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Abstract  16 

 17 

A shift towards evidence-based conservation and environmental management over the last 18 

two decades has resulted in an increased use of systematic reviews and meta-analyses as 19 

tools to combine the existing scientific evidence. However, to guide policy making decisions 20 

in conservation and management the conclusions of meta-analyses need to remain stable 21 

for at least some years. Alarmingly, numerous recent studies indicate that the magnitude, 22 

statistical significance and even the sign of the effects reported in the literature might 23 

change over relatively short time periods. We argue that such rapid temporal changes in 24 

cumulative evidence represent a real threat to policy making in conservation and 25 

environmental management and call for systematic monitoring of temporal changes in 26 

evidence and exploration of their causes.      27 

      28 

Temporal changes in cumulative evidence 29 

 30 

In their seminal paper published in Trends in Ecology and Evolution 15 years ago, Sutherland 31 

et al. [1] called for conservation and environmental management to become evidence-32 

based and proposed that support for decision making in conservation could benefit from the 33 

production of systematic reviews (see Glossary) including meta-analyses of published 34 

evidence of effectiveness of interventions [2]. Guidelines for systematic review in 35 

conservation and environmental management have been developed soon after [3] and over 36 

600 meta-analyses on conservation topics were published to date providing assessment of 37 

the effectiveness of different conservation and management strategies [4-6]. However, 38 

the conduct of systematic review and meta-analysis provides just a snapshot of the available 39 
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evidence at a more or less arbitrary point in time whereas scientific evidence is not static 40 

and tends to change over time as more research on the topic accumulates [7]. New studies 41 

may either strengthen or challenge the conclusions of previous reports. If the above 42 

changes in cumulative evidence over time are rapid and of considerable magnitude, the 43 

conclusions of meta-analysis will strongly depend on when the review was conducted and 44 

the policy-relevant recommendations derived from these reviews will quickly go out of date.  45 

 46 

Worryingly, a growing number of studies demonstrates that substantial changes in the 47 

magnitude, statistical significance or even sign of the reported effects over time are 48 

common in ecology and evolutionary biology [8-13] as well as other disciplines [14-17]. In 49 

most cases decreases in the magnitude of the estimated effect are reported over time, a 50 

phenomenon which has been dubbed ‘a decline effect’ in some fields [18]. As a result, the 51 

conclusions of systematic reviews and meta-analyses may go out of date very rapidly as 52 

well. For instance, a survey of 100 meta-analyses in medicine showed that clinically 53 

important evidence that alters review conclusions about the effectiveness and harms of 54 

treatments can accumulate within relatively short time frames, i.e. 2-5 years [19]. While no 55 

similar surveys have been conducted in ecology and evolution, meta-analyses in these fields 56 

are often performed on topics where results of studies are contradictory, sample sizes are 57 

low, and the expected magnitudes of the effects are relatively small [20]. This makes 58 

temporal changes in cumulative evidence more likely. The failure of later studies to 59 

reproduce the results of the earlier studies exemplifies a broader concern about the 60 

reproducibility in science [21]. 61 

  62 
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Despite its obvious scientific and practical importance, temporal changes in evidence base 63 

for conservation and environmental management have received little attention so far [7]. In 64 

this Opinion piece we review possible causes of such temporal trends, draw attention 65 

towards their potential implications for policy making and evidence-based conservation, 66 

and discuss the methods of detection of temporal changes. We argue that rapid temporal 67 

changes in cumulative evidence represent a real threat to policy making in conservation and 68 

environmental management and call for systematic exploration of their extent and causes in 69 

applied ecology.  70 

 71 

Causes of temporal instability of the evidence base  72 

 73 

Temporal changes in reported effects may occur for three main reasons. First, temporal 74 

trends may reflect true changes in the magnitude or direction of a biological effect, e.g. due 75 

to shifts in the strength and relative importance of the drivers of biodiversity loss [22-24] 76 

and to rapid adaptive evolution [25]. A well-known example in medicine is the development 77 

