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Abstract. We consider iterative methods for solving the linearised Navier–Stokes equations
arising from two-phase flow problems and the efficient preconditioning of such systems when using
mixed finite element methods. Our target application is simulation within the Proteus toolkit; in
particular, we will give results for a dynamic dam-break problem in 2D. We focus on a preconditioner
motivated by approximate commutators which has proved effective, displaying mesh-independent
convergence for the constant coefficient single-phase Navier–Stokes equations. This approach is
known as the “pressure convection–diffusion” (PCD) preconditioner [H. C. Elman, D. J. Silvester
and A. J. Wathen, Finite Elements and Fast Iterative Solvers: with Applications in Incompressible
Fluid Dynamics, second ed., Oxford University Press, 2014]. However, the original technique fails
to give comparable performance in its given form when applied to variable coefficient Navier–Stokes
systems such as those arising in two-phase flow models. Here we develop a generalisation of this
preconditioner appropriate for two-phase flow, requiring a new form for PCD. We omit considerations
of boundary conditions to focus on the key features of two-phase flow. Before considering our target
application, we present numerical results within the controlled setting of a simplified problem using
a variety of different mixed elements. We compare these results with those for a straightforward
extension to another commutator-based method known as the “least-squares commutator” (LSC)
preconditioner, a technique also discussed in the aforementioned reference. We demonstrate that
favourable properties of the original PCD and LSC preconditioners (without boundary adjustments)
are retained with the new preconditioners in the two-phase situation.
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1. Introduction. The motivation for this work stems from the computational
challenges involved in simulating two-phase flows, in particular air–water flows. The
primary costs incurred in such simulations are in the solution of the linear systems
arising after linearisation and discretisation of the governing equations. As such, the
efficient solution of these linear systems is crucial and motivates the development of
preconditioners appropriate for the variable coefficient nature of two-phase flow.

We consider incompressible flow of two immiscible Newtonian phases. Suppose
the two-phase problem is defined on an open bounded domain Ω ⊂ Rd (d = 2, 3), with
one phase occupying Ω1 and the second Ω2 such that Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅.
Let the interface between the two phases be denoted Γ = ∂Ω1 ∩ ∂Ω2. Note that Ω1

and Ω2 may vary over time and that neither set is required to be connected.
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The fluid flow is modelled by the incompressible Navier–Stokes equations

αρ
∂u

∂t
+ ρu · ∇u+∇ p−∇ · (2µDu) = ρf in Ωi,(1)

∇ · u = 0 in Ωi, i = 1, 2.(2)

Here we have fluid velocity u, pressure p, density ρ, dynamic viscosity µ, and body
force per unit mass f . We use the notation Du = 1

2

(
∇u+ (∇u)T

)
for the rate

of deformation tensor and σ(u, p) = −p I + 2µDu for the stress tensor. The value
α = 0 is taken for steady flow whilst α = 1 for time-dependent flow, in which case
the dependent variables may vary over time.

After suitable scaling we assume the variables are dimensionless with the piecewise
constant density and viscosity being given by

ρ =





1 in Ω1

ρ2
ρ1

in Ω2

, µ =





1

Re
in Ω1

µ2

µ1Re
in Ω2

,(3)

where ρi and µi are, respectively, the (dimensional) density and viscosity of the fluid
in Ωi, i = 1, 2 and Re is the Reynolds number of the first fluid. We are interested in
the behaviour for increasing Reynolds numbers and so assume the Reynolds number of
the second fluid is smaller than that of the first so that ρ2/ρ1 ≤ µ2/µ1. The difficulty
in solving the problem typically increases for larger Reynolds numbers and so here
Re characterises the Reynolds number dependence.

In the time-dependent case we require a technique to keep track of the interface
as it moves in time, typically this might be a volume-of-fluid (VOF) method or a level
set method (see e.g. [46, 23, 31, 1]). Often, for numerical solution, the tracking of the
fluids can be decoupled from solving the Navier–Stokes system so that, when we are
required to solve this system, the interface position is known. Since our focus is on the
efficient solution of the Navier–Stokes system we suppose that the interface position
is known and thus the density and viscosity functions are fully specified. Note that,
more generally, these need not be piecewise constant functions, for instance when
using a model which incorporates a narrow transition region around the interface.

To complete our model we require appropriate conditions on the boundary ∂Ω
and interface Γ. Here, for simplicity, we consider enclosed flow in 2D. We suppose
that the boundary is split into two parts ∂ΩD and ∂ΩFS with ∂Ω = ∂ΩD ∪∂ΩFS and
∂ΩD ∩ ∂ΩFS = ∅. We impose the conditions

u = uD on ∂ΩD,(4)

u · n = 0, (σ(u, p)n) · t = 0 on ∂ΩFS ,(5)

[u] = 0, [σ(u, p)n] = g on Γ,(6)

where n and t are unit normal and tangent vectors to the corresponding boundary,
[a]Γ = (a|Ω1

− a|Ω2
) |Γ, and g is a localised force term, for instance corresponding to

interface tension in the continuum surface force (CSF) model [7, 23]. The boundary
conditions are interpreted as fully specifying the velocity uD on the Dirichlet boundary
∂ΩD and applying free-slip on the wall boundary ∂ΩFS . Note that for enclosed flow
an additional constraint is required to fix the level of the pressure such as specifying
the average pressure (see (9)). Across the interface we enforce that the velocity is
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continuous and if g = 0, so that we neglect surface tension (this will be true in our
case), then the second condition ensures that the normal stress is continuous. Finally,
in the time-dependent case we also suppose that we have suitable initial conditions.

To numerically solve the problem we apply a nonlinear iteration method to treat
the nonlinearity ρu·∇u in the momentum equation (1); in our exposition we consider
Picard iteration, though Newton iteration is possible too. In the time-dependent case
we suppose that implicit time integration is applied, for instance using the backward
Euler scheme. See, for example, [48] for further details in the case of single-phase
Navier–Stokes flow. The linearised equations that follow are known as the generalised
Oseen problem: given a divergence-free vector field w, find u and p such that

αρ

∆t
u+ ρw · ∇u+∇ p−∇ · (2µDu) = r in Ωi,(7)

∇ · u = 0 in Ωi, i = 1, 2,(8)

along with the boundary conditions (4)–(6). In Picard iteration the wind w is the
approximation of u from the previous iteration, or else zero in the starting iteration,
in which case the corresponding Stokes problem is to be solved. Here r collects
the forcing term ρf and all other known terms such as those arising from the time
integration. Solution of the linearised system (7)–(8) along with appropriate boundary
conditions is key to the overall efficiency of the computational modelling and is the
focus for our development of preconditioners.

To discretise in space we consider finite element methodology, nonetheless the
preconditioning techniques we will describe could equally be applied to alternative
discretisations such as the MAC scheme [25]. The details of the weak formulation
and finite element discretisation are known and are found in, for example, [23]; we
summarise the resulting finite element problem here. We assume appropriate, though
not necessarily inf–sup stable, finite element spaces for velocity and pressure given by

Vh ⊂ H1(Ω)2 and Qh ⊂
{
p ∈ L2(Ω) :

∫

Ω

p = 0

}
(9)

respectively. Then we wish to find uh ∈ Vh and ph ∈ Qh such that

α

∆t
m(uh,vh) + n(wh;uh,vh) + b(ph,vh) + a(uh,vh) = (r,vh),(10)

b(qh,uh) = c(ph, qh),(11)

for all vh ∈ Vh
0 and qh ∈ Qh. Here wh is the known previous iterate for uh as part of

the nonlinear iteration and Vh
0 is the finite element space with homogeneous essential

(Dirichlet) boundary conditions applied. Further, (·, ·) denotes the standard L2 inner
product while

m(u,v) =

∫

Ω

ρu · v, n(z;u,v) =

∫

Ω

ρ (z · ∇u) · v,(12)

a(u,v) =

∫

Ω

2µTr (DuDv) , b(p,u) = −
∫

Ω

p∇ · u,(13)

and c(·, ·) is a stabilisation term, needed for inf–sup unstable spaces, or else is zero.
Note that the trilinear form n(·; ·, ·) may additionally require some stabilisation in
the case of dominating advection, for instance by using a streamline-diffusion method
(see [48] for discussion in the single-phase case).
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To obtain a linear system we let
{
ϕj

}
be a set of velocity basis functions and

{ψj} be a set of pressure basis functions. Defining the matrices

M
(ρ)
i,j = m(ϕj ,ϕi), N

(ρ)
i,j = n(wh;ϕj ,ϕi),

A
(µ)
i,j = a(ϕj ,ϕi), Bi,j = b(ψi,ϕj), Ci,j = c(ψj , ψi),

(14)

then the generic form of the linear systems to be solved is
(

α
∆tM

(ρ) +N (ρ) +A(µ) BT

B −C

)(
u

p

)
=

(
f

g

)
.(15)

Here the right-hand side vectors f and g collect together the terms involving r and
known boundary terms. For clarity, we will use the notation of bracketed exponents
when we wish to explicitly illustrate the scaling by density and viscosity within the
matrices. The stabilisation matrix C will depend on the choice of finite elements used,
as such we defer precise details until discussing such choices in Subsection 4.2; note
that C might also incorporate some scaling, typically with the inverse of viscosity.

