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Abstract: Boundary Integral Method (BIM) has been widely and successfully applied to cavitation 

bubble dynamics, however, the physical complexities involved in the coalescence of multiple bubbles 

are still challenging for numerical modelling. In this study, an improved three-dimensional (3D) BIM 

model is developed to simulate the coalescence of multiple cavitation bubbles near a rigid wall, 

including an extreme situation when cavitation bubbles are in contact with the rigid wall. As the first 

highlight of the present model, a universal topological treatment for arbitrary coalescence is proposed 

for 3D cases, combined with a density potential method and an adaptive remesh scheme to maintain a 

stable and high-accuracy calculation. Modelling for the multiple bubbles attached to the rigid boundary 

is the second challenging task of the present study. The effects of the rigid wall are modelled using the 

method of image, thus the boundary value problem is transformed to the coalescence of real bubbles 

and their images across the boundary. Additionally, the numerical difficulties associated with the 

splitting of a toroidal bubble and self-coalescence due to the self-film-thinning process of a coalesced 

bubble are successfully overcome. The present 3D model is verified through convergence studies and 

further validated by the purposely conducted experiments. Finally, representative simulations are 

carried out to elucidate the main features of a coalesced bubble near a rigid boundary and the flow 

fields are provided to reveal the underlying physical mechanisms.   
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I. INTRODUCTION 

For a cavitation bubble near a rigid wall, the high-speed liquid jet towards the boundary and the 

shock wave emission during the final collapse phase of the bubble are responsible for cavitation 

erosion and structural damages 1-7. In practical situations, there exist a large number of cavitation 

bubbles in the flow, thus the bubble collapse pattern and jetting behaviour are strongly influenced by 

not only the structure but also nearby bubbles 8-11. Researches on multi-bubble interaction near a rigid 

wall have great significance for various applications including cavitation erosion 3, 12, ultrasonic 

cleaning 13, 14, seabed exploration 15, and biomedical applications 16.  

As the most fundamental problem and the basic unit of bubble clusters, two-bubble system has 

been studied and reported in literatures. The effects of inter-bubble distance, size difference and 

generation time on dynamics of two bubbles in the free field were experimentally investigated and 

different bubble collapse patterns were observed 17, 18. When a rigid boundary is inserted, the collapse 

pattern and jet direction of the two bubbles are inevitably changed. Chew et al 19 conducted a series of 

experiments to study the interaction between two bubbles arranged in a horizontal line and a rigid wall. 

The authors presented a graph predicting the direction of the water jets due to the combined effect of 

another bubble and the rigid wall. As the inter-bubble distance decreases, their mutual interaction will 

become stronger and coalescence of two bubbles may occur when the inter-bubble distance is 

sufficiently small. So far, there have been a few studies on the coalescence of two cavitation bubbles. 

Since the film thinning process before coalescence is inertia dominated 20, the boundary integral 

method (BIM) has been successfully used to simulate the coalescence of two explosion bubbles with 

high Reynolds numbers 21, 22. Han et al 23 numerically investigated the coalescence and collapse of 

bubble pairs near a rigid wall using an axisymmetric BIM model. It was found that a weakened pressure 

wave was emitted in the weak and intermediate interactions due to the splitting of the collapsing 

coalesced bubble in a toroidal form. Therefore, considerable attention is devoted to modelling the 

bubbles that are very close to or in contact with a rigid boundary, which is more crucial to cavitation 

erosion and other applications 3, 24-27.  

The axisymmetric configuration of two bubbles near a rigid wall is a specific situation 8, 23 and an 

arbitrary three-dimensional configuration is more commonly seen in practical applications. Thus the 

prediction of the nonlinear interaction and coalescence of two bubbles requires three-dimensional 
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modelling. Numerous studies have been conducted on single bubble dynamics under different 

boundary conditions using 3D BIM 28-35. However, the complex topological treatment during bubble 

coalescence renders the development of a 3D model difficult. Besides, many gas nuclei in the flow are 

often very close or even attached to a rigid wall, and the close proximity leads to large deformation 

and distortion of bubble surface, and even singularity problems, which are general challenges in BI 

simulations 32, 36. In previous studies, the distance between the bubble surface and the nearby boundary 

is controlled to a minimum value that is no less than the mesh size 32, 36, 37. This crude treatment works 

well if the dimensionless distance (scaled by the maximum bubble radius) between the bubble centre 

and the boundary is larger than 0.5. However, a situation with smaller distance requires a more robust 

and reliable method. Given this, the first aim of this study is to develop a robust 3D model for arbitrary 

coalescence of multiple cavitation bubbles. A universal topological treatment for arbitrary coalescence 

is proposed. A density potential method 22, 38 is adopted to obtain an adaptive non-uniform mesh 

distribution for higher accuracy, in which a density potential function related to the coalescence is put 

forward. Besides, a weighted moving least-square smoother is applied to eliminate the instabilities in 

the simulation. A simple but robust remesh scheme is used to avoid the mesh distortion during the 

highly non-spherical bubble evolution and to ensure the mesh quality. As for the simulation of the 

coalesced bubble in contact with the rigid wall (defined as ‘contact cases’), an image method is 

introduced to transform the problem to the coalescence of real bubbles and their images across the 

boundary, which can then be solved with the robust topological treatment developed in the present 

study. 

After the jet impacts on the opposite face of the bubble, a toroidal bubble is formed, indicating 

the transition of the flow domain from a singly connected to a doubly connected form. The modelling 

of 3D toroidal bubble dynamics has been a challenging problem for a long time due to physical and 

numerical instabilities 30, 38. To date, very few studies have been reported focusing on 3D toroidal 

bubble dynamics. Therefore, to address this gap, an exact approach has been proposed to examine the 

dynamic behaviours of a coalesced bubble in the toroidal phase.  

This paper is organized as follows. In Section II, the mathematical model for the present physical 

problem is given, including the boundary integral method and initial conditions of cavitation bubbles. 

In Section III, the advanced numerical techniques used for the multi-bubble coalescence are introduced 
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to maintain the stability and accuracy of the three-dimensional calculation. The convergence and the 

validity of the present 3D model are proved by comparisons with the axisymmetric model and two 

experiments, respectively. Based on the numerical simulation, further results and discussions on the 

complex phenomena in multi-bubble coalescence are presented in Section IV. Finally, conclusions and 

outlook are given in Section V.  

