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Abstract - This paper proposes a new asymmetric 
neutral-point diode-clamped (NPC) multilevel converter for 
a four-phase switched reluctance motor drive. The inbuilt 
NPC clamping capacitors are used for both voltage level 
clamping and also as dc rail voltage-boosting capacitors to 
increase the output power of the motor, particularly for 
high-speed electric vehicle applications. The new converter 
allows regenerative energy to be recovered back to the dc 
supply for rapid machine braking, thus increasing overall 
drive efficiency. Analysis of the different modes of 
converter operation, along with design equations for sizing 
the voltage-boosting capacitors, are detailed. The effect of 
capacitance on boost voltage and increased motor base 
speed is presented. Simulation and experimental results 
confirm the effectiveness of the proposed converter.  

 
Index Terms - Electric vehicles, neutral-point converter, 

regenerative braking, switched reluctance motor, voltage-
boosting capacitors 

I. INTRODUCTION 

HE greenhouse effect is a serious environmental problem. 

Since automobiles are regarded as a major source of 

greenhouse gases, researchers are oriented towards 

transportation electrification [1]. 

Different types of electrical machines are available for 

electric vehicle (EV) applications [2], [3]. Since the permanent 

magnet synchronous motor (PMSM) offers a wide torque-speed 

range with high efficiency and power density, it is considered 

the first-choice traction motor, as opposed to the squirrel cage 

induction machine (SCIM). However, supply limitations and 

escalating rare-earth material prices for the PMSM forced the 

market to search for suitable alternatives [4]. The switched 

reluctance motor (SRM) is a dark horse in this arena [5]. It has 

advantages of a stable, robust and simple structure with low 

cost. The absence of permanent magnets (which do not produce 

a mechanically, thermally, and environmentally stable rotor) 

and copper windings in the rotor allow the motor to operate in 

harsh environments and at high rotor temperatures [6]. Recent 

developments in the design of high power SRM for EV are 

promising [7], [8]. The new designs are competitive with the 

PMSM with respect to power density, efficiency and torque-

speed range [9], [10].  

As with the PMSM, the SRM cannot be connected directly 

to any ac or dc supply but, needs a suitable power converter for 

its operation. The asymmetric half bridge (AHB) converter 

based on two switches and two diodes per phase is a popular 

converter for SRM drives [11-13]. Recent developments in EVs 

involve increasing the dc link voltage from around 400V to 

between 600V and 950V [14]. Hence, the voltage rating of the 

converter must increase. Higher voltage rated power 

semiconductor devices not only imply slower response with 

lower overall efficiency but also higher cost and size. Thus, 

multilevel inverters become a viable solution [15]. 

In [16], a five-level neutral-point diode-clamped (NPC) 

converter and an asymmetric modular multilevel converter 

(MMC) were compared for high voltage, high power 

applications. However, only the full dc link voltage is utilized. 

Hence, SRM performance at different voltage levels is not 

exploited. In [17], a fault tolerant converter based on the NPC 

topology was proposed. However, the main drawback is half 

the switches withstand the full dc link voltage. In [18] the 

performance of a three-level NPC converter was compared with 

the conventional AHB converter. With the same overall rating, 

the NPC has the advantage of lower losses and current ripple, 

and less machine noise. However, motor performance (Nm/kg) 

is improved only at low speeds (below base speed). Since the 

SRM can be deployed for high-speed applications, its 

performance (W/kg) must be enhanced at higher speeds. Also, 

the NPC converter requires large dc link capacitances. 

Enhancing single-phase SRM performance at high speeds is 

presented in [19], [20]. A boost-capacitor with a parallel diode 

is inserted in series with the dc link. The boosting-voltage 

provided by the capacitor aids the winding current to rapidly 

build-up and decrease thus, increasing the motor base-speed. 

The application of the boost-capacitor is extended to poly-phase 

SRM in [21] - [23].  
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But the current overlap between incoming and outgoing 

phases reduces the boosting-voltage effect. 

In [24], an MMC drive was proposed for the SRM, where the 

multilevel voltages reduce torque ripple. Nevertheless, for 

deploying different voltage levels the number of submodules 

(SM) increases, thus increasing converter cost. Also in [25], a 

five-voltage level converter was presented to reduce current 

noise and torque ripple at low speeds. However, the 

performance is not improved at speeds at or above base speed. 

