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Abstract 

   

(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramic was synthesised using the mixed 

oxide method. The full piezoelectric matrix of the device was characterised 

and the material was machined and used in two types of transducer device. 

The receive sensitivity and transmit voltage response of the device was then 

measured.  

The synthesis of pure KNbO3 by the mixed oxide method was optimised 

to reduce potassium loss. Solid solutions of (1-x)KNbO3-xCaZrO3,              

(1-x)KNbO3-xLiNbO3 and (1-x-y)KNbO3-xCaZrO3-yLiNbO3 were synthesised. 

The aim was to replicate the mixed of phases found in PZT and BCTZ. 

Substituting KNbO3 with CaZrO3 induced a rhombohedral phase to appear at 

room temperature when x=0.03, making a mixed phase of orthorhombic and 

rhombohedral. CaZrO3 decreased the TO-T and TT-C phase transitions. 

Substituting KNbO3 with increasing amounts of LiNbO3 initially reduced the 

TO-T before inducing a secondary phase. LiNbO3 also acted as a sintering 

aid, which allowed high electric field measurements. The d33* of the solid 

solution peaked when x=0.07.  

Combining both solid solutions the individual effects of each system was 

repeated. Increasing the fraction of CaZrO3 induced a rhombohedral phase 

at room temperature and increasing the fraction of LiNbO3 improved the 

sinterability and overall piezoelectric performance.  
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1 Introduction 

1.1 Background and Motivation 

Piezoelectric materials have a wide range of applications due to their 

unique ability of converting an electronic signal into a mechanical signal and 

vice versa. This allows them to be used as actuators, sensors and 

transducers. Exploitation of the piezoelectric effect has led to innovative 

devices, from fuel injection systems in engines to SONAR in submarines. 

Since the formation of the Restriction of Hazardous Substances 

(RoHS) and the Registration, Evaluation, Authorisation, and Restriction of 

Chemicals (REACH) in 2006 and 2007 respectively, there has been an 

increase in research into lead-free piezoelectric materials (1-3).  This 

research has mainly focused on finding an alternative to the piezoelectric 

materials market leader, lead zirconate titanate (PZT) by attempting to 

replicate the morphotropic phase boundary (MPB) it possesses (4, 5). 

Although many different lead-free materials have been devised, not 

one has been able to completely replace PZT. There has also been a lack of 

translation from research to industry, or from material to device.  

 

1.2 Aims and Objectives 

The first aim of this work is to determine the feasibility of a 

(Ba,Ca)(Ti,Zr)O3  based material being incorporated into a transducer device. 

This will be done by initially producing large, fully characterised and 

machined samples of (Ba,Ca)(Ti,Zr)O3, modifying the manufacturing process 

of a device to reduce high temperature conditions, and then characterising 

the device.  

The second aim is to find, and characterise a novel lead-free 

piezoelectric material with a higher Curie point than that of (BaCa)(TiZr)O3. 

This will be done by doping a base material (KNbO3) with dopants that will 

induce a rhombohedral and tetragonal phase at room temperature.  
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1.3 Thesis Structure 

The thesis is split into 7 chapters. Chapter 1 describes the 

background and aims of the project. The principles of electroceramics and 

piezoelectric materials are described in chapter 2. Chapter 3 provides a brief 

history of piezoelectric materials and a background introduction into lead-

free alternatives. The experimental techniques are discussed in chapter 4. 

This includes the mixed oxide synthesis route of electroceramics and the 

characterisation techniques used.  

Chapter 5 covers the results of the full piezoelectric matrix of 

(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 and the manufacturing and characterisation of 

two types of lead-free transducer. The search for a novel lead-free 

piezoelectric material and the characterisation of the materials made is 

described in chapter 6.  

There is then a summary of the main conclusions of this work and a 

discussion of potential further work in the field. 
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 Introduction to the structure and electrical properties of 

electroceramics. 

This chapter covers the principles of the crystal structure and the 

functional properties that arise from specific ordering of atoms, focusing 

primarily on the perovskite structure. It will define some of the technical 

terminology that will be used freely throughout the thesis and describe the 

phenomena of piezoelectricity, ferroelectricity and their origins. Later in the 

chapter the applications of piezoelectric materials will be discussed. 

2.1  Crystalline Definitions 

The crystal structure is a way of describing the arrangement of atoms 

in a material. Understanding the crystal structure of a material is vital to 

understanding the physical properties that said material can exhibit. 

Manipulating the crystal structure changes the properties of the material 

which is the fundamental basis of material science.  

 

2.1.1  Crystal Structure 

Crystalline materials consist of atoms in a regular arrangement or 

pattern and are said to have long range order in 3 dimensions.  The 

repeating array of atoms form a lattice and points that have identical 

environments, for example, the same distances between atoms, are known 

as lattice points. The smallest representation of lattice points is known as a 

unit cell.  The unit cell on any structure can be classified into 1 of 7 crystal 

systems, cubic, tetragonal, orthorhombic, rhombohedral, hexagonal, 

monoclinic or triclinic. These crystal systems are described by three unit cell 

lengths, a, b and c, and the angles between them α, β, and γ. Where the 

angle between axis a and b is γ, between b and c is α and the angle 

between a and c is β (Figure 2.1). They can be further split into systems with 

a body, face, or base centred atom or without a centred atom. This type of 

classification is known as the Bravais lattice, and all 14 can be seen in Table 

2.1.  
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β 
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Figure 2.1: A unit cell of length, a, b and c, the angles α, β, and γ 

between them and the Cartesian axis x,y, and z. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1: Table of the 14 Bravais lattice, including crystal system lengths 
and angles. 

Cubic 

Tetragonal 

Orthorhombic 

Hexagonal 

Monoclinic 

Triclinic 

Primitive (P) Body-centred (I) Face-centred (F) Base-centred (C) 

Rhombohedral 

Crystal System 

a=b=c 

α=β=γ=90° 

a=b≠c 
α=β=γ=90° 

a≠b≠c 

α=β=γ=90° 

a=b=c 

α=β=γ≠90° 

a=b≠c 
α=β=90° 
γ=120° 

a≠b≠c 
α=γ=90° 

β≠90° 

a≠b≠c 

α≠β≠γ≠90° 
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2.1.2  Symmetry, Space Groups and point groups 

Applying point symmetry operations such as mirror, rotation or 

inversion can allow for a crystalline material to be categorised into 1 of 32 

point groups. Adding translation elements such as screw axis or glide to a 

crystal system allows for an even more detailed description of a crystal’s 

inherent symmetry and further categorises it into 1 of 230 space groups.  