II. PHYSICAL PROBLEM AND MATHEMATICAL MODEL 

A. Description of the physical problem 

Consider two cavitation bubbles above a rigid wall, as shown in FIG. 1. The cavitation bubble far 

away from the rigid wall is referred to as bubble 1; while in a horizontal configuration, the left bubble 

is referred to as bubble 1 and the other one is bubble 2. A Cartesian coordinate system O-xyz is adopted 

in the following modelling and discussion. The origin of the coordinate system is placed at the initial 

centre of bubble 1 and the z-axis points in the opposite direction of gravity. The definitions of some 

parameters are also given in FIG. 1. The distance between the rigid wall and the initial centres of 

cavitation bubbles are denoted by dbw1 and dbw2, respectively, the distance between the centres of two 

bubbles at the initiation moment is denoted by dbb and the maximum equivalent radii of the two bubbles 

are denoted by Rmax1 and Rmax2 (i.e., Rmax,i = [3Vmax,i/(4π)]1/3, where Vmax represents the maximum 

bubble volume). Besides, an angle parameter β is introduced to express the configuration of two 

cavitation bubbles, defined as the acute angle between the line connecting the initial bubble centres 

and the rigid wall. As shown in FIG. 1 (b), in extreme situations when cavitation bubbles are in contact 

with the rigid wall (i.e. dbw2 = 0), the coalescence of two cavitation bubbles near a rigid wall is 

transformed to the coalescence of real bubbles and their images (dashed line) across the boundary. In 

the present study, the initial centre of bubble 2 is located on the rigid wall in all contact cases. As for 

the situations where 0< dbw2 < R0, bubble dynamics can also be simulated by using the proposed 3D 

model, but with a different initial condition, which is not discussed in the present study. 
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FIG. 1. Schematic view of the coordinate system and the arrangement of two cavitation bubbles above a rigid wall 

in (a) non-contact cases and (b) contact cases, respectively.  

 

B. Boundary Integral Method 

For the physical problem in the present study, the Reynolds number (defined as Re = URmax/ν, 

where U is the mean velocity on the bubble wall, Rmax is the maximum equivalent bubble radius, and 

ν is the kinematic viscosity of the fluid) and the Weber number (defined as We = ρU2Rmax/σ, where σ 

is the coefficient of surface tension) associated with the experiments can be estimated as O(105) and 

O(104), respectively. Therefore, the viscosity and surface tension are negligible in such transient 

process and the BIM based on the potential flow theory is used to simulate the coalescence of two 

bubbles near a rigid wall.  

In the framework of the potential flow theory, the fluid surrounding the cavitation bubbles is 

assumed inviscid, incompressible and the flow is irrotational. These assumptions stand well at least 

during the first cycle of cavitation bubbles, which have been confirmed by many previous studies 33, 

39-43. Thus the velocity potential φ can be introduced in the mathematical model that satisfies the 

Laplace equation and the boundary integral equation  
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where c is the solid angle at the field point p, q is the source point on the boundary surface of the fluid 

domain S, n is the unit outward normal of boundaries and G is the half-space Green function defined 
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as 1 1G '   p q p q  with 'q  being the reflected image of q across the boundary.  

In this study, the heat transfer is ignored in the whole process 39, 40, 44, the internal pressure of a 

cavitation bubble P is thus related to the bubble initial state (P0 and V0) and its volume (V), yielding 

 0
0 ,

V
P P

V


   
 

  (2) 

where λ is the ratio of the specific heat for the gas and λ = 1.25 in this study.  

The dynamic and kinematic boundary conditions on bubble surfaces can be written as 
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where P∞ is the ambient pressure on the plane of the centre of cavitation bubble 1 at inception, ρ is the 

fluid density and g is the acceleration of gravity.  

In the present study, it is assumed that the internal gases reach equilibrium instantaneously after 

coalescence, indicating that the effect of the changes in the bubble pressure on the external liquid flow 

is ignored 21, 22. The internal energy of the system before and after the coalescence remains the same 

without energy loss 21, 22,  

  1 2 v 1 v 1 2 v 2 ,n n c T n c T n c T     (5) 

where n1 and n2 are the amount of moles of gases in bubbles 1 and 2, respectively, cv is the heat capacity 

at constant volume of the gas, T is the temperature of the coalesced bubble and T1 and T2 are the 

temperatures of the bubbles before coalescence. In the whole process, the internal gas of the bubble 

behaves according to the ideal gas law, yielding 21, 22  
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  (6) 

where Pc0 and Vc0 are the initial pressure and volume of the coalesced bubble, respectively and ℜ is 

the universal gas constant. From equations (5) and (6), we can obtain 21, 22  

 1 1 2 2.P V PV PV c0 c0   (7) 

Since the small difference in the bubble total volume just before and after coalescence can be 
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neglected (within 3% for all coalescence cases), i.e. the initial volume of the coalesced bubble equals 

the total volume of bubbles 1 and 2 21, 22, the initial pressure of the coalesced bubble is  

    1 1 2 2 1 2 .P PV PV V V  c0   (8) 

Then the subsequent pressure of the coalesced bubble can be calculated using equation (2).  

C. Initial conditions and nondimensionalization 

The initial parameters are deduced based on the oscillation of a spherical bubble in an infinite 

field (Rayleigh-Plesset equation) 45, 46. At the inception moment and the maximum volume moment, 

the kinematic energy of the whole system equals zero and the potential energies at the two moments 

(denoted by Ep1 and Ep2, respectively) satisfy  
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 1 2.p pE E   (11) 

Substituting the initial radius R0 and the maximum radius Rmax into the above equations, the 

relationship between Rmax and the initial parameters (P0 and R0) is given as 46 

    3 3 3 3 3 30
0 max 0 max 0 0.

1

P
R R R P R R 



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In multi-bubble interactions, initial parameters of a cavitation bubble are set according to the 

maximum radius that it can achieve. In the simulation, the maximum radius of cavitation bubble 1 

(Rmax1), the ambient pressure on the plane of the initial centre of cavitation bubble 1 (P∞) and the liquid 

density (ρ) are chosen as the reference length, reference pressure and reference density, respectively. 

We can thus obtain the following dimensionless parameters  

 max 2 0 max1
*

max1 max1 max1 max1

, , , , , ,bb bw
bb bw

R d d P gR Pt
t

R R R P P R

    



 

        (13) 

where α is the size ratio between two bubbles, γbb and γbw are the dimensionless inter-bubble distance 

and bubble-wall distance, respectively, ε is the strength parameter, δ is the buoyancy parameter which 

is set as 0 for cavitation bubble due to its small size and short lifetime, and *t  is the dimensionless 

time. In the following discussions, dimensionless variables are used and the dimensionless initial 
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radius of a cavitation bubble is denoted by R0, unless otherwise stated explicitly.  

III. NUMERICAL MODEL AND IMPLEMENTATION 

A well-verified 3D BIM code 22, 38, 47 is used in the present study to simulate the nonlinear 

interaction between two bubbles before the coalescence. More details about the conventional 3D BIM 

can be found in 31, 48-50. In this section, crucial further development is made including those related to 

bubble coalescence, bubble splitting and other extreme situations not concerned in previous studies, 

and described in detail.  