In [26], the authors proposed a fault tolerant converter for SRM 

drives. Yet, the converter is only suitable for a three-phase 

SRM. Also four solid-state relays along with two sets of AHBs 

are required. In [27], a converter with a lower number of 

switches was studied. However, the converter has poor fault 

tolerance and is only suitable for six-phase SRM. In [28], a 

quasi-Z-source converter was presented to improve high speed 

SRM performance. Nonetheless, the voltages applied to the 

motor phases are not symmetrical. Also, the converter needs 

extra active (switches) and passive (bulky inductors and 

capacitors) elements. But the performance at low speeds is not 

enhanced. In [29], an improved C-dump converter was 

proposed to reduce the current tail time by applying twice the 

negative voltage during turn off. Although, the torque ripple is 

minimized, SRM power density is not improved since the 

applied voltage during turn on is the dc link value. In [30], an 

SRM operated from an AC supply was discussed. The cost of 

the required converter is not high; however, the motor has lower 

torque at high speeds, with increased torque ripple. 

In this paper, a new asymmetric NPC converter, with 

inherent voltage boosting, is introduced for a four-phase SRM. 

The converter uses the double arm, common switch topology 

for better voltage boosting with a minimum number of 

switches. In the proposed NPC converter, inter-rail voltage 

levels are transient (dwelled at for few microseconds, just to 

ensure switch voltage sharing). Small sized capacitors are 

deployed instead of the large capacitances normally associated 

with the conventional NPC converter. The de-magnetization 

energy of the outgoing phase is stored in the NPC converter 

split dc link capacitors, hence decreasing the current fall time 

thereby effectively extending the positive torque production 

range, before operating in the negative torque region. The 

stored energy (which increases the dc link voltage) then feeds 

the next incoming phase, thus allowing faster current build-up 

which increases the motor output power. The new converter 

also allows regeneration energy to be fed back to the supply, 

instead of being dissipated, for rapid machine regenerative 

braking, thus increasing overall drive efficiency. 

The paper is organized as follows. Section ΙΙ highlights 

salient SRM features, including voltage and torque equations. 

Section ΙΙΙ proposes a new NPC converter with inherent 

voltage-boosting capacitors and discusses the different 

converter modes of operation. A detailed method for sizing the 

boost capacitors is presented in section ΙV. Simulation results 

in section V are confirmed by experimentation in section VI. 

Three machine types (SRM, SCIM, and PMSM) are compared 

in section VII, based on their typical relative torque and power, 

to weight ratios. Conclusions form section VΙΙI. 

II. SRM OPERATION 

In order to design a unified SRM drive, SRM operation needs 

to be briefly considered so as to elicit converter needs. The 

SRM is a double salient machine with a concentrated winding 

on each stator pole [31]. Air gap reluctance dominates the 

unaligned reluctance resulting in linear flux linkage λ versus 

current i characteristics. But core reluctance cannot be 

neglected in the aligned position whence the λ-i characteristics 

become non-linear. Torque is produced by the tendency of the 

rotor poles to align with excited stator poles thus, minimizing 

flux path reluctance. Torque production is defined by [23]: 

𝑇 =  ½𝑖2
𝜕𝐿(𝜃, 𝑖)

𝜕𝜃
 (1) 

where 𝜃 is rotor position. 

Equation (1) shows that the developed torque depends on the 

rate of change of inductance with respect to rotor position as 

shown in Fig. 1, where 𝜃𝑟 is the rotor pole pitch and 𝛽𝑠, 𝛽𝑟 are 

the stator and rotor pole arcs, respectively. 
 

 
Fig. 1 SRM inductance profile. 

The voltage equation [23], neglecting phase mutual effects, in 

terms of rotor speed 𝜔 is: 

𝑉𝐷𝐶 = 𝑖𝑅 + 𝐿(𝜃, 𝑖)
𝑑𝑖

𝑑𝑡
+ 𝑖𝜔

𝑑𝐿(𝜃, 𝑖)

𝑑𝜃
 (2) 

where 𝑉𝐷𝐶 is applied voltage and R is phase winding resistance. 

III. ASYMMETRIC NPC CONVERTER WITH 

VOLTAGE-BOOSTING CAPACITORS 

Fig. 2a shows a prior art asymmetric converter for a four-

phase SRM [32]. The converter uses the double bridge topology 

with phases A and C in one bridge, sharing a common leg 

incorporating switch SAC. The other two phases, B and D, are in 

an independent bridge with a common switch SBD. The dc link 

blocking diodes and capacitors allow boosting of the dc link 

voltage by forcing recovered current to charge the capacitors to 

voltages in excess of the dc source VDC. The two-independent 

bridge topology allows better voltage boosting (since no phase 

overlap occurs in each bridge) with a minimal number of 

switches. The dc link switch 𝑆𝑥𝑦  (and diodes Dx1 and Dy1) is for 

regeneration. 

