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ABSTRACT This paper proposes and assesses three different control approaches for Hydrocarbon Natural 

Gas (HCNG) penetrated integrated energy system (IES). The three control approaches adopt mixed integer 

linear programing, conditional value at risk (CVaR) and robust optimization (RO), respectively, aiming to 

mitigate the renewable generation uncertainties. By comparing the performance and efficiency, the most 

appropriate control approach for the HCNG penetrated IES is identified. Numerical analysis is conducted to 

evaluate the three control approaches in different scenarios, where the uncertainty level of the renewable 

energy (within the HCNG penetrated IES) varies. The numerical results show that the CVaR based 

approach outperforms other two approaches when the renewable uncertainty is high (approximately 30%). 

In terms of the cost to satisfy the energy demand, the operational cost of the CVaR based method is 8.29% 

lower than the RO one. Whilst the RO based approach has better performance when the renewable 

uncertainty is medium (approximately 5%) and its operational is 0.62% lower than that of the CVaR model. 

In both evaluation cases, mixed integer linear programing approach cannot meet the energy demand. This 

paper also compares the operational performance of the IES with and without HCNG. It is shown that the 

IES with HCNG can significantly improve the capability to accommodate renewable energy with low 

upgrading cost. 

INDEX TERMS Conditional value at risk, HCNG, integrated energy system, mixed integer linear 

programing, robust optimization. 

TABLE I 

NOMENCLATURE 

Symbol Quantity 

𝛥𝑡 Length of the time interval (h). 

𝛼 Confidence level. 

𝛽 Factor of the CVaR. 

𝛿𝐸𝐿 Energy consumed by electrolyzer when generating 1Nm3 Hydrogen (kW ∙ h/N𝑚3) 

𝛿𝐻𝐹𝐶 Energy generated by Fuel Cell Battery when consuming 1Nm3 Hydrogen (kW ∙ h/N𝑚3) 

휀 Volume fraction of hydrogen in the gas mixture 

휀𝑚𝑎𝑥 Max volume fraction 

𝜂 Device operation efficiency 

𝜇 Binary variable 

𝜉 Value at risk 

σ𝑡 Standard deviation 

𝜏𝑡 Uncertainty fluctuation 

𝜙𝑖 Intermediate variable of calculating CVaR 

𝜔 Uncertainty 

Γ𝑡 Robust control factor 

𝛺 Uncertainty set 
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Symbol Quantity 

𝐶𝐵𝑖𝑙𝑙
𝑖  Minimum system operation cost per Monte Carlo simulation (￥) 

𝑐𝑔𝑟𝑖𝑑.𝑏
𝑡  Electricity unit price bought from grid (￥/kW) 

𝐶𝑔𝑟𝑖𝑑.𝑏 Electricity consumption cost (￥) 

𝑐𝑔𝑟𝑖𝑑.𝑠 Electricity unit price sold to grid (￥/kW) 

𝐶𝑔𝑟𝑖𝑑.𝑠 Revenue obtained from selling surplus electricity to grid (￥) 

𝑐𝑛𝑔 Natural gas unit price (￥/N𝑚3) 

𝐶𝑛𝑔 Cost of buying natural gas (￥) 

𝐶𝑂𝑃𝐸𝐶 Coefficient of performance of electric refrigerator 

𝐶𝑂𝑃𝐻𝑃.𝑐 Cooling coefficient of performance of heat pump 

𝐶𝑂𝑃𝐻𝑃.ℎ Heating coefficient of performance of heat pump 

𝐶𝑉𝑒𝑟 System operation cost when running evaluation case (￥) 

𝐸𝐵𝑖𝑙𝑙 Expected minimum system operation cost 

𝐸𝑃 Expectation of uncertainties 

𝐿𝑐𝑎 Cooling load (kW) 

𝐿𝐻𝑊 Hot water load (kW) 

𝐿𝐻𝑉 Lower heating value of gas mixture (kJ/N𝑚3) 

𝐿𝑡𝑎 Heating Load (kW) 

𝑀𝑁 Value of methane 

𝑁 Number of Mote-Carlo Simulation 

𝑃𝐶𝐻𝑃 Electricity generation power of CHP (kW) 

𝑃𝐶𝐻𝑃
𝑚𝑎𝑥 Maximum electricity generation power of CHP (kW) 

𝑃𝐶𝐻𝑃
𝑚𝑖𝑛 Minimum electricity generation power of CHP (kW) 

𝑃𝐸𝐵 Power consumed by electric boiler (kW) 

𝑃𝐸𝐶 Power consumed by electric refrigerator (kW) 

𝑃𝐸𝐿 Power consumed by electrolyzer (kW) 

𝑃𝑔𝑟𝑖𝑑.𝑏 Power bought from grid (kW) 

𝑃𝑔𝑟𝑖𝑑.𝑏
𝑚𝑎𝑥  Maximum power bought from grid (kW) 

𝑃𝑔𝑟𝑖𝑑.𝑠 Power sold to grid (kW) 

𝑃𝑔𝑟𝑖𝑑.𝑠
𝑚𝑎𝑥  Maximum power sold to grid (kW) 

𝑃𝐻𝐹𝐶 Fuel cell generation power (kW) 

𝑃𝐻𝑃 Power consumed by heat pump (kW) 

𝑃𝑃𝑉 PV generation power (kW) 

𝑃𝑃𝑉
𝑚𝑎𝑥 Maximum PV generation power (kW) 

𝑃𝑊 Wind generation power (kW) 

𝑃𝑊
𝑚𝑎𝑥 Maximum wind generation power (kW) 

𝑄𝐴𝐶  Output power of absorption chiller (kW) 

𝑄𝐴𝐶
𝑚𝑎𝑥 Rated output power of absorption chiller (kW) 

𝑄𝐴𝐶.𝑠𝑚𝑜𝑘𝑒 Smoke power consumed by absorption chiller (kW) 

𝑄𝐴𝐶.𝑤𝑎𝑡𝑒𝑟 Hot water power consumed by absorption chiller (kW) 

𝑄𝐶𝐻𝑃.𝑠𝑚𝑜𝑘𝑒 Smoke power generated by CHP (kW) 

𝑄𝐶𝐻𝑃.𝑤𝑎𝑡𝑒𝑟 Hot water power generated by CHP (kW) 

𝑄𝐸𝐵 Hot water power generated by electric boiler (kW) 

𝑄𝐸𝐵
𝑚𝑎𝑥 Rated hot water power generated by electric boiler (kW) 

𝑄𝐸𝐶  Cooling power generated by electric cooler (kW) 

𝑄𝐸𝐶
𝑚𝑎𝑥 Rated cooling power generated by electric cooler (kW) 

𝑄𝐻𝐸.𝑠𝑚𝑜𝑘𝑒 Smoke power consumed by heat exchanger (kW) 

𝑄𝐻𝐸.𝑤𝑎𝑡𝑒𝑟 Hot water power generated by heat exchanger (kW) 

𝑄𝐻𝐸.𝑤𝑎𝑡𝑒𝑟
𝑚𝑎𝑥  Rated hot water power generated by heat exchanger (kW) 

𝑄𝐻𝐹𝐶 Hot water power generated by fuel cell (SOFC only) (kW) 

𝑄𝐻𝑃.𝑐 Cooling power generated by heat pump (kW) 

𝑄𝐻𝑃.𝑐
𝑚𝑎𝑥 Rated cooling power generated by heat pump (kW) 

𝑄𝐻𝑃.ℎ Heating power generated by heat pump (kW) 

𝑄𝐻𝑃.ℎ
𝑚𝑎𝑥 Rated heating power generated by heat pump (kW) 

𝑅 Electrical power ramping constraint of CHP (kW/h) 

𝑅𝐶𝑉𝑎𝑅 Value of CVaR 

𝑟𝑡 Uncertainty level of uncertain variable 

𝑡 Time 

𝑣𝑔𝑏 Flow rate of gas mixture (N𝑚3/ℎ) 

𝑉𝐻2
 Volume of hydrogen in hydrogen storage tank (N𝑚3) 

𝑉𝐻2

𝑚𝑎𝑥 Capacity of hydrogen storage tank (N𝑚3) 

𝑣𝐻2.𝐶𝐻𝑃 Flow rate of hydrogen in CHP (N𝑚3/ℎ) 

𝑣𝐻2.𝐻𝐹𝐶 Flow rate of hydrogen in fuel cell (N𝑚3/ℎ) 

𝑣𝐻2.𝐻𝐹𝐶
𝑚𝑎𝑥  Maximum flow rate of hydrogen in fuel cell (N𝑚3/ℎ) 

𝑣ℎ𝑠𝑡.𝑖 Output flow rate of hydrogen generated by electrolyzer (N𝑚3/ℎ) 

𝑣ℎ𝑠𝑡.𝑖
𝑚𝑎𝑥 Maximum output flow rate of hydrogen generated by electrolyzer (N𝑚3/ℎ) 