A. Mesh distribution control combined with a remesh scheme 

In BIM simulations, updating node positions using a true velocity may lead to the overcrowding 

of mesh nodes, thus resulting in the poor computational accuracy and efficiency. Following Zhang and 

Liu 38, a density potential method (DPM) is introduced in the present study to obtain the optimum 

shift/tangential velocity for updating node positions. The principle of the DPM and the procedure to 

calculate the optimized velocity are given as follows.  

In the DPM, an imaginary DPM velocity uDPM is used to update node positions, which is related 

to a density potential function . In order to accurately capture the deformations of all boundaries, the 

equation DPM   u n = n   must be satisfied. Therefore, the total velocity uDPM to update node 

positions is expressed as 38 

 DPM n 


   


u u u u
n

  (14) 

The optimum mesh distribution (corresponds to a uniform distribution of ψ) in the next time step 

can be achieved by minimizing the variance of ψ, i.e. the derivative of D(ψ) with respect to ui = (ui,vi,wi) 

equals 0, expressed as 
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where E() is the mean value of , defined as   d /
S

E S S   .  
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For this purpose, an artificial tangential velocity u  is calculated using an iterative method for a 

uniform distribution of ψ 38, given as 

 

  1i i i
DPM

h
f t

t            
u u r u   (17) 

where a projection operator is defined as f(x) = x - (x n) n, representing the tangential component of 

the vector x; r is the position vector of each node on all the boundaries at the moment; k is the iteration 

step length factor; the superscript represents the number of iteration. If the density potential ψ is non-

uniformly distributed, nodes would move to the locations with higher ψ until the 2nd term on the right 

hand of Equation (5) equals 0, demonstrating that Equation (16) is satisfied. Generally, meshes of 

high quality can be achieved when h and the number of iteration are set as 0.2 and 30 in the simulation, 

respectively. 

As mentioned above, a high density potential represents a gathering of the mesh nodes. The DPM 

makes it possible to move mesh nodes in specified directions as long as a reasonable density potential 

function is selected, thus different density potential functions are proposed according to different 

situations. For bubble coalescence problems in the present study, the density potential function is not 

only related to the mesh size, but also the local curvature, the velocity potential, the distance between 

two cavitation bubbles and node positions. The area of each element is a basic standard to measure the 

mesh distribution, and the density potential of each node can be calculated using 
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where Nele is the total number of the elements which are connected to node i and Ai,j is the area of the 

jth element; i  is a modification function that is defined according to different situations. Before 

coalescence, sufficient meshes on the two cavitation bubbles must be assured for high resolution since 

the interfaces become flattened and the liquid film becomes thinner, thus the distance between two 

cavitation bubbles and the local curvature are considered in the modification function, yielding 22 

 
1 1 1
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where di is a vector containing the distance from node i to all the nodes on the other bubble surface,  

is the local curvature and  represents the normalization operator. The local curvature on the 

bubble surface is expressed as  

 
1 2

1 1 ,R R     (20) 

where R1 and R2 are the corresponding principal radii of curvature, respectively. In the 3D model, the 

mean curvature on the bubble surface is calculated using 51 

 
3 2
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2 2 3/2
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 

   
 

 
，  (21) 

where 1~5 are the coefficients used in the surface interpolation and calculated via Equation (28) 

below. 

In arbitrary coalescence cases, there are a variety of complex phenomena after the coalescence, 

including jet formation, toroidal bubble splitting and self-coalescence due to self-film-thinning process, 

thus a non-uniform mesh is more suitable in the simulation to capture the highly non-spherical features 

of bubble. For the physical processes mentioned above, different modification functions are selected, 

given as 

 ( ),i i   (jet formation) (22) 
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2 2i i iz       (toroidal bubble splitting) (23) 

 
1

1 1 1
( ) ( ),

2 2i i
i bwz




    


 (self-film-thinning process)  (24) 

With the modification functions above, a finer mesh can be achieved around the target locations, 

such as the jet surface, the splitting part and the interfaces approaching each other. 

The dynamic and kinematic boundary conditions on all bubble surfaces are thus rewritten as 
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A comparison of the mesh distribution on bubble surface between the conventional method (using 

the real velocity) and the present model (using DPM velocity) is given in FIG. 2, with the node and 

element numbers are 4013 and 8022, respectively. In frame (a), it is noted that considerably more nodes 
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gather around the jet zone if the real velocity is used to update node positions, which leads to the coarse 

meshes around the coalescence position and will definitely decrease the computational accuracy and 

efficiency. In frame (b), an appropriate mesh distribution on the bubble surface can be achieved by 

DPM, which ensures high accuracy and efficiency of the computation.  

  
FIG. 2. Comparison of the mesh distribution on bubble surface at t

*
 = 2.490 using (a) the real velocity and (b) the 

DPM velocity. In the simulation, the parameters used are γbw2 = 0.82, γbb = 0.64, β = 1.27,  = 50, R01 = 0.1911 and 

R02 = 0.1625.  

 

Though a desired mesh distribution is obtained by DPM, sometimes large deformations may lead 

to stretching meshes, which is a barrier for stable simulations. Therefore, the DPM is combined with 

a remesh scheme to maintain a stable calculation. In this paper, an edge swapping remesh scheme is 

introduced to optimize the mesh topology and improve the mesh quality 38. The principle is to 

maximize the minimum angle of the two elements sharing one edge, which is easy to implement and 

very effective to maintain meshes of high quality. For every triangular mesh, other three elements 

connecting with this element must be found and they need to be judged whether the edge swapping 

remesh procedure is performed for these adjacent elements. Comparison of the mesh deformations on 

bubble surface without and with the remesh scheme is given in FIG. 3, with the zoom-in of the oblique 

jet. As shown in FIG. 3 (a), the meshes on the jet surface stretch as the jet develops and in some cases 

the stretching of meshes may lead to the mesh distortion. In general, meshes of higher quality are 

obtained by using the remesh scheme, as shown in frame (b).  
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FIG. 3. Comparison of the mesh deformations on bubble surface at t

*
 = 2.670 (a) without the remesh scheme and 

(b) with the remesh scheme for the same case in FIG. 2. The DPM is applied in both simulations. 

