 20kW if the imbalance can be improved 
without changing the total allocable energy of 21.2kWh. 
94.3% of the total allocable energy has been successfully 
scheduled in this scenario, which has significantly improved 
the imbalance situation. 

To fully investigate the proposed UDDSR, the BESS is 
introduced for evaluation purpose. The BESS adopted in this 
study is with a maximum charging/discharging power of 
25kW, a capacity of 50kWh and an initial State of Charge 
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(SOC) at 0.4. The ω introduced in equation (21) was set to 1, 
which indicates that the BESS cannot change the operational 
states five times during 12 time intervals of one DR event. 
The customer bids information follows the information in 
Figure 5 in a seriously imbalanced situation. The scheduled 
power of customers and BESS is given in Figure 8 below. 

Fig. 8. Power scheduling with BESS

From Figure 8, the BESS, according to Figure 8, was 
almost continuously charged at the maximum power in 
order to compensate the customer loads during time interval 
t3, t4 and t6. 86.1% of the allocable loads (18.25 out of 
21.2kWh) of customers are allocated during the whole DR 
events, which consequently improved the scenario without 
BESS. The BESS contributed 18.75kWh to the DR event. 

However, the BESS SOC can be at any level when the 
DR event invokes. It is necessary to investigate if the BESS 
can still contributes to the DR event when the BESS is at 
high SOC level. 

Fig. 9. Power scheduling with BESS at high SOC

Figure 9 presents the allocation of customer loads as well 
as the operation of the BESS when the BESS is at high 
SOC=0.9. The green bar indicates the BESS charging state 
and the purple bar indicates the BESS discharging state. The 
allocable loads (21.2kWh) has been 100% fully scheduled 
under this scenario benefiting from the compensation of 
BESS. The BESS charged 7.31kWh and discharged 4.7kWh 
during the DR event. The allocation of the power at every 
time interval is even, which can provide a smooth load 
reduction during the DR event. 

According to the analysis in section 4, it can be concluded 
that the proposed UDDSR can make good usage of customer 
flexible loads if the distribution of the loads is at a 
reasonable balance level for different time intervals of the 
whole DR event. When the customer flexible loads are 
distributed seriously imbalance, the usage of customer loads 
is not in a high level. When the BESS is introduced into the 
DR event, the customer flexible loads can be significantly 
improved at all BESS's SOC levels. 

6. CONCLUSION
This paper has presented a P2P trading model and the 

UDDSR scheme for local communities. The P2P trading 
infrastructure and pricing model can facilitate the electricity 
trading within the community. The consumers, producers 
and prosumers within the community can all get certain 
benefits from the P2P trading infrastructure. The pricing of 
the local energy pool is determined based on the 
demand/supply ratio, and a minimum pricing guarantee 
(equal to or higher than FIR) is included. From the 
numerical analysis on the energy pool, the consumers can 
get a minimum 6.16% savings on their bills at different PV 
penetration levels. For the prosumers that installed with PV, 
the profitability has been significantly improved (a 
minimum 13.4% increase on the return of investment of roof 
PV among three different scenarios). To further improve the 
participants’ flexibilities and comfortabilities, the proposed 
UDDSR is proposed that allow participants make flexible 
DR bids with flexible start/stop time and customized 
participated duration. Such design promise great flexibility 
to the customers, which can help the DR scheme providers 
promote the DR scheme in an easy way. The numerical 
analysis on UDDSR shows that the proposed UDDSR can 
schedule the customers’ flexible loads properly if the loads 
are distributed in a balance state based on the proposed 
UDDSR optimization approach. If the DR bids is in a 
seriously imbalance state, the BESS is considered to help 
the DR load balancing among small intervals during DR 
event. It is found that the usage efficiency of customers’ 
flexible loads can increase from 56.7% to 86.1% with the 
assistance of BESS in the seriously imbalance state. 
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8.  APPENDIX

A. Domestic Bills Comparison under Different PV 
Penetration
Table 1 Bill Comparison at 20% PV Penetration Level

Bill(Wholes
ale)

After(Energy 
Pool)

Saving(%)