Mirror plane symmetry, glide symmetry and rotational symmetry are 2 

dimensional and can be easily displayed as seen in Figure 2.2. Inversion 

axis symmetry is rotation that passes through the centre of symmetry. 

Whereas screw axis is a form of rotation and translation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The space group notation used during this thesis is the Hermann-

Maugiun notion (6). Where the first letter describes the Bravais lattice type, 

and the further letters and numbers correspond to symmetry elements. For 

Figure 2.2: Simple representation of (a) Mirror, (b) Glide, (c) Rotation, 
(d) Inversion and (e) Screw Axis symmetry. 

(b) (c) Glide 

Inversion 
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Screw Axis 
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R 

R R 

Rotation 360°/n 

n 

2 

3 

4 

1 R 

R
 R R

 

R 

Mirror (a) 

(d) (e) 
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example, the space group R3c is rhombohedral, the ‘3’ relates to its 3-fold 

rotation and the ‘c’ corresponds to a glide plane along the c-axis. 

Mirror plane symmetry is given the symbol ‘m’, glide planes are a mirror 

with the addition of ½ the direction along the unit cell and are given the 

symbol ‘a’, ‘b’, or ‘c’ depending on the direction. Rotation symmetry is given 

an integer ‘n’ where 360°/n is equal to the degrees of rotation. Screw axis 

symmetry is represented as two numbers, Nm, where N is the rotation 

integer and m/N is equal to the fraction of the unit cell translated (e.g. 21 is 

180° rotation and ½  unit cell translation). Inversion symmetry uses the same 

nomenclature as rotation, with negative numbers, often seen as -3 or         

3 .The space groups have also been numbered 1 to 230 by the 

International Union of Crystallography with 1 having the least symmetry, the 

triclinic crystal structure (P1) and 230 having the most symmetry, the cubic 

crystal structure (Ia-3d) (7).  

Of the 32 point groups 21 have no centre of symmetry and 11 are 

centrosymmetric. If a crystalline material possess a centre of symmetry all 

the positive and negative charges in the unit cell cancel each other out, and 

the material cannot display any piezoelectric properties. The cubic point 

group 432 is the only non-centrosymmetric point group not to exhibit 

piezoelectricity. It is the only non-centrosymmetric point group with both a 4-

fold and 3-fold axis, as a result of these symmetries coexisting there is no 

dipole moment (8). Of the 20 group points that can exhibit piezoelectric 

behaviour, 10 groups are spontaneously polar. Every polar space group is 

pyroelectric, where they generate a voltage with a change in temperature. 

Every ferroelectric space group is also pyroelectric (9). 

 

2.1.3  Planes and directions 

Lattice point positions are given in terms of its Cartesian axis 

coordinates, and are numbered in relation to the origin of a unit cell  in terms 

of fractions of lengths along x, y and z. They are represented as three 

integers known as Miller indices. Planes use round brackets (h,k,l) and 

directions use square brackets [u,v,w]. The brackets {hkl} and <u,v,w>  can 

be used to describe the equivalent planes or directions respectively. For 

example {001}, would describe the (001), (010) and the (100) planes as well 

as the negative equivalents (00 1  ), (0 1  0) and (00 1  ). 

In the examples found in Figure 2.3 the direction A is [110], B is [101] 

and C is [012]. The plane D is (001), E is (010), and F is (002).   
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2.1.4  The Perovskite Structure 

The mineral perovskite, first discovered by Gustav Rose in 1839, and 

named after mineralogist Lev Perovski, is a calcium titanium oxide mineral 

(CaTiO3), and it lends its name to a very important crystal structure (10). 

Most piezoelectric and ferroelectric materials that are researched and used 

in applications have the perovskite structure (11).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: A unit cell with the origin marked O (a) directions 
marked A, B and C and (b) planes marked D, E, and F. 
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z 

x 

O 

A 

C 

B 

O 

Figure 2.4: Typical perovskite structure, the large A-site cation at the corners, 
the central smaller B-site cation and the X-site anion acting as an oxygen 

octahedra at the face centres. 

 A+ A2+ A3+ 

 B5+B4+ B3+ 

O
2+
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The perovskite structure has the form ABX3 as seen in Figure 2.4. 

Where A is a cation found at the corners of the unit cell and is much larger 

than B, a cation found at the body centre. X is an anion found at the face 

centres, and is usually an oxygen atom. A and B can be a wide variety of 

elements, however their positive valences must equal the sum of the 

negative valences of the X-site (12). When the X-site is occupied by oxygen 

atoms, the B-site atom and the surrounding 6 oxygen atoms can combine to 

create an oxygen octahedra. Tilting or distortion of the oxygen octahedra 

can lead to phase transitions (13).   

  

2.1.5  The Goldschmidt tolerance factor 

As mentioned in 2.1.2, in order for a crystalline material (including 

perovskite) to exhibit piezoelectricity, it must be a non-centrosymmetric 

structure. The perovskite structure can accommodate a large range of 

atoms, different atoms and different combinations lead to distortion from the 

cubic crystalline structure leading to piezoelectricity. This can arise from 

displacement of the central ion, as well as distortion or tilting of the oxygen 

octahedra.  

Goldschmidt proposed the concept of a perovskite tolerance factor ‘t’ in 

1926 seen in Equation 2.1 (14). Where rA, rB and rO are the ionic radii of the 

respective ions. 

𝒕 =
𝒓𝑨+𝒓𝑶

√𝟐(𝒓𝑩+𝒓𝑶)
      Equation 2.1 

  

The equation can be used to determine the stability of an ionic paring, 

where an ‘ideal’ perovskite structure would have a t≈1, such as SrTiO3. It 

has been found that difficult to prepare Pb-based samples such as 

Pb(Mg1/3Nb2/3)O3 with a t=0.89, can have enhanced stability when the small 

Pb2+
 cation is replaced by a small amount of Ba2+, bringing the tolerance 

factor closer to 1.00. It has also been found that there is a link between 

tolerance factor and Curie temperature, with the lower the tolerance factor, 

the higher the Curie temperature  (15). When t≠0.95-1.00, the structure is 

non-cubic, becoming orthorhombic or rhombohedral when t<0.95 and 

tetragonal when t>1.00 (16-18).  
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2.1.6  Phases and Phase Transitions 

The ability for the B-site atom to be displaced from its central positon 

gives rise to piezoelectricity. A piezoelectric perovskite under certain 

conditions (temperatures, pressures or electric fields) has a displaced B-site 

atom. In ferroelectric materials, this can happen in ambient conditions as 

they exhibit a spontaneous displacement of the central atom or ’polarization’  

below its Curie point (see 2.2.5). 