The block system (15) is of (generalised) saddle-point form for the coefficient
vectors u and p. For large problems, this system must be solved using iterative
methods, typically a Krylov subspace method. Since the presence of N (ρ) makes
the system nonsymmetric, a common choice of the Krylov method is GMRES [47];
this is what we shall use for our numerical results. The performance of an iterative
method depends on the conditioning of the linear system and thus preconditioners
are essential for efficient computation. The preconditioners we build on and develop
here are block preconditioners which show mesh-independent convergence and only
mild dependence on the Reynolds number. Before describing block preconditioning
techniques, we discuss related work in preconditioning of the Navier–Stokes equations
and similar problems in two-phase flow.

In addition to block preconditioners, a wide variety of preconditioners have been
proposed for saddle-point systems originating from incompressible flow and related
problems. These include domain decomposition methods (see [45]), however standard
approaches may not give robust and scalable results as detailed in [13]. Nonetheless, by
incorporating a multilevel approach along with aggressive coarsening based on graph
partitioning, as explored in [36], scalability is seen in the tests of [13]. Multigrid
techniques are often used for sub-problems in the solution process, however specialist
multigrid methods have been proposed for the full Navier–Stokes system going back
to Vanka, [54]. While the approach of Vanka uses a coupled smoother, more recently
uncoupled smoothers have been seen to offer advantages in efficiency; for example, a
method for the Stokes equations using a distributive Gauss–Seidel relaxation based
on the least-squares commutator is introduced in [55]. Another approach is to use
incomplete LU factorisation (ILU), a technique developed in the saddle-point ILU
(SILU) preconditioner of [52] and the ILU preconditioner for nonsymmetric saddle-
point matrices of [33]. Augmented Lagrangian techniques can also yield effective
methods for the Navier–Stokes equations, in particular see the modified augmented
Lagrangian preconditioners of [5].

In this work our focus is on block preconditioners, which have seen considerable
attention in recent years. Here, a matrix factorisation of the block system is utilised
and appropriate approximations of the factors are needed to devise preconditioners
which are efficient. The principal challenge is an effective approximation to the Schur
complement arising in the factorisation. A taxonomy of these approximate block
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factorisation (ABF) methods for incompressible Navier–Stokes flow is given in [16].
Though not originally envisaged within this framework, this includes SIMPLE-type
methods [53]. Other popular block preconditioners for Navier–Stokes flow are based
on approximate commutators, primarily these are the pressure convection–diffusion
(PCD) and least-squares commutator (LSC) preconditioners, which are discussed in
detail in [20]. Though most often described through an approximate commutation
relationship, the PCD approach was initially devised in [30] by considering Green’s
tensors. The PCD preconditioner requires a convection–diffusion operator projected
onto the discrete pressure space and this additional operator must be constructed.
In search of a more automatic approach, the LSC preconditioner described in [15],
but developed from [18], is based solely on algebraic considerations of minimising the
norm of the commutator in a least-squares sense. Both of these commutator-based
preconditioners show scalable results in the tests of [20] and [13].

The preconditioners we have described above are primarily considered in the case
of constant density and viscosity flows and, to the authors’ knowledge, little has been
explored for preconditioning variable density and viscosity Navier–Stokes problems.
Nonetheless, recently approaches based on augmented Lagrangian techniques [5] were
developed for variable viscosity in [26] and extended to incompressible non-Newtonian
flows in [27]; see also [2] for a simpler approach incorporating variable density in the
time-dependent case. In the case of variable coefficient problems, such as two-phase
flow, most work is devoted to the Stokes problem. Here a pressure mass matrix scaled
by the inverse of the viscosity is a good choice of Schur complement preconditioner
for the stationary problem, as shown in the case of two-phase flow in [43] and more
generally investigated for variable viscosity in [22]; see also [8, 38]. By considering an
abstract parameter dependent saddle-point system, this is extended to two-phase non-
stationary Stokes flow in [41] and can be seen as generalising the Cahouet–Chabard
preconditioner [9]. Similar block preconditioners are constructed for the variable
density and viscosity Stokes problem when using finite volumes in [10], and applied to
uniform staggered grids, showing promising results. This work brings together finite
element literature on solving the coupled velocity–pressure system making use of Schur
complements and applies such techniques within the finite volume setting, where the
dominant paradigm has been splitting or projection methods [24]. A variant of LSC
which takes into account viscosity contrast is given in [39] and used for their studies in
computational geodynamics. Another approach is the Schur method described in [51];
this paper also compares what is effectively the same LSC variant of [39] and labels
this LSCD, a name we shall adopt here too. While these methods hold potential to
be used for variable coefficient Navier–Stokes flow we have found no reference to such
application. We consider the adaptation of such block preconditioners to two-phase
Navier–Stokes flow, in particular the PCD as well as LSC approaches.

The outline for the remainder of this document is as follows. In Section 2 we
detail block preconditioning of the saddle-point system before outlining the PCD
approach for single-phase flow. Our main contribution is given in Section 3 where we
extend this preconditioner to two-phase flow. We also describe the LSC approach and
provide a simple extension that improves performance in the case of two-phase flow.
Numerical results for a simplified problem are given in Section 4 for the choice of
Q2–Q1, Q1–Q1, and Q2–P−1 elements. For this we use the software package IFISS
[49, 19] within MATLAB, which we have adapted to incorporate varying density and
viscosity. This allows us to describe dependence on the parameters in a controlled
manner; we will observe that the favourable properties of the preconditioners (without
boundary adjustments) are retained. In Section 5 we focus on our target application
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of a dam-break problem simulated within Proteus, a computational methods and
simulation toolkit (http://proteustoolkit.org). Since Proteus uses unstructured
meshes and P 1–P 1 elements, we first provide results for our simplified problem in
Proteus, verifying similar behaviour to our computations in IFISS, before moving to
consider the performance of PCD for the dam-break simulation. Finally, Section 6
draws together our conclusions.

2. Block preconditioning techniques. The saddle-point system (15) has a
coefficient matrix of the form

K =

(
F BT

B −C

)
,(16)

where F = A(µ)+N (ρ)+ α
∆tM

(ρ). A standard approach of [40, 29] for preconditioning,
based on a block LU -decomposition of K, is to right precondition using a matrix of
the block triangular form

P =

(
F̂ BT

0 −Ŝ

)
,(17)

where F̂ and Ŝ approximate F and the Schur complement S = BF−1BT +C, arising
in the decomposition, respectively. If the approximations were exact then only two
iterations would be required by the Krylov method [40]. However, F and, in particular,
S are impractical to work with. Since in application of the preconditioner (17) we

require the actions of F̂−1 and Ŝ−1, we seek approximations where these actions
are efficient yet remaining faithful to the operators they approximate. Typically for
incompressible fluid flow problems, the difficulty in using the preconditioner (17) is
in finding a good approximation to S; see, for instance, [20] for further details.

As noted in [30], for non-self-adjoint problems which yield nonsymmetric linear
systems such as (16), the development of preconditioners typically relies on heuristic
arguments since eigenvalues alone are not generally descriptive of the convergence
behaviour for nonsymmetric Krylov methods (though see [32, 37]). We will focus on
the approach of the pressure convection–diffusion (PCD) preconditioner [30, 48] for
approximating the Schur complement. This is comprehensively described in [20]; here
we briefly outline the key idea and provide the most basic form. In the remainder of
this section we suppose that the density and viscosity are everywhere constant (and
so ρ ≡ 1) so that we consider single-phase flow. However, to present these ideas in a
transparent way for extension to variable coefficient problems we retain the density
and viscosity scaling. Note that, due to our nondimensionalisation, µ here is identified
with the kinematic viscosity.

2.1. The pressure convection–diffusion preconditioner. The approach of
the PCD preconditioner is most often motivated by considering the commutator E
between the divergence operator and the convection–diffusion operator1

F = −µ∇ · ∇ + ρwh · ∇ .(18)

We suppose that we can have an analogous operator to F on the pressure space,
denoted Fp, so that

E = ∇ · F − Fp∇ · .(19)

1For a constant viscosity µ the viscous term, −∇·(2µD), reduces to the vector Laplacian using the
incompressibility constraint; this is the form most often written for exposition of the PCD approach.
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Though Fp is in general not rigorously defined, we suppose the commutator is small
in some sense. It is noted in [20] that E would be zero if wh were a constant and the
operators were defined on an unbounded domain. The idea is then to use a discrete
version of E and within it to isolate the Schur complement S. Upon equating the
discrete commutator to be zero we obtain an approximation to S in terms of finite
element matrices. When time-stepping, we can define F to also include the term αρ

∆t
from (7). Since this additional term is a scaling of the identity operator it cancels in
the commutator. Thus the same approach can be applied in the time-dependent case.