 

A geometric measure for triangles denoted by Q is introduced to assess the quality of shape 

regularity for trianglular meshes on the coalesced bubble, and expressed as 52, 53 

 
2 2 2

1 3 3

4 3
,

A
Q

l l l


 
  (27) 

where A is the area of the triangular mesh and li, 1 ≤ i ≤ 3, are edge lengths. The function Q is 

normalized equalling one for an equilateral triangle and approaching zero for triangles with small 

angles. The quality measure Q for the coalesced bubble is calculated and time histories of the average 

measure Qavg and the minimum measure Qmin are given in FIG. 4, respectively. The mesh quality of 

the coalesced bubble using all numerical techniques is compared with the results without DPM and 

without remesh scheme. In FIG. 4 (a), the average measure Qavg decreases initially and remain stable 

for considerable duration especially after applying DPM, and a second decrease is observed during the 

gradual formation of the jet. It is worth noting that the Qavg using the present model remains above 

0.94 in the whole process, while the Qavg in other two cases decrease significantly after the jet 

formation. In FIG. 4 (b), the minimum measure Qmin is 0.22 at the beginning due to the poor mesh 

quality around the coalescence position, however, the Qmin increases immediately using the present 

model and remains above 0.6 in the whole process. Without DPM, the mesh quality decreases rapidly 

and stays in the range of 0.1≤Qmin≤0.2 in most of the time, and again decreases rapidly, indicating 

extreme stretching of some triangular meshes on the bubble surface. In contrast, the Qmin without 

remesh scheme increases markedly at first and the decrease in the mesh quality occurs only after the 
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jet formation. FIG. 4 demonstrates that the DPM has a significant effect on the quality of shape 

regularity for triangular meshes and the introduction of the remesh scheme is clearly beneficial to 

maintain a stable and high-accuracy simulation.  

  
FIG. 4. Comparison of time histories of (a) average quality measure Qavg and (b) the minimum quality measure 

Qmin for the same case in FIG. 2.  

 

B. A weighted moving least-square smoother 

Since there is no viscous damping in the BIM, the numerical instabilities in the simulation should 

be eliminated with the minimum influence on the bubble dynamics. Following Zhang et al. 30 and 

Wang 51, 54, 55, a weighted moving least-square smoother is applied every six time steps. For every node 

S on bubble surface, the smoothing process is carried out by surface interpolation in a local Cartesian 

coordinate system O-XYZ. Firstly, the origin of the local coordinate system is set at node S and the Z-

axis is along the normal direction n0 at node S. The average distance between the surrounding nodes 

and node S is denoted by save. The bubble surface is interpolated using a second order polynomial, 

written as follows  

   2 2
1 2 3 4 5 6, ,Z f X Y X XY Y X Y              (28) 

where the undetermined coefficients α1~α6 are related to the neighbouring nodes within twice save from 

node S, and X, Y and Z are the coordinates in the local coordinate system. The associated error function 

is thus defined as 
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where Ns is the number of the nodes near node S and Wk is the weighted function of the kth node. A 

spline function is chosen as the weighted function, given as follows 22 
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where s  is the ratio of the distance from node S to twice save, i.e. 
ave2

s
s

s
  and ss  r r .  
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
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where Aij and Bi are given below 
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The distribution of the velocity potential over the bubble surface can be smoothed using the same 

method. The comparison of the mesh distribution on the bubble surface at t* = 2.663 without and with 

the weighted moving least-square smoother is given in FIG. 5. In frame (a), mesh distortion is observed 

on the bubble surface close to the rigid wall although a reasonable mesh distribution is obtained using 

the DPM velocity. In 3D computations, numerical instabilities accumulate as the simulation proceeds, 

which is definitely bad for the stability of a 3D numerical modelling. In frame (b), the bubble surface 

is well stabilized by using the present improved numerical techniques and the main features of the 

striking jet shape are still well preserved.  
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FIG. 5. Comparison of the mesh distribution on bubble surface at t

*
 = 2.663 (a) without smooth techniques and 

(b) with the smooth techniques for the same case in FIG. 2. The DPM combined with the remesh scheme is applied 

in both simulations.  

 

C. Topological techniques 

For coalescence of multiple cavitation bubbles, a universal topological treatment for arbitrary 

coalescence is developed in the present study. Topological treatment for arbitrary coalescence includes 

the following situations: the coalescence process of two cavitation bubbles, the topological 

transformation from singly connected to doubly connected forms and the self-film-thinning process.  

1. Coalescence of two cavitation bubbles 

In the present study, the minimum distance between the nodes of two cavitation bubbles is used 

to judge whether coalescence occurs or not. The coalescence of two bubbles is assumed to happen 

instantly if the coalescence criterion is satisfied 22 

  min min ,ij cd b s  D   (33) 

where Dij is a matrix that contains the distance from node i on bubble 1 surface to node j on bubble 2 

surface, b is a coefficient generally in the range of 1.0~3.0 to eliminate numerical instabilities after 

coalescence, sc is defined as the coalescence criterion and sc = 0.02 is selected 21. Then the coalescence 

procedure is automatically performed to obtain a coalesced bubble with nodes and elements 

renumbered, which are briefly given below. 
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Firstly, all the nodes satisfying (33) and the elements where they belong are considered to be in 

the coalescence surface and the outer rings surrounding the two coalescence surfaces are regarded as 

the coalescence lines. The nodes on the two lines are then sorted in a certain direction and new nodes 

should be added if the numbers of the nodes on the two lines are different. Next, the nodes and elements 

on the coalescence surfaces and lines are deleted and new nodes are created at the midpoints between 

the two lines, obtaining a ‘stitch’ line. The remaining nodes and the new set of nodes are renumbered 

and the node information in the remaining elements is updated according to the new node number. 

This coalescence treatment is the most basic procedure in the present study. More details can be found 

in the work by Han et al 22. Note that some physics during the final stage of the film thinning process 

are not considered in the present model, i.e., the lubrication force and Van der Waals force. The 

viscosity becomes important in the thin film when the Reynolds number (defined as Re = Udmin/ν) is 

much smaller than 1. As for the experiments in this study, the Re can be estimated as O(102) before 

the ‘numerical coalescence’, thus the lubrication theory cannot be applied. More physics in the thin 

film will be for our future work. 

2. 3D toroidal bubble 

Prediction of the toroidal bubble dynamics (after the jet penetration) and the jet impact pressure 

is crucial to cavitation erosion and many other applications. However, the strong instabilities and 

complex topological treatment render the investigation of a 3D toroidal bubble quite difficult 30. In this 

study, a universal method is proposed for the transition from a singly-connected bubble into a toroidal 

bubble. Bubble profiles just prior to and after the impact are given in FIG. 6. As suggested by Zhang 

et al 30, it is assumed that the jet impact occurs at a single point and numerical transition from a singly-

connected bubble to a toroidal one is automatically performed when the minimum distance from the 

two jet tips is smaller than a constant sim which is related to the average area of the elements. The two 

contact points are marked as O1 and O2, respectively, and their neighbouring nodes are grouped in 

various closed rings. If the minimum distance from the nodes on rings K1 and K2 to the vertical plane 

of O1 and O2 satisfies  

   11 2
min

2

1, ,
min , ,

1, ,i ps j ps im

i n
d s

j n


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where nps is the normal vector to the vertical plane, n1 and n2 are the numbers of the nodes on rings K1 

and K2, respectively, Δ is a constant and set as 2 in this study, and K = max(K1, K2) is thus chosen for 

searching the two cut lines Lc1 and Lc2 (shown in FIG. 6a).  