Fig. 2b shows the new asymmetric NPC converter for a four-

phase SRM, based on the topology in Fig. 2a. The NPC 

converter switch voltage clamping feature is used to exploit the 

series connection of switches. When changing switch states, the 

NPC rule of an outer switch is always first off and last on, is 

retained. The analysis of this converter in the motoring and 

braking modes is presented in the following subsections. 
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Fig. 2 SRM 8/6 converters with dc link capacitor voltage boosting: (a) prior art asymmetrical and (b) new asymmetrical NPC topologies. 

 

A Motoring Mode 

In the motoring mode of operation, the dc link switch 𝑆𝑥𝑦  is 

off and link diodes 𝐷𝑥2 and 𝐷𝑦2 conduct. Current is injected 

into the appropriate phase winding during the increasing 

inductance region for motoring action. According to the states 

of the phase switches, the converter offers five voltage levels, 

as shown in Fig. 3 and described in the following text for a 

given phase, e.g. 𝑃ℎ𝐴. 

 

First voltage level,+𝑉𝐷𝐶: This voltage level is obtained by 

turning on the four switches 𝑆1, 𝑆2, 𝑆3 and 𝑆4 of the phase to be 

energized as shown in Fig. 3a. Any capacitor boosting effect 

helps the current in the phase winding to build up quickly 

reaching the desired reference value, thus increasing the motor 

output power. The dc link capacitors discharge so that the 

voltage on the motor winding equals the dc source voltage 𝑉𝐷𝐶. 

 

Second voltage level,+½𝑉𝐷𝐶 : The second voltage level is 

realized by two possible switch combinations. The first is with 

𝑆1, 𝑆2 and 𝑆3 on while 𝑆4  is off. The second combination is 

with 𝑆2, 𝑆3  and 𝑆4 on with 𝑆1  off. These two states are 

demonstrated in Fig. 3 parts b and c, respectively. Assuming 

that the boost capacitors are discharged to the link voltage 

source, only half the dc link voltage +½𝑉𝐷𝐶 is applied on the 

phase winding. This is a transient state and alternation between 

these two states enables NPC capacitor voltage balancing.  

 

Third voltage level, 0𝑉: Three switch patterns are possible 

for this voltage level. The first pattern is 𝑆1 and 𝑆2 on while the 

other two switches, 𝑆3 and 𝑆4, are off. The second pattern is 𝑆2 

and 𝑆3 on with 𝑆1 and 𝑆4 off. The final pattern is 𝑆3 and 𝑆4 on 

while the other two switches 𝑆1  and 𝑆2  are off. The three 

possible patterns are illustrated in Fig. 3 parts d, e and f 

respectively, where zero voltage is applied across the phase 

winding. The dc link capacitors are unaffected. 
 

Fourth voltage level, −½𝑉𝐷𝐶: This voltage level involves two 

switch patterns. The first pattern is 𝑆2 on while the other three 

switches 𝑆1, 𝑆3  and 𝑆4  are off. The second pattern is 𝑆3  on 

while 𝑆1, 𝑆2 and 𝑆4 are off. Fig. 3 parts g and h illustrate the two 

patterns, where −½𝑉𝐷𝐶 is applied across the phase winding and 

alternation between the two patterns enables capacitor voltage 

balancing. This transient state ensures switch voltage sharing. 

 

Fifth voltage level, −𝑉𝐷𝐶: The last voltage level is with all the 

switches 𝑆1, 𝑆2, 𝑆3  and 𝑆4  off, as shown in Fig. 3i. The de-

magnetization energy via the motor winding charges the dc link 

capacitors in series, reducing the winding current to zero before 

the phase enters the negative torque production region.  

 

Table I summarizes the possible voltage levels of the proposed 

converter, where alternation of the transient half voltage states 

±½VDC allows dc link capacitor voltage balancing. Table II 

summarizes the sequence of states during motoring below and 

above base speed and during regeneration. The half voltage 

states are transitional, and dwelling is long enough to ensure 

switch voltage clamping (sharing). The allowable state 

transitions are shown in Fig.4. 
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Fig. 3 Voltage levels of the converter in motoring mode (without boost voltage): 

(a) First level, +VDC, (b) and (c) Second level +½VDC, (d), (e) and (f) Third level, 0V, (g) and (h) Fourth level, -½VDC, and (i) Fifth level -VDC. 