Home1 58.62 20.55 64.94
Home2 -13.21 -55.12 -317.11
Home3 13.14 -17.70 234.76
Home4 23.50 -11.25 147.87
Home5 -21.80 -65.26 -199.35
Home6 -40.16 -89.57 -123.04
Home7 -27.97 -73.11 -161.36
Home8 -32.50 -79.83 -145.65
Home9 -16.57 -59.52 -259.20
Home10 10.13 -27.47 371.11
Home11 29.48 27.09 8.10
Home12 125.91 125.12 0.63
Home13 24.22 23.03 4.93
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Home14 52.61 49.10 6.66
Home15 61.47 57.50 6.46
Home16 38.35 34.28 10.63
Home17 38.23 34.76 9.09
Home18 91.98 89.56 2.63
Home19 56.10 53.27 5.05
Home20 39.18 34.84 11.08
Home21 46.61 43.53 6.60
Home22 48.19 45.67 5.21
Home23 63.42 58.97 7.02
Home24 76.11 72.47 4.79
Home25 75.76 71.17 6.06
Home26 44.33 42.93 3.16
Home27 39.70 37.79 4.80
Home28 27.62 25.18 8.83
Home29 62.39 57.53 7.79
Home30 44.34 41.09 7.34
Home31 53.11 49.22 7.33
Home32 91.02 85.96 5.56
Home33 319.70 313.23 2.02
Home34 84.12 78.47 6.72
Home35 290.38 300.39 -3.45
Home36 45.94 42.30 7.94
Home37 28.54 27.82 2.52
Home38 54.63 50.23 8.07
Home39 42.34 40.26 4.91
Home40 57.35 54.98 4.12
Home41 41.48 37.93 8.58
Home42 39.53 37.21 5.86
Home43 38.84 35.35 8.99
Home44 29.04 26.08 10.19
Home45 35.26 32.70 7.24
Home46 39.20 37.37 4.66
Home47 59.61 55.15 7.49
Home48 35.77 32.74 8.49
Home49 101.05 94.43 6.55
Home50 76.47 72.06 5.77

Table 2 Bill Comparison at 50% PV Penetration Level
Bill(Wholes

ale)
After(Energy 

Pool)
Saving(%)

Home1 58.62 54.94 6.28
Home2 -13.21 -21.55 -63.06
Home3 13.14 9.29 29.27
Home4 23.50 18.08 23.09
Home5 -21.80 -29.84 -36.86
Home6 -40.16 -51.33 -27.82

Home7 -27.97 -37.06 -32.46
Home8 -32.50 -42.46 -30.67
Home9 -16.57 -24.04 -45.10
Home10 10.13 4.01 60.41
Home11 -30.51 -40.55 -32.91
Home12 58.62 54.94 6.28
Home13 -31.10 -43.29 -39.23
Home14 -14.53 -21.20 -45.89
Home15 -6.48 -12.86 -98.49
Home16 -28.09 -36.44 -29.71
Home17 -26.15 -34.76 -32.96
Home18 22.13 17.33 21.65
Home19 -9.26 -16.50 -78.15
Home20 -26.15 -35.13 -34.33
Home21 -19.66 -26.85 -36.63
Home22 -16.64 -23.32 -40.19
Home23 -6.23 -12.24 -96.29
Home24 7.44 1.86 75.01
Home25 4.14 -1.15 127.80
Home26 44.33 38.54 13.06
Home27 39.70 32.53 18.04
Home28 27.62 21.13 23.50
Home29 62.39 49.30 20.98
Home30 44.34 35.30 20.38
Home31 53.11 42.25 20.46
Home32 91.02 75.66 16.87
Home33 319.70 291.99 8.67
Home34 84.12 67.40 19.88
Home35 290.38 298.09 -2.65
Home36 45.94 37.29 18.84
Home37 28.54 25.58 10.38
Home38 54.63 43.39 20.59
Home39 42.34 35.90 15.20
Home40 57.35 46.58 18.78
Home41 41.48 31.97 22.94
Home42 39.53 32.79 17.05
Home43 38.84 30.36 21.83
Home44 29.04 22.16 23.69
Home45 35.26 28.29 19.75
Home46 39.20 34.10 13.02
Home47 59.61 47.29 20.67
Home48 35.77 28.66 19.89
Home49 101.05 81.85 19.00
Home50 76.47 63.33 17.19

Table 3 Bill Comparison at 100% PV Penetration Level
Bill(Wholesal After(Energy Saving(%)
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e) Pool)