For the discrete commutator, to correctly scale the discrete operators we require
the finite element mass matrices on the pressure and velocity spaces given by

Mp;i,j =

∫

Ω

ψj · ψi, Mi,j =

∫

Ω

ϕj ·ϕi.(20)

The discrete commutator is then

Eh =
(
M−1

p B
) (
M−1F

)
−
(
M−1

p Fp

) (
M−1

p B
)
,(21)

where Fp represents the discrete form of Fp. On equating Eh to be zero this can be
rearranged, after post-multiplication by F−1BT , to give the approximation

BF−1BT ≈MpF
−1
p BM−1BT .(22)

For simplicity we will now assume that the pressure approximation is continuous,
though extensions can be made to discontinuous pressure approximation [20]. We
will provide results in Section 4 for Q2–P−1 elements, a pairing with discontinuous
pressure. In the continuous case we can define Fp as

Fp;i,j =

∫

Ω

µ∇ψj · ∇ψi +

∫

Ω

ρ (wh · ∇ψj) · ψi +
α

∆t

∫

Ω

ρψj · ψi.(23)

These terms can be written as Fp = A
(µ)
p + N

(ρ)
p + α

∆tM
(ρ)
p respectively. Finally,

the scaled Laplacian term BM−1BT is replaced by the sparse pressure Laplacian Ap

where

Ap;i,j =

∫

Ω

∇ψj · ∇ψi.(24)

This yields the PCD approximation to the inverse Schur complement

Ŝ−1 = A−1
p FpM

−1
p ,(25)

using the matrices defined in (24), (23), and (20) respectively. The choice (25) for Ŝ−1

is also applicable when a stabilisation matrix C 6= 0 is necessary [20, Section 9.2.1].
Key features of (25) are that we need only multiply by Fp and do not have to invert
such a matrix, nevertheless the non-normality of the problem is included within the
preconditioner through Fp. For a practical implementation, multigrid methods can be
used to effect the action of A−1

p and Mp can be replaced by the spectrally equivalent
matrix diag(Mp) and thus easily inverted [56]. Alternatively, the action of M−1

p on a
vector is well approximated using Chebyshev semi-iteration with only a small number
of iterations required [57].

We remark that the commutator can also be taken with the gradient instead of
the divergence, as originally done in [48]. The effect of this is that the ordering of

the operators in (25), our approximate inverse Schur complement Ŝ−1, is reversed. It
was seen when considering boundary conditions that the choice of the divergence was
favourable; see [20, Remark 9.3].
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2.2. The relation of PCD with the Cahouet–Chabard preconditioner.

We conclude this section by noting a relation between the PCD preconditioner (25)
and the Cahouet–Chabard preconditioner [9] for the generalised Stokes problem; this
will provide a useful viewpoint on how a two-phase PCD preconditioner should behave.

In Stokes flow the convective term is omitted so that in (16) for single-phase flow
F = µA+ 1

∆tM , where A is the discrete velocity Laplacian and M is the velocity
mass matrix (since ρ ≡ 1). Cahouet and Chabard show that the appropriate Schur
complement which balances these two terms is

Ŝ−1 = µM−1
p +

1

∆t
A−1

p ,(26)

where Ap is a discrete pressure Laplacian operator, for instance given by (24) for
continuous pressure approximation.

Now consider the PCD preconditioner in this case. Since the convective term is
not present we have Fp = µAp+

1
∆tMp and thus the Schur complement approximation

Ŝ−1 = A−1
p FpM

−1
p = A−1

p

(
µAp +

1

∆t
Mp

)
M−1

p = µM−1
p +

1

∆t
A−1

p .(27)

Hence we see that the PCD preconditioner precisely reduces to the Cahouet–Chabard
preconditioner in the case of generalised Stokes flow. This provides the viewpoint
that PCD extends the Cahouet–Chabard preconditioner to the case of Navier–Stokes
flow.

3. Preconditioners for two-phase flow. We now move to the focus of our
work, namely preconditioning for two-phase flow. The primary new feature in the
problem is the variable density and viscosity which gives additional scaling in the
equations. The key to adapting the preconditioners detailed in Section 2 will be to
incorporate this scaling appropriately into their formulation.

3.1. Two-phase pressure convection–diffusion preconditioning. On its
first introduction, the PCD preconditioner for steady flow was derived using Fourier
techniques and Green’s tensors [30]. Due to the variable coefficient nature of two-
phase flow, this approach cannot apply here. However, in the original approach, in
order that the preconditioner defaults to the optimal choice in the Stokes limit when
the convective term tends to zero, a mass matrix is included to give the correct scaling.
The same philosophy applies here.

Before addressing the appropriate choice in the Stokes case, we must be clear on
the form of the viscous term used. In the literature different forms are considered,
including −∇ · (µ∇u) in [43], −∇ · (µDu) in [22, 41], and −∇ · (2µDu) in [23, 10].
The overall scaling of the latter term contains an additional factor of two compared
with the former choices, as such an appropriate Schur complement approximation for
the Stokes problem differs by a factor of a half. The distinction between different
forms of the viscous term used (including incorporating bulk viscosity) and the effect
on the Schur complement is discussed further in [10]. Since we use the latter choice
above, we present results for this case, including a factor of two where appropriate as
compared with the cited references.

For two-phase flow, the appropriate pressure mass matrix arising in the Stokes
case is given in [43] and scales inversely with the viscosity as

M
(1/µ)
p;i,j =

∫

Ω

(2µ)−1ψj · ψi.(28)
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This mass matrix is also suitable for general variable viscosity Stokes flows [22].
Looking at the construction of the PCD preconditioner in Subsection 2.1, Fp is

given as in (23), but now with the density and viscosity being piecewise constant. If
we assume that PCD still takes the form in (25) but with additional scaling, then,
so that the viscosity scaling within the Schur complement is commensurate, when we

use the scaled mass matrix M
(1/µ)
p we require the pressure Laplacian-type term

A
(µ)
p;i,j =

∫

Ω

µ∇ψj · ∇ψi.(29)

Note this is already constructed as part of Fp just as in the single-phase case since for

constant viscosity A
(µ)
p = µAp. These choices give a Schur complement approximation

Ŝ−1 =
(
A(µ)

p

)−1

Fp

(
M (1/µ)

p

)−1

.(30)

However, from our numerical experience, it is apparent that the performance of this
preconditioner depends poorly on the density ratio of the two fluids. In particular, (30)
does not work so well in the time-dependent case. To understand this we go back to
the relationship with the Cahouet–Chabard preconditioner detailed in Subsection 2.2.

By considering an abstract parameter dependent saddle-point system, the authors
of [41] derive a preconditioner for two-phase time-dependent Stokes flow which can be
seen as generalising the Cahouet–Chabard preconditioner. This preconditioner uses
an approximation to the Schur complement given by

Ŝ−1 =
(
M (1/µ)

p

)−1

+
1

∆t

(
A(1/ρ)

p

)−1

,(31)

where the pressure Laplacian-type term is now inversely proportional to the density,

A
(1/ρ)
p;i,j =

∫

Ω

ρ−1∇ψj · ∇ψi.(32)

The new feature here is the dependence on the density ρ. This can be understood
heuristically by considering the single-phase case as follows. Firstly, we note that the
viscosity µ in (26) is in fact identified with the kinematic viscosity. In our case, where
µ is the dynamic viscosity, the inverse Schur complement is multiplied by the density
(in addition to there being a factor of two arising from the choice of viscous term)
and so the approximation should read

Ŝ−1 = 2µM−1
p +

ρ

∆t
A−1

p =
(
(2µ)−1Mp

)−1
+

1

∆t

(
ρ−1Ap

)−1
.(33)

In the two-phase case, the scaling with density and viscosity must be incorporated
within the integral definition of the matrices and so we obtain (31). An inverse Schur
complement approximation very similar to (31), appropriate for finite volume Stokes
solvers, is given in [10]. Here the MAC discretisation on staggered grids is employed.
The primary difference is that for finite volumes a diagonal matrix of viscosities at
each pressure degree of freedom can be used for the viscous term, whereas in the finite
element setting a mass matrix is appropriate.

It is now clear, from the viewpoint of the relation between PCD and the Cahouet–
Chabard preconditioner, that the approximation (30) does not default to the correct
choice of the preconditioner (31) in the time-dependent Stokes case. To give a more
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robust generalisation of PCD to two-phase flow with appropriate scaling we must split
the matrix Fp and treat the separate terms accordingly.

The matrix Fp in the two-phase case consists of the three parts

Fp = A(µ)
p +N (ρ)

p +
α

∆t
M (ρ)

p .(34)

To treat the viscous part A
(µ)
p of Fp we use the scaling from (28) and (29) but to treat

the remaining part, depending on the density, we scale using the mass matrix

M
(ρ)
p;i,j =

∫

Ω

ρψj · ψi(35)

and use the density scaled Laplacian-type term (32). This yields the approximation

Ŝ−1 =
(
M (1/µ)

p

)−1

+
(
A(1/ρ)

p

)−1 (
N (ρ)

p +
α

∆t
M (ρ)

p

)(
M (ρ)

p

)−1

.(36)

In practice however, we have found it beneficial to further cancel the scaling with the
density ρ in the final two bracketed terms of (36) to give two-phase PCD as

Ŝ−1 =
(
M (1/µ)

p

)−1

+
(
A(1/ρ)

p

)−1 (
N (1)

p +
α

∆t
M (1)

p

)(
M (1)

p

)−1

.(37)

Here the bracketed exponent is given as 1 to be clear that these are unscaled terms
whose definition does not include ρ. Namely we have

N
(1)
p;i,j =

∫

Ω

(wh · ∇ψj) · ψi,(38)

while M
(1)
p is the standard mass matrix. While this gives a different approximation,

the overall scaling of the two separate terms in the sum remain the same and, although

it is feasible to cancel the density as in (37), it remains important that A
(1/ρ)
p keeps

the correct scaling. Further, note thatM
(1)
p remains the same at each time-step while

M
(ρ)
p would change due to the moving phases and so would need recomputing. From

the arguments presented here, it is not clear that (37) should be preferable to (36),
however, we are actively investigating this further.