At first, the nodes on the two cut lines are sorted in the same direction. If the numbers of nodes 

on Lc1 and Lc2 are not equal (n1 ≠ n2), new nodes are inserted in sequence in the middle of the longest 

line segments to make the numbers match, and the number of the elements increases accordingly. 

Secondly, all the elements and nodes surrounded by and on Lc1 and Lc2 are deleted, and new nodes are 

created at the midpoints between the corresponding nodes ( 1
iK  and 2

iK ). Next, all the nodes are 

renumbered, and all the elements are renumbered and updated with the new node system. Finally, the 

nodes and elements on the toroidal bubble surface are obtained.  

In FIG. 6 (a), two cut lines are found with K = 3 and the numbers of the nodes on the two cut lines 

are the same in this case. The front and side views of the toroidal bubble are presented in FIG. 6 (b) 

and (c). At this moment, the mesh quality around the impact position is relatively poor, which can be 

greatly improved by the present numerical techniques.  

   

FIG. 6. Numerical transition from a singly-connected bubble to a toroidal bubble in the case when two cavitation 

bubbles are arranged above a rigid wall. In the simulation, the parameters used are R01 = R02 = 0.1911,  = 50. The 

dimensionless parameters are γbb = 0.8,  = 0 and γbw = 1.5. (a) Front view of the bubble shape just before the jet 

impact and two cut lines, (b) front view and (c) side view of the bubble shape after the numerical surgery. The black 

solid line at the bottom of each frame represents the rigid boundary. 

 

During the toroidal bubble simulation, the situation is often encountered in which the part of the 

toroidal bubble far away from the rigid wall collapses faster, leading to the splitting of the toroidal 
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bubble. This interesting physical phenomenon is rarely concerned in previous studies. In order to 

investigate the subsequent bubble collapse pattern and jetting behaviour, a 3D toroidal bubble splitting 

model is established here. Firstly, the splitting area is searched by calculating the radius of curvature 

and limited by a constant ssp, which is defined as the distance between nodes and the axis of symmetry 

and set as 0.015Rm for accuracy in the present study. Therefore, the two lines surrounding the splitting 

area are referred to as the splitting locations, as shown in FIG. 7 (a). Next, the nodes and elements in 

the splitting area and the nodes on the two splitting locations need to be deleted. Meanwhile, two new 

nodes are added at two splitting locations, respectively, and new elements are added accordingly. At 

last, nodes are renumbered and the node information in the elements is updated. Side and 3D views of 

the bubble profiles after splitting using the newly developed technique are presented in FIG. 7. The 

subsequent motion after the splitting is well captured and the stability is maintained by using the above 

numerical techniques.  

   
FIG. 7. Numerical treatment for the splitting of the toroidal bubble for the same case in FIG. 6. (a) Side view of 

the toroidal bubble at the splitting moment, (b) side view and (c) 3D view of the bubble just after the splitting.  

 

3. Self-coalescence due to self-film-thinning process 

One of the highlights in this study is to deal with an extreme situation in which one bubble is 

attached to the rigid wall at the initial moment. In such kind of ‘contact cases’, the problem can be 

transformed to the coalescence of three cavitation bubbles. Thus the mirror bubbles are modelled 

explicitly, and the half-space Green function in Equation (1) is replaced by the simple Green function 

1G  p q . Bubble profiles at several typical moments in a contact case are given in FIG. 8. The 
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black solid line represents the rigid wall and the evolution of the real bubbles is presented in the upper 

half part of the figure. In the simulation, the coalescence occurs at two different locations of the three-

bubble system, which should be handled simultaneously using the above basic coalescence procedure, 

as shown in FIG. 8 (a-b). Thereafter, the coalesced bubble continues to expand and the liquid film 

between the surfaces of the original bubble 1 and its image becomes thinner and thinner, which is 

called self-film-thinning process in the present study, as shown in FIG. 8 (b). In some ‘contact cases’ 

(when the angle parameter β is relatively small), the rupture of the thin film may occur, leading to a 

secondary self-coalescence of the coalesced bubble. As shown in FIG. 8 (c), the minimum distance 

between the interfaces satisfies the coalescence criterion in the numerical simulation and a self-

coalescence technique is applied to handle this partial coalescence. At the self-coalescence moment, 

the processing steps are similar to those in the basic coalescence procedure. At first, all the nodes on 

the coalescence surfaces must satisfy 

 1 .i bw cz b s     (35) 

This searching procedure is performed within a confined area, i.e. around the self-film-thinning area. 

The triangular elements where the nodes belong make up the two interfaces. The two lines surrounding 

the two interfaces are given in FIG. 8 (c). It is then followed by a topological treatment being performed 

to obtain the new coalesced bubble, as shown in FIG. 8 (d).  
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FIG. 8. Bubble profiles (a) at the moment of the coalescence of three bubbles, (b) in the self-film-thinning process, 

(c) just prior to the self-coalescence moment and (d) just after self-coalescence procedure. In the simulation, the 

parameters used are R0 = 0.1911,  = 50. The angle between the line connecting two inception centres and the rigid 

wall is β = 0.73. The dimensionless distances are γbw1 = 0.4 and bb = 0.6. 

 

IV. MODEL VALIDATION AND APPLICATIONS 

A. Convergence study 

In this section, the effect of the mesh resolution on the 3D simulation results is first investigated. 

Coalescence of two cavitation bubbles above a rigid wall in an axisymmetric configuration is simulated 

using the present 3D model and a verified axisymmetric model 23. The node numbers (Nn) on the 3D 

bubble surface are set as 642, 1442 and 2562, respectively. The 3D results are overlaid with the result 

obtained by axisymmetric model (denoted by the solid red lines), as shown in FIG. 9. The 

dimensionless parameters are set as: γbb = 0.8, γbw2 = 1.2,  = 50, R01 = R02 =0.1911. The coalesced 

bubble is seen elongating in the vertical direction and a downward jet forms in the collapse phase. As 

the node number increases, the 3D results approach to the axisymmetric results, including the overall 

shape and the sharp jet formation, which indicates the convergence of the numerical model. In the 

following simulation, Nn = 2562 is selected to ensure the accuracy. In this case, the CPU time to 

simulate the coalescence of two bubbles and the subsequent motion of the coalesced bubble before jet 

impact is within 4 hours running on an Intel Core i7-8700 3.20 GHz PC with 16G RAM.  
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FIG. 9. The jet formation at t
*
 = 2.634 for an axisymmetric case with γbb = 0.8 and γbw2 = 1.2 with various node 

numbers: (a) Nn = 642, (b) Nn = 1442 and (c) Nn = 2562 compared with the axisymmetric model (red solid line).  