 

TABLE II 
NPC CONVERTER OUTPUT VOLTAGE STATE SEQUENCES 

Two Quadrant Operation  

(one direction of rotation) 

 
Increasing L 

Motoring with 𝑆𝑥𝑦 off 

Decreasing L 

Braking/Regenerating with 𝑆𝑥𝑦 on when 𝑉𝑏𝑜𝑜𝑠𝑡 = 0 

 First +V 
Center 

+V and 0V 

Pulse End 

-V 

First +V 

(energizing) 

Center 

-V and 0V 

Pulse End 

-V 

Below 

base speed 

Δ0V+V 

 

Δ(e)(a) 

+V→½V→0V→½V→+V 

 

(a)→(b)→(d)→(b)→(a) 

alternating with 

(a)→(c)→(f)→(c)→(a) 

0V→-½V→-V 

(d)→(g)→(i) 

or 

(f)→(h)→(i) 

 

+V0V-V 

(a) (e)(i) 

Δ0V+V 

Δ(e)(a) 

then  

+V→½V→0V 

(a)→(b)→(d) 

(a)→(b)→(f) 

-V→-½V→0V→-½V→0V 

 

(i)→(g)→(d)→(g)→(i) 

alternating with 

(i)→(h)→(f)→(h)→(i) 

0V→-½V→-V 

(d)→(g)→(i) 

or 

(f)→(h)→(i) 

 

-V 

(i)  

Above 

base speed 

Δ0V+V 

Δ(e) (a) 
na 

V0V-V 

(a)(e)(i) 

Δ0V+V 

Δ(e) (a) 
na 

V0V-V 

(a)(e)(i) 

States in brackets – as per figure 3                                         When changing switch states, an outer switch is always first off and last on 

Δ is tri-state, all switches off, state (i)                                     Dwell state (always for ±½V), <1μs, state is shown in italics 

→ single state changed                    two states simultaneously changed                    bold state – one of two alternating states 
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TABLE I 
PROPOSED NPC CONVERTER OUTPUT VOLTAGE STATES 

Level 
Fig 3 

state 
State/KVL 

dc link initial 

voltage 

dc link final 

voltage 

Capacitor 

voltage 

+𝑉𝐷𝐶  3(a) 𝑆3, 𝑆4, 𝐶𝐿, 𝐶𝑈, 𝑆1, 𝑆2 +𝑉𝐷𝐶 +  𝑉𝐵𝑜𝑜𝑠𝑡 +𝑉𝐷𝐶  𝐶𝑈↓ CL↓ 

+½𝑉𝐷𝐶  
3(b) 

3(c) 

𝑆3, 𝐷3, 𝐶𝑈, 𝑆1, 𝑆2 
𝑉𝐷𝐶  𝑉𝐷𝐶  

𝐶𝑈↓ 𝐶𝐿↑ 

𝑆3, 𝑆4, 𝐶𝐿, 𝐷4, 𝑆2 𝐶𝑈↑ 𝐶𝐿↓ 

0𝑉 

3(d) 𝐷2, 𝑆1, 𝑆2 

𝑉𝐷𝐶  𝑉𝐷𝐶  

 
3(e) 𝑆3, 𝐷3, 𝐷4, 𝑆2 𝐶𝑈↔ 𝐶𝐿↔ 

3(f) 𝑆3, 𝑆4, 𝐷1  

−½𝑉𝐷𝐶  
3(g) 

3(h) 

𝐷2, 𝐶𝑈, 𝐷4, 𝑆2 
𝑉𝐷𝐶  𝑉𝐷𝐶  

𝐶𝑈↑𝐶𝐿↓ 

𝑆3, 𝐷3, 𝐶𝐿, 𝐷1 𝐶𝑈↓ 𝐶𝐿↑ 

−𝑉𝐷𝐶  3(i) 𝐷2, 𝐶𝑈, 𝐶𝐿, 𝐷1 𝑉𝐷𝐶  𝑉𝐷𝐶 + 𝑉𝐵𝑜𝑜𝑠𝑡 𝐶𝑈↑ 𝐶𝐿↑ 
 

 
Fig. 4 Converter switch states and allowable single and simultaneous 

double state transitions. 
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Fig. 5 Regenerative braking mode: (a) Magnetization and (b) de-

magnetization. 

B Braking (regeneration) mode 

Any current in a phase during the decreasing inductance 

period (region 4 in Fig. 1) produces a negative (reversing) 

torque. Current is injected into the phase winding with all 

switches 𝑆1, 𝑆2, 𝑆3 and 𝑆4 on (Fig. 5a which is similar to state 

3(a) but the dc link capacitors are not involved) after the start 

of region 3, before the decreasing inductance region 4, thus 

producing negative (reverse hence braking) torque in region 4. 

In this mode, the dc link switch 𝑆𝑥𝑦  is turned on after the boost 

capacitors discharge to 𝑉𝐷𝐶. By turning off all four switches, 

(the state in Fig 5b, which is similar to state 3(i), except the dc 

link capacitors are not involved), before the end of period 4, 

braking with regeneration occurs, with current back into the 

𝑉𝐷𝐶  via the dc link switch 𝑆𝑥𝑦  and diodes 𝐷𝑥1 and 𝐷𝑦1 . The 

braking (current) requirement and limit is controlled by 

interposing zero voltage states, 3(d), (e), (f), within the -V state. 