As with single-phase PCD, in the two-phase PCD approximation of (37) only one

pressure Laplacian-type solve is needed, this is because the appearance of A
(µ)
p cancels

out. We note that in the time-dependent Stokes case, when N
(1)
p is zero, we have

Ŝ−1 =
(
M (1/µ)

p

)−1

+
(
A(1/ρ)

p

)−1
(

1

∆t
M (1)

p

)(
M (1)

p

)−1

=
(
M (1/µ)

p

)−1

+
1

∆t

(
A(1/ρ)

p

)−1

,

(39)

and so we return to the generalised Cahouet–Chabard preconditioner (31). Further,
despite the new form of the preconditioner (37), it is a generalisation of the original
PCD preconditioner (25) since for everywhere constant viscosity µ and density ρ ≡ 1
(and thus using the Laplacian for the viscous term, removing the factor two in (28))

Ŝ−1 =
(
µ−1Mp

)−1
+A−1

p

(
Np +

α

∆t
Mp

)
M−1

p

= A−1
p

(
µAp

)
M−1

p +A−1
p

(
Np +

α

∆t
Mp

)
M−1

p

= A−1
p FpM

−1
p .

(40)
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We remark that the generalisation of PCD to two-phase flow in (37) cannot be
written in the form of the original PCD in (25) with scaling in Ap and Mp. The
scaling here comes from the mass matrices on the velocity and pressure space which
depend on the corresponding norms (see [41] for the choice of norms in the generalised
Stokes case). If simple scaled norms are used in the mass matrix scaling of the
terms in the discrete commutator (21), one for the pressure space and one for the
velocity space, then it is not possible to construct a preconditioner which defaults
to the appropriate generalised Cahouet–Chabard preconditioner. We are currently
exploring whether commutator-based approaches might still be extensible to derive
an appropriate two-phase preconditioner. Nonetheless, it appears that such a form as
(25) is a simplification which can only be made for an everywhere constant density
and viscosity flow.

While we have considered discretisation with finite elements, we envisage that the
approach can also be utilised with finite volumes or finite differences. For instance,
using the MAC discretisation [25] and building on the work in [10]. The primary
requirement is an appropriate discretisation of the pressure space convection term.

Finally, we note that the features of PCD described in Subsection 2.1 are retained
in that we do not have to invert a pressure space convection–diffusion operator and
only one discrete Laplacian-type sub-problem must be solved in applying (37). In
practice, each mass matrix can be replaced by a diagonal approximation or Chebyshev
semi-iteration can be used to approximate the inverse action of each mass matrix on a
vector. Multigrid methods are again applicable for the solution of the scaled pressure
Laplacian-type sub-problem.

Before moving on to discuss our numerical results, we first briefly detail another
commutator-based preconditioner often considered alongside PCD: the least-squares
commutator (LSC) method.

3.2. The least-squares commutator preconditioner. While still using the
commutator (19), the LSC preconditioner uses a purely algebraic approach to defining
Fp by choosing it so that the discrete commutator (21) is small in a least-squares sense.
It turns out that it is more convenient to consider the adjoint of the commutator and
choose Fp by minimising each individual vector norm of the columns of FT

p ; for further
details see [20]. This yields the weighted least-squares problem

min
∥∥∥
[
M−1FTM−1BT

]
j
−M−1BTM−1

p

[
FT
p

]
j

∥∥∥
M
,(41)

for each column j. Using the normal equations, Fp can be given as

Fp =
(
BM−1FM−1BT

) (
BM−1BT

)−1
Mp,(42)

and hence, substituting this expression into (22), we arrive at the Schur complement
approximation

BF−1BT ≈
(
BM−1BT

) (
BM−1FM−1BT

)−1 (
BM−1BT

)
.(43)

In practice we replace M with its diagonal T = diag(M), and so construct the sparse
scaled Laplacian BT−1BT . The LSC inverse Schur complement approximation then
takes the form

Ŝ−1 =
(
BT−1BT

)−1 (
BT−1FT−1BT

) (
BT−1BT

)−1
.(44)
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This approximation is not immediately applicable to stabilised elements where C 6= 0,
however appropriate modifications can be made in such an instance [17]. As with the
PCD method, the action of the inverse of the discrete Laplacian term can be effectively
applied using multigrid methods, however, note that we now need to solve two discrete
Laplacian sub-problems in the application of Ŝ−1. Multiplication by F captures the
non-normality of the problem within the action of Ŝ−1.

While the LSC approach is purely algebraic, incorporating boundary adjustments
is important in order to obtain scalable performance for enclosed flow problems such
as those we consider; see [20]. We do not pursue this topic here as we focus on the
key aspects of generalising the original preconditioners to be more effective in the case
of two-phase flow. Since we expect poorer scalability from LSC in this situation, for
brevity we choose to forgo discussion on the stabilisation terms required when using
inf–sup unstable elements, which follow in a straightforward manner from [17], and
we will omit the LSC approach when discussing our target dam-break simulation.

The scaling within LSC is known to be an important factor. In [18], a precursor
to LSC is derived which has the same form as (44) except that the scaling matrix T
is not present. That so-called BFBt method was seen to have poorer performance
than the later LSC method [15]. In general, the choice of scaling is essential for the
efficiency of such a preconditioner. In an effort to use a scaling which incorporates
changes in viscosity for the Stokes problem, [39] use the form

Ŝ−1 =
(
BD−1BT

)−1 (
BD−1FD−1BT

) (
BD−1BT

)−1
,(45)

where Di,i = maxj |Fi,j | is a diagonal scaling matrix. In [51] the authors consider
D = diag(F ), which in practice is essentially the same scaling, and label this method
LSCD. Our experience shows that, for the Navier–Stokes case, this preconditioner
does not scale well with the problem size, with it exhibiting a poor h-dependence.
To improve performance over both LSCD and the original (single-phase) approach we
consider a scaled mass matrix coming from a viscosity weighted least-squares problem.

The choice of norms on the velocity and pressure spaces determines the form of
the mass matrices used in the discrete commutator (21) and weighted least-squares
problem (41). However, the resulting LSC approximation is independent of the norm
on the pressure space. In view of this, we introduce the viscosity scaled norm on the
velocity space and the corresponding velocity mass matrix

‖u‖2µ =

∫

Ω

µu · u, M
(µ)
i,j =

∫

Ω

µϕj ·ϕi,(46)

and keep the standard L2 norm on the pressure space. Then the construction of the
discrete commutator and weighed least-squares problem is the same as in (21) and
(41), except with M replaced by M (µ); as such we omit the details here. Letting
T (µ) = diag(M (µ)), the resulting two-phase LSC Schur complement approximation is

Ŝ−1 =
(
BT (µ)−1

BT
)−1 (

BT (µ)−1
FT (µ)−1

BT
)(

BT (µ)−1
BT
)−1

.(47)

Unlike with PCD, it is not necessary to split the convection–diffusion term and scale
differently. Our experience is that such a splitting of F does not gain any improvement
in the preconditioner. We note that when the viscosity µ is everywhere constant this
can be factored out and cancelled to give the original form (44). As with the original
LSC preconditioner, (47) requires the solution of two scaled discrete Laplacian-type
sub-problems which, in practice, can be achieved using multigrid techniques.
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Unlike the PCD method, the LSC approach does not simplify to the Cahouet–
Chabard preconditioner in the Stokes case and so we cannot use this viewpoint to
guide our choice of scaling. We will see that our choice of viscosity scaling in (47)
can significantly improve the robustness of the LSC approach to contrasts in the
material parameters, however, it remains unclear whether this choice is optimal. We
are currently investigating the importance of such scaling and the impact of boundary
adjustments when LSC-type methods are applied to two-phase flow problems.

3.3. A comparison of PCD and LSC. Detailed comparisons between the
original PCD and LSC preconditioners are given in [44] and [20]. Our two-phase
strategies compare similarly. To summarise the key differences: PCD requires the
construction of additional matrices on the pressure space while LSC requires only
matrices which are readily available; this means that the LSC method directly applies
when discontinuous pressure approximation is used while the formulation of PCD is
further complicated. On the other hand, PCD naturally extends to stabilised elements
while LSC does not immediately apply; here, stabilisation terms are required [17].
Further, only one solution of a discrete Laplacian-type sub-problem is needed by PCD
while LSC requires two. We also note that we have not considered boundary conditions
for Ap and Fp (or Np) within PCD. A more in depth look at the commutator can shed
light on this area but is beyond the scope of this work; see [20]. Such considerations
do not explicitly arise for the LSC preconditioner but can nonetheless be important.

In the single-phase case, mesh-independent convergence rates have been observed
for both preconditioners. Eigenvalue bounds can be found in [44] and while for PCD
they are h-independent, for LSC the known bounds depend on h. Norm-equivalence
of the PCD preconditioner is shown in [37] and, further, rigorous GMRES convergence
bounds based on the field of values are given for a mass matrix Schur complement
approximation; see also bounds in [4]. These field of values bounds are h-independent.
For PCD and LSC, all known bounds depend on the Reynolds number. Numerical
experiments in [20] show iteration counts for both methods that are mildly dependent
on Re. Our results in the next section will demonstrate that the favourable properties
of these preconditioners for the single-phase case are retained in the two-phase case.