𝑣ℎ𝑠𝑡.𝑜 Output flow rate of hydrogen from hydrogen storage tank (N𝑚3/ℎ) 

𝑣ℎ𝑠𝑡.𝑜
𝑚𝑎𝑥  Maximum output flow rate of hydrogen from hydrogen storage tank (N𝑚3/ℎ) 
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Symbol Quantity 

𝑣𝑛𝑔 Flow rate of natural gas (N𝑚3/ℎ) 

𝑣𝑛𝑔
𝑚𝑎𝑥 Maximum flow rate of natural gas (N𝑚3/ℎ) 

𝑥 Decision variable 

𝑌 Real number used to calculated standard deviation 

 

I. INTRODUCTION 

The Integrated Energy System (IES) is considered as an 

emerging energy system concept that has great potential on 

breaking the barriers and bridging different types of energy 

systems. Especially for the industrial park or area with 

considerable amount of heating/cooling demand and 

renewable energy resources, the IES has been proved as an 

efficient system for mitigating surplus renewable energy 

and providing high quality heating and cooling energy. The 

intension to convert a conventional energy system to an IES 

can be frustrated in specific areas due to the limited 

transportation capability of natural gas pipeline network 

and the congestion in the electricity power network. A more 

common way to upgrade an existing energy system is either 

to adopt energy storage system or expand the capability and 

scale of the energy network. However, such method can be 

very expensive and time consuming. With the proliferation 

of renewable energy resources and clean vehicles, the 

energy demand of end users can become harder to predict, 

which can lead to greater uncertainty level in the energy 

system. To give more credit when justifying the benefits of 

converting an existing energy system to an IES rather than 

using common system upgrading methods, it is important to 

show that the IES can accommodate the uncertainties in 

renewable resources and end user loads without the need to 

expand the existing gas pipeline network and the electric 

network. 

Power-to-gas (P2G) technology is a conventional method 

to convert surplus electricity to gas fuel [1]. The converted 

gas fuel can be natural gas (through methanation) or 

hydrogen (through electrolysis). The P2G technology using 

methanation is commonly used for large-scale natural gas 

production [2] whilst the P2G technology using electrolysis 

is more usual in medium or small scale hydrogen 

production aiming to satisfy the local hydrogen demand [3]. 

The produced hydrogen can be directly used as the fuel for 

fuel-cell vehicle. It can also be injected into the gas pipeline 

to produce Hydrocarbon Natural Gas (HCNG) [4]. Due to 

the limitations of the compressor, the hydrogen content of 

HCNG cannot be too large [5]. Researches have proved that 

the HCNG can be used as the fuel for combustion engines, 

gas turbines and home appliances if the proportion of 

hydrogen is below certain percentages [6-10]. [6] 

conducted the experiment of using HCNG to power the 

CHP, and the CHP still had satisfactory performance when 

the hydrogen proportion reached 8%. [9] evaluated the 

effect of hydrogen percentage (i.e. from 0% to 30%) within 

the HCNG on CHP, and it was discovered that the CHP 

heat recovery efficiency was improved as the percentage of 

hydrogen raised and at the same time the CHP system could 

still work without any failures. CHP is the core equipment 

within the IES, and it is considered as the major alternatives 

to traditional electricity generators. Using HCNG as the 

fuel for CHP can potentially reduce the natural gas 

consumption. In addition, the hydrogen is easy to produce 

and store, which makes it easier for the IES to 

accommodate more surplus energy generated by renewable 

generators, in both short and long-term period. Considering 

the global commitment to reduce CO2 emission, the HCNG 

penetrated IES can be the development direction of IES, 

and the investigation of how a HCNG penetrated IES can 

be to effectively operated is valuable. The use of HCNG as 

a fuel in the engine will significantly reduce emissions of 

THC, CO, CO2 and CH4, but will increase NOX emissions 

[11-14]. And NOX can be processed to meet emission 

standards [12,14]. 

A number of previous studies were carried out on the 

operational optimization of IES. [15] proposed an interval 

optimization approach for gas-electricity IES taking into 

account the demand response scheme and renewable 

uncertainties. Wei Gu and Jun wang designed an integrated 

energy system optimization method which combines the 

thermal inertia of the regional heat network and the thermal 

inertia of the building to improve the utilization of wind 

power [16]. The interval based optimization approach 

mitigated the effects of worst scenario on the overall 

optimization, compared to the robust control. In [17], an 

operational optimization approach for heating-electricity 

IES based on heating inertia was presented. It has proven 

that the increased heating storage capability of a heating 

network would increase the operation flexibility of a CHP, 

which is a valuable lesson for the HCNG penetrated IES 

optimization (where the stored object is hydrogen instead of 

heat). Dolatabadi and Mohammadi-Ivatloo designed a 

conditional-value-at-risk (CVaR) based optimization 

approach for scheduling the operation of energy hub (a 

system coupling among different energy networks, similar 

to IES) [18]. Such methodology has shown good 

performance on mitigating the risk of load forecasting 

volatilities and energy price fluctuation. [19] proposed a 

risk-averse optimal operation strategy for multiple-energy 

carrier system (similar concept to IES), using CVaR 

method to quantify the risk associated with loads 

uncertainties. With regard to the operation scheduling 

problem of energy system, the risk-accounted optimization 

approaches (e.g. CVaR, Robust Optimization, Interval 
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Optimization) have been demonstrated as efficient ways to 

mitigate the risks caused by the uncertainties in renewable 

generation, load and price [20-24]. 

To the best knowledge of authors, there are little research 

that has been conducted on the operational optimization of 

the HCNG penetrated IES, as well as the mathematical 

modelling of the CHP using HCNG as the fuel. In the 

foreseeable future, increasing number of clean vehicles, 

renewable generators and real-time pricing schemes will be 

deployed and it will be necessary to identify methods to 

mitigate such uncertainties within the energy system. An 

expectation of using the HCNG penetrated IES is that it can 

provide appropriate risk mitigation capabilities through the 

use of flexible injection and storing of hydrogen. To 

demonstrate the advantages HCNG penetrated IES.  

In this paper, the detailed model of HCNG penetrated IES 

is developed and such system can produce and use 

hydrogen to absorb extra wind and PV energy whilst at the 

same time reduce the carbon emissions. In order to mitigate 

the influence of uncertainties in renewable generation and 

loads, three planning strategies are developed and tested in 

this paper. Furthermore, two hydrogen fuel cells are applied 

in the HCNG penetrated IES model and their impact on the 

planning results are also investigated. After that, an 

operation planning method is proposed which can optimize 

the electrical and thermal efficiency of the CHP that is 

related to the change of the hydrogen concentration in the 

gas mixture. Finally, to validate the performance of the 

proposed model and algorithm, two kinds of deviations 

from the predicted values are used for numerical analysis 

and comparison. The main contributions of this paper can 

be concluded as below. 

(1) In this paper, the quantitative mathematical model of CHP 

considering the influence of hydrogen concentration 

change in fuel is given, as well as the models of other 

refrigeration equipment, heating equipment and hot water 

equipment in the HCNG penetrated IES. The operation 

constraints of these facilities and the interaction with the 

power grid are also considered. 

(2) The relationship between the change of load electro-

thermal ratio and the hydrogen proportion of CHP fuel is 

studied. In addition, the performance of the CVaR model, 

robust optimization (RO) model and mixed integer linear 

programing is compared. 

(3) The optimization results of CVaR, RO and mixed integer 

linear programing based approaches are comprehensively 

analyzed from the perspective of expectation of running 

cost, resistance of uncertainty and running time of the 

program. 

The remainder of this paper is organized as follows: 

section 2 describes the mathematical model of the HCNG 

penetrated IES whilst section 3 presents three optimization 

methods for day-ahead economic dispatch. Section 4 

discusses the advantages and disadvantages of the three 

optimization schemes under different fluctuation conditions. 
 
II. SYSTEM MODEL 

A. HCNG penetrated IES 

This paper presents and compares three day-ahead control 

approaches for the hydrogen penetrated IES. Compared to 

the traditional IES, a hydrogen penetrated IES employs 

hydrogen generation (e.g. electrolyzer), hydrogen storage 

(e.g. hydrogen tank) and hydrogen consumption (e.g. fuel 

cell or HCNG). Figure 1 presents a typical hydrogen 

penetrated IES. Apart from the aforementioned hydrogen 

related components, such system also has the gas related 

components, smoke recycling components, electricity based 

components and cooling components, and all of them within 

the system are connected by different energy–carrier busbars. 
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FIGURE 1. System Infrastructure of a Hydrogen penetrated IES. 

 

Most of CHPs can take natural gas mixed with hydrogen 

of certain percentage without any upgrading and this paper 

focuses on the hydrogen related components within the IES. 

The generated hydrogen is mixed with methane and used as 

the fuel for CHP. For the IES involving renewable energy 

resources such as solar and wind turbines, the hydrogen 

related devices can help the system operator to store the 

surplus electricity by transforming electricity to hydrogen. 