The current should reach zero before the start of the increasing 

inductance, region 2. Stored energy in the motor associated with 

that pole is fed back to the dc supply thus providing efficient 

and fast regenerative braking action, without the voltage on 

each boost capacitor increasing above ½𝑉𝐷𝐶 .  Fig. 5 shows 

converter operation in the braking mode (zero voltage states are 

Fig. 3 (d) (e) (f)). Regenerative braking does not involve the 

boost capacitors, so is as for any SRM four quadrant drive.  At 

low speeds, machine regenerative braking is not particularly 

effective (energy is related to speed squared), and any current 

associated with unwanted positive torque production should be 

reduced to zero. Braking down to and at standstill, necessitates 

a reverse rotation demand, where dc source energy is drawn, 

viz., braking without regeneration. 

IV. SIZING OF BOOST CAPACITORS 

Each dc link capacitor voltage rating is half the maximum dc 

link voltage expected after boosting. The dc link capacitance in 

this application is not based on the normal NPC converter 

requirement of providing full load energy at the intermediate 

voltage levels ± ½𝑉𝐷𝐶 . Capacitance is based on the boosting 

property of the proposed topology. Relatively low capacitance 

will result in an excessive over voltage, necessitating higher 

voltage rated devices. Relatively large capacitance results in no 

significant boost voltage (as with the conventional NPC 

converter). In [19], a formula provides sizing of the boost-

capacitor. However, SRM magnetic non-linearity is neglected, 

with a linear model being adopted. In [22] and [23], no direct 

formula is presented to size the boost-capacitor. Also, phase-

current overlap crucially affects boosting behavior. In the 

following section, a design approach for sizing the boost 

capacitors is presented that accounts for SRM magnetic non-

linearity. The proposed double arm topology eliminates the 

problem of phase-current overlap. Fig. 6 shows an RLC circuit 

modeling the SRM during de-magnetization at the end of the 

torque producing period. 

C

θ θ
off

= Req L

eq

(θ   ,I )off p

+

-

 
Fig. 6 Equivalent RLC circuit for the NPC based SRM drive during the de-

magnetization period. 

 

The equivalent capacitor initial voltage at the beginning of 

the de-magnetization period is the dc link voltage 𝑉𝐷𝐶, while 

the initial current in the phase winding is given by [13]: 

 

𝐼𝑝 =  
𝑃

𝑚𝜂𝑘𝑑𝑉𝐷𝐶

 (3) 

 

where P is the motor power, m is the number of phases 

conducting simultaneously, η is the motor efficiency, and 𝑘𝑑 is 

the duty cycle. 

The equivalent resistance and capacitance are calculated 

using (4) and (5) respectively. 
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𝑅𝑒𝑞 =  𝑅 + 𝜔𝑟𝑎𝑡𝑒𝑑

𝑑𝐿(𝜃𝑜𝑓𝑓 , 𝐼𝑝)

𝑑𝜃
 (4) 

𝐶𝑒𝑞 =  ½ 𝐶 (5) 

 

The phase inductance is defined by (6) which accounts for 

SRM magnetic non-linearity [33]. 

 

𝐿(𝜃, 𝑖) =  𝐿0(𝑖) + 𝐿1(𝑖) cos(𝑁𝑟𝜃) + 𝐿2(𝑖) cos(2𝑁𝑟𝜃) (6) 

 

The coefficients 𝐿0(𝑖), 𝐿1(𝑖) and 𝐿2(𝑖) are defined by: 

𝐿0(𝑖) = ½{½(𝐿𝑎(𝑖) + 𝐿𝑢) + 𝐿𝑚(𝑖)} (7) 

𝐿1(𝑖) = ½{𝐿𝑎(𝑖) − 𝐿𝑢} (8) 

𝐿2(𝑖) = ½{½(𝐿𝑎(𝑖) + 𝐿𝑢) − 𝐿𝑚(𝑖)} (9) 

where 

𝐿𝑢 is the unaligned inductance - current independent. 

𝐿𝑎(𝑖) is the aligned inductance - calculated at current 𝐼𝑝. 

𝐿𝑚(𝑖) is the halfway inductance - calculated at current 𝐼𝑝. 

 

The inductance values can be calculated using FEA or 

experimentally. 