4. Numerical results for a simplified problem. In this section we present
results exhibiting the behaviour of our new preconditioners for a benchmark 2D test
problem, that of lid driven cavity flow. We suppose Ω = (−1, 1)2 with Ω2 = (− 1

2 ,
1
2 )

2,

and thus Ω1 = Ω \ Ω2, and consider a regularised cavity with the prescribed flow

u =

(
1− x4

0

)
for y = 1, −1 ≤ x ≤ 1,(48)

along the lid while no flow boundary conditions are imposed on the remaining three
edges. Note that this configuration of fluids is similar to that in the SINKER problem
used in [39, 51]. We suppose that no external body forces are acting and neglect surface
tension. In the governing linearised equations of (7)–(8) we suppose for simplicity that
r = 0 so that in the time-dependent case we start from an initially non-moving flow.
Further, we solve the Stokes problem (with w = 0) using the generalised Cahouet–
Chabard preconditioner (31) to provide the initial guess for the Picard iteration.

The computations are implemented within MATLAB using the software package
IFISS [49, 19], which we have adapted to incorporate spatially varying density and
viscosity, though note there is no capability to update the phases in time. As such we
consider solving for a single time-step or else the more challenging case of a steady
problem. Results for a fully dynamic two-phase problem are presented in Section 5.
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Numerical results provided in this section tabulate the number of iterations that
GMRES requires for solving the linear system (15) to a given tolerance. The GMRES
Krylov method is used (without restarting) with the preconditioner (17) in which the
inverse Schur complement approximations of two-phase PCD (37) and two-phase LSC
(47) are used. We present average GMRES iteration counts over the course of the
Picard iteration, omitting the initial Stokes solve. Since our focus is on the quality
of the Schur complement approximation, we suppose that the approximation of F is
exact, that is F̂−1 = F−1 as given by a direct solver (‘backslash’ in MATLAB).

4.1. Convergence and termination. To measure the convergence we look at
the residual vector for the linear system given in (15) to solve for the k + 1th Picard
iterate. The linear residual is

r(ℓ) =

(
α
∆tM

(ρ) +N (ρ)(w
(k)
h ) +A(µ) BT

B 0

)(
u(ℓ)

p(ℓ)

)
−
(

f

g

)
,(49)

where u(ℓ) and p(ℓ) are the approximate solutions to the system after ℓ iterations

of preconditioned GMRES. The notation of N (ρ)(w
(k)
h ) is used here to recall that

the convective part depends on the solution w
(k)
h of the previous Picard iteration.

Denoting the discrete velocity and pressure vectors of the kth Picard iterate by w(k)

and q(k) respectively, we also define the nonlinear residual as

s(k) =

(
α
∆tM

(ρ) +N (ρ)(w
(k)
h ) +A(µ) BT

B 0

)(
w(k)

q(k)

)
−
(

f

g

)
.(50)

After the kth Picard iteration, we terminate the GMRES iteration for solving the
linearised system given in (15) to give the k + 1th Picard iterate once the relative
residual norm decreases below a prescribed tolerance ε, that is we terminate once

‖r(ℓ)‖2 ≤ ε‖s(k)‖2.(51)

For each inner application of GMRES we use an initial guess of the past solution
u(0) = w(k), p(0) = q(k) and use a tolerance of ε = 10−6 for termination. This
method of tracking the convergence is the default used by IFISS. The Picard iteration
is terminated upon a relative reduction of 10−5 for the nonlinear residual, as in [20].
Further, at each Picard iteration, the implementation is such that the linear system
is solved for a correction to the current iterate (see [20, Section 8.3]).

4.2. Choice of mixed finite elements. For our computations we consider
three choices of mixed finite element pairings. In each case, we will utilise a regular
grid of square elements having side length h, thus 4h−2 elements in total. First, we
use the inf–sup stable pairing of Q2–Q1 elements. In this case no stabilisation is
needed (C = 0) and since the pressure approximation is continuous we use (32) and
(38) in the formulation of two-phase PCD.

Secondly, we employ equal order Q1–Q1 elements. The pressure space remains
the same but now stabilisation is required and we follow the approach developed in
[14]. As noted in [17], the lack of stability of Q1–Q1 approximation stems from the
mismatch between the discrete divergence of the velocity field and the discrete pressure
space Q1. The approach of [14] is to project the pressure into the appropriate space.
This requires the L2 projection from the pressure space into P 0, which we denote by
Π0. It is defined locally on each element � through a local averaging

Π0ph|� =
1

|�|

∫

�

ph for all � ∈ Th,(52)
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where Th is the set of Q1 elements used and |�| denotes the area of element �. For the
Navier–Stokes problem, to ensure commensurate scaling, the resulting stabilisation
matrix is scaled by the inverse of viscosity, as in [17]. With variable viscosity the
appropriate stabilisation term is then given by

c(ph, qh) =
∑

�∈Th

∫

�

µ−1(ph −Π0ph)|�(qh −Π0qh)|�.(53)

from which the associated stabilisation matrix C in (15) can be constructed. This
matrix can be assembled from element contributions in the standard manner.

Finally, we consider a finite element pairing which uses discontinuous pressure
approximation. For this we choose Q2–P−1 elements, which are naturally inf–sup
stable and conserve mass elementwise. Two-phase PCD requires the construction of

both a Laplacian-type matrix A
(1/ρ)
p and a convection matrix N

(1)
p on the pressure

space but now definitions (32) and (38) no longer apply. To construct appropriate
operators when the pressure is discontinuous across elements, we do so locally on
elements and utilise edge contributions. The construction is more involved with the
main ideas being detailed in [20, Section 9.2.1] and a proof of concept implementation
being found within IFISS [49]. As such, we do not provide a full description here but
note that the only difference in our case is the inverse density scaling within the term

A
(1/ρ)
p . For this we have found it beneficial to take an arithmetic average of the two

density values in the edge contributions when density differs across an element edge.
Hence, for the pressure degree of freedom p0 at the centroid of a square element �,

the corresponding approximation to the Laplacian-type term A
(1/ρ)
p is given by (cf.

[20, equations (9.29)–(9.30)])

∇ ·
(
ρ−1∇ p

)
|� ≈ 1

h

(
2

ρ+x + ρ0

p+x − p0
h

− 2

ρ0 + ρ−x

p0 − p−x

h

)

+
1

h

(
2

ρ+y + ρ0

p+y − p0
h

− 2

ρ0 + ρ−y

p0 − p−y

h

)
,

(54)

where the subscripts denote values from the neighbouring elements: for example, p+x

refers to the pressure degree of freedom at the centroid of the neighbouring element
in the positive x direction while ρ+x refers to the density in this element. Here, we
have assumed for simplicity that the interface lies along edges of the elements used.

4.3. Preconditioner performance results. We first note that the numerical
experiments presented in this section have also been conducted using ideal variants
of the preconditioners, that is using direct solvers for any Laplacian-type and mass
matrix sub-problems. However, since the resulting iteration counts are very similar,
differing by at most a small number of iterations, we omit them here and justify
the following choices. When requiring the action of Ŝ−1, the solution of the scaled
Laplacian-type sub-problems are given approximately using one algebraic multigrid
(AMG) V-cycle using a Ruge and Stüben implementation, specifically the HSL MI20

code [6] built into IFISS. For the PCD method (37), the scaled mass matrix solutions
are approximated using three steps of Chebyshev semi-iteration [57]. We present the
majority of our results using Q2–Q1 elements to demonstrate the behaviour of the
preconditioners over differing parameters. We only consider this discretisation for two-
phase LSC as additional stabilisation is required when using Q1–Q1 elements and,
further, we note that qualitatively similar results were found for Q2–P−1 elements
and thus these results are omitted for brevity.
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Table 1

Preconditioned GMRES iterations using two-phase PCD (37) / two-phase LSC (47) for the
Q2–Q1 solution to the steady lid driven cavity problem with Re = 100, h = 1/128, and varying
density ratio ρ̂ = ρ2/ρ1 and viscosity ratio µ̂ = µ2/µ1. Values marked “⋆” are omitted since here
the dominating Reynolds number changes, being associated with the second phase.

µ̂
ρ̂

10−3 10−2 10−1 1 10 100 1000

10−3 30 / 59 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

10−2 29 / 58 30 / 58 ⋆ ⋆ ⋆ ⋆ ⋆

10−1 24 / 54 24 / 54 25 / 54 ⋆ ⋆ ⋆ ⋆

1 19 / 38 19 / 38 19 / 38 20 / 40 ⋆ ⋆ ⋆

10 24 / 44 24 / 44 24 / 44 24 / 44 27 / 44 ⋆ ⋆

100 26 / 38 26 / 38 26 / 38 27 / 38 27 / 38 29 / 37 ⋆

1000 26 / 36 26 / 36 26 / 36 27 / 36 27 / 36 27 / 34 28 / 33

Table 2

Preconditioned GMRES iterations using original (single-phase) PCD (25) / LSC (44) for the
Q2–Q1 solution to the steady lid driven cavity problem with Re = 100, h = 1/128, and varying
density ratio ρ̂ = ρ2/ρ1 and viscosity ratio µ̂ = µ2/µ1. Values marked “⋆” are omitted since here
the dominating Reynolds number changes, being associated with the second phase.