The stored hydrogen can be injected into the gas pipeline, 

which can contribute to the electricity and heat generation of 

CHP when there is a shortage in electricity and heat. As 

hydrogen is a carbon-free fuel and can be stored for long 

term (seasonally or even yearly) in a tank, it is considered as 

one of the potential replacements for the future fuel. 

Note that all types of gas mentioned and discussed in this 

paper are measured in volume under normal condition and 

the unit is Nm
3
. 

B. Constrains of Energy-Carrier Busbars 

The hydrogen penetrated IES incorporates multi-type energy 

busbars in one single system. The system should satisfy the 

constraints of different energy-carrier busbars, which are 

defined by equations (1) – (4). 

Equation (1) indicates the balancing constraint of the 

electrical busbar and equation (2) shows the balancing 

constraints of the hot water busbar. The balancing constrain 

of the smoke busbar is presented in equation (3) and the 

balancing constraint of the air busbar is illustrated in equation 

(4). 

 𝐿𝐸 + 𝑃𝑔𝑟𝑖𝑑.𝑠 + 𝑃𝐻𝑃 + 𝑃𝐸𝐶 + 𝑃𝐸𝐿 + 𝑃𝐸𝐵 = 𝑃𝑃𝑉 + 𝑃𝑊 +

𝑃𝑔𝑟𝑖𝑑.𝑏 + 𝑃𝐻𝐹𝐶 + 𝑃𝐶𝐻𝑃   (1) 

 𝐿𝐻𝑊 + 𝑄𝐴𝐶.𝑤𝑎𝑡𝑒𝑟 = 𝑄𝐻𝐹𝐶 + 𝑄𝐻𝐸.𝑤𝑎𝑡𝑒𝑟 + 𝑄𝐶𝐻𝑃.𝑤𝑎𝑡𝑒𝑟 + 𝑄𝐸𝐵  
  (2) 

 𝑄𝐴𝐶.𝑠𝑚𝑜𝑘𝑒 + 𝑄𝐻𝐸.𝑠𝑚𝑜𝑘𝑒 = 𝑄𝐶𝐻𝑃.𝑠𝑚𝑜𝑘𝑒  (3) 

 𝐿𝑐𝑎 + 𝐿𝑡𝑎 = 𝑄𝐻𝑃.𝑐 + 𝑄𝐻𝑃.ℎ + 𝑄𝐸𝐶 + 𝑄𝐴𝐶  (4) 

C. CHP model using HCNG and its associated 
constraints 

The fuel used by CHP in the hydrogen penetrated IES is the 

HCNG which is a mixture of methane and hydrogen. The 

volume proportion of hydrogen ε in the gas mixture is 

constrained by the volume of methane or Methane Number 

(MN) [6]. The detailed constraints of the hydrogen within the 

HCNG are given as below. 

 𝑣𝑔𝑏 = 𝑣𝑛𝑔 + 𝑣𝐻2.𝐶𝐻𝑃 (5) 

 휀𝑚𝑎𝑥 = (100 − 𝑀𝑁) 100⁄  (6) 

 휀 = 𝑣𝐻2.𝐶𝐻𝑃 𝑣𝑔𝑏⁄  (7) 

 0 ≤ 휀 ≤ 휀𝑚𝑎𝑥 (8) 

 0 ≤ 𝑣𝑛𝑔 ≤ 𝑣𝑛𝑔
𝑚𝑎𝑥  (9) 
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Equation (7) is a nonlinear equation, which will 

dramatically increase the optimization complexity for the 

day-ahead control of hydrogen penetrated IES. Thus, 

equations (7) and (8) are rewritten as equation (10). The 

optimized proportion of hydrogen within the gas mixture in 

various time intervals can be derived from equation (7). 

 0 ≤ 𝑣𝐻2.𝐶𝐻𝑃 ≤ 휀𝑚𝑎𝑥 ∙ 𝑣𝑔𝑏  (10) 

To illustrate the influence of the hydrogen injected into the 

methane, the electricity generation power, hot water output 

power and smoke output power generated from HCNG can 

be calculated based on equations (11) – (13), respectively. 

Assume the smoke output power is 10% of the total power 

produced from HCNG. Note that Lower Heating Value 

(LHV) is used when calculating power generated from 

HCNG. 

 𝑃𝐶𝐻𝑃 = 𝑣𝑔𝑏 ∙ 𝐿𝐻𝑉 ∙ 𝜂𝐶𝐻𝑃.𝑒 3600⁄  (11) 

 𝑄𝐶𝐻𝑃.𝑤𝑎𝑡𝑒𝑟 = 𝑣𝑔𝑏 ∙ 𝐿𝐻𝑉 ∙ 𝜂𝐶𝐻𝑃.𝑤𝑎𝑡𝑒𝑟 3600⁄  (12) 

 𝑄𝐶𝐻𝑃.𝑠𝑚𝑜𝑘𝑒 = 𝑣𝑔𝑏 ∙ 𝐿𝐻𝑉 ∙ 10% 3600⁄  (13) 

According to [6], when the volume proportion of hydrogen 

in the mixed gas changed, the electricity-heat efficiency of 

the CHP would correspondingly change. Based on the 

experimental results given in [6], the efficiency change of the 

CHP using mixed gas could be reflected by equations (14) – 

(16). 

 𝜂𝐶𝐻𝑃.𝑒 = 1.125휀2 − 0.0663휀 + 0.3059 (14) 

 𝜂𝐶𝐻𝑃.𝑤𝑎𝑡𝑒𝑟 = −2.983휀2 − 0.0488휀 + 0.6133 (15) 

 𝐿𝐻𝑉 = −24850.6ε + 35691 (16) 

Since equations (11) – (13) are nonlinear equations, it will 

be sophisticated to optimize the scheduling of the CHP 

operation. To reduce the calculation complexity, the output 

power model of the CHP is simplified and the relationship 

between the output power values and the flow rate of natural 

gas and hydrogen is shown in linear equations (17) – (19). 

 𝑃𝐶𝐻𝑃 = 3.031𝑣𝑛𝑔 + 1.019𝑣𝐻2.𝐶𝐻𝑃 (17) 

 𝑄𝐶𝐻𝑃.𝑤𝑎𝑡𝑒𝑟 = 6.086𝑣𝑛𝑔 − 0.5331𝑣𝐻2.𝐶𝐻𝑃 (18) 

 𝑄𝐶𝐻𝑃.𝑠𝑚𝑜𝑘𝑒 = 0.9914𝑣𝑛𝑔 + 0.3012𝑣𝐻2.𝐶𝐻𝑃 (19) 

For the CHP, the electric power constraints and power 

ramping constraints are presented in equations (20) – (22). 

The binary variable 𝜇𝐶𝐻𝑃  is used to indicate the operating 

status of the CHP where 1 means operating whilst 0 denotes 

not operating. 

 𝑃𝐶𝐻𝑃
𝑚𝑖𝑛 ∙ 𝜇𝐶𝐻𝑃 ≤ 𝑃𝐶𝐻𝑃 ≤ 𝑃𝐶𝐻𝑃

𝑚𝑎𝑥 ∙ 𝜇𝐶𝐻𝑃 (20) 

 −𝑅 ∙ ∆𝑡 ≤ 𝑃𝐶𝐻𝑃
1 − 𝑃𝐶𝐻𝑃

0 ≤ 𝑅 ∙ ∆𝑡 (21) 

 𝜇𝐶𝐻𝑃 ∈ {0,1} (22) 

D. Other devices model and operation constraints 

1)  CONSTRAINTS OF HYDROGEN STORAGE TANK 

In the proposed IES system, the hydrogen is stored in high 

pressure tank(s) under normal temperature. More specifically, 

the hydrogen will first be generated from the electrolyzer and 

subsequently compressed and injected into the hydrogen 

storage tank. Due to the negligible magnitude, the electrical 

power consumed by the air pump (of the gas pipeline) and 

compressor will not be considered in the modelling. The 

stored hydrogen will be consumed by the CHP and fuel cell 

to generate energy in different formats (e.g. electricity and 

heat). Equations (23) – (26) show the relationship between 

the hydrogen volume in the storage tank and the flow rate in 

different devices as well as the associated constraints. 