of antibiotic resistance which might decrease treatment efficacy over time [26]. Similar 78 

adaptive responses may occur in ecological and evolutionary studies as a result of selection 79 

pressure imposed by humans directly or indirectly. Examples of such changes include 80 

reductions in body size in animals as a result of warming temperatures [27-29] and shifting 81 

song frequencies in birds in response to anthropogenic noise [30]. As the above selection 82 

pressures increase over time, it is likely that studies published few decades ago would 83 

report smaller effects compared to the more recent studies. 84 

 85 
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Second, temporal trends in estimated effect sizes may occur even when the true effect size 86 

remains the same, but the proportion of studies with particular characteristics which 87 

influence the magnitude and direction of the effect (known as moderators in meta-analysis) 88 

changes over time. An example of such evidence reversal is discussed in Box 1. If there is 89 

significant heterogeneity in effect sizes (i.e. not all studies share the same effect) and 90 

effects are smaller or larger under particular conditions, any changes in frequency of studies 91 

on the above condition over time relative to other conditions may result in corresponding 92 

temporal changes in the magnitude of the overall estimated effect (Box 1, [11, 31]). Changes 93 

in prevalence of particular research or statistical methods over time may also result in 94 

similar effects if such methods differ in the magnitude of the estimated effects that they 95 

produce [32, 33]. It is therefore crucial to examine the amount of heterogeneity and its 96 

causes in a meta-analysis, particularly as high heterogeneity should be expected in 97 

ecological and evolutionary studies [34].  98 

 99 

Third, changes in magnitude and significance of the effect size estimates over time may be 100 

due to biases. Here, again, the true magnitude of the effect size might not change with time, 101 

but the estimate of the effect does. For instance, time lag in the publication of studies with 102 

non-significant results may lead to decrease in the cumulative effect over time as the 103 

number of studies with weak and non-significant effects increases. Jennions and Møller [9] 104 

suggested that such time-lag bias against non-significant results is the most probable cause 105 

of the observed decrease in estimated effect sizes with time in ecological and evolutionary 106 

meta-analyses. However, no studies so far have explored the relative importance of 107 

different causes of temporal trends in reported effect sizes in ecology and evolution. On the 108 

other hand, publication bias may also lead to overestimation of the overall effect. Nuijten et 109 
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al. [35] showed that if both the original study and its conceptual replication are subject to 110 

publication bias, combining the two studies to obtain an overall effect size will result in an 111 

overestimation of the population effect size. Biases may also prevent the cumulative effects 112 

from reaching statistical significance. For instance, the attractiveness of contradictory 113 

findings to researchers and editors may lead to publication of the succession of extreme 114 

positive and negative effects, hence hindering the stabilization of the cumulative effect size 115 

over time [36, 37]. Heleno [37] argued that the consequences of the “editorial love of 116 

controversy” may be particularly severe in conservation-led decisions and might contribute 117 

to an underestimation of the impacts of human pressure on the environment. Other biases 118 

which may lead to temporal changes in cumulative evidence include bias in choice of study 119 

organisms [12] and paradigm shifts [38].  120 

 121 

It is important to distinguish between the above causes of temporal changes in reported 122 

effects because they determine whether the current conservation or management policy 123 

needs to be modified. If true biological effects are changing over time, then actions might 124 

need to be taken to re-evaluate conservation status and conservation strategy for the given 125 

species or environmental management options might need to be reconsidered. On the 126 

other hand, if temporal changes in estimated effect sizes are due to heterogeneity among 127 

studies, the sources of this heterogeneity have to be identified to find out under what 128 

conditions the proposed management and conservation strategies are effective. 129 

Examination of temporal trends in effect sizes is thus a good diagnostic tool for detection of 130 

sources of heterogeneity. Finally, testing for presence of biases in a meta-analysis is 131 

absolutely essential, although it might be sometimes difficult to distinguish them from true 132 

heterogeneity [39].  133 
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 134 