When the B-site atom is displaced from the centre, the shape of the 

whole perovskite structure changes. This is due to the intra-unit cell atom 

conditions changing, known as electrostriction. The direction of displacement 

also has an effect on the shape. Take for example the ferroelectric material, 

potassium niobate (KNbO3), a material which will be discussed in detail 

during this thesis. As it cools through the Curie point at 435°C, it changes 

from cubic to ferroelectric tetragonal. Further cooling to 225°C, and there is a 

ferroelectric-ferroelectric phase transition from tetragonal to orthorhombic. At 

-10°C another ferroelectric-ferroelectric transition occurs, from orthorhombic 

to rhombohedral.  

A phase transition that occurs due to a change in temperature is called 

a polymorphic phase transition (PPT). In Figure 2.5 it can be seen that the 

change in temperature causes the niobium ion found at the B-site to occupy 

certain directions, indicated by the polarization arrow. The arrows only 

represent one direction however the equivalent angles are also valid. For 

example, in a ferroelectric material, when the structure is tetragonal the atom 

could occupy anywhere along the arrow under electric field or either 

extremity when under no field (19, 20). 

 

 

 

 

 

 

 

 

Figure 2.5: Ferroelectric phase transitions of KNbO3 with the directions of 

polarization indicated. 
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2.1.7  Solid Solutions and morphotropic phase boundaries  

Phase transformations can also occur with changes in composition. 

Substitution of one or more types of atoms on either A or B-site (or both) can 

induce a phase change. These systems are called solid solutions, and are 

the major topic of research amongst the electroceramic community. The 

composition at which there is a phase transition often has a coexistence of 

more than one phase. At this point there is often a maximum in the 

electromechanical properties, and the composition is said to be at the 

morphotropic phase boundary (MPB) (21). 

The morphotropic phase boundary is often observed as a vertical line 

on a phase diagram. The original definition is a temperature independent 

phase boundary between differing symmetries (22). In practice however, the 

term MPB gets used to indicate the presence of more than one phase, 

whether temperature dependant or not, as well as increased piezoelectric 

performance (23).  

The increase in piezoelectric performance is due to the presence of two 

phases allowing for an increasing number of polarization directions available 

for the B-site atom to occupy. For example, a coexistence between a 

tetragonal phase, which can have 6 directions, and a rhombohedral phase 

that can have 8 directions, will allow for 14 different polarization directions. 

 

2.1.8  Non Perovskite Ferroelectric materials 

Although perovskite piezoelectric materials are the most researched 

and applied materials, there are several non-perovskite piezoelectric 

systems. Bismuth layer-structured ferroelectrics (BLSF) have the general 

formula Bi2An-1BnO3n+3 and consist of at least one perovskite unit cell 

sandwiched between bismuth oxide sheets (Bi2O2). The maximum d33 

coefficient for a BLSF reported is 25pC/N (18). They are characterised by 

their low dielectric constant, high Curie temperature and large anisotropic 

electromechanical coupling factors (24).  

Another non-perovskite structure with ferroelectric materials is the 

tetragonal tungsten-bronze structure (TTB). They have the general formula 

AxWO3 and exist in three basic structures, all based on a corner sharing 

WO6 octahedra. They generally exhibit relaxor properties (see 2.2.10), have 

very low piezoelectric d33 coefficients and are of interest in high temperature 

applications owing to their high Curie point (25-27). 
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2.2 Functional properties of ferroelectrics 

Characterising the unique functional properties of piezoelectric and 

ferroelectric materials is a major part of the research undertaken in this 

thesis. The origin and relevance of these properties will be described in this 

section.  

2.2.1  Dielectric Properties 

Dielectric materials do not conduct electricity, instead, when a dielectric 

is placed under an electric field the charges in the crystal structure 

rearrange. The rearrangement of the charges forms a dipole moment, and 

the material is said to be polarised.  

 The permittivity of a dielectric is the displacement per unit of electric 

field. When two parallel plates have an electric field, V, applied to them and 

a vacuum separating them, there is a charge build up at the surface, Q. This 

is dependent on the surface area, A, of the plates and the separation 

distance, d, between them.  

   𝑸 =  𝜺𝟎 𝑽 ∗  
𝑨

𝒅
                  Equation 2.2 

 The proportionality constant, ε0 is known as the permittivity of free 

space which is equal to 8.845x10-12
 Fm-1. The capacitance, C, of the system 

is the ratio of charge to voltage.  

        𝑪 =   
𝑸

𝑽
=  𝜺𝟎 ∗  

𝑨

𝒅
            Equation 2.3 

 

 The electric field, E, between the two plates is the voltage divided by 

the distance between the plates. Expressing in terms of electric field instead 

of voltage applied and rearranging, will allow for the surface charge density, 

σ, to be calculate. 

𝝈 =  
𝑸

𝑨
= 𝜺𝟎𝑬     Equation 2.4 

 When the gap between the parallel plates is filled with a dielectric 

material, the capacitance and the surface charge density increases by a 

factor known as εr which is known as the relative permittivity or dielectric 

constant. Therefore, the capacitance for a dielectric material is 

𝑪 =  𝜺𝟎𝜺𝒓 ∗  
𝑨

𝒅
                                      Equation 2.5 
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And the permittivity of the system is   

𝜺 =  𝜺𝟎𝜺𝒓          Equation 2.6 

 

Polarization, P, is the amount charge distribution is distorted by the electric 

field and is proportional to the applied electric field.  

𝑷 =  
𝜺𝟎𝝌

𝑬
     Equation 2.7 

Where χ is the dielectric susceptibility and is related to the relative 
permittivity of the dielectric material by 

𝜺𝒓 =  𝝌 + 𝟏     Equation 2.8 

 

2.2.2  Dielectric loss 

In practice a dielectric material is not a complete insulator and there is 

some charge transport through the system. There is also some energy lost 

in the material, as polarization switching lags behind the alternating current 

(AC) field. There are a number of mechanisms which contribute to the 

polarization. The electronic contribution comes from electron orbitals being 

distorted by the electric field, the ionic contribution is from the position of the 

ions changing, and there is also a contribution from molecular orientation 

and space charge carriers. Each of these mechanisms can be distinguished 

by the speed with which they can follow an AC field. 