 𝑉𝐻2
1 = 𝑉𝐻2

0 + 𝑣ℎ𝑠𝑡.𝑖 ∙ ∆𝑡 − 𝑣ℎ𝑠𝑡.𝑜 ∙ ∆𝑡 (23) 

 0 ≤ 𝑉𝐻2
≤ 𝑉𝐻2

𝑚𝑎𝑥 (24) 

 𝑣ℎ𝑠𝑡.𝑜 = 𝑣𝐻2.𝐻𝐹𝐶 + 𝑣𝐻2.𝐶𝐻𝑃 (25) 

 0 ≤ 𝑣ℎ𝑠𝑡.𝑜 ≤ 𝑣ℎ𝑠𝑡.𝑜
𝑚𝑎𝑥  (26) 

2) CONSTRAINTS OF ELECTROLYZER AND FUEL CELL 

Even though the electrolyzer consumes electricity to generate 

hydrogen whilst the fuel cell uses hydrogen to generate 

electricity, they cannot operate simultaneously to maintain a 

continuous loop where electrolyzer takes electricity from the 

fuel cell and the fuel cell takes the hydrogen from the 

electrolyzer. This is because there will be loss in both 

processes. Therefore, two binary variables 𝜇𝐸𝐿 and 𝜇𝐻𝐹𝐶 are 

used to indicate the device operating status: 1 as operating 

and 0 as not operating. No heat energy could be retrieved 

from a conventional fuel cell during the electricity generation 

process. However, if a Solid Oxide Fuel Cell (SOFC) is used, 

the resulted heat from electricity generation could be 

captured and reused. Assume the heat generated from SOFC 

is used to boil the water and the resulted hot water power is 

80% of electricity power counterpart of SOFC. The power 

relationship and constraints of the electrolyzer and fuel cell 

are presented by equations (27) to (33). 

 𝑃𝐸𝐿 = 𝑣ℎ𝑠𝑡.𝑖 ∙ 𝛿𝐸𝐿 (27) 

 𝑃𝐻𝐹𝐶 = 𝑣𝐻2.𝐻𝐹𝐶 ∙ 𝛿𝐻𝐹𝐶 (28) 

 𝑄𝐻𝐹𝐶 = 0 ∙ 𝑃𝐻𝐹𝐶  𝑜𝑟 𝑄𝐻𝐹𝐶 = 0.8 ∙ 𝑃𝐻𝐹𝐶  (29) 

 0 ≤ 𝑣ℎ𝑠𝑡.𝑖 ≤ 𝑣ℎ𝑠𝑡.𝑖
𝑚𝑎𝑥 ∙ 𝜇𝐸𝐿 (30) 

 0 ≤ 𝑣𝐻2.𝐻𝐹𝐶 ≤ 𝑣𝐻2.𝐻𝐹𝐶
𝑚𝑎𝑥 ∙ 𝜇𝐻𝐹𝐶  (31) 

 𝜇𝐸𝐿 + 𝜇𝐻𝐹𝐶 ≤ 1 (32) 

 𝜇𝐸𝐿 , 𝜇𝐻𝐹𝐶 ∈ {0,1} (33) 

3) CONSTRAINTS OF ELECTRIC BOILER AND HEAT 

EXCHANGER 

Electric boilers and heat exchange devices are all devices that 

provide hot water power, and the constraints are presented by 

equations (34) to (37). 

 𝑄𝐸𝐵 = 𝑃𝐸𝐵 ∙ 𝜂𝐸𝐵 (34) 

 0 ≤ 𝑄𝐸𝐵 ≤ 𝑄𝐸𝐵
𝑚𝑎𝑥 (35) 

 𝑄𝐻𝐸.𝑤𝑎𝑡𝑒𝑟 = 𝑄𝐻𝐸.𝑠𝑚𝑜𝑘𝑒 ∙ 𝜂𝐻𝐸 (36) 

 0 ≤ 𝑄𝐻𝐸.𝑤𝑎𝑡𝑒𝑟 ≤ 𝑄𝐻𝐸.𝑤𝑎𝑡𝑒𝑟
𝑚𝑎𝑥  (37) 

4) CONSTRAINTS OF COOLING AND HEATING DEVICES 

The cooling and heating system consist of absorption chiller, 

heat pump and electric cooler. In terms of the absorption 

chiller, it will use the energy from smoke and hot water to 

drive the cooling process. For the heat pump, it can consume 

electricity to implement either cooling or heating process. In 

principle, the cooling process can be achieved by the 

absorption chiller, heat pump and electric cooler whilst the 

heating process can only be implemented by the heat pump. 

Two variables 𝜇𝑐 and 𝜇ℎ are employed to denote the working 

status of the cooling and heating process; 𝜇𝑐 becomes 1 when 

cooling process starts and 𝜇ℎ turns 1 when heating process 
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begins. The power relationship among the absorption chiller, 

heat pump and electric cooler and the constraints are defined 

in equations (38) to (48). 

① Absorption chiller 

 𝑄𝐴𝐶 = 𝜂𝐴𝐶 ∙ (𝑄𝐴𝐶.𝑠𝑚𝑜𝑘𝑒 + 𝑄𝐴𝐶.𝑤𝑎𝑡𝑒𝑟) (38) 

 0 ≤ 𝑄𝐴𝐶 ≤ 𝑄𝐴𝐶
𝑚𝑎𝑥 ∙ 𝜇𝑐 (39) 

 𝑄𝐴𝐶.𝑠𝑚𝑜𝑘𝑒 , 𝑄𝐴𝐶.𝑤𝑎𝑡𝑒𝑟 ≥ 0 (40) 

② Heat pump 

 𝑃𝐻𝑃 = 𝑄𝐻𝑃.ℎ 𝐶𝑂𝑃𝐻𝑃.ℎ⁄ + 𝑄𝐻𝑃.𝑐 𝐶𝑂𝑃𝐻𝑃.𝑐⁄  (41) 

 0 ≤ 𝑄𝐻𝑃.ℎ ≤ 𝑄𝐻𝑃.ℎ
𝑚𝑎𝑥 ∙ 𝜇ℎ (42) 

 0 ≤ 𝑄𝐻𝑃.𝑐 ≤ 𝑄𝐻𝑃.𝑐
𝑚𝑎𝑥 ∙ 𝜇𝑐 (43) 

③ Electric cooler 

 𝑄𝐸𝐶 = 𝐶𝑂𝑃𝐸𝐶 ∙ 𝑃𝐸𝐶  (44) 

 0 ≤ 𝑄𝐸𝐶 ≤ 𝑄𝐸𝐶
𝑚𝑎𝑥 ∙ 𝜇𝑐 (45) 

④ Cooling and heating process variables 

 𝜇ℎ, 𝜇𝑐 ∈ {0,1} (46) 

Note: if the heating load 𝐿𝑡𝑎 = 0, 

 𝜇ℎ = 0 (47) 

Note: if the cooling load 𝐿𝑐𝑎 = 0, 

 𝜇𝑐 = 0 (48) 

E. Constraints of electrical power flow 

By default, the IES system either purchases or sell electricity 

from/to the power grid at any given period and there will be 

no simultaneous bi-directional electrical power flow. Two 

variables 𝜇𝑏  and 𝜇𝑠  can be used to represent the electricity 

buying and selling process: 𝜇𝑏 = 1 means the IES system is 

buying electricity from the grid and 𝜇𝑠 = 1 suggests selling 

electricity to the grid. The constraints of electrical power 

flow are shown in equations (49) to (52). 

 0 ≤ 𝑃𝑔𝑟𝑖𝑑.𝑏 ≤ 𝑃𝑔𝑟𝑖𝑑.𝑏
𝑚𝑎𝑥 ∙ 𝜇𝑏 (49) 

 0 ≤ 𝑃𝑔𝑟𝑖𝑑.𝑠 ≤ 𝑃𝑔𝑟𝑖𝑑.𝑠
𝑚𝑎𝑥 ∙ 𝜇𝑠 (50) 

 𝜇𝑏 + 𝜇𝑠 ≤ 1 (51) 

 𝜇𝑏 , 𝜇𝑠 ∈ {0,1} (52) 

III. System Day-Ahead Economic Dispatch 

The day-ahead economic dispatch of the system described in 

this paper is to predict the output and load data of renewable 

energy in each period of the next day in the previous day. 

The optimization algorithm aims to minimize the 24-hour 

system operation cost. In general, a single day is divided into 

24 time slots and all devices of the IES system will be 

dispatched based on the forecast of system electrical load, hot 

water load, (air) heating and cooling load, wind generation 

and solar generation. In this section, six groups of forecast 

data will be used as a benchmark for system planning. It is 

worth noting that there will be error between the actual and 

forecast data and CVaR and RO approaches are proposed to 

reduce the impact of the error and improve the accurateness 

of the algorithm. 

A. Deterministic method: mixed integer linear 

programing 

Without considering the uncertainty of the predicted value, 

that is, without considering the risk caused by the difference 

between the actual value and the predicted value. The system 

operation cost can be divided into three categories: cost of 

buying natural gas ( 𝐶𝑛𝑔 ), electricity consumption cost 

(𝐶𝑔𝑟𝑖𝑑.𝑏) and revenue obtained from selling surplus electricity 

to grid (𝐶𝑔𝑟𝑖𝑑.𝑠), where the unit price of purchasing natural 

gas and selling surplus electricity are fixed. On the other 

hand, there are three price bands when buying electricity 

from grid, depending on the time of buying. Equations (53) 

to (55) show how the cost value of each category can be 

derived. 