Applying KVL for the RLC circuit in Fig. 6, assuming 

constant inductance at the instant of phase turn off: 

 

𝑅𝑒𝑞𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
+

1

𝐶𝑒𝑞

∫ 𝑖𝑑𝑡
𝑡

−∞

= 0 (10) 

with the initial condition given by (11) and (12): 

 

𝑖(𝜃𝑜𝑓𝑓) = 𝐼𝑝 (11) 

𝑑𝑖

𝑑𝑡
(𝜃𝑜𝑓𝑓) = −

1

𝐿
(𝑅𝑒𝑞𝐼𝑝 + 𝑉𝐷𝐶) (12) 

 

The current expression is defined by (13) for the overdamped 

case (normally 𝐶𝑒𝑞 >
4𝐿

𝑅𝑒𝑞
2).  

 

𝑖(𝑡) =  𝐴1𝑒𝑝1𝑡 +  𝐴2𝑒𝑝2𝑡 (13) 

 

where 𝑝1 and 𝑝2  represent the poles of the characteristic 

equation, defined by: 

 

𝑝1,2 =  −
𝑅𝑒𝑞

2𝐿
± √(

𝑅𝑒𝑞

2𝐿
)

2

−  
1

𝐿𝐶𝑒𝑞

  (14) 

 

Using the initial conditions, 𝐴1 and 𝐴2 are defined by (15) 

and (16) respectively: 

 

𝐴1 =  
𝐼𝑝 (𝑝2 +  

𝑅𝑒𝑞

𝐿
) +  

𝑉𝐷𝐶

𝐿

𝑝2 − 𝑝1

 (15) 

𝐴2 =  
𝐼𝑝 (𝑝1 +  

𝑅𝑒𝑞

𝐿
) +  

𝑉𝐷𝐶

𝐿

𝑝1 − 𝑝2

 (16) 

 

The time for the motor winding current to decay, is denoted 

by 𝑡𝑜𝑓𝑓 and calculated using: 

 

𝑡𝑜𝑓𝑓 =  
ln (−

𝐴2

𝐴1
)

𝑝1 −  𝑝2

 (17) 

When the current in the motor winding decays to zero after 

time 𝑡𝑜𝑓𝑓, the voltage on the capacitor 𝑉𝑐𝑎𝑝(= 𝑉𝐷𝐶 + 𝑉𝑏𝑜𝑜𝑠𝑡) is: 

 

 

𝑉𝑐𝑎𝑝(𝑡 = 𝑡𝑜𝑓𝑓) =  
1

𝐶𝑒𝑞

(
𝐴1

𝑝1

𝑒𝑝1𝑡𝑜𝑓𝑓 +  
𝐴2

𝑝2

𝑒𝑝2𝑡𝑜𝑓𝑓) (18) 

 

Solving (18), the boost capacitance is determined in terms of 

the boost voltage (dc link voltage in excess of VDC). 

The scope of the paper is to exploit the series connection of 

switches. However, taking advantage of the multilevel feature 

allows reduced current ripple, hence noise, especially at low 

speeds. In this case, the capacitance should be adequate to 

supply energy to the motor phase. Equation (19) describes 

capacitor voltage ripple. 

 

𝑖 = 𝐶
∆𝑉

∆𝑡
 (19) 

 

To allow 5% voltage ripple, the capacitance should be: 

 

𝐶 =
𝐼𝑝

0.05𝑉𝐷𝐶𝑓𝑠

 (20) 

 

where 𝑓𝑠 is the sampling frequency. 

 

Equations (18) and (20) could be used to size the capacitor to 

improved performance at both low and high speeds. 

V. SIMULATION RESULTS 

The SRM specifications used in the FEA and 

MATLAB\Simulink simulations are given in Table III. 

 
TABLE III 

SPECIFICATIONS OF SRM 

Parameter Value 

No. of motor phases m 4 

Stator/rotor poles 𝑁𝑠/𝑁𝑟 8/6 

Number of turns per pole N 90 
Phase resistance R 0.8Ω 

Motor axial length 155mm 

Shaft radius 15mm 
Rotor outer radius 45mm 

Thickness of rotor yoke 15mm 

Ratio of rotor pole arc to pole pitch 0.35 
Length of air gap 1mm 

Stator inner radius 46mm 

Stator outer radius 83mm 
Thickness of stator yoke 12mm 

Ratio of stator pole arc to pole pitch 0.42 

 

The sampling frequency used for simulation is 20kHz, and 

the motor drives a constant load of 25Nm. Fig. 7 shows the 

variation of base-speed and boost-voltage with dc link 

capacitance (upper + lower capacitance for one arm) at different 

dc link voltages. The motor base-speed and hence output power 

(power = torque x speed) increase using boost capacitors. 
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(a) 

 
(b) 

Fig. 7 Variation of (a) base-speed and (b) boost-voltage with capacitance. 