Potential implications of temporal changes in estimated effect sizes 135 

 136 

The magnitude and direction of the mean effect size and the breadth of its confidence 137 

interval largely determine the conclusions drawn from a meta-analysis [4]. If the magnitude, 138 

statistical significance or the direction of the estimated effect  changes over time, any policy 139 

recommendations derived from a meta-analysis are likely to change as well. In Box 1 we 140 

show how two meta-analyses on the same topic conducted several years apart reached 141 

opposite conclusions on effectiveness of the same conservation measure. Such reversals in 142 

conclusions of meta-analyses represent an example of evidence reversal, a phenomenon 143 

that has only recently became a topic of formal exploration [40]. Reversals of evidence can 144 

have significant impacts on evidence-based conservation and environmental management 145 

and might necessitate revision of already implemented policies based on recommendations 146 

from the previous meta-analysis.  147 

 148 

Moreover, evidence reversals may affect not only the effectiveness of the currently 149 

implemented policies and measures, but also the society’s and researcher’s faith in the 150 

approach to assessment of scientific evidence base. For instance, differences in the 151 

conclusions between several meta-analyses on the same topic have sometimes led to 152 

questioning whether meta-analyses constitute repeatable science [41]. While the results of 153 

two meta-analyses can differ for many other reasons (e.g. different inclusion criteria, 154 

different statistical models and moderators tested), at present we do not know what 155 

proportion of ecological meta-analyses on the same topic arrived to different conclusions 156 

because of temporal changes in the estimated effect sizes.  157 
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 158 

Conversely, a lack of temporal changes in the estimated effect sizes may also convey 159 

important policy information when changes in effectiveness over time are expected. For 160 

instance, agri-environment schemes (AES) in Europe have been used for ca 25 years and are 161 

the biggest conservation expenditure in Europe [42]. National AES programs are revised 162 

every 7 years allowing countries to use novel scientific insights and modify their agri-163 

environmental programs to increase their efficiency. However, a meta-analysis by Batáry et 164 

al. [42] showed that effectiveness of AES has not changed as a result of the revision of the 165 

EU’s agri-environmental programmes in 2007. The authors point out that this lack of 166 

increase in effectiveness over time is worrying in view of forthcoming reductions in AES 167 

budget as it is unlikely that increased effectiveness of the scheme will compensate for the 168 

future budget cuts.   169 

 170 

 171 

Testing for temporal trends and updating the results of systematic reviews and meta-172 

analyses 173 

 174 

Several relatively simple and straightforward statistical approaches which allow testing for 175 

temporal trends in estimated effect sizes are available (reviewed in [7, 43, 44], and Box 2), 176 

but are unfortunately seldom used by ecologists. For instance, only 5% of 322 meta-analyses 177 

in plant ecology published between 1996 and 2013 have tested for temporal changes in 178 

estimated effects [45]. We argue that such tests have to become a routine part of ecological 179 

meta-analyses and one of the important criteria for review quality control evaluation [46]. 180 

Temporal trends in estimated effects can be detected in a meta-analysis by including 181 
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publication year as a moderator into meta-regression [13, 16] (Figure IIA). A cumulative 182 

meta-analysis (CMA) in which studies are entered into the analysis in chronological order 183 

provides another useful tool for detection of changes in cumulative evidence over time [47]. 184 

As all visual tools, CMA plots might be subject to misinterpretation and should be 185 

supplemented by formal statistical methods which should take into account multiple testing 186 

inherent in CMA [44]. Therefore, we recommend the use of cumulative meta-analysis in 187 

combination with control plots [44](Box 2), which can be plotted using R package qcc [48].  188 

 189 

Another class of methods has been developed for sequential clinical trials in medicine where 190 

the accumulated evidence is periodically reviewed as the trial progresses with a view of 191 

stopping the trial early if required. Applications of these techniques to meta-analysis exist 192 

[49-52], but we do not recommend their use (see critique of these approaches in [53, 54]). 193 