 𝐶𝑛𝑔 = 𝑐𝑛𝑔 ∙ ∑ (𝑣𝑛𝑔
𝑡 ∙ ∆𝑡)24

𝑡=1  (53) 

 𝐶𝑔𝑟𝑖𝑑.𝑏 = ∑ (𝑃𝑔𝑟𝑖𝑑.𝑏
𝑡 ∙ ∆𝑡 ∙ 𝑐𝑔𝑟𝑖𝑑.𝑏

𝑡 )24
𝑡=1  (54) 

 𝐶𝑔𝑟𝑖𝑑.𝑠 = 𝑐𝑔𝑟𝑖𝑑.𝑠 ∙ ∑ (𝑃𝑔𝑟𝑖𝑑.𝑠
𝑡 ∙ ∆𝑡)24

𝑡=1  (55) 

Mixed integer linear programing needs to meet the 

equipment operation constraints and strictly meet the bus 

energy balance constraints. The objective function to 

minimize the system operation cost and subjected to various 

constraints can be expressed as 

Objective:      min (𝐶𝑛𝑔 + 𝐶𝑔𝑟𝑖𝑑.𝑏 − 𝐶𝑔𝑟𝑖𝑑.𝑠) 

Constraints:      (1)~(6), (9), (10), (17)~(55) 

B. Uncertainty methods 

In the system described in this paper, all predicted values are 

uncertain. The output of PV and wind power is affected by 

the weather and the load is affected by people. These 

uncertainties lead to the uncertainty of the operation of all 

equipment in the system. In the current planning, there will 

be a risk that the output cannot meet the load demand and the 

system operation cost is too high. To this end, the CVaR 

model and the robust optimization model are separately built 

to plan the system and reduce the risks. 

1) UNCERTAINTY METHOD 1: CVAR MODEL 

Since there is no historical data, a simple Monte Carlo 

simulation method is used here to calculate CVaR. It is 

assumed the number of Monte-Carlo simulations is 𝑁 and the 

confidence level is 𝛼 . All known values will follow the 

normal distribution with expected uncertainty of 𝐸𝑃  and 

standard deviation of σ𝑡. The forecast values at a later time 

slot would be less accurate that those at an earlier slot. 

Assume Y is a real number greater than 24, σ𝑡  can be 

calculated as: 

 σ𝑡 = 𝑡 ∙ 𝐸𝑃 𝑌⁄  (56) 

When generating a random number based on the 

probability distribution of the uncertainty, it is necessary to 

satisfy that all the uncertainties 𝜔  are positive values, and 

that the power of the photovoltaic and wind power does not 

exceed the maximum value. 

 𝜔 ≥ 0 (57) 

 𝜔𝑃𝑉 ≤ 𝑃𝑃𝑉
𝑚𝑎𝑥 (58) 

 𝜔𝑊 ≤ 𝑃𝑊
𝑚𝑎𝑥 (59) 

The calculation method of the system running cost 𝐶𝐵𝑖𝑙𝑙
𝑖  

for each simulation is the same as the objective function of 

Deterministic method, and the expectation of the system 

running cost is the average value of each simulation running 

cost, which are expressed in equations (60) and (61), 

respectively. 
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 𝐶𝐵𝑖𝑙𝑙
𝑖 = 𝐶𝑛𝑔

𝑖 + 𝐶𝑔𝑟𝑖𝑑.𝑏
𝑖 − 𝐶𝑔𝑟𝑖𝑑.𝑠

𝑖 (𝑖 = 1,2, … , 𝑁) (60) 

 𝐸𝐵𝑖𝑙𝑙 = ∑ 𝐶𝐵𝑖𝑙𝑙
𝑖𝑁

𝑡=1 𝑁⁄  (61) 

In this paper, the objective function of CVaR is defined as 

the CVaR whose operating cost exceeds the expected 

operating cost. In conventional CVaR method, a prerequisite 

is the value of VaR which make it much more complex to 

solve the equation. According to [25], the CVaR could be 

derived without knowing the value of VaR. This approach is 

applied in this study to obtain the CVaR when the actual 

system operation cost exceeds the expected value. Two 

intermediate variables 𝜉 and 𝜙𝑖 are used to calculate CVaR 

and 𝜉  represents VaR. The proposed objective function is 

equivalent to CVaR, shown in equations (62) to (64). 

 Objective:    min 𝜉 + ∑ 𝜙𝑖𝑁
𝑡=1 /[𝑁 ∙ (1 − 𝛼)] (62) 

 Constraints:      𝜙𝑖 ≥ 𝐶𝐵𝑖𝑙𝑙
𝑖 − 𝐸𝐵𝑖𝑙𝑙 − 𝜉 (63) 

   𝜙𝑖 ≥ 0 (64) 

After combining CVaR, the objective function of the 

system planning is changed to the sum of expected operation 

cost and CVaR (when the operation cost outnumbers the 

expected value). At this point, it becomes a multi-objective 

plan. We need to define the weight of the CVaR. The weight 

coefficient 𝛽 of the CVaR is in the range of 0 and 1. 

 0 ≤ 𝛽 ≤ 1 (65) 

The CVaR model also needs to meet the energy bus 

constraints and equipment operation constraints. Unlike the 

common optimization, the known quantities of each 

simulation in the CVaR model are different. Each energy bus 

cannot take the equal sign, and the inequality is used to 

satisfy the supply. At the same time, the constraints (60) and 

(61) for solving CVaR shall also be satisfied. The objective 

function and constraints of the CVaR model are: 

Objective:      𝐸𝐵𝑖𝑙𝑙 + 𝛽 ∙ 𝑅𝐶𝑉𝑎𝑅 

Constraints:      (1)~(6), (9), (10), (17)~(61), (63)~(65) 

2) UNCERTAINTY METHOD 2: ROBUST OPTIMIZATION 

MODEL 

In this paper, a single-stage robust optimization model is 

used, without knowing the probability distribution of 

uncertain quantities. Instead, the robust optimization model is 

built by describing the fluctuation of parameters through an 

uncertain set, such as load, wind power and photovoltaic 

power generation. The uncertainty fluctuation is denoted as 

𝐸𝑃 . The amplitude of the fluctuation is 𝜏𝑡 , and the 

uncertainty of defining the uncertainty is 𝑟𝑡, which is used to 

control the amplitude of the uncertainty fluctuation. Similar 

to Uncertainty method 1, the uncertainty in the robust 

optimization model must also be a positive number. The 

value of photovoltaic and wind power should be less than the 

maximum value. Then the uncertainty set of the uncertainty 

𝜔 can be expressed as 

 𝛺 = {𝜔|
𝐸𝑃 − 𝑟𝑡 ∙ 𝜏𝑡 ≤ 𝜔 ≤ 𝐸𝑃 + 𝑟𝑡 ∙ 𝜏𝑡 ,

𝜔 ≥ 0, 𝜔𝑃𝑉 ≤ 𝑃𝑃𝑉
𝑚𝑎𝑥 , 𝜔𝑊 ≤ 𝑃𝑊

𝑚𝑎𝑥} (66) 

 0 ≤ 𝑟𝑡 ≤ 1 (67) 

Because robust optimization with box set tends to be 

conservative, a robust control factor Γ𝑡  is introduced. 

Equation (65) states that the control factor Γ𝑡 is equivalent to 

the sum of uncertainty level 𝑟𝑡 for all uncertain variables and 

the robustness can be altered by manipulating the magnitude 

of Γ𝑡. 

 Γ𝑡 = 𝑟𝑇𝑊
𝑡 + 𝑟𝐸

𝑡 + 𝑟𝑐𝑎
𝑡 + 𝑟𝑡𝑎

𝑡 + 𝑟𝑊
𝑡 + 𝑟𝑃𝑉

𝑡  (68) 

The decision variable is represented by 𝑥 . 𝑓  and 𝑔  are 

functions of 𝑥 where 𝑓 is identical to the objective function 

of Deterministic method and 𝑔 is a set of common planning 

constraints and uncertainty constraints as described in (66) ~ 

(68). The busbar constraint is also changed so that the supply 

will be either greater than or equal to the demand. 𝜔 is the 

uncertainty whilst 𝛺  is the uncertainty set. The objective 

function and constraints of the robust optimization can be 

presented as: 
Objective: 𝑚𝑖𝑛 𝑚𝑎𝑥

 𝑥 𝜔
    𝑓

(𝑥, 𝜔)
 

 