The losses are represented by splitting the permittivity into a real, ε’ 

and imaginary (lossy), ε” components, making the permittivity complex. 

 

𝜺∗ =  𝜺′ − 𝒊𝜺"      Equation 2.9 

 

The phase difference between the current (I) and the voltage (V) in a 

pure capacitive circuit is 90°. As the voltage charges, the current becomes 

zero. In a real dielectric there are some losses, and so the phase difference 

is less than 90°. In the phasor diagrams (Figure 2.6) it can be seen that the 

current splits into two components in a lossy capacitor, the component in the 

direction of the current, Icap, and the component in the direction of the 

voltage, Iloss.   
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𝑰𝒄𝒂𝒑 = 𝑰𝒔𝒊𝒏(𝟗𝟎 − 𝜹) = 𝑰𝒄𝒐𝒔(𝜹)                Equation 2.10 

𝑰𝒍𝒐𝒔𝒔 = 𝑰𝒄𝒐𝒔(𝟗𝟎 − 𝜹) = 𝑰𝒔𝒊𝒏(𝜹)               Equation 2.11 

 

The loss component is typically expressed as the ratio between the 

imaginary and real components, and therefore; 

𝑰𝒄𝒂𝒑

𝑰𝒍𝒐𝒔𝒔
=  

𝜺"

𝜺′
= 𝒕𝒂𝒏𝜹          Equation 2.12 

  

2.2.3  Piezoelectric coefficients and modes 

When a mechanical stress, T, is applied to a piezoelectric material, the 

material will generate a polarization, P, this produces an electrical charge, 

and is known as the direct piezoelectric effect (Equation 2.13). The indirect, 

or converse effect is the opposite. Under an electric field, the material 

produces a strain, x (Equation 2.14).   

𝑷 = 𝒅𝒊𝒋𝑻      Equation 2.13 

 

𝒙 = 𝒅𝒊𝒋𝑬      Equation 2.14 

Where d is the piezoelectric charge coefficient with units of pm/V or 

pC/N. It is usually expressed with two subscripts. Under the converse effect, 

the first relates to the direction of the applied electric field or stress and the 

second relates to the axis of the resultant strain measured. 

I
cap

 

I 

V 

90° 

I 

V 

δ 

(a) (b) 

Figure 2.6: Phasor diagram of the phase difference between current and 
voltage of (a) an ideal capacitor and (b) a lossy capacitor. 

I
loss
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The longitudinal mode, or d33, is the measure of strain induced by the 

electric field along the polarization direction. The transverse mode, or d31, is 

the measure of strain induced perpendicular to the direction of the electric 

field applied along the polarization direction. The shear mode is the strain 

measured around the 2-direction as the electric field is applied perpendicular 

to the polarization (Figure 2.7).  

The piezoelectric voltage coefficient, g, is the electric field generated by 

a piezoelectric material per unit of mechanical stress or, the mechanical 

strain on the material per unit of electrical displacement. 

         𝒈𝒊𝒋 =  
𝒅𝒊𝒋

𝜺𝑻
       Equation 2.15 

Where εT is the permittivity under constant stress. The voltage coefficient 

also uses directional subscripts following the same rules as the piezoelectric 

charge coefficient. The units for g are Vm/N. The voltage coefficient is 

important for assessing the suitability of a material to be used in a sensor. 

  

2.2.4  Electromechanical coupling Factor 

The electromechanical coupling factor, k, gauges a piezoelectric 

material’s ability to convert electrical energy to mechanical energy and vice 

versa.  

Figure 2.7: The three piezoelectric modes (a) longitudinal, (b) transverse, (c) shear, 
and the piezoelectric tensor notation. 
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𝒌 = √
𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚 𝒄𝒐𝒏𝒗𝒆𝒓𝒕𝒆𝒅 𝒕𝒐 𝒎𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚

𝒊𝒏𝒑𝒖𝒕 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚
  Equation 2.16 

𝒌 = √
𝒎𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚 𝒄𝒐𝒏𝒗𝒆𝒓𝒕𝒆𝒅 𝒕𝒐 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚

𝒊𝒏𝒑𝒖𝒕 𝒎𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚
          Equation 2.17 

 

 This also uses the subscript notation, kij.  The electromechnical 

coupling factor and the piezoelectric charge coefficient can be related by the 

following equation: 

𝒅𝟑𝟑 = 𝒌𝟑𝟑√𝜺𝟑𝟑
𝑻 𝑺𝟑𝟑

𝑬      Equation 2.18 

 

Where 𝜀33
𝑇  is the permittivity at a constant stress and 𝑆33

𝐸  is the compliance 

at constant electric field.    

 

2.2.5  Ferroelectricity 

Ferroelectric materials possess a spontaneous polarization that can be 

in more than one orientation and can be switched between orientations with 

an electric field. Above a certain temperature called the Curie point (TC), 

there is enough energy in the system for the crystal structure that allows 

ferroelectricity to transition into a paraelectric cubic structure. Cubic 

structures are centrosymmetric and so the material will have no 

spontaneous polarization. This is the case for every ferroelectric material 

although the Curie point does vary. 

The Curie point is not to be confused with the Curie Temperature (T0). 

T0 is a material constant determined by extrapolation of 1st-order 

(discontinuous) phase transitions. In 2nd-order (continuous) phase transitions 

Tc and T0 are equal.  

 

2.2.6  Curie-Weiss Law  

Above TC the dielectric permittivity of a material follows the Curie-Weiss 

Law. 

𝜺𝑻<𝑻𝑪
=

𝑪𝒄

𝑻𝑪−𝑻
     Equation 2.19 

Where CC is the Curie constant and is material specific (28).   
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2.2.7  Ferroelectric Domains 

  Domains are small areas in a ferroelectric material where the 

polarization direction is the same. They are formed to reduce the free energy 

of a system as it changes phase structure.  

As a paraelectric material cools through the Curie point, it transitions 

into (for example) a tetragonal ferroelectric structure and the spontaneous 

polarization is induced. This polarization creates surface charges which is in 

turn minimised by the formation of 180° ferroelectric domains. When the 

crystal structure changes, there is also a change in the lattice parameters 

which results in stress. To minimize the effect of this elastic stress, 90° 

domains are formed (see Figure 2.8). If the material cooled and became 

rhombohedral, to reduce charge build up and stress, 109°, 71° and 180° 

domains would be formed. 
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Figure 2.8: Formation of (a) 180° domains and (b) 90° domains in 
a tetragonal structure. 
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2.2.8  Poling  

In a crystalline ferroelectric, after the formation of domains there is no 

net polarization present in the material, as the randomly distributed 

polarization directions cancel each other out. For a crystalline sample to 

exhibit macroscopic polarization, it must undergo a process known as poling. 