Home1 58.6172 58.6142 -0.01
Home2 -13.2149 -15.9824 20.94
Home3 13.1367 12.0901 -7.97
Home4 23.5046 21.3441 -9.19
Home5 -21.8012 -24.0673 10.39
Home6 -40.16 -43.3865 8.03
Home7 -27.9749 -31.0492 10.99
Home8 -32.497 -35.1423 8.14
Home9 -16.5699 -18.1403 9.48
Home10 10.1328 7.226 -28.69
Home11 -30.5062 -33.2276 8.92
Home12 58.6172 58.6142 -0.01
Home13 -31.0953 -35.1639 13.08
Home14 -14.5342 -15.6629 7.77
Home15 -6.4802 -7.8854 21.68
Home16 -28.0903 -30.5717 8.83
Home17 -26.1463 -28.2114 7.90
Home18 22.1263 18.9717 -14.26
Home19 -9.2636 -12.0295 29.86
Home20 -26.154 -28.6724 9.63
Home21 -19.6552 -21.44 9.08
Home22 -16.6379 -17.2251 3.53
Home23 -6.2339 -7.5492 21.10
Home24 7.4374 5.8893 -20.82
Home25 4.1393 2.4107 -41.76
Home26 -18.9094 -20.1329 6.47
Home27 -22.3855 -25.122 12.22
Home28 -33.2883 -36.0573 8.32
Home29 -8.1653 -9.6796 18.55
Home30 -21.6185 -23.2133 7.38
Home31 -15.9521 -17.2005 7.83
Home32 15.0997 14.1751 -6.12
Home33 225.5318 219.643 -2.61
Home34 9.3283 6.0599 -35.04
Home35 233.5547 238.5374 2.13
Home36 -19.4299 -21.1616 8.91
Home37 -28.8385 -31.5414 9.37
Home38 -14.2569 -15.7385 10.39
Home39 -20.893 -22.0762 5.66
Home40 -10.5039 -14.7344 40.28
Home41 -24.1773 -26.5253 9.71
Home42 -23.7911 -25.5229 7.28
Home43 -25.2422 -26.9625 6.82
Home44 -32.4472 -35.0024 7.87
Home45 -26.2215 -29.282 11.67

Home46 -21.3287 -23.2602 9.06
Home47 -8.0637 -11.4207 41.63
Home48 -26.3194 -28.4529 8.11
Home49 2123.75 1976.79 6.92
Home50 340.78 181.83 46.64

B. Customer Bidding Information for UDDSR
Table 4 Customer Bid Information at Serious Imbalance 

Level
Start 
Time

End 
Time Duration Rating 

Power
Home1 2 9 3 1
Home2 2 12 7 1
Home3 1 5 3 1
Home4 3 10 5 1
Home5 1 12 10 1
Home6 3 9 3 1
Home7 2 10 8 1
Home8 2 7 3 1
Home9 4 10 5 1
Home10 2 10 6 1
Home11 2 10 3 1
Home12 3 12 5 1
Home13 5 10 4 1
Home14 1 12 5 1
Home15 2 9 3 1
Home16 3 10 7 1
Home17 3 12 6 1
Home18 1 12 8 1
Home19 1 6 3 1
Home20 3 10 4 1
Home21 2 12 6 1
Home22 2 10 6 1
Home23 6 12 5 1
Home24 2 12 7 1
Home25 5 10 3 1
Home26 7 12 3 1
Home27 2 10 6 1
Home28 1 9 5 1
Home29 3 11 8 1
Home30 2 6 4 1
Home31 2 6 3 1
Home32 1 12 4 1
Home33 2 12 10 1
Home34 3 12 8 1
Home35 2 11 4 1
Home36 5 12 5 1
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Home37 1 12 7 1
Home38 1 10 5 1
Home39 5 12 5 1
Home40 3 10 5 1
Home41 1 9 6 1
Home42 4 10 4 1
Home43 7 12 2 1
Home44 6 12 3 1
Home45 1 9 3 1
Home46 1 8 3 1
Home47 3 12 5 1
Home48 2 10 6 1
Home49 3 11 5 1
Home50 2 12 7 1

Table 5 Customer Bid Information at Relatively Balance 
Level

Start 
Time

End 
Time Duration Rating 

Power
Home1 2 9 3 1
Home2 1 12 7 1
Home3 1 5 3 1
Home4 1 10 5 1
Home5 1 12 10 1
Home6 1 9 3 1
Home7 1 10 8 1
Home8 1 7 3 1
Home9 4 10 5 1
Home10 1 10 6 1
Home11 2 10 3 1
Home12 3 12 5 1
Home13 1 10 4 1
Home14 1 12 5 1
Home15 2 9 3 1
Home16 3 10 7 1
Home17 3 12 6 1
Home18 1 12 8 1
Home19 1 6 3 1
Home20 1 10 4 1
Home21 1 12 6 1
Home22 2 10 6 1
Home23 6 12 5 1
Home24 2 12 7 1
Home25 5 10 3 1
Home26 7 12 3 1
Home27 2 10 6 1

Home28 1 9 5 1
Home29 3 11 8 1
Home30 2 6 4 1
Home31 2 6 3 1
Home32 1 12 4 1
Home33 2 12 10 1
Home34 3 12 8 1
Home35 2 11 4 1
Home36 5 12 5 1
Home37 1 12 7 1
Home38 1 10 5 1
Home39 5 12 5 1
Home40 3 10 5 1
Home41 1 9 6 1
Home42 4 10 4 1
Home43 7 12 2 1
Home44 6 12 3 1
Home45 1 9 3 1
Home46 1 8 3 1
Home47 3 12 5 1
Home48 2 10 6 1
Home49 3 11 5 1
Home50 2 12 7 1