 

B. Comparison between experiments and 3D simulations 

To further validate the present 3D model, comparisons are carried out between experiments and 

the 3D numerical simulations. In the present study, an underwater electric discharge method is used to 

generate cavitation bubbles and similarly sized bubbles are generated simultaneously by using a series 

connection. Details about the experimental setup refer to the work by Han et al 23. The relationship 

between the maximum bubble radius and the discharge voltage can be found in Li et al 56. When the 

discharge voltage is less than 500V, the uncertainty of the maximum bubble radius in dimensionless 

form is within 2%. In the present study, the discharge voltage is taken as 500 V. In the experiments, 

two cavitation bubbles are arranged in an oblique line and the size difference between them is within 

20 %. The transient process of two-bubble interaction and coalescence in the non-contact and contact 

cases are captured by a Phantom V711 high-speed camera working at 60 000 frames/s and 25 000 

frames/s, respectively, both with an exposure time of 10 μs. The spatial resolution of the experimental 

images is around 0.17 mm per pixel.  

1. Non-contact case 

In the first experiment, the maximum equivalent radii of bubble 1 and bubble 2 are 13.1 mm and 

11.1 mm, respectively. The method to determine the maximum equivalent radius of a non-spherical 

bubble can be found in Li et al 56. Other parameters in the experiment are: dbw2 = 10.8 mm, dbb = 8.3 
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mm and β = 1.27. In the experiment, the time interval between two frames is 16.66 μs. In the 

computation, dimensionless parameters used are γbw1 = 1.43, γbw2 = 0.82, γbb = 0.64,  = 50, R01 = 

0.1911, R02 = 0.1625. Selected experimental images are shown in FIG. 10 (a) (Multimedia view) to 

present the main features of the two cavitation bubbles and the black bar in frame 1 represents the 

length of 10 mm in the experiment. Numerical results in a dimensionless form are given in FIG. 10 

(b), with the total dimensionless length of the horizontal axis being 10.8. In this case, two cavitation 

bubbles are arranged in an oblique line above the rigid wall. The interfaces between two cavitation 

bubbles become flattened during the expansion phase. The two-bubble coalescence occurs after the 

rupture of the thin liquid film (frame 1). As the coalesced bubble continues to expand, the original 

annular dent around the coalescence position finally develops into an annular protrusion when the 

maximum volume is attained (frames 2-3). At that moment, the bottom of the coalesced bubble is 

flattened by the rigid wall but with a hemi-spherical top. In the collapse phase, the bubble bottom 

nearly stays motionless due to the retardation of the rigid wall, only with a small contraction in width, 

while the top contracts fast and gradually forms an oblique jet directed towards cavitation bubble 2 

(frames 4-7). When the jet is about to impact on the bottom of the bubble in frame 8, its direction is 

affected by the rigid wall and a secondary jet is formed at the bottom of the jet, which is proved by the 

upper left portion of the bubble separating from the main part and also captured by the numerical 

simulation, as shown in FIG. 10 (b). The numerical results give details about the jet development inside 

the bubble. At the bottom of the jet, a secondary jet with larger width gradually forms and is about to 

impact on the left surface of the bubble which definitely will lead to the break-up of the bubble. In this 

case, the main features of the two-bubble motion are well captured by the present 3D model, including 

the strong interaction between two non-spherical bubbles, film thinning process, two-bubble 

coalescence, the collapse pattern and jetting behaviours.  
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(a) 

 

(b) 

 

FIG. 10. Comparison of (a) the experiment with (b) the 3D BIM computation for bubble behaviours at selected 

times for the coalescence of two cavitation bubbles near a rigid wall. In the experiment, the parameters are Rmax1 

= 13.1 mm, Rmax2 = 11.1 mm, dbw1 = 18.75 mm, dbw2 = 10.8 mm and dbb = 8.33 mm. The angle between the axis 

connecting inception centres and the rigid wall is β = 1.27. In the simulation, dimensionless parameters used are 

γbw1 = 1.43, γbw2 = 0.82, γbb = 0.64,  = 50, R01 = 0.1911, R02 = 0.1625. The time is placed at the top of each frame 

(Multimedia view).  

 

Besides, quantitative comparisons between the numerical and experimental results are made. The 

top of bubble 1 and the bottom of bubble 2 at the initiation moment are defined as north and south 

poles, respectively. Time evolutions of the bubble height hb (defined as the vertical distance between 
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the top and the bottom of the two bubbles or the coalesced bubble) and the locations of the two poles 

are presented in FIG. 11. In general, an overall agreement is achieved except for some small differences, 

demonstrating the validity of the present model.  

  

FIG. 11. Quantitative comparisons between the numerical simulation and the experiment. Time evolutions of (a) 

the bubble height hb and (b) the locations of the north and south poles of the bubbles. 

 

2. Contact case 

In the second experiment, the initial centre of cavitation bubble 2 is placed on the rigid wall, i.e. 

an attached case. The maximum equivalent radii of bubble 1 and bubble 2 are 12.5 mm and 13.4 mm, 

respectively. Other parameters in the experiment are: dbb = 12.9 mm and β = 0.79. The dynamic 

behaviours of cavitation bubbles are captured by the high-speed camera with the time interval being 

40 μs between two frames. In the computation, dimensionless parameters used are γbw1 = 0.79, γbb = 

1.11,  = 50, R01 = 0.1911, R02 = 0.2047. In this case, the boundary value problem is transformed to the 

coalescence of real bubbles and their images across the boundary, i.e. the interaction and coalescence 

of three bubbles. Comparison between the experiment and the numerical simulation at some typical 

moments is presented in FIG. 12 (Multimedia view). The black bar in frame 1 of FIG. 12 (a) represents 

the length of 10 mm in the experiment. Numerical results in a dimensionless form are given in FIG. 

12 (b), with the total dimensionless length of the horizontal axis being 10.2. In frame 1, two cavitation 

bubbles are generated and bubble 2 is a hemisphere sitting on the rigid wall. The coalescence of two 
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bubbles occurs in the expansion phase (frames 2-3). In the collapse phase, the bubble bottom remains 

attached to the boundary with a slow contraction in width, while the bubble surface far away from the 

rigid wall collapses fast and forms an oblique liquid jet (frames 4-6). The essential physical features 

of such extreme case is extremely well reproduced by the present 3D simulation, as shown in FIG. 12 

(b), demonstrating the robustness and high-accuracy of the present model. 