 

For 300V boost-voltage, based on Fig. 7, 65μF, >450V dc 

capacitors are selected.  The dc source voltage is fixed to 600V. 

The voltage and current waveforms for one motor phase using 

the selected capacitor are shown in Fig. 8a and the balanced 

boost-capacitor voltages are shown in Fig. 8b. Because two 

phases share a common converter leg, at ½VDC states, small 

currents flow in the decreasing inductance regions. 

 

 
(a) 

 
(b) 

Fig. 8 SRM waveforms with 65μF boost-capacitors: (a) phase voltage and 

current at base speed and (b) boost-capacitors, 𝐶𝑈 and 𝐶𝐿 voltages. 

 

Fig. 9 shows the voltage and current waveforms below base 

speed, at 1825rpm. Half the dc link voltage +½𝑉𝐷𝐶 (which is 

alternated between states 3(b) and 3(c)) is used only for <1μs as 

a transient state to ensure voltage sharing between phase 

switches thus the clamping diodes 𝐷3 and 𝐷4 are only transient 

current rated if switch state (e) is not employed. The PWM 

adopted in this control strategy uses only 0% and 100% duty 

cycles for the switches which enables the sampling (phase 

current) frequency to be twice the switching frequency for more 

accurate operation with lower switching losses and current 

ripple noise. Device losses are symmetrical about the central leg 

(but not uniformly distributed). Capacitor balancing takes 

precedence over alternating of the ±½VDC states. Any 

significant capacitor ±½VDC state bias is compensated by 

adjustment of delay time or by advancing or retarding of the 

switch state demand. 

 

 
Fig. 9 Phase voltage and current waveforms during excitation at low speed. 
 

The SRM torque/speed and output power/speed 

characteristics with and without boost-capacitors are shown in 

Fig. 10. Below base speed, current chopping control is applied 

for constant torque operation. Above base speed, the advance 

angle control method is employed for constant power operation. 

The proposed voltage-boosting method increases the motor 

base speed from 1735rpm to 2130rpm, giving a 23% increase 

in the output power (W/kg) at base speed. The machine power 

density has improved which allows the SRM to compete with 

PMSM. 

 

 
Fig. 10 Torque/speed and power/speed characteristics 

 

To assess braking mode performance, the SRM is motored 

for 0.4s with current injected in the rising inductance region. 

After receiving a braking command all the phases are briefly 

turned on simultaneously to allow the boost capacitors to 

completely discharge into the machine and then all the 

switches are turned off until the current decays. Current is 
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then injected in the falling inductance region (the phase 

sequence is reversed) to allow (uncontrolled) regenerative 

braking as shown in Fig. 11a. Fast and efficient braking 

action is achieved without dissipating energy (regeneration). 

The dc supply is disconnected after the motor comes to rest, 

otherwise the motor will rotate in opposite direction 

(reverse). Since the SRM back emf is negative when current 

is injected in the falling inductance region (𝜕𝐿/𝜕𝜃 < 0), a 

soft chopping current control mode (0V, -V) is applied 

during motor braking instead of hard chopping current 

control (+V, -V) as shown in Fig. 11b to minimize switching 

losses during braking. 

 
(a) 

 
(b) 

Fig. 11. (a) Regenerative braking and (b) Voltage and current 
waveforms during regenerative braking (soft chopping). 

 

VI. EXPERIMENTAL RESULTS 

The specifications of the 8/6 SRM, used for experimentation, 

are given in Table III and Fig. 12 shows the test rig. 

A dc source voltage of 100V is utilized, the boosting 

capacitors are 75μF (±10%), and the sampling frequency is 20 

kHz. The effect of voltage boosting on SRM performance is 

compared in two different cases; single pulse mode and current 

chopping mode. Fig. 13 shows the phase voltage, current, 

capacitor voltages, instantaneous torque and speed, in each 

case. Below base speed (that is, current chopping mode), where 

the torque is constant, the speed is controlled by adjusting the 

phase reference current. Allowing the current to build up 

quickly enables the SRM to operate at higher speed. Fig. 13a 

shows SRM performance without voltage boosting, where the 

phase voltage is equal to the dc link voltage, while the capacitor 

voltages are maintained at half the dc link voltage. Since the 

available dc link (source) voltage (without boost) is insufficient 

for the current to build up quickly, the speed is only 165 rpm.  