Furthermore, some ecological meta-analyses assess temporal changes in effect sizes by 194 

subdividing studies into groups based on the publication year (e.g. by decades or published 195 

before and after year X) and comparing mean effect sizes between the groups [42, 55]. This 196 

relatively crude approach ignores likely gradual character of temporal changes and their 197 

possible occurrence within as well as between the studied groups, therefore we do not 198 

recommend it. 199 

 200 

Use of tests for temporal changes in estimated effect sizes within individual meta-analyses 201 

may prove particularly effective if such changes occur mainly early on. For instance, Fanelli 202 

et al. [56] have recently shown that declines in magnitude of the effect sizes with 203 

publication year in meta-analyses are not linear and there is a strong “first-year” effect, in 204 

which the earliest studies are more likely to overestimate the overall effect than all later 205 
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ones. This effect might occur if early studies are statistically underpowered [57]. As a result, 206 

first meta-analyses on the topic based on the first few early primary studies available are 207 

particularly likely to overestimate the effect and results of such meta-analyses need to be 208 

treated with caution.  209 

 210 

In addition to testing for temporal trends within meta-analyses, updating existing meta-211 

analyses can also be an effective tool in early detection of evidence reversal. Useful 212 

guidelines on when and how to update systematic reviews have been recently published by 213 

the Cochrane panel [58]. In order to enable such an update, the transparency of methods 214 

used in the published ecological meta-analyses needs to improve. For instance, the 215 

database on which previous meta-analysis has been based need to be available as well as 216 

the detailed literature search strategy. Unfortunately, the majority of published ecological 217 

meta-analyses do not fulfil these criteria [45]. Another problem is that publication of meta-218 

analyses and any subsequent updates can take many months, which means that by the time 219 

of publication these reviews are already out of date. Shojania et al. [19] proposed that when 220 

the process of submission and rejection from other journals has resulted in the passage of 221 

more than one year from the date of the previous search, authors should update the search 222 

before resubmission. Another approach to narrowing the time gap between evidence and 223 

practice and to reducing the evidence reversal impact is to conduct living systematic 224 

reviews, online summaries updated as new research becomes available [59]. This approach, 225 

however, similarly to cumulative meta-analysis, might inflate the rate of false-positive 226 

findings due to repeated testing. Therefore, previously discussed methods or the Bayesian 227 

approach discussed in Elliott et al. [52] should be be used for monitoring accumulating 228 

evidence while reducing the probability of false positives.  229 
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 230 

Concluding Remarks and Future Perspectives  231 

 232 

We believe that more widespread application of methods for monitoring of temporal 233 

changes in reported effects (Box 2) and for updating meta-analyses will facilitate 234 

conclusions on sufficiency of evidence for policy making and timely detection of evidence 235 

reversal. Moreover, analysis of causes of temporal changes in cumulative evidence will 236 

reveal whether these changes require adjustment in previously accepted management 237 

policies. Ultimately this will allow saving of time and resources in the development of 238 

management strategies thus making conservation action more effective.  239 

  240 
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Box 1. An example of evidence reversal in conservation biology 241 

 242 

Two meta-analyses on effects of predator removal on bird population provide a good 243 

example of how heterogeneity in effect size can lead to evidence reversal and change the 244 

conclusions and practical recommendations. The first meta-analysis by Coté and Sutherland 245 

[60] showed that predator removal significantly increases postbreeding population sizes (i.e. 246 

autumn densities) of the target bird species, but does not significantly affect breeding 247 

population sizes (Fig. I). Coté and Sutherland concluded therefore that predator removal 248 

fulfils the goal of game management (enhancing harvestable postbreeding populations) but 249 

is of less use for conservation management (increasing bird breeding population sizes). 250 