Constraints:      𝑔(𝑥, 𝜔) ≤ 0   ∀𝜔 ∈ 𝛺 

IV. CASE STUDIES 

Table II lists the parameters of each device within a HCNG 

penetrated IES. The unit price of buying natural gas and 

selling electricity is ￥ 3.1 /N𝑚3  and ￥ 0.1 /N𝑚3 , 

respectively. Figure 2 illustrates the three price bands and the 

corresponding time periods, when electricity is purchased 

from grid. The forecast load, wind generation and solar 

generation are plotted in Figure 3 and Figure 4. For the 

hydrogen storage tank, the initial amount of hydrogen being 

stored is 10 N𝑚3. The fuel cell used in the case study is the 

conventional model which means the heat produced from the 

electricity generation process will not be reused. Analysis of 

all cases is encoded using YALMIP and the equations are 

solved using CPLEX 12.8.0. In particular, Uncertainty 

Method 2 uses the Robust optimization module in YALMIP 

to solve. 
TABLE II 

MAJOR PARAMETERS OF DEVICES IN HCNG PENETRATED IES 

Device Parameter Value 

CHP 

𝑣𝑛𝑔
𝑚𝑎𝑥 50 

𝑀𝑁 80 

𝑃𝐶𝐻𝑃
𝑚𝑎𝑥 150 

𝑃𝐶𝐻𝑃
𝑚𝑖𝑛 30 

𝑅 50 

Fuel Cell 
𝛿𝐻𝐹𝐶 1 

𝑣𝐻2.𝐻𝐹𝐶
𝑚𝑎𝑥  10 

Heat Exchanger 
𝜂𝐻𝐸 0.85 

𝑄𝐻𝐸.𝑤𝑎𝑡𝑒𝑟
𝑚𝑎𝑥  30 

Electric Cooler 
𝐶𝑂𝑃𝐸𝐶 4 

𝑄𝐸𝐶
𝑚𝑎𝑥 50 

Electrolyzer 𝛿𝐸𝐿 5 

Grid 
𝑃𝑔𝑟𝑖𝑑.𝑏

𝑚𝑎𝑥  100 

𝑃𝑔𝑟𝑖𝑑.𝑠
𝑚𝑎𝑥  100 

Electric Boiler 
𝜂𝐸𝐵 0.95 

𝑄𝐸𝐵
𝑚𝑎𝑥 50 

Absorption 

Chiller 

𝜂𝐴𝐶  0.8 

𝑄𝐴𝐶
𝑚𝑎𝑥 100 

Hydrogen Storage 

Tank 

𝑉𝐻2

𝑚𝑎𝑥 80 

𝑣ℎ𝑠𝑡.𝑜
𝑚𝑎𝑥  10 
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Device Parameter Value 

𝑣ℎ𝑠𝑡.𝑖
𝑚𝑎𝑥 20 

Heat Pump 

𝐶𝑂𝑃𝐻𝑃.𝑐 3.85 

𝐶𝑂𝑃𝐻𝑃.ℎ 4 

𝑄𝐻𝑃.𝑐
𝑚𝑎𝑥 50 

𝑄𝐻𝑃.ℎ
𝑚𝑎𝑥 50 

 

 

FIGURE 2. Load forecasting, PV wind power output forecast and time-
of-use electricity price. 

 

A. Deterministic method 

Using the methods and constraints defined in Chapter II and 

III, the simulation results indicates the system operation cost 

of a single day is ￥1129.5. The program running time is 

0.5579s. 

1) OPTIMIZATION RESULT ANALYSIS 

Figure 3 to Figure 5 show the optimization results of three 

important busbars in the system respectively — the electric 

busbar, the hot water busbar and the air busbar. 

Electric busbar: The electrical energy within the system is 

mainly derived from the CHP, the photovoltaics and the wind 

power. From 6 to 22, the CHP keeps operating and provides 

the base electrical energy. When the photovoltaics (from 6 to 

18) and the wind power (19 – 22) are available, they can 

contribute to the total electricity generation and thus reduce 

the output from the CHP. In the period when CHP is not 

running, the system's electrical power is mainly generated 

from the wind power. 

Hot water busbar: When the CHP is in operation from 6 to 

22, the hot water load is high (larger than 30 kW) and most 

of the hot water power comes from the CHP. During this 

period, the hot water power provided by the heat exchanger 

and the electric boiler is very small. When the CHP is not 

running, the hot water demand is met by the electric boiler. 

Air busbar: The cooling power is mainly provided by the 

energy recovered from the hot water and the flue gas through 

the absorption chiller. Note that the vast majority of the 

power contained in the hot water and all power within flue 

gas are supplied by the CHP. Only a small amount of cooling 

power is provided by the electric cooler. 

 

FIGURE 3. Electric busbar optimization results. 

 

FIGURE 4. Hot water busbar optimization results. 

 

 

FIGURE 5. Air busbar optimization results. 

 

2) UTILIZATION OF PHOTOVOLTAIC WIND POWER 

As mentioned earlier, the power of photovoltaics is fully 

utilized during the day. During the night time, the power of 

wind is high and is greater than the load of the system. The 
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electric hydrogen production equipment can make full use of 

such additional wind power by triggering the hydrogen 

production process to fill the hydrogen storage tank. In this 

way, the required amount of hydrogen produced from other 

energy sources during the day time can be reduced and thus 

the required energy within the system can be reduced. Figure 

6 plots the hydrogen volume change in a hydrogen storage 

tank. In the period of 1 to 7, the system uses wind power to 

produce hydrogen which can provide energy during the day. 

From the simulation results, the wind power is sold to the 

grid for a total amount of 58.2 kWh from 22 to 24, and the 

utilization rate of wind power was 89.4%. 

 

FIGURE 6. Hydrogen volume change in hydrogen storage tank. 

 

When the electrolysis cell, hydrogen storage tank and 

hydrogen fuel cell are removed for the simulation, the 

operating cost is ￥1168.9, which is higher than that of the 

system containing these devices (￥1129.5). Moreover, a 

larger amount of wind power is sold to the power grid and 

the utilization rate of wind power is only 28.9%. This results 

in the fact that more power needs to be purchased from the 

power grid during the peak hours during the day time. Figure 

7 shows the influence of whether the system contains 

hydrogen production and storage equipment on wind energy 

utilization, power grid purchase and natural gas consumption. 

Obviously, after the employment of hydrogen and hydrogen 

storage equipment, the system operating costs are reduced 

and the utilization of wind energy within the IES is more 

efficient. As a result, the electricity demand from the grid is 

reduced. 

 

FIGURE 7. The influence of hydrogen production and storage devices 
on wind energy utilization, power grid purchase and natural gas 
consumption. 

 

3) HYDROGEN UTILIZATION 

It is mentioned in [6] that the change of hydrogen content in 

the fuel of CHP unit will change the electric-heat ratio of 

CHP output power, and the increase of hydrogen content will 

raise the electric-heat ratio. The hydrogen content change of 

CHP fuel in the system is shown in Figure 8. In order to 

study the relationship between load electro-heating ratio and 

CHP output electro-heating ratio, the electro-heating ratio of 

the system load is defined as electric load divided by the sum 

of hot water load and air cold load. From previous analysis, 

the loading on electric busbar, hot water busbar and air 

busbar can reflect the operation of the system. It can be 

observed from Figure 8 that the CHP output electric-heating 

ratio and the system load electric-heating ratio follows the 

same pattern and the load electric-heating ratio is larger than 

the CHP output electric-heating ratio because the electric 

energy in the load also includes the photovoltaic output. 

During the period from 7 to 10, although the load electro-

thermal ratio is changing, the value stays at high level and the 

hydrogen content of the CHP fuel reaches the maximum 

value which is 20%. In the period of 11 to 17, the 

photovoltaic output grows and thus the electric-heating ratio 

of CHP decreases. Between 20 pm and 21 pm, the energy 

ratio provided by CHP is not particularly large, and the load-

to-heat ratio is difficult to reflect the CHP output electric-to-

heat ratio. In the case where electric energy is mainly 

supplied by the CHP, when the hydrogen content in the CHP 

fuel does not reach the peak value, the hydrogen content of 

the CHP fuel changes as the load electro-thermal ratio 

fluctuates. In this way, the system can plan the hydrogen 

content of the CHP fuel according to the load electro-thermal 

ratio so that the hydrogen can be utilized more efficiently. 
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FIGURE 8. Volume proportion of hydrogen and power to heat ratio of 
CHP and load. 

 

4) INFLUENCE OF SOFC ON IES 

Among all types of fuel cell, the SOFC operates at the 

highest temperature. SOFC is known as high temperature 

fuel cell which can provide large amount of heat that can be 

reused for CHP system and thus improve the efficiency of 

fuel utilization. However, if the simulation case uses SOFC 

and optimization plan merely based on forecast data, the 

system operation cost is ￥1128.2 which is only ￥1.3 less 

than the case where conventional hydrogen fuel cell is used. 

It should be noted that the cost of SOFC is very high. In 

addition, the SOFC consumes more hydrogen than the CHP 

and only 23.7% of hydrogen will go to the CHP, which will 

dramatically reduce the proportion of hydrogen within the 

CHP, as illustrated in Figure 9. 

 

FIGURE 9. Volume proportion of hydrogen within CHP when using 
SOFC and conventional hydrogen fuel cell. 

 

B. Uncertainty methods 

1) UNCERTAINTY METHOD 1 

In the Uncertainty method 1 described in section III, Y is 

configured as 100 and the confidence level 𝛼 as 0.95. The 

number of Monte Carlo simulations is 500 and they are run 

under different CVaR weights. Figure 10 illustrates the 

minimum operating cost expectations and the CVaR. When 

CVaR is not considered (i.e. CVaR weight = 0), the operating 

cost is expected to be ￥1214.9, but the CVaR is very large 

at 422.4. When the weight of CVaR gradually increases from 

0, although the expectation of the operating expense only 

slightly increase by less than ￥20, the CVaR decreases to 

approximately 100. After the weight exceeds 0, the values of 

the cost expectation and the CVaR do not obviously change. 