Poling involves placing a material under a constant electric field of sufficient 

magnitude to rearrange the domains in the structure, providing a remanent 

polarization. The domains with a polarization direction in the same direction 

as the poling field grow, and the domains with different polarization 

directions to the poling field shrink. This occurs due to domain wall motion a 

schematic can be seen in Figure 2.9. 

 

 

 

 

 

 

 

 

 

 

 

 

The displacement of the central atom with electric field and the 

resultant change in shape of the unit cell is the intrinsic piezoelectric effect. 

However, a large part of the piezoelectric effect comes from the extrinsic 

domain wall motion described above (29).  

The ideal poling conditions are material specific. The poling voltage is 

usually 2-3 times the coercive field. Ideally, poling occurs during cooling from 

above TC to below, however in practice the TC is often too high for the high-

voltage-breakdown oil that poling occurs in. Poling at phase transition 

temperatures can result in improved properties when compared to room 

temperature poling (30).  

Figure 2.9: Direction of polarization of a (a) un-poled and (b) poled material. 
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2.2.9  Ferroelectric Hysteresis 

Measuring the polarization as a function of electric field of an un-poled 

ferroelectric will give rise to a hysteresis loop as seen in Figure 2.10. Prior to 

an electric field being applied, at the graphs origin, the domains are 

randomly oriented and the net polarization is zero. As the field is increased, 

following the direction of the arrows, the domains orientate themselves to 

align the polarization with the field. At this point the polarization is saturated, 

Ps. When the applied field is reduced to zero, there is a remanent 

polarization, Pr. The electric field required to reduce the remanent 

polarization back to zero is known as the coercive field, EC. Above the 

coercive field and the domains reorient themselves to follow the field, now in 

the opposite direction. The field is reversed again and the loop is complete. 

Ps is the spontaneous polarization and is calculated by extrapolating along a 

tangent from the Psat back to zero field. Changing the field strength, the 

temperature and the frequency of the loop will change its shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Typical polarization-electric field plot for a ferroelectric material, 
with the domain orientation indicated. 

P
r
 

P
s
 

E
sat

 E
c
 -E

c
 

P (C/m
2
) 

E (kV/cm) 

P
sat

 

E 

E 



19 

2.2.10 Relaxor Ferroelectrics 

Relaxors are a sub category of ferroelectrics, and are categorised by 

dispersion of the permittivity with frequency and broad phase transitions with 

temperature (see Figure 2.11). Unlike non-relaxor ferroelectrics, the peak 

permittivity temperature does not coincide with the Curie point. The ‘model’ 

relaxor ferroelectric is lead magnesium niobate, Pb(Mg1/3Nb2/3)O3, (PMN) 

(31). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In PMN the B-site is shared by Mg2+ and Nb5+ cations. This leads to 

disorder, which has been theorised by Smolensky to produce fluctuations in 

the Curie point within regions of the sample, thus leading to the diffuse 

phase transitions (32). Another model of the broadening of relaxor 

ferroelectric phase transitions, proposed by Cross, is based on an analogy 

with superparamagnets, now known as the polar region size effect model 

(33). It describes the mechanism of relaxor behaviour through the formation 

of polar nano regions (PNRs) below TC that cause low-symmetry regions 

within a higher symmetry matrix.  

Figure 2.11: Dispersion of permittivity with frequency of a typical PMN sample. 
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2.2.11  Miscellaneous properties  

Density, ρ, is a property used throughout the thesis. It is the mass, m, per 

unit of volume, V of a sample and is calculated as seen in Equation 2.20. 

 

Equation 2.20𝝆 =  
𝒎

𝑽
     Equation 2.20 

The Archimedes principle is an accurate way of obtaining the density of 

a sample as it gives an accurate volume measurement. However, this 

volume is usually obtained by submerging the sample in water which cannot 

be used with potentially soluble samples. Therefore the geometric density is 

measured. For a round sample, this involves measuring the thickness, t, and 

diameter, d (or 2r), of the sample and calculating the volume,V, by: 

𝑽 = (𝝅𝒓𝟐) t     Equation 2.21 

 

Or for a cuboidal sample, multiplying the length, l, width, w, and 

thickness, t; 

𝑽 = 𝒍 ∗ 𝒘 ∗ 𝒕     Equation 2.22 

The geometric volume is then used to calculate the density. The 

Archimedes principle is more accurate as it can account for any voids or 

holes within the sample as well as the roughness of the surface or any 

irregularities, whereas the geometric density does not. 

The elastic constant, E, or Young’s modulus of a material is the ratio 

between stress, σ, and strain, ε in a material under uniaxial deformation 

and us given as; 

𝑬 =  
𝝈

𝜺
       Equation 2.23 

It is the measurement of elasticity or stiffness of a material.  
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2.3 Applications 

Piezoelectric and ferroelectric materials convert electrical energy into 

mechanical energy and vice versa. This phenomenon can be used in many 

different applications, the global demand for piezoelectric devices was 

valued at approximately $21.6 billion in 2015. With the industrial and 

manufacturing industries having the biggest demand, followed by the 

automotive industry (34).  

A device that converts a mechanical stress into an electrical signal is 

classed as a sensor and a device that converts an electrical signal into 

mechanical movement is an actuator. Devices that use piezoelectric 

materials are known as transducers however, the term is also used to 

describe a device which uses both conversion from mechanical to electrical 

and electrical to mechanical energy in one.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Device 

Sensor – uses the 

direct effect 

Actuator – uses the 
converse effect 

Transducer – uses a 
combination of both 

effects 

Applications 

Micropositioning 

Inkjet printing 

Fuel Injection 

Pressure sensor 

Engine knock sensor 

Generator Spark igniters 

Energy Harvesting 

SONAR 

Ultrasound Scanners 

Parking Sensors 

Resonator – uses materials 
under resonance 

Microbalance 

Quartz Clock 

Table 2.2: A table of different devices and applications that use 
the piezoelectric effect. 
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3. Literature Review   

 

This chapter aims to cover a history of piezoelectric materials from 

humble Rochelle salt, through the discovery of Barium Titanate, to the 

foundation of high performance materials such as PZT and single crystal 

materials. It will then focus on why the discovery of a lead-free alternative to 

PZT has such significance, and review the literature that has been written 

since the search began. 