However, a more recent meta-analysis on the same topic by Smith et al. [61] arrived at the 251 

opposite conclusion, showing that the predator removal effect on breeding population 252 

numbers is statistically significant, but the effect of predator removal on postbreeding 253 

populations is no longer significant (Fig. I). Smith et al. concluded therefore that predator 254 

removal is an effective strategy for the conservation of bird populations, but not for game 255 

management. Hence, two meta-analyses on the same topic conducted 13 years apart 256 

reached opposite conclusions on the effectiveness of the assessed conservation measures. 257 

In this particular case the difference in the results of the two meta-analyses was not due to 258 

changes in true biological effects but due to heterogeneity. Smith et al. have revealed that 259 

predator removal was effective in increasing postbreeding bird populations on mainland, 260 

but not on islands. Since the proportion of studies conducted on islands increased with time 261 

and was higher in meta-analysis by Smith et al. than in the earlier meta-analysis on the same 262 

topic by Coté and Sutherland, the magnitude of the overall effect estimate of predator 263 

removal on postbreeding populations was much smaller in the former meta-analysis. This 264 
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example shows the importance of updating the results of previous meta-analyses as new 265 

studies on the topic are published as well as the importance of examining the sources of 266 

variation in effect sizes and drawing inference from studies conducted under similar 267 

ecological conditions.  268 

  269 
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Box 2. Methods of detection of temporal changes in reported effects  270 

 271 

The simplest way to visualize a potential temporal trend in a meta-analytic dataset is by 272 

plotting effect sizes from individual primary studies against their publication years (Fig. IIA). 273 

In order to statistically test the above relationship, publication year can be used as a 274 

moderator in a meta-regression model [13, 16, 62]. Alternatively, cumulative meta-analysis 275 

(CMA) where studies are added to the analysis in chronological order and meta-analytic 276 

means are cumulatively calculated over the years can be used to visually detect temporal 277 

trends (Fig. IIB, [47]). Finally, methods of statistical quality control such as Xbar charts and 278 

CUSUM charts can be used to detect possible outliers and trends over time in meta-analysis 279 

[44, 63]. Xbar charts are based on detecting outlying observations under normality. The 280 

control limits on Xbar charts are usually plotted at 3 standard deviations, corresponding to a 281 

significance level of α = 0.0027.  The CUSUM charts plot the cumulative sums of the 282 

deviations of the sample values from a target value.  The chart is restricted from falling 283 

below zero, and often two one-sided CUSUM charts (for positive and negative deviations) 284 

are plotted simultaneously. 285 

 286 

We demonstrate the application of four different methods for detection of temporal trends 287 

in effect sizes on Figure II using a subset from the meta-analysis by Batáry et al. [64] on 288 

effects of agri-environment schemes on biodiversity as an example. A bubble plot (Fig. IIA) 289 

shows decrease in effect sizes with publication year, particularly between 1995 and 2005. 290 

The cumulative meta-analysis plot (Fig. IIB) demonstrates similar trend with initial increase 291 

of the effect until the fourth study was added to the analysis and the subsequent decrease 292 

in the magnitude of the effect. The cumulative effect size becomes significantly different 293 
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from 0 at study 6, and even more so at study 7, but then the effect declines as more studies 294 

are added to the analysis. In this example, the effect size reached at study 7 (d= 1.165) is 295 

monitored over time. The Xbar chart (Fig. IIC) shows one high outlier (study 4), two low 296 

outliers (studies 11 and 14) and one significant run rule violation (a series of more than 7 297 

negative deviations from the target value), suggesting a shift in the process mean. CUSUM 298 

chart (Fig. IID) shows that while the cumulative effects were significantly above 1.165 at 299 

studies 4 and 5, the cumulative results are significantly below this value for the last 4 300 

studies, indicating a decrease in the mean effect size. 301 

  302 
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Figures: 303 

 304 

Fig. I. Differences in estimates of the effects of predator removal on postbreeding and 305 

breeding population size of birds (data from meta-analyses by Côté and Sutherland [60] 306 

and Smith et al. [61]). Error bars represent 95% confidence intervals; mean effects are not 307 

significantly different from 0 if confidence intervals include 0. Number of studies included in 308 