µ̂
ρ̂

10−3 10−2 10−1 1 10 100 1000

10−3 173 / 261 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

10−2 104 / 74 101 / 74 ⋆ ⋆ ⋆ ⋆ ⋆

10−1 46 / 38 46 / 38 45 / 38 ⋆ ⋆ ⋆ ⋆

1 29 / 37 29 / 37 29 / 37 30 / 39 ⋆ ⋆ ⋆

10 36 / 36 36 / 36 36 / 36 36 / 36 43 / 36 ⋆ ⋆

100 76 / 81 76 / 81 76 / 81 76 / 81 76 / 80 88 / 71 ⋆

1000 125 / 320 125 / 320 125 / 320 125 / 320 123 / 322 120 / 310 140 / 296

To start, we consider steady flow (α = 0) and show how the performance of each
preconditioner depends on density and viscosity. Table 1 displays results for two-phase
PCD / two-phase LSC for a variety of density ratios ρ̂ = ρ2/ρ1 and viscosity ratios
µ̂ = µ2/µ1 with given Reynolds number Re = 100 and grid size h = 1/128. Note that
we omit values marked “⋆” since here the dominating Reynolds number changes —
dependence on Re is given in Table 4. We see that, while there is some variation with
the density and, in particular, viscosity ratios, the performance is fairly robust across
the range of ratios tested. This is not true of the original PCD or LSC preconditioners
for this problem; these methods give performance which depends significantly on the
density and viscosity ratios, and poor mesh-dependence away from ratios close to
unity. Equivalent values to those in Table 1 reach into several hundreds of iterations
for the original methods, as exhibited in Table 2. We remark that the discrepancy
between the two-phase PCD and original PCD method for the case of ρ̂ = 1 and
µ̂ = 1 is due to the additional factor of two present in the two-phase PCD method,
stemming from the choice of viscous term used, as discussed in Subsection 3.1.
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Table 3

The total number of degrees of freedom (DOFs) in the lid driven cavity problem for the differing
grid sizes h and choice of mixed finite elements. For Q2–Q1 elements this is given by the formula
2(4h−1−1)2+(2h−1+1)2. For Q2–P−1 elements it is given by 2(4h−1−1)2+3(2h−1)2 while for
Q1–Q1 elements it is 2(2h−1 − 1)2 + (2h−1 + 1)2. Note that in each row of the table the number
of velocity degrees of freedom is the same.

h Q2–Q1 Q2–P−1 h Q1–Q1

1

16
9,027 11,010 1

32
12,163

1

32
36,483 44,546 1

64
48,899

1

64
146,691 179,202 1

128
196,099

1

128
588,291 718,850 1

256
785,411

1

256
2,356,227 2,879,490 1

512
3,143,683

We note here that some variation is also seen in the results for the generalised
Cahouet–Chabard preconditioner in [41]; in particular, for large ratios in opposite
directions for density and viscosity the method becomes much less efficient. Results
provided in [26], for an augmented Lagrangian approach to solve the Navier–Stokes
equations with variable viscosity, also depend on the viscosity through the minimum
and maximum values taken in the domain.

Before continuing to give results for varying grid sizes we detail the scope of the
overall problem sizes that we use for the comparisons in this work. For each choice
of mixed finite elements we consider a sequence of five grids. The total number of
degrees of freedom (unknowns in the problem) for each linear system solve are given in
Table 3, including a one-dimensional null space related to a constant pressure mode,
thus our constraint on the pressure in (9) to specify it uniquely. We note that on the
finest grids the number of degrees of freedom reaches into several million unknowns.

The dependence of the iteration counts on Reynolds number and grid size is given
in Table 4 for the example of ρ̂ = 1.2 × 10−3 and µ̂ = 1.8 × 10−2, corresponding to
ratios in an air–water system. As for the original PCD and LSC preconditioners,
there is a mild dependence on Re, with higher Reynolds number flows requiring more
iterations. These results are comparable with [20, Table 9.5], where the grid sizes used
in Table 4 correspond to grid parameters l = 6, . . . , 10 of [20]. (Note that in [20] “old”
refers to the original preconditioners without adjustments for boundary conditions, a
topic not pursued here as we choose to focus on the key aspects of generalising PCD
and LSC to two-phase flow. Further, the operators in PCD act in reverse order; see
[20, Remark 9.3].) Our results for two-phase PCD display nearly mesh-independent
behaviour akin to the original method applied to a single fluid, with only a very small
increase in iterations required for finer grids. For the highest Reynolds number flows,
we note a slight jump in iterations required for the finest grid and this is attributed
to the fact that new features of these flows are resolved using this grid; this will also
be seen in further results. Two-phase LSC shows more dependence on h but the
increase per refinement is not too great and again performance is similar to that of
the original method (without boundary adjustments) applied to single-phase flow. We
remark that the trends shown in Table 4 are also seen for other choices of density and
viscosity ratios. We further note that when a larger number of iterations is required,
such as with high Reynolds number flows, the variation seen in iteration counts for
different density and viscosity ratios also increases relatively, as might be expected.
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Table 4

Preconditioned GMRES iterations using two-phase PCD (37) / two-phase LSC (47) / LSCD

(45) for the Q2–Q1 solution to the steady lid driven cavity problem with density ratio ρ̂ = 1.2×10−3,
viscosity ratio µ̂ = 1.8× 10−2 (air–water values), and varying Reynolds number Re and grid size h.

h
Re

10 101.5 100 102.5 1000

1

16
17 / 15 / 28 20 / 19 / 30 24 / 23 / 32 28 / 27 / 37 37 / 37 / 51

1

32
19 / 18 / 54 21 / 20 / 57 25 / 28 / 63 29 / 34 / 73 35 / 30 / 89

1

64
19 / 24 / 91 22 / 26 / 95 27 / 41 / 103 32 / 33 / 117 36 / 46 / 148

1

128
20 / 48 / 145 23 / 51 / 154 28 / 56 / 166 33 / 62 / 192 38 / 67 / 244

1

256
20 / 69 / 243 24 / 71 / 250 29 / 81 / 267 36 / 91 / 308 44 / 99 / 396

Table 5

Preconditioned GMRES iterations using two-phase PCD (37) for the Q1–Q1 and Q2–P−1

solution to the steady lid driven cavity problem with density ratio ρ̂ = 1.2 × 10−3, viscosity ratio
µ̂ = 1.8× 10−2 (air–water values), and varying Reynolds number Re and grid size h.

(a) Q1–Q1 elements

h
Re

10 101.5 100 102.5 1000

1

32
16 18 22 27 44

1

64
16 19 24 29 34

1

128
17 20 25 30 35

1

256
17 20 25 32 37

1

512
17 20 26 33 43

(b) Q2–P−1 elements

h
Re

10 101.5 100 102.5 1000

1

16
17 21 27 38 73

1

32
18 21 27 34 55

1

64
18 21 27 35 40

1

128
18 21 27 34 42

1

256
18 21 27 36 49

Wemention here that our experience with the LSC variant known as LSCD [39, 51]
shows a significant dependence on the grid size h. This is demonstrated in Table 4,
which allows a direct comparison between LSCD and our two-phase LSC approach. In
particular, on the finest grid, LSCD requires more than triple the number of iterations
required by our two-phase LSC approach. On finer meshes we expect this difference
only to increase due to the poor scalability of LSCD. We also note here that, while
our two-phase PCD and, to a much lesser extent, LSC preconditioners show nearly
mesh-independent behaviour, it may be that boundary adjustments must be made to
achieve full mesh-independence, as is necessary for the original preconditioners [20].

Before moving to unsteady flow, we provide analogous results for two-phase PCD
when utilising our other choices of finite element pairings. Table 5 provides results for
both (stabilised) Q1–Q1 elements and Q2–P−1 elements. We see similar behaviour
with respect to mesh refinement and Reynolds number as with Q2–Q1 (similar trends
are also found in other studies not shown). The performance of two-phase PCD for
Q2–P−1 is particularly notable for being mesh-independent, aside from the large
Reynolds number cases. We note that, in such large Reynolds number cases, the
iteration counts initially decrease; this is attributed to the fact that on coarse meshes
the flow is not well resolved or captured by the discrete operators used.
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Table 6

Preconditioned GMRES iterations using two-phase PCD (37) / two-phase LSC (47) for the
Q2–Q1 solution to the lid driven cavity problem with density ratio ρ̂ = 1.2 × 10−3, viscosity ratio
µ̂ = 1.8× 10−2 (air–water values), h = 1/128, and varying Reynolds number Re and time-step ∆t.