3.1. The History of Piezoelectric Materials 

3.1.1. Quartz, Rochelle salt, and Early Piezoelectric 

Materials  

 The Curie Brothers discovered piezoelectricity in the materials; zinc 

blende, sodium chlorate, boracite, tourmaline, calamine, topaz, tartaric acid, 

cane sugar, Rochelle salt and quartz in 1880 (35). Paul Langevin developed 

the first practical application of the piezoelectric effect making an acoustic 

wave generator using a quartz crystal based transducer during World War I. 

Quartz crystal was then replaced by Rochelle Salt in the underwater sound 

transducers at the beginning of World War II (36). 

 Quartz is used most commonly today as a crystal oscillator, which 

allows for a much more accurate clock than a mechanical clock. It is also 

used in quartz crystal microbalances, where the resonant frequency 

changing under mechanical load allows for very precise measurements of 

small masses. Rochelle Salt is no longer used for piezoelectric or 

ferroelectric applications, but has found its use as a laxative and also as a 

combustion accelerator in cigarette papers (37).  

 

3.1.2. Barium Titanate 

 Barium titanate was the first ferroelectric perovskite to be discovered 

(38). It was independently discovered in three different countries, by Wainer 

and Salomon in the USA,(39) by Ogawa of Japan (40) and Vul in Russia 

(41, 42).  Its ferroelectricity and high dielectric properties were discovered by 

Thurnauer and Deaderick at the American Lava Co in 1941 (43). Below        

-90°C, barium titanate has a rhombohedral structure, between -90°C and 

5°C it has an orthorhombic structure, this changes to a tetragonal structure 
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at 5°C which remains until 120°C, which is the Curie point of barium titanate, 

at which point it becomes cubic (44). 

 The first commercial use for barium titanate was in phonograph 

pickups in 1947 (18). Due to its high dielectric, and low loss characteristics, 

barium titanate is widely used in multilayer capacitors today (38).  

 

3.1.3. Early Niobate solid solutions 

 Lead niobate was discovered to be piezoelectric in 1952 (45). It is a 

member of the tungsten bronze family. It found some uses in non-destructive 

testing and medical testing, however its high porosity and low mechanical 

strength properties have prevented it from being further developed as a 

system (46). After the discovery of lead niobate, several piezoelectric 

niobate solid solution systems were found (18).  

 

3.1.4. Lead Zirconate Titanate (PZT) 

 The most important and most popular piezoelectric material was 

discovered by Shirane, Suzuki and Takeda in 1952 (47). Where they 

determined the phase diagram, and measured the excellent piezoelectric 

properties. The electromechanical properties of PZT were first measured by 

B. Jaffe et al in 1954 (48).  

 PZT is a solid solution of ferroelectric lead titanate (PbTiO3) and anti-

ferroelectric lead zirconate (PbZrO3) and has a perovskite structure. By 

varying the ratio of Zr:Ti atoms, it is possible to change the phase of the 

material. Zirconium rich compositions (Zr:Ti > 54:46) are rhombohedral, and 

titanium rich compositions (Zr:Ti < 48:52) are tetragonal (49). A Zr:Ti ratio 

within these boundaries will comprise of a coexistence of rhombohedral and 

tetragonal phases, and an enhancement of the piezoelectric properties seen 

in Figure 3.1 (48) . 
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Figure 3.1: Property enhancement of PZT at the MPB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.4.1 The phase diagram of PZT throughout history 

The phase diagram of PZT has changed significantly over the 

decades since its original conception by Shirane et al 1952 (47). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2: Original phase diagram of PZT by G. Shirane et al. 
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The original phase diagram of PZT by Shirane et al in 1952 can be 

seen in Figure 3.2. The phase diagram does not include the 48:52 MPB that 

is found in the later phase diagrams, however it does include a pseudocubic 

ferroelectric to tetragonal ferroelectric phase boundary that is not present in 

later phase diagrams. An antiferroelectric temperature dependant phase 

boundary is found below ~8 atomic percent PbTiO3 is included in the phase 

diagram, and the paraelectric cubic phase can also be seen above ~200°C, 

with the phase transition temperature increasing with PbTiO3 substitution. 

A year later, E. Sawaguchi expanded the phase diagram to include 

the full solid solution, this can be seen in Figure 3.3 (50). The pseudocubic 

ferroelectric phase between ~8 and ~25 atomic percent of PbTiO3 was 

identified as a rhombohedral phase and the phase boundary to the 

tetragonal phase was moved to ~45 atomic percent of PbTiO3, seen as a 

near perfectly vertical line. The antiferroelectric phase was also split into two. 

  

Figure 3.3: The adapted phase diagram of PZT by E. Sawaguchi. 
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By 1971 the resolution of the phase diagram had improved (Figure 

3.4) (18). The rhombohedral phase was split into high temperature and low 

temperature phases, as a difference in the octahedral tilt was observed at 

these different temperatures. The near perfectly vertical MPB found in the E. 

Sawaguchi phase diagram was tilted slightly to accommodate the variation 

in properties over the different Zr:Ti ratios. The tetragonal antiferroelectric 

phase was decreased in size.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This phase diagram was widely accepted by the ceramic community 

until a monoclinic phase was observed by B.Noheda et al in 1999 (Figure 

3.5) (51).  The monoclinic phase was found using high resolution 

synchrotron x-ray powder diffraction, and can be seen at the ‘MPB’ between 

the rhombohedral and tetragonal phases. The observation of a monoclinic 

phase found at the MPB of PZT lead to the development of a different model 

to describe why the piezoelectric properties peak at the ‘MPB’ (21).  

 

 

 

 

Figure 3.4: The phase diagram of PZT adapted further by B. Jaffe et al. 



27 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was proposed by A.M Glazer et al that there was no morphotropic 

phase boundary at all, and that in fact both the rhombohedral and tetragonal 

phases are monoclinic and exhibit different ranges of disorder (52). Figure 

3.6 shows how this would appear as a phase diagram.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: The phase diagram displaying the monoclinic phase found in 
PZT by B. Noheda et al. 

Figure 3.6: The phase diagram of PZT proposed by A. M. Glazer et al. 
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Finally the most recent phase diagram of PZT was developed by R. 