From the optimization results, the power provided by the 

electrical busbar, hot water busbar and air busbar is greater 

than the load, and the later the time period is, the greater the 

gap between the provided power and the load will be. 

 

 

FIGURE 10. Operational expectations and CVaR values under different 
CVaR weights. 

 

In order to balance the electric busbar, the purchased 

power 𝑃𝑔𝑟𝑖𝑑.𝑏 and the sold power 𝑃𝑔𝑟𝑖𝑑.𝑠 are set to be change 

freely in this section and in the robust optimization section 

(Because the system does not have access to the heating 

network and the air network, the balance of the hot water 

busbar and the balance of the air busbar are not considered at 

present. The only requirement is to satisfy the demand that is 

more than or equal to the electricity supply). Because the 

operating cost of the system is only related to the purchase 

and sale of electric power as well as buying of natural gas 

(other related costs are negligible), the loading of the 

electrical bus can reflect the change of the operating cost of 

the entire system. Take the case where the CVaR weight is 1 

as an example. Figure 11 presents the optimization result of 

the electrical busbar when the interaction with the grid is 

excluded. In the period when the output of the photovoltaic 

and wind power is small and the CHP operation is required, 

the electric power provided by the system is less than the 

load. This insufficient power should have been supplemented 

by purchasing electricity from the grid. When the wind 

power is relatively large, the excess electricity should have 

been sold to the grid. When the electrical load fluctuates 
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within appropriate range, the scheduled operating plan can 

meet the operational requirements. 

 

FIGURE 11. When the CVaR weight is 1, the electrical bus optimization 
result of the purchase and sale of electricity is removed. 

 

2) UNCERTAINTY METHOD 2 

Uncertainty method 2 described in section III is used for day-

ahead planning. In order to facilitate the comparison with 

Uncertainty method 1, the uncertainty set of the uncertainty 

is set as the confidence interval of the uncertainty in the 

upper section of  Uncertainty method 1. When the confidence 

level 𝛼 is 0.95, the confidence range is [𝐸𝑃 − 1.96σ𝑡 , 𝐸𝑃 +
1.96σ𝑡 ] with resulted uncertainty fluctuation 𝜏𝑡  of 1.96σ𝑡 . 

The system is simulated by taking a number of different Γ𝑡 

values between 0 to 6. The expected values of the running 

cost varying with Γ𝑡 are shown in Figure 12. When Γ𝑡 is 0, 

Uncertainty method 2 is converted to Deterministic method, 

and the running cost is also ￥1129.5. The operating cost 

expectation increases when Γ𝑡  grows, and the slope in the 

interval (1, 2) becomes smaller. When Γ𝑡 is 2, the operating 

cost expectation reaches the maximum value of ￥1687.2, 

after which it does not increase when Γ𝑡  keep growing 

beyond 2. Similar to Uncertainty method 1, the optimization 

result of Uncertainty method 2 is that the power provided by 

the electric busbar, the hot water busbar and the air busbar is 

greater than the load, and the gap between the provided 

power and the load will become larger in later period. 

 

 

 

FIGURE 12. Uncertainty method 2 of operating costs under different 
robustness control factors. 

 

Figure 13 shows the electrical bus optimization results 

using Uncertainty method 2 when the grid interaction is 

removed ( Γ𝑡 = 0.25 ). Similar to Uncertainty method 1, 

when the CHP is not working, the wind power is larger than 

the load, and the system shall sell electricity to the grid. 

However, the CHP operating period is different from 

Uncertainty method 1. In the period of 10 to 17, the power 

provided by the IES is greater than the load. If the load 

fluctuates downward or the wind power and PV output 

fluctuates upwards, the excess power of the system needs to 

be sold to the grid, which is not efficient from the perspective 

of energy and economy. Therefore, this optimization scheme 

tends to be conservative during the period of CHP operation. 

 

FIGURE 13. Electrical bus optimization results for Uncertainty method 2 
when grid interaction is removed(𝚪𝒕 = 𝟎. 𝟐𝟓). 

 

3) ANALYSIS OF WIND POWER UTILIZATION AND 

HYDROGEN UTILIZATION 

In this section, Uncertainty method 1 with a CVaR weight of 

1 and Uncertainty method 2 with a robustness control factor 

of 0.25 are used for wind power utilization and hydrogen 

utilization analysis. 



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2925197, IEEE Access

 

VOLUME XX, 2017 1 

① Analysis of optimization results of each busbar 

Figure 12 and Figure 13 show the results of the electrical 

busbar optimization using Uncertainty method 1 and 

Uncertainty method 2 after removing the interaction with the 

grid. If Deterministic method is used, the electrical energy of 

the system is mainly derived from the CHP, photovoltaics 

and wind power. In all three methods, the period of CHP 

operation is 6 –  22. The power of the system is mostly 

derived from CHP during the period of CHP operation. 

Whilst in the period when CHP is not running, the power of 

the system is mainly produced from wind power. The hot 

water busbar and the air busbar optimization results of 

Uncertainty method 1 and Uncertainty method 2 are similar 

to Deterministic method. 

② Utilization of wind power 

All three methods generate hydrogen from the electrolysis 

cell at night, which is stored in the hydrogen storage tank. 

The total amount of hydrogen produced is shown in Table III 

and it can be observed that all three methods generate similar 

amount of hydrogen. Referring to the operation plan, the 

period of hydrogen generation is from 23 pm to 8 am the 

next day. 
TABLE III 

TOTAL AMOUNT OF HYDROGEN PRODUCED BY DIFFERENT METHODS 

Method 
Deterministic 

method 

Uncertainty 

method 1 

Uncertainty 

method 2 

Total amount 

of hydrogen 

produced 

(N𝑚3) 

67.58 66.51 67.59 

 

③ Hydrogen utilization 

In Deterministic method, the hydrogen content in the CHP 

fuel varies with the load electro-thermal ratio, and this 

relationship is also identified in Uncertainty method 1 and 

Uncertainty method 2. As shown in Figure 14, the trend of 

Uncertainty method 2 and Deterministic method is almost the 

same in the period of 8 to 17, because the uncertain variables 

in Uncertainty method 2 are centered on the predicted values 

and there is a close relationship between them. The trend of 

Uncertainty method 1 is similar to Deterministic method only 

in the period of 12 to 15. This is because the planning of 

Uncertainty method 1 needs to meet all conditions of the 500 

sets of Monte Carlo simulations and eventually it only 

reflects the statistical characteristics of the 500 simulations to 

some extent. Because various energy busbars must strictly 

abide by the characteristic where the supply is greater than 

demand, the changing pattern of the CHP fuel hydrogen 

content in Uncertainty method 1 is different from 

Deterministic method. If the 500 Monte Carlo simulations 

are independently optimized, the statistical trend should be 

the same as Deterministic method for most of the time. 

 

FIGURE 14. Changes in hydrogen content of CHP fuels in three methods. 

 

C. Comparison of optimization results 

In order to validate the resistance of proposed optimization 

approaches (i.e. mixed integer linear programing, CVaR 

model, robust optimization model) to the fluctuation in the 

forecast data, two groups of actual data are established. Out 

of these data, one group is built by introducing massive 

variation to the forecast data whilst the other group is 

constructed by adding tiny fluctuation. The values are shown 

in Figure 15. From Figure 10 and Figure 11, the expected 

system operation cost is similar when CVaR weight is 1 (in 

approach: Uncertainty method 1) and when Γ𝑡  is 0.25 (in 

approach: Uncertainty method 2). Hence, these two 

optimization scenarios are selected for the investigation of 

fluctuation resistance. There are three main points of 

comparison: 

- whether the optimization approach can meet the 

demand of each energy busbar given that the supply is 

greater than or equal to the demand 

- the running cost 

- the speed of the program running. 

 

FIGURE 15. Comparison of fluctuation size and predicted values. 

 

1) VERIFICATION THAT THE SUPPLY ON THE BUSBAR 

IS GREATER THAN OR EQUAL TO THE DEMAND 
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The optimization results/plans need to be validated whether 

they can satisfy the operation requirements. More specifically, 

the balancing equations of the energy-carrier busbars (1) to 

(4) are transformed to equations (69) to (71). If these 

equations can be satisfied for all time intervals, the 

optimization results/plans can satisfy the operation 

requirements. Note that equation (66) of electrical busbar is 

slightly different because it is assumed the buying and selling 

of electricity can flexibly change without restriction. 