 

 

 
Fig. 12 Experimental test rig 

 

Fig. 13b proves that the performance of the motor in the 

current chopping mode is enhanced, since the phase voltage is 

equal to the dc source voltage (battery) plus boost voltage. The 

extra voltage supplied by the boost capacitors allows fast 

current build-up. The speed increases to 290 rpm at the same 

load torque. A 1μs dwell is applied when turning on/off the 

outer/inner switches to assure equal voltage stress on the 

switches as presented in Fig. 13b. Above base speed, the speed 

is controlled by adjusting the turn on/off angles and the SRM 

operates in the constant power region. Fig. 13 parts c and d 

show SRM performance without and with boosting voltage 

respectively. The extra voltage offered by the boost capacitors 

allows the current of the incoming phase to build up quickly, 

thus quickly increasing the motor speed from 380 rpm to 660 

rpm at the same load torque. Also, the outgoing phase current 

decays faster in the presence of the increasing boost-voltage. 

The exaggerated improvement in the motor speed obtained 

experimentally (around 75%) is due to the accentuated boost 

voltage compared to dc source voltage. To emphasize the 

importance of voltage boosting on current build up, the rise time 

of phase current with/without voltage boosting for the two 

cases; current chopping mode and single pulse mode, is 

presented in Fig. 14 parts a and b respectively. 

 

 
(a) 

DSP Gate 

driver

s 

sensors 

Converter 
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(b) 

Fig. 14 Experimental voltage and current rise time: (a) current chopping 

mode (with and without voltage boosting) and (b) single pulse mode (with 

and without voltage boosting) 
 

The simulated and experimental torque/speed characteristics 

are compared in Fig. 15a, while Fig. 15b shows the simulated 

and experimental output power. The effect of a boosting-

voltage is shown to have significant effect on the motor base-

speed, meaning the rated torque region is extended, with a 

corresponding increase in output power. The slight deviation 

between the experimental and simulated results is due to the 

modelling of the SRM using FEA along with ignoring machine 

core loss. 

 

 
(a) 

 
(b) 

Fig. 15 Experimental versus simulated characteristics with and without dc 

link voltage boosting: (a) torque/speed and (b) output power/speed. 

 

VII. MACHINE PERFORMANCE COMPARISON 

Three machine types (SRM, SCIM, and PMSM) are 

compared in Table IV, based on their typical relative torque and 

power, to weight ratios [34]. In Table IV, the SRM has the 

highest torque to weight ratio, but the power to weight ratio 

suffers because of a compromised base speed due to the 

inability to force sufficient current into (or from) the machine 

at higher speeds (power = torque x speed). DC rail voltage boost 

(140%) increases the speed at which FLT can be delivered 

(from 420rpm to 750rpm), hence improving the power to 

weight ratio (by 75%) to be better than that of a PMSM, for a 

given source voltage. The NPC converter approach allows 

series connection of fast low-voltage (600/650V) switches. 

Hence a device switching frequency well in excess of 20kHz is 

possible. With alternating zero-volt loops, the load switching 

frequency is doubled to in excess of 40 kHz, hence minimizing 

current ripple below base speed and the switching frequency 

noise is above human audible levels. Below base speed, 

commutation current profiling can be used to minimize 

rotational torque ripple between commutating poles hence 

minimize mechanical audible noise (at multiples of the 

rotational speed). Radial torque (resonance) ripple (chirp noise 

at multiples of the rotational speed), due air gap asymmetry and 

stator compression, at phase commutation is reduced by the 

necessity of the half voltage (and zero voltage) state during 

voltage transitions, judiciously synchronized to produce a 

cancelling counter resonance (being mechanical, the excited 

frequency is independent of rotor speed). 

 
TABLE IV 

RELATIVE PERFORMANCE OF THREE MACHINE TYPES 

Relative pu PMSM SCIM SRM SRM + Boost 

Torque (𝑁. 𝑚
𝑘𝑔⁄ ) 0.8 0.8 1.0 1.0/1.0 

Power (𝑊
𝑘𝑔⁄ ) 1.0 0.8 0.8 0.93/0.98 

SRM power to weight ratio: 200V boost → 0.93pu, 300V boost → 0.98pu 

 

IV. CONCLUSION 

A novel asymmetric NPC converter with inherent dc link 

voltage-boosting capacitors for a four-phase SRM drive was 

presented. Analysis of the proposed converter during motoring 

and braking resulted in a design approach for sizing the boost 

capacitors. The proposed converter improves SRM drive 

performance at low and high speeds. The boost voltage 

increases the motor base speed, hence output power and 

efficiency. The power to weight ratio of the SRM with voltage 

boosting capability is competitive with the PMSM and has the 

advantage of a higher torque to weight ratio. Regenerative 

braking can be deployed for efficient and fast braking action. 

The new converter allows series connection of fast, low-

voltage, efficient switches. Topology penalties are increased 

number of gate drives and increased control complexity when 

introducing NPC intermediate dwell states. 
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