Eitel and C. A. Randall in 2007 can be seen in Figure 3.7(53). It splits the 

monoclinic phase observed by B.Noheda et al in two and also introduces a 

further monoclinic phase between the rhombohedral ferroelectric phase and 

the orthorhombic antiferroelectric phase. 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.4.2 PZT Conclusion 

 The difference in phase diagrams through the years can not only be 

attributed to improved characterization techniques, but also a development 

of the understanding of the MPB as a concept. Different models have been 

used through the decades, leading to different conclusions. The differences 

are a testament to the scientific process and a reminder that conclusions 

drawn are not absolute.    

In many ways the discovery of PZT has been as much of a hindrance 

to piezoelectric material research as much as it has been an asset. The 

existence of such an excellent material will have led to complacency in both 

research and industry, because there was less of a demand to find 

alternative materials. There is no doubt that PZT led to a decrease in the 

intensity of research and development in piezoelectric materials which was 

only reversed by the discovery of notable single crystal materials, and fairly 

recent sanctions imposed by the European Union on the use of lead.    

Figure 3.7: The phase diagram of PZT used by R. Eitel and C. A. Randall. 
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3.1.5. Single Crystal Materials 

Relaxor lead titanate (PT)-based single crystal have much higher 

properties than that of PZT. The first PT-based single crystal was grown in 

1981 by flux method by Nomura et al (54), and was reported to have an 

extremely high piezoelectric constant and coupling factor in the (001) 

direction. The solid solution was of Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT). 

Later, Shrout et al grew a single crystal of Pb(Mg1/3Nb2/3)O3-PbTiO3       

(PMN-PT) also by flux method (55). These successfully grown single 

crystals sparked a wide interest in the ceramics industry due to their high 

properties, and several research groups and companies were formed to 

further research this technique and materials (56). The Shanghai Institute of 

Ceramics in China and the Rockwell Science Centre in Stanford University, 

USA, are just two of several groups who went on to grow very large single 

crystals or PMN-PT by the Bridgman method as opposed to Flux Growth. 

Although PZN-PT and PMN-PT (first generation single crystals) have 

many desirable properties, they also have a low coercive field (2.5kV/cm) 

and a low Curie point of ~130°C. These properties can be a detriment where 

the application involves a high excitation signal or elevated temperatures 

(57). As a result the ternary system of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3--

PbTiO3 (PIN-PMN-PT) was developed which had an elevated coercive field 

and an increased Curie temperature due to the addition of lead indium 

niobate (58).  This system became known as second generation single 

crystals. 

The effect of MnO2 addition to PIN-PMN-PT was investigate by Zhang 

et al, the idea behind this was to induce the ‘hardening’ effect that occurs 

when manganese is added to PZT. The results were a success, and the 

addition of manganese to the system improved the mechanical quality factor 

(59). This system became known as the third generation single crystals.   

It has been postulated that single crystals of PZT would have better 

piezoelectric properties than their polycrystalline counterpart. However, the 

growth of PZT single crystals has been attempted by numerous groups, with 

limited success (60). 
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3.1.6. European Union Lead Restrictions and Exemptions 

 Since the formation of the Restriction of Hazardous Substances 

(RoHS) and the Registration, Evaluation, Authorisation, and Restriction of 

Chemicals (REACH) in 2006 and 2007 respectively, there has been an 

increase in research into lead-free piezoelectric materials (2, 3, 61). The 

sanctions limit the amount of lead that can be included in a material or 

product to 0.1% by weight, and also limit the use of lead oxide in processing 

procedures. The restrictions are in place in order to reduce the 

environmental impact of lead containing electrical equipment and devices at 

the end of its lifecycle, as well as to protect the workforce at the processing 

factories. 

As the market leader PZT is around 50% by weight lead, there is a 

need to find an alternative material. However, since no credible or reliable, 

lead-free equivalent has been found, piezoelectric materials have an 

exemption to these restrictions (62). This exemption is due to expire in July 

2021, having recently been extended for an extra 3 years.  

The extension must be applied for each time it expires and is not 

automatically granted. Questions must be asked to find out if a reliable 

alternative has been found, and whether this alternative is worse for the 

environment than PZT. Industry and research institutes must also prove that 

an alternative is actively being searched for.  

The restriction of lead in products and the need to search for an 

alternative is a major reason why there has recently been a huge increase in 

piezoelectric materials research, and the main reason behind the project as 

a whole.  
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3.2. The Search for a PZT Alternative 

 In order to find an alternative to PZT it is necessary to understand 

why PZT is such a versatile and successful material. The coexistence of a 

rhombohedral phase and a tetragonal phase is believed to be the origin of 

these excellent piezoelectric properties. The morphotropic phase boundary 

(MPB) between these two phases results in a material which is much easier 

to pole due to the different states that the polarization can enter.  The MPB 

is present up to the high temperature of ~350°C, which is the reason that 

PZT has such high temperature stability. This mechanism for high properties 

was believed to be the case until the monoclinic phase was found in the 

same area as the MPB.  

 L. Bellaiche et al provided and explanation for the higher piezoactivity 

in the region around the MPB after the discovery of the monoclinic phase. 

They stated that the monoclinic phase acted as a bridge between the 

rhombohedral and tetragonal phases. This was indicated by “the continuous 

rotation of the polarization as a function of composition” (63).  

 In order to replicate the MPB of PZT in a lead-free alternative, 

research groups dope base materials. This affects the phase transition 

temperatures of the material, with the aim to bring both the rhombohedral 

phase and tetragonal phase together to co-exist at the same temperature. 

Each of the starting materials have their advantages and disadvantages and 

each will be discussed. The starting base materials are usually either 

titanate or niobate based and therefore, the literature review below has also 

been split up into these categories.  

 . 
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3.2.1. The Titanates 

 Promising titanate based lead-free potential alternatives to PZT 

usually have excellent piezoelectric properties but suffer from very low Curie 

points or low depolarization temperatures. This means that the material only 

has a very narrow range gap where it may be considered for use. They also 

require large electric fields to activate their large strain, and can suffer from 

significant hysteresis. Many studies have been done to try and reduce the 

required electric field (64, 65).  