∆t
Re

10 101.5 100 102.5 1000

10 20 / 47 23 / 51 27 / 55 32 / 59 36 / 63

1 19 / 46 21 / 47 23 / 45 24 / 45 25 / 41

1

10
16 / 39 16 / 37 16 / 35 15 / 32 16 / 28

We now consider the time-dependent case (α = 1). We remark that our numerical
tests give similar dependence on the density and viscosity ratios, as well as on the
grid size, to the steady case. The performance with Reynolds number is linked to
the time-step, as illustrated in Table 6 using Q2–Q1 elements. For a large time-step
the behaviour is similar to that of the steady case. However, once the time-step is
small enough, we see that the trend in Reynolds number flattens and then reverses so
that higher Reynolds number flows require similar or less iterations for convergence.
As anticipated, when solving with a smaller time-step fewer iterations are required
since the time-stepping term becomes dominant, pushing the eigenvalues of the linear
system away from zero and thus allowing faster convergence of the iterative solver.

The results of this section for a simplified two-phase test problem suggest that our
new preconditioners perform reasonably well across a wide range of parameters and
extend the utility of the PCD and LSC methodologies to two-phase flow. For the case
of enclosed flow (without considering boundary adjustments) two-phase PCD appears
favourable, showing nearly mesh-independent behaviour and only requiring a single
Laplacian-type sub-problem to be solved per application of the Schur complement
preconditioner. We now focus on the two-phase PCD approach. To gain further
insight we consider a more challenging and realistic test problem within a framework
which incorporates additional features pertinent to simulations of two-phase flow.

5. Numerical results for a dynamic dam-break problem. Free-surface
models that accurately describe complicated air–water flow dynamics are an important
application of the two-phase Navier–Stokes equations. For example, level set and
volume-of-fluid methods can be combined with two-phase Navier–Stokes equations to
simulate intricate hydraulic processes such as waves crashing into coastal structures.
For these multi-physics models, the Navier–Stokes equations are just one component
in a larger system of equations [31]. In this section, we apply the two-phase PCD
preconditioner in a free-surface model to gauge its effectiveness for dynamic multi-
physics problems. In nearly all cases, solving the discrete linearised Navier–Stokes
equations is the most time consuming part of a multi-physics simulation, so superior
preconditioners can dramatically improve computational run times. As a result, the
effectiveness of a preconditioner in a dynamic setting is very relevant to practitioners.

In the following study, we use the RANS2P module of the Proteus computational
methods and simulation toolkit (http://proteustoolkit.org). RANS2P is a fluid
dynamics software module developed at the U.S. Army Corps of Engineers for solving
large air–water free-surface problems that arise in coastal and hydraulic applications.
For a detailed description of the two-phase Navier–Stokes model within the RANS2P
module, see [3].
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As with other dynamic free-surface models, the two-phase Navier–Stokes model in
RANS2P has several key characteristics that affect preconditioner performance. First,
the dynamic nature of the model problems involved typically requires taking short
time-steps. Consequently, the large temporal component of the problem diminishes
the effect of the advective terms at each time-step, making the system easier to solve
than a steady-state problem. A second feature of such free-surface models is that they
often simulate high Reynolds number flows. As such, in order to produce meaningful
results, we must modify the Navier–Stokes equations with numerical stabilisation
terms. RANS2P uses a variation of ASGS stabilisation for the advection and pressure.
Further details are available in [3, 28, 11, 50].

Before moving forward, we say a few words about applying F̂−1 (recall (17)).

For large problems, it is important that the action of F̂−1 is scalable and provides a
reliable approximation to F−1. Thus, developing effective methods to approximate
F−1 is an active area of our research. For advection dominated flows, however, finding
an effective and robust F̂−1 can be difficult [42]. Further complicating matters is the
ASGS stabilisation used and the dynamic two-phase nature of the simulations. We
have implemented an approach which treats F̂−1 as a block preconditioned GMRES
iteration where the sub-blocks are approximated using multigrid methods and this
has shown signs of being effective both in our work and others [26]; see also results in
[2]. Unfortunately, maintaining solver robustness throughout an entire multi-physics
simulation remains an issue. As such, we defer discussion of this important topic
to future work and focus our efforts here on the Schur complement approximation,
taking F̂−1 to be given by the sparse direct solver SuperLU DIST [35, 34].

We now comment on some implementation details of the PCD approximation
used in RANS2P. Firstly, one component of the Navier–Stokes stabilisation is a shock
capturing diffusion term. Thus, to better reflect the simulation viscosity, the viscosity
used within the definition of two-phase PCD is the sum of the shock capturing term
and the physical viscosity. Secondly, we use diagonal lumped mass matrices within
two-phase PCD. Finally, even though the RANS2P module uses Newton iteration to
solve the Navier–Stokes equations, rather than Picard iteration, the form of the PCD
approximation does not change (see [20]). For additional details see [3].

As a basis for comparison, we consider the SIMPLE method (see [20, 53]) where

Ŝ−1 = (B diag(F )−1BT + C)−1.(55)

For steady problems, SIMPLE is not a competitive alternative to two-phase PCD since
the diag(F ) term does not capture well the advective features of the flow. However,
for dynamic problems with short time-steps, the method is effective in many cases.

Neither SIMPLE nor the two-phase PCD method offers a clear implementation
advantage over the other. Indeed, at each time-step, three (sparse) discrete operators
must be constructed for two-phase PCD. In contrast, SIMPLE (55) is algebraic and
constructed using blocks taken directly from the global linear system. For sufficiently
large problems, however, the matrix–matrix product used in the construction of (55)
is expensive. In terms of applying the approximations, two-phase PCD requires one

V-cycle to solve the pressure Laplacian-type term A
(1/ρ)
p , a vector–scalar product,

two diagonal matrix–vector products, a sparse matrix–vector product, and two vector
sums. By comparison, applying SIMPLE only requires a single multigrid V-cycle. Our
experience, however, suggests that SIMPLE requires a more accurate multigrid solver
than two-phase PCD to serve as a reliable preconditioner in the RANS2P module. In
each approach we make use of BoomerAMG from HYPRE [21] for the V-cycle.
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Table 7

Preconditioned GMRES iterations using two-phase PCD (37) / SIMPLE (55) for the P 1–P 1

solution to the steady lid driven cavity problem with density ratio ρ̂ = 1.2 × 10−3, viscosity ratio
µ̂ = 1.8 × 10−2 (air–water values), and varying Reynolds number Re and mesh size h. The total
number of degrees of freedom (DOFs) for each problem size is also listed for comparison with Table 3.

h DOFs
Re

10 101.5 100 102.5 1000

1

16
5,115 25 / 18 27 / 18 29 / 23 36 / 26 49 / 25

1

32
20,085 24 / 38 26 / 23 29 / 32 35 / 36 47 / 39

1

64
79,152 25 / 56 27 / 55 29 / 56 35 / 45 46 / 56

1

128
308,613 24 / 53 27 / 85 29 / 77 34 / 83 46 / 84

1

256
1,191,810 24 / 116 27 / 116 30 / 105 35 / 112 47 / 115

In the following examples we use right preconditioned GMRES to compare the
SIMPLE and two-phase PCD methods. This ensures the convergence of the linear
solver is measured using non-preconditioned residuals. In RANS2P, our experience
suggests that non-preconditioned residuals produce more stable results and provide a
reliable basis for comparing different preconditioners.

For dynamic free-surface simulations, the linear solver termination criterion used
depends on the nonlinear solver tolerance. We always use a relative residual tolerance
of 10−6 for the linear solver. However, we also include an absolute linear solver
tolerance that is one order of magnitude smaller than the absolute nonlinear solver
tolerance. For example, if the absolute tolerance of the nonlinear solver is 10−7, then
the linear solver will include an absolute tolerance of 10−8 for termination. This
approach maintains nonlinear solver convergence while limiting unnecessary work in
the linear solver.

Before examining preconditioner performance for a complete multi-physics model,
we first present results using (unstructured) P 1–P 1 elements for the steady lid driven
cavity problem using the RANS2P module. Note that we measure the mesh refinement
here using h =

√
2TA, where TA is the area of the largest triangle. Table 7 shows

analogous results to Table 4 for the two-phase PCD and SIMPLE methods. We
see that the SIMPLE method fails to produce scalable results, with iteration counts
increasing as we refine the mesh. In contrast, the two-phase PCD approach exhibits
mesh-independent behaviour similar to the Q1–Q1 element results from IFISS in
Table 5a. It is also worth mentioning that the iteration level of the P 1–P 1 elements
is higher than the Q1–Q1 elements because different stabilisation methods are used.

Next we consider the 2D dam-break benchmark problem described in [12, 58],
which requires using the complete multi-physics RANS2P model. The domain is
rectangular, with Ω = (0, 3.22) × (0, 1.8), and the free-slip condition (5) is applied
everywhere on the boundary ∂Ω. Initially, there is a standing column of water in
Ω1 = (0, 1.2) × (0, 0.6) with the remaining space being air. The simulation runs for
a two second time interval and begins as the column of water collapses under gravity
and proceeds to collide with the right-hand wall of the tank. This collision creates
a wave and ultimately topological changes in the phases. Figure 1 displays several
snapshots of the simulation. The dam-break problem provides a good benchmark
for testing the two-phase PCD and SIMPLE preconditioners because its features are
typical of many dynamic, multi-physics problems of practical interest.
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(a) t = 0 (b) t = 0.5

(c) t = 1 (d) t = 1.5

(e) t = 1.75 (f) t = 2

Fig. 1. Evolution of the dam-break simulation in Proteus at selected points in time. The VOF
(volume-of-fluid) is plotted with blue representing the water phase and red being the air.