the analysis: 13 and 51 for breeding population size estimates and 10 and 19 for 309 

postbreeding population size estimates in Côté and Sutherland and Smith et al., 310 

respectively.  311 

 312 

 313 
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 314 

 315 

 316 

 317 

Fig. II. Illustration of four different methods of exploration of temporal trends in reported 318 

effects.  We used a subset from the meta-analysis by Batáry et al. [64] representing 14 319 

studies assessing the effects of agri-environment management on biodiversity in simple 320 
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landscapes within croplands and published before 2006. Effect sizes are standardized mean 321 

differences (Hedges’ d) between biodiversity measures in extensively and intensively 322 

managed fields. A: a bubble plot showing the results of meta-regression with publication 323 

year as a moderator. Effect sizes are weighted by their precision; larger bubbles indicate 324 

more precise estimates and smaller bubbles less precise. B: cumulative meta-analysis 325 

showing changes in cumulative mean effect size and the 95% confidence interval as more 326 

recent studies are added in the analysis. C. Xbar chart. Horizontal central line on Xbar chart 327 

corresponds to the combined effect size of the first seven studies (d= 1.165). D. CUSUM 328 

chart. Control limits (dashed lines) are at ±3SD, out-of-control values are in red, run test 329 

violations (a series of consecutive deviations from the expected value which are of the same 330 

sign) are in orange. 331 

 332 

  333 
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Glossary  334 

 335 

Cumulative meta-analysis: a type of meta-analysis in which effect sizes from individual 336 

studies are entered into the analysis sequentially, one study at the time, based on some 337 

predetermined order (most commonly chronological); the mean effect size and confidence 338 

intervals are recalculated at each step. 339 

 340 

CUSUM chart: a cumulative sum (CUSUM) chart is a type of control chart used to monitor 341 

changes in the process mean. It plots the cumulative sum of deviations of the sample values 342 

from a target value. 343 

 344 

Decline effect: decrease in support for scientific claims over time as original studies are 345 

repeated.  346 

 347 

Effect size: a quantitative measure of the magnitude of study outcome that puts all 348 

responses across studies in a meta-analysis on the same scale. It provides a “common 349 

currency” for comparisons of the results across studies. Metrics of effect size most 350 

commonly used in ecology include standardized mean differences, response ratios and 351 

correlation coefficients. 352 

 353 

Evidence-based conservation: conservation management actions and policy making based 354 

on systematic assessment (e.g. systematic review and meta-analysis) of existing scientific 355 

evidence of current effectiveness of different management interventions.  356 

 357 
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Evidence reversal: occurs when an existing claim is tested and the original evidence is 358 

contradicted by new evidence. 359 

 360 

Heterogeneity: the variation in the effect size estimates among studies.  361 

 362 

Meta-analysis: a set of statistical methods for combining magnitudes of the effects across 363 

different data sets addressing the same research question. 364 

 365 

Meta-regression: an extension of basic meta-analysis model in which moderators are used 366 

to explain between-study variation in effect sizes (heterogeneity). 367 

 368 

Moderator: a variable (continuous or categorical) which is used in meta-regression to 369 

explain between-study variation in effect sizes. 370 

 371 

Publication bias: influence of magnitude, direction, and/or statistical significance of 372 

research findings on the probability of a study to be published.   373 

 374 

Systematic review: the type of research synthesis on a precisely defined topic using 375 

systematic and explicit methods to identify, select, critically appraise, and analyse relevant 376 

research. Systematic review may or may not include meta-analysis of the data.  377 

 378 

Time-lag bias: influence of study results on the time it takes to complete and publish a 379 

study; often refers to delayed publication of non-significant results.  380 

 381 
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Xbar (�̅�) chart: a type of control chart that is used to monitor the means of successive 382 

samples based on detecting outlying observations under normality. The control limits on 383 

Xbar charts are usually plotted at 3 standard deviations, corresponding to a significance 384 

level of α = 0.0027. 385 

 386 

  387 
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