It is well known that the violent jet impact is one of the main cause of cavitation erosion 24, 39, 57. 

In this case, the jet impacts directly on the rigid wall and a toroidal bubble is formed in the simulation. 

The subsequent motion of the toroidal bubble is also simulated and the upper half of the toroidal bubble 

shape is presented in FIG. 13, together with the velocity and pressure fields in the flow to reveal more 

(a) 

(b) 

FIG. 12. Comparison of (a) the experiment with (b) the BIM computation for a two-bubble system with one 

bubble attached to a rigid wall. The dimensionless parameters are: γbw1 = 0.79, γbb = 1.11,  = 50, R01 = 0.1911, 

R02 = 0.2047. The times are marked at the top of each frame (Multimedia view). 
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physical mechanisms. A high-pressure region of which the pressure peak decreases gradually with time 

(marked with A in frame a), as the direct driving force of the jet formation, can be observed at the base 

of the oblique jet at these two moments. A more pronounced localised high-pressure region is generated 

by the direct jet impact on the rigid wall (frame a). This high-pressure region and the continuous inflow 

of the liquid from the jet leads to the formation of a horizontal jet directed leftward. Meanwhile, the 

left surface of the toroidal bubble continues collapsing along the rigid wall and finally collides with 

the horizontal jet (frame b). It is noted that the liquid jet persistently impacts the rigid wall and the 

inner gas pressure increases during the shrink of the bubble volume, resulting in a rapid increase of the 

hydrodynamic force on the wall.   

   

FIG. 13. Toroidal bubble evolution with the velocity and pressure fields in the flow for the same case in FIG. 12. 

The dimensionless times are t
*
 = (a) 2.642 and (b) 2.680 (the time scale is 1.258 ms). 

 

C. Model applications 

1. Self-coalescence of a coalesced bubble 

In this case, the initial centre of the cavitation bubble 2 (a hemisphere) is placed on the rigid wall 

and the cavitation bubble 1 is also close to the wall. The dimensionless parameters used in the 

simulation are γbw1 = 0.4, bb = 0.6, β = 0.73,  = 50 and R0 = 0.1911. The simulation results are shown 

in FIG. 14. The coalescence of bubble 1, bubble 2 and image bubble 1 is simulated in the computation 

and the upper half part of the numerical results present the real physical process above the rigid wall. 



27 
 

The surface of bubble 1 is flattened by bubble 2 and the lower rigid wall simultaneously due to its 

close proximity to the rigid boundary (frames a and b). During the subsequent expansion of the 

coalesced bubble, the bottom of the original bubble 1 and the top of its image become very close (frame 

c). As one of the highlights in the numerical development, a self-coalescence technique described in 

Section III C is proposed to handle such process in this study. After self-coalescence disposal, the 

bubble keeps expanding and the maximum volume is reached in frame (d). In the collapse phase, the 

left surface and the upper right surface of the coalesced bubble collapse earlier and faster (frame e), 

and a horizontal jet and an oblique jet form afterwards, respectively (frame f). Such kind of 

phenomenon is often observed when both bubbles are very close to the rigid wall and β is less than 

~π/4. The self-coalescence technique has been demonstrated to work quite well and robust when 

dealing with this problem.  

FIG. 14. Bubble profiles with the total velocity contours on bubble surface. The dimensionless times in the 

computation are t* = (a) 0.043, (b) 0.459, (c) 0.736, (d) 0.957, (e) 2.044 and (f) 2.776. In the simulation, the 

parameters used are R0 = 0.1911,  = 50. The angle between the line connecting two inception centres and the rigid 

wall is β = 0.73. The dimensionless distances are γbw1 = 0.4 and bb = 0.6. The dimensionless times in the 

computation and the frame number are marked at the corner of each frame. 
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2. Toroidal bubble splitting 

In this section, the bubble coalescence characteristics at different phases for another interesting 

case will be examined when two bubbles are in a horizontal configuration. The dimensionless 

parameters in the simulation are bw = 1.5, bb = 0.8,  = 50 and R0 = 0.1911. The bubble evolution 

before the jet impact is given in FIG. 15, together with the velocity contours on the bubble surface. 

The bubbles coalesce in the expansion phase and the circular edges of the coalescence surfaces exhibits 

the largest velocity (frame 1), resulting in the annular swelling of the coalesced bubble (frame 2). The 

bubble bottom is still expanding at the moment of maximum volume moment with higher velocity 

than other parts (frame 2). In the collapse phase, two oblique jets are formed due to the co-effect of the 

other bubble and the rigid wall (frames 3-4) and finally about to collide at t* = 2.642 (frame 5). An 

obvious downward migration of the two bubbles is observed due to the attraction of the rigid wall. It 

is worth noting that the existence of a second bubble alters the jet direction of the first bubble. 

Therefore, the jet impact threat to a nearby rigid wall may be decreased by the interaction of multiple 

bubbles. The flow field pressure and the subsequent toroidal bubble dynamics will be further 

investigated as follows. 

 

FIG. 15. Bubble profiles before jet impact with the total velocity contours on bubble surface. In the simulation, 

the dimensionless parameters used are bw = 1.5, bb = 0.8,  = 50 and R0 = 0.1911. The dimensionless times are 

marked at the top of each frame. 

 

Bubble shapes with pressure contours at seven typical moments are presented in FIG. 16, 

including the collapse of a singly-connected bubble, the collapse and splitting in the toroidal bubble 

phase and the jet development after the splitting of the toroidal bubble. Front view, side view and 3D 

view of the coalesced bubble are all given at each moment. In front view and side view, the pressure 
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fields surrounding the coalesced bubble are calculated; while in 3D view, the pressure on the rigid wall 

is given. In FIG. 16 (a), two high-pressure regions are observed in the front view, which promotes the 

development of the two oblique jets. It is noted that the pressure above the bubble is higher than that 

between the bubble and the rigid wall, leading to a faster collapse of the bubble top and the migration 

of the bubble towards the wall. As the bubble top contracts, a localised high-pressure region is 

gradually formed above the bubble and can be observed in frame (b). The formation of the high-

pressure region is similar to that in single-bubble-wall interaction, which may cause the formation of 

a jet directed towards the wall.  