−𝑃𝑔𝑟𝑖𝑑.𝑏
𝑚𝑎𝑥 ≤ 𝑃𝑃𝑉 + 𝑃𝑊 + 𝑃𝐻𝐹𝐶 + 𝑃𝐶𝐻𝑃 − (𝐿𝐸 + 𝑃𝐻𝑃 + 𝑃𝐸𝐶 +

𝑃𝐸𝐿 + 𝑃𝐸𝐵) ≤ 𝑃𝑔𝑟𝑖𝑑.𝑠
𝑚𝑎𝑥   (69) 

𝑄𝐻𝐹𝐶 + 𝑄𝐻𝐸.𝑤𝑎𝑡𝑒𝑟 + 𝑄𝐶𝐻𝑃.𝑤𝑎𝑡𝑒𝑟 + 𝑄𝐸𝐵 − (𝐿𝐻𝑊 +
𝑄𝐴𝐶.𝑤𝑎𝑡𝑒𝑟) ≥ 0  (70) 

 𝑄𝐶𝐻𝑃.𝑠𝑚𝑜𝑘𝑒 − (𝑄𝐴𝐶.𝑠𝑚𝑜𝑘𝑒 + 𝑄𝐻𝐸.𝑠𝑚𝑜𝑘𝑒) ≥ 0 (71) 

 𝑄𝐻𝑃.𝑐 + 𝑄𝐻𝑃.ℎ + 𝑄𝐸𝐶 + 𝑄𝐴𝐶 − (𝐿𝑐𝑎 + 𝐿𝑡𝑎) ≥ 0 (72) 

2) SYSTEM OPERATION COST 

The operating costs of the system are mainly composed of 

electricity purchasing cost, natural gas purchasing cost and 

electricity selling revenue. The amount of electricity being 

purchased and sold can be derived from equation (69). 

Furthermore, the cost of buying natural gas and electricity as 

well as the revenue of selling electricity can be calculated 

using equations (53) to (55). The resulted system operation 

cost is illustrated by equation (73). 

 𝐶𝑉𝑒𝑟 = 𝐶𝑛𝑔 + 𝐶𝑔𝑟𝑖𝑑.𝑏 − 𝐶𝑔𝑟𝑖𝑑.𝑠 (73) 

The comparison results of section (1) and (2) are shown in 

Table IV. The * indicates that the supply cannot meet the 

demand. 
TABLE IV 

OPERATING COSTS OF DIFFERENT METHODS UNDER DIFFERENT 

FLUCTUATIONS 

Method 

System Operation Cost (￥: yuan) 

Deterministic 

method 

Uncertainty 

method 1 

(𝛽 = 1) 

Uncertainty 

method 2 

(Γ𝑡 = 0.25) 

Uncertainty 

method 2 

(Γ𝑡 = 1) 

No 

fluctuation 
￥1129.5 ￥1174.6 ￥1190.6 ￥1406.7 

Small 

fluctuation 
￥1174.8* ￥1212.7 ￥1205.2 ￥1413.3 

Large 

fluctuation 
￥1297.2* ￥1333.4 ￥1312.3* ￥1454.0 

 

Regardless of the fluctuations, the running cost of 

Deterministic method is always the lowest. However, the 

associated planning scheme cannot meet the operational 

needs. By simply analyzing the uncertainty in load and 

output, if the load increases or the output decreases, both by a 

specific amount, Deterministic method scheme will not be 

able to meet the demand. 

When encountering the small fluctuations described in this 

paper, Uncertainty method 1 with weight 1 and Uncertainty 

method 2 with Γ𝑡  of 0.25 can meet the operational 

requirements. The cost of Uncertainty method 2 is 0.62% less 

than that of Uncertainty method 1. When large fluctuations 

exist, the operating cost of Uncertainty method 2 is 1.52% 

less than that of Uncertainty method 2, but Uncertainty 

method 2 with Γ𝑡  of 0.25 cannot meet the operational 

requirements of the system. Although Uncertainty method 1 

runs at a higher cost, it can operate the system regardless of 

the fluctuation size. 

In order to find a robust optimization scheme that can 

resist the aforementioned large fluctuations, the data in 

Figure 14 are verified from low Γ𝑡  to high Γ𝑡 , and it is 

discovered that when Γ𝑡=1, the planning scheme can satisfy 

the demand in the case of large fluctuations. However, the 

operating cost at this time is relatively high, and the operating 

costs in the cases of no fluctuation, small fluctuations and 

large fluctuations are 19.75%, 16.54% and 9.04% higher than 

the operating expenses of Uncertainty method 1, respectively. 

In order to analyze why Uncertainty method 2 with Γ𝑡 of 

0.25 can not meet the system operation requirements during 

large fluctuations, the air busbar is selected as the 

investigation object. The reason for choosing the air busbar is 

that this bus is the simplest busbars that is with uncertainties. 

Only the load is uncertain and this bus is enough to reflect 

the characteristics of the system planning. Figure 16 plots the 

cooling power and the cooling load corresponding to a mixed 

integer linear programing, a CVaR model with weight 1, a 

robust optimization model with Γ𝑡  of 0.25 and a robust 

optimization model with Γ𝑡 of 1 when large fluctuations are 

encountered. In three intervals near 12, 16, and 18, the 

cooling power of Deterministic method and Uncertainty 

method 2 with Γ𝑡 of 0.25 is less than the load. Consequently, 

Deterministic method and Uncertainty method 2 with Γ𝑡 of 

0.25 cannot satisfy the system operating requirements. For 

the other two optimization methods satisfying the system 

operation requirements, Uncertainty method 1 with weight 1 

has a higher output than Uncertainty method 2 with Γ𝑡 of 1 at 

any time and can thus resist greater fluctuations. 

 

FIGURE 16. Different method air busbar output and load. 

 

3) PROGRAM RUNNING TIME COMPARISON 

During the planning process, the speed of the program should 

also be considered, in addition to the performance of the 
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method. Table V summarizes the average running time of the 

program in which all three methods run 10 times under 

different conditions. Deterministic method run time is less 

than 1 second. The average running time of Uncertainty 

method 2 is only 0.2% of Uncertainty method 1 when Monte 

Carlo simulation is required to run 500 times. Even if only 10 

times of Monte Carlo simulations are performed, the time 

used is still more than twice that of Uncertainty method 2. 

Moreover, too few Monte Carlo simulations will result in 

uneven distribution of random numbers, which will affect the 

reliability of the simulation results. The recommended 

number of Monte Carlo simulations is between 200 to 500 

times. 
TABLE V 

AVERAGE RUNNING TIME OF PROGRAMS FOR DIFFERENT METHODS 

The main configuration of the computer is Intel Core-i7 8750H 2.2-GHz and 

16G 2666MHz memory. 

Method 
Deterministic 

method 

Uncertainty method 1 Uncertainty 

method 2 N=500 N=10 

Program 

running 

average 

time /s 

0.74 2810.71 12.75 5.92 

 

4) SUMMARY OF COMPARISON RESULTS 

According to the comparison results, although Deterministic 

method is the fastest, its performance is the worst and it is not 

suitable for economic dispatch. When the prediction 

accuracy is high and the external influence on the system is 

small, Uncertainty method 2 with appropriate robustness 

control factor is more appropriate because it has the 

advantages of relatively fast computing speed and relatively 

low operating cost of the system. When the environment is 

volatile and the accuracy of prediction is difficult to 

guarantee, the speed of the program should be de-prioritized, 

and Uncertainty method 1 with better risk resistance should 

be selected. 

V. CONCLUSION 

In order to absorb wind energy at night and reduce the 

amount of electricity purchased from the grid during the 

daytime, this paper deploys hydrogen generation and storage 

equipment to the integrated energy system, and supplies 

hydrogen to the CHP unit and the hydrogen fuel cells. The 

hydrogen content of the fuel can affect the output electro-

thermal ratio of the CHP which can be used to design control 

strategy to achieve the most efficient use of hydrogen. 

Taking into account the uncertainty of wind power, 

photovoltaics and load, the CVaR and the robust 

optimization can be used to reduce the risk. By simulating a 

set of predicted values for wind power, photovoltaics, and 

loads, and then constructing two sets of data based on the 

predicted values, the following conclusions can be made. 

1) Compared with the integrated energy system without 

hydrogen equipment, the HCNG penetrated integrated 

energy system described in this paper significantly 

improves the night time wind power utilization rate by 

using wind power to generate hydrogen at night, and 

consumes the corresponding stored hydrogen during the 

day time to reduce the electricity demand from the grid 

during the day.  

2) The content of hydrogen in the CHP fuel will change with 

the variation of the load electro-thermal ratio. If the CHP 

output ratio is extremely high and the hydrogen content 

does not reach the maximum value, the increase of the 

load electro-thermal ratio will increase the hydrogen 

content. Using this relationship, the efficiency of using 

hydrogen can be maximized and the operating cost can be 

reduced. 

3) When the actual value significantly deviates from the 

predicted value, Uncertainty method 1 has lower system 

operating cost and higher risk resistance capability, while 

Uncertainty method 2 has lower operating cost when the 

fluctuation is small. Considering the performance and the 

computing speed, it is ideal to use Uncertainty method 2 

when the prediction is accurate. By contrast, Uncertainty 

method 1 performs better when it is difficult to guarantee 

the prediction accuracy. 
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