To compare the scaling performance of two-phase PCD and SIMPLE, we consider
two simulations. In the first, time-steps are selected to ensure that the CFL number
is less than or equal to 0.9. Such restrictions are often necessary for nonlinear solver
convergence and solution accuracy. However, in some important cases this restriction
on the CFL number is not strictly necessary.2 Thus, in the second simulation, we use
a fixed time-step of ∆t = 0.01. In this case, the CFL number is larger than one for
much of the simulation, reaching a maximum of 20.5 and typically being above 2.5.

2Accurate computation of relevant quantities of interest, such as drag force, for fixed hydraulic
structures or vessels, frequently results in quasi-steady flows. In particular, the free surface may tend
towards a steady wake structure or standing wave pattern, and this structure dominates the force on
the given structure. In these cases, it is frequently desirable to use a fixed time-step that results in
CFL numbers significantly larger than one. Time-stepping is then carried out until the quasi-steady
hydrodynamic conditions are reached or the quantity of interest has reached a constant or steady
periodic value.
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Table 8

The average / maximum number of GMRES iterations and simulation run times (in minutes)
required across different meshes when running the dam-break problem ensuring the CFL number is
less than or equal to 0.9.

h = 0.2 h = 0.1 h = 0.05 h = 0.025 h = 0.0125

Two-phase PCD 5 / 8 (0.5) 5 / 9 (0.6) 5 / 10 (2.6) 5 / 11 (14.7) 5 / 10 (126.0)

SIMPLE 4 / 10 (0.4) 4 / 10 (0.6) 4 / 10 (2.4) 5 / 13 (15.5) 5 / 17 (140.1)

Nonetheless, the time-step is still small enough to achieve nonlinear solver convergence
and solution accuracy. For both simulations, we analyse the average and maximum
number of GMRES iterations required at five different levels of mesh refinement.
These mesh refinement levels are selected so that, by the final refinement, the physics
of the simulation is sufficiently resolved to perform relevant engineering analysis. The
dam-break timings were collected using 8 cores of a dedicated 2.3-GHz Intel Xeon
Haswell processor with 128 GBytes of DDR4 memory on the Topaz supercomputer in
the Department of Defense High Performance Computing Modernization Program.

Table 8 presents the average and maximum number of GMRES iterations taken
during the first simulation with a restricted CFL number. These results suggest that,
on average, the SIMPLE and two-phase PCD preconditioners both scale well with
the mesh size. However, Table 8 also reveals that the maximum number of iterations
required by the SIMPLE method increases as the mesh is refined. As seen in Figure 2,
the increase in maximum iterations of the SIMPLE preconditioner occurs as the air
and water phases begin to undergo topological changes around one and a half seconds
into the simulation. Indeed, as the water phase reconnects with itself, it generates a
pressure that causes the air phase to accelerate and increase the advective features
of the simulation. Since SIMPLE only uses the diagonal elements of the matrix F , it
appears unable to fully capture these additional advection dynamics. In contrast, the
two-phase PCD preconditioner scales well during this mixing phase of the simulation.

Table 8 also reveals that, on the most refined meshes, the two-phase PCD method
is faster than the SIMPLE approach. One reason for this is that the two-phase PCD
preconditioner requires fewer GMRES iterations than the SIMPLE preconditioner
during the mixing phase of the simulation. A second reason is that the AMG method
applied within the SIMPLE preconditioner requires more computational effort than
the AMG method used in the two-phase PCD preconditioner. Finally, the two-phase
PCD method tends to exceed the linear solver threshold by a larger margin than the
SIMPLE approach, leading to slightly smaller residual norms in the nonlinear solver.
Interestingly, this difference slightly reduces the computational effort needed to solve
other components in the full RANS2P model.

Results for the second simulation, using a fixed time-step ∆t = 0.01, are shown
in Table 9 and suggest that, on coarse meshes, SIMPLE and the two-phase PCD
preconditioner are competitive with one another. In contrast to the first simulation,
however, as the mesh is refined, the performance of the SIMPLE method rapidly
deteriorates while the two-phase PCD preconditioner remains relatively stable, with
iteration counts increasing only modestly. Again, two-phase PCD is preferable based
on the timing results. These results are consistent with the steady-state performance
observed above in Table 7. As the mesh is refined for a fixed time-step, the advective
features of the system become more pronounced and the CFL number increases. As
observed for the steady lid driven cavity problem, the SIMPLE approach does not
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(b) SIMPLE

Fig. 2. Average preconditioned GMRES iterations per time-step for the two-phase PCD and
SIMPLE preconditioners when the CFL number is less than or equal to 0.9.

Table 9

The average / maximum number of GMRES iterations and simulation run times (in minutes)
required across different meshes when running the dam-break problem with fixed ∆t = 0.01. Note
that × indicates the simulation stopped due to failure in the solver convergence.

h = 0.2 h = 0.1 h = 0.05 h = 0.025 h = 0.0125

Two-phase PCD 4 / 8 (0.5) 5 / 9 (0.6) 8 / 14 (1.6) 11 / 25 (5.8) 14 / 34 (26.5)

SIMPLE 4 / 10 (0.4) 4 / 10 (0.6) 5 / 10 (1.5) 10 / 32 (6.6) ×

capture the features of an advection dominated flow well enough to provide a robust
preconditioner. The two-phase PCD preconditioner, however, does account for such
features and thus remains capable of producing stable, reliable results in this setting.

Overall, our results for the two-phase PCD preconditioner in a free-surface, multi-
physics setting are encouraging. When a restricted CFL number is used, the two-phase
PCD preconditioner slightly outperforms the SIMPLE method both in terms of the
reducing the number of GMRES iterations required as well as delivering faster run
times. As the CFL number of the flow increases, two-phase PCD demonstrates a
significant improvement over the SIMPLE method due to its superior steady-state
performance. Together, these results suggest that the two-phase PCD approach can
be effectively used as an approximation to the inverse Schur complement in coupled
free-surface problems.

6. Conclusions. The application of PCD and LSC preconditioning techniques
for the Navier–Stokes equations has proved to be an effective approach for computing
flows of a single Newtonian phase. In this work we have generalised the formulation
of these preconditioners to the case of the variable coefficient Navier–Stokes equations
arising in models of two-phase incompressible flow. For the PCD method this requires
a new form of the preconditioner, a point made clear through the relation of PCD
with the Cahouet–Chabard preconditioner. While a variant of LSC has previously
been proposed for variable viscosity Stokes flow, we present a superior method for
Navier–Stokes flow which directly appeals to the relevant commutator. Our new two-
phase PCD and LSC preconditioners retain the favourable features of the original
preconditioners and exhibit similar performance in our tests on a simplified enclosed
flow problem. As for the original methods, additional consideration of boundary
conditions will be necessary to gain fully mesh-independent behaviour, in particular
for the case of flow problems with inflow and outflow boundary conditions when using
the two-phase PCD preconditioner [20]. We intend to investigate this in future work.
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Our results for a fully dynamic dam-break test problem showed that the two-phase
PCD approach can be effectively used in coupled free-surface problems. Moreover,
since it captures sufficient information about the advective term, it provides a stable
preconditioner when larger time-steps are permissible. Nonetheless, further work is
needed to investigate whether the additional terms added to the discrete equations can
be incorporated within the two-phase PCD preconditioner to improve performance.
Moreover, an important part of the block preconditioners which we consider here is a
scalable approximation to the velocity block F . This topic requires further attention
for variable coefficient Navier–Stokes equations and is an active area of investigation.
Additionally, in practical applications, simulations of two-phase flow run in a high
performance computing environment with a parallel implementation; it remains to be
seen how efficient the preconditioners we have proposed are within this framework.
We are currently exploring the parallel scalability of our approach on larger problems
of interest.

Finally, we note that we did not require the two-phase nature explicitly in the
construction of the preconditioners, thus the techniques proposed here might also be
investigated for their utility when more general forms of variable density and variable
viscosity flows are proposed.

7. Acknowledgements. The authors would like to thank the associate editor
and two anonymous referees for their careful reading and constructive comments which
helped improve the content and presentation of this work.

REFERENCES

[1] I. Akkerman, Y. Bazilevs, C. E. Kees, and M. W. Farthing, Isogeometric analysis of
free-surface flow, J. Comput. Phys., 230 (2011), pp. 4137–4152.

[2] O. Axelsson, X. He, and M. Neytcheva, Numerical solution of the time-dependent Navier–
Stokes equation for variable density–variable viscosity. Part I, Math. Model. Anal., 20
(2015), pp. 232–260.

[3] A. Bentley, N. Bootland, A. Wathen, and C. Kees, Implementation details of the level
set two-phase Navier–Stokes equations in Proteus, Tech. Report TR2017-10, Department
of Mathematical Sciences, Clemson University, 2017. http://www.clemson.edu/science/
departments/mathematical-sciences/about/technical-reports.html.

[4] M. Benzi and M. A. Olshanskii, Field-of-values convergence analysis of augmented La-
grangian preconditioners for the linearized Navier–Stokes problem, SIAM J. Numer. Anal.,
49 (2011), pp. 770–788.

[5] M. Benzi, M. A. Olshanskii, and Z. Wang, Modified augmented Lagrangian preconditioners
for the incompressible Navier–Stokes equations, Int. J. Numer. Meth. Fluids, 66 (2011),
pp. 486–508.
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