After the jet impact (frame c), the collision of the two oblique jets leads to the high-pressure 

region inside the bubble, which is much higher than that surrounding the outer profile of the bubble 

surface. The high pressure around the bubble top drives the part of the toroidal bubble further away 

from the wall to collapse very fast. The continuous impact of the liquid around the bubble top finally 

leads to a very high peak pressure at the splitting moment, as shown in (d). The high-pressure 

amplitude at the splitting location increases rapidly due to the focusing flow. The two ends of the 

bubble contract very fast afterwards and the high-pressure region gradually separates into two high-

pressure regions (frames e and f), which promote the formations of two jets at the two ends. Finally, 

the two thin jets penetrate the side wall of the bubble (frame g). From the 3D views in FIG. 16 (a)-(f), 

it is noted that the pressure on the rigid wall is nearly symmetrically distributed under all rotations 

about the centre and increases outwards; while at the jet impact moment (frame g), a different pressure 

distribution can be observed, i.e. an annular high-pressure region is formed on the wall. It is worth 

noting that the subsequent stage of the bubble motion is beyond the capacity of the BIM. Nevertheless, 

we can predict that the bubble will migrate towards the wall but the focusing energy of the bubble may 

be weakened by the multiple jets.  

(a) 
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(b) 

 

(c) 

 

(d) 

 

(e) 
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(f) 

 

(g) 

 

FIG. 16. Bubble evolution with the pressure fields in the flow for the same case in FIG. 15. The dimensionless 

times are t
*
 = (a) 2.496, (b) 2.642, (c) 2.687, (d) 2.706, (e) 2.707, (f) 2.723 and (g) 2.773, respectively. Both the 

front view, side view and 3D view of bubble shape at each moment are presented. In the simulation, the 

dimensionless parameters of two cavitation bubbles are R0 = 0.1911,  = 50, γbb = 0.8, γbw = 1.5 and β = 0.  

 

3. Two cavitation bubbles attached to the rigid wall 

In the last case, two cavitation bubbles are also arranged in a horizontal line, but much closer to 

the rigid wall, which leads to the contact of the coalesced bubble with the rigid wall. The subsequent 

motion of the bubble is simulated by transforming the problem into the coalescence of multiple bubbles. 

Bubble profiles with velocity contours on bubble surface are given in FIG. 17. At the early expansion 

stage (frame a), the bubbles cannot keep their spherical shapes due to the strong interaction effect. The 

interfaces and the surfaces close to the rigid wall gradually become flattened. The velocities in the 

narrow area between bubbles and the wall are relatively small due to the restraint effect from each 

other and from the rigid boundary. Before the bubble coalescence (frame b), the edges of the liquid 

film exhibit the largest velocity, indicating the subsequent swelling at the coalescence location. In the 

subsequent expansion phase, the bottom of the coalesced bubble is approaching the rigid wall and the 
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coalescence criterion between the real bubble and the image bubble is satisfied at t* = 1.315 (frame c). 

At this moment, the present problem is transformed to the coalescence of the coalesced bubble and its 

image across the boundary so that the subsequent motion can be numerically simulated. In frame (d), 

the maximum volume is attained and the bubble surface on the rigid wall exhibits the highest velocity 

and is still expanding. In the collapse phase, the contractions of the upper left and upper right parts of 

the coalesced bubble occur earlier and two oblique jets are gradually developed, while the top of the 

bubble collapses slowly (frames e-g). At the late collapse stage, the total velocity of the bubble top 

continues to increase due to the Bjerknes force from the rigid wall and there is a tendency to form a 

downward jet (frame h). In frame (i), the bubble shape in top view is presented on the top right corner 

and the dent at the bubble top clearly exhibits the highest velocity, which is squeezed by the two oblique 

jets in the collapse phase. Before the jet impact on the wall, these two jets will collide inside the bubble, 

which is believed to decrease the damage potential of jet impact.   

   

   

   

FIG. 17. Bubble profiles before jet impact with the total velocity contours on bubble surface. The corresponding 

times are t* = (a) 0.162, (b) 0.837, (c) 1.315, (d) 1.543, (e) 1.930, (f) 2.423, (g) 2.748, (h) 2.858 and (i) 2.909, 

respectively. In the simulation, the dimensionless parameters used are bw = 0.5, bb = 0.8,  = 50 and R0 = 0.1911. 
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The dimensionless times in the computation and the frame number are marked at the corner of each frame. 

  

  

FIG. 18. The pressure and velocity fields surrounding a coalesced bubble sitting on a rigid wall. The dimensionless 

times are t
*
 = (a) 2.423, (b) 2.748, (c) 2.858 and (d) 2.909, corresponding to frames (f)-(i) in FIG. 17. 

 

To further demonstrate capability and robustness of the present numerical model, computational 

results capable of revealing the detailed dynamics of the bubble coalescences near a rigid wall during 

different phases including the velocity and pressure fields in the flow at four typical moments are given 

in FIG. 18, corresponding to frames (f)-(i) in FIG. 17. The fast contraction of the bubble draws the 

surrounding liquid and a high-pressure region is formed around the top of the bubble (frame b), which 

promotes the shrink of the bubble top and may also lead to the formation of a downward jet. As the 

collapse continues, the high-pressure region becomes more localised with a higher pressure peak. It is 

observed that the surrounding liquid is drawn into the three jets and the two oblique jets keep squeezing 

the downward jet, which may result in partial splitting of the bubble.  

V. CONCLUSIONS AND OUTLOOK 

In this work, a three-dimensional BIM model for arbitrary coalescence of multiple cavitation 

bubbles is developed and a number of advanced numerical schemes are implemented to solve the 

problems associated with some extreme situations of cavitation bubble dynamics which were rarely 
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concerned previously. All cases studied in this paper are of paramount importance to practical 

engineering applications. In the present model, there is no lower limit of the stand-off distance between 

bubbles and the nearby rigid wall, which is crucial to predicting and understanding the attached bubble 

behaviours in cavitation and many other applications. A density potential method (DPM) combined 

with a simple but effective remesh scheme is used to achieve a desired high-quality mesh distribution. 

Meanwhile, a weighted moving least-square smoother is encapsulated in the code to eliminate 

numerical instabilities. Advanced topological techniques are developed to handle complex dynamic 

behaviours involved in the multi-bubble coalescence. The validation of the 3D model is confirmed by 

comparisons with the axisymmetric model and two experiments. The highly non-spherical bubble 

behaviours are well reproduced by the simulations, including the surface flattening of two approaching 

bubbles, multi-jet formation of a coalesced bubble, splitting of a toroidal bubble and a self-coalescence 

due to the self-film-thinning process, indicating the stability and robustness of the present 3D model. 

A number of new physical phenomena are found from the numerical computations in the present study. 

Nevertheless, a systematic study of the governing parameters will be for our future work.  

Besides, the present universal topological treatment is suitable for complex topology changes 

involved in coalescence problems and the implementation of the advanced numerical schemes are 

beneficial to improving mesh quality. As an outlook, the present model can also be adopted to study 

droplet dynamics 58-60 if some factors including surface tension are carefully considered.  
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