 

3.2.1.1 Barium Titanate - BaTiO3 

 Barium titanate as mentioned previously has a high dielectric 

constant, of 1100, but a low d33 of 190pCN-1, which makes it an excellent 

material for capacitors (18, 64, 66). It is also used as a model system for 

fundamental studies (67-69). For instance, the process of poling was 

discovered using barium titanate (70, 71). In general, as the grain size of the 

barium titanate crystal in a sample decreases, the d33 increase. Nanoscale 

particles of barium titanate prepared using microwave sintering and the d33 

observed reached 350pCN-1 (72). Another system, with a nanocrystalline 

structure has an extremely large permittivity that was measured in the ~106 

magnitude. (73). Lowering the size of the particles is not the only way to 

increase the d33, hydrothermally synthesised barium titanate with particle 

size 1-2µm gave a d33 of 460pCN-1 (74, 75). Texturing of barium titanate can 

also improve the d33, [110] grain oriented barium titanate with submicron 

particles gave a d33 of 788pCN-1, indicating that structural engineering of the 

sample is very important. Wada et al made single crystals of barium titanate 

and found that applying an electric field can cause the phase to transition 

from tetragonal to monoclinic with 10kV/cm and from tetragonal to 

rhombohedral with 30kV/cm (76).  

 Barium titanate is generally used as a dopant for other systems as it 

has desirable properties but a fundamentally low Curie temperature. 

However, much has been learnt from this basic perovskite system.    

 

3.2.1.2 Sodium Bismuth Titanate - Na0.5Bi0.5TiO3  

 Sodium bismuth titanate (NBT) was discovered by Smolenskii et al in 

the 1960s (77). It received little attention as a material until the lead free 

movement began to gain momentum around 20 years ago. Jones and 
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Thomas found that NBT was rhombohedral with the space group R3c at 

room temperature, which became tetragonal with heating and then finally 

cubic with further heating (78). Pure NBT usually has a d33 between 57-

64pCN-1 (79) but can be as high as 78pCN-1 depending on the synthesis 

process. Although the d33 is similar to barium titanate, the Curie temperature 

is much higher, 325°C (80). However NBT exhibits a low depolarization 

temperature of 187°C, which has been attributed to the presence of an 

antiferroelectric phase (81, 82), although some disagree, claiming the phase 

is not completely antiferroelectric (80).    

 The high sintering temperature of greater than 1200°C can lead to 

losses in bismuth which can further lead to high conductivity. Hiruma et al 

found an increased resistivity when excess bismuth is added to reduce 

losses (80).   

 Doped NBT  

  Herabut and Safari added La2O3 to NBT forming (Na0.5,Bi0.5)(1-

1.5x)LaxTiO3. The d33 went from 64pCN-1 in pure NBT to 92pCN-1 with 

0.6mol% addition (83).  Increasing the amount of lanthanum added further 

leads to reduced dielectric constant due to the phase changing from 

rhombohedral to pseudocubic.  

 Li et al added NaNbO3 to NBT forming [Na0.5(1+x)Bi0.5(1-x)](Ti1-x-Nbx) 

with the soft additive Nb5+ entering the B site and the hard additive Na+ on 

the A site. The d33 increased with an increase in NaNbO3 up to 2mol% 

where it reached a maximum of 88pCN-1. However the dielectric constant 

continued to increase past 2mol% (84).  

 Kounga et al found a coexistence of phases between ferroelectric 

rhombohedral phase and an antiferroelectric tetragonal phase when 6-

7mol% potassium sodium niobate (KNN) was added to NBT (85). 

Conversely, when 2-3mol% NBT is added to pure KNN, an orthorhombic-

tetragonal phase coexistence is formed. This material was measured to 

have a d33 of 195pCN-1 and an electrocoupling of 43% (86). 

 Naga et al added BiFeO3 to NBT (87). The TC increased from 325°C 

to 340°C and the kp went from 16.8% to 33.6%. There was no coexistence of 

phases, only a single rhombohedral phase was present.     

 A solid solution of NBT-xBa(Ti,Zr)O3 was made by Peng et al (88). 

The d33 increased until reaching a maximum of 147pCN-1 at 9mol%. The TC 

decreased linearly with an increase in BTZ, however after 9mol% it began to 

rise again. It was unclear why.  
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 A study of different substituted levels of K+, Na+ and Li+ in 

Bi(Na,K,Li)TiO3
 was performed by Lin et al. They found that the more K+ in 

the material the larger the piezoelectric constant which reached a peak of 

143pCN-1 (89).  

 NBT –xBaTiO3 

Takenaka et al found an MPB when 6mol% of BaTiO3 is added to 

NBT (90). This formed the bases of a whole new family of lead-free systems, 

NBT-BT6 or BNBT. Adding 6mol% of BaTiO3 to NBT causes the d33 to rise 

from 64pCN-1 to 129pCN-1 (91). Wang et al and Li et al also noticed higher 

piezoelectric properties around the MPB (92, 93). Daniels et al found that an 

electric field can induce a phase transition from rhombohedral to tetragonal 

in BNBT (61). BNBT also has a high bending strength of 200MPa, which is 

x2-3 times better than PZT (79).  

 BNBT doped with cerium oxide has improved piezoelectric properties 

(94, 95). Ce3+ has a radius of 1.18Å and therefore occupies the A site, where 

as Ce4+ has a radius of 0.94Å and occupies the B site. Adding lanthanum to 

BNBT results in the La3+ ion entering the A site space, due to the radius and 

its valence. This results in aberrance of the crystal structure, which benefits 

reorientation of domains and also lowers grain growth (91). Adding 0.5mol% 

of both lanthanum and cerium to BNBT improves the d33 from 129pCN-1 to 

162pCN-1 and the dielectric constant from 626 to 831(94).  

Manganese addition to BNBT causes the TC to drop rapidly, but at 

0.56mol%, the piezoelectric constant reaches a maximum of 160pCN-1. This 

is due to an increase in tetragonality and the smaller cation leading to a 

slack lattice which enhances 90° domain motion (96).    

 NBT-KBT 

 Potassium bismuth titanate, K0.5Bi0.5TiO3 (KBT) was also discovered 

by Smolenskii et al in the 1960s (77). It is tetragonal at room temperature, 

depolarizes at 270°C, and has a TC of 370°C. It is difficult to produce dense 

samples of KBT due to potassium loss, this also makes it hard to pole. 

Hiruma et al used excess bismuth as a sintering aid and formed a material 

with a d33 of 101pCN-1 (97). Adding barium titanate to KBT can also improve 

the density. When up to 10mol% barium titanate is added to KBT, a dense, 

textured material, with a d33 of 85pCN-1 can be formed (98) 

  A solid solution of NBT-KBT was made by Elkechai et al in 1996 (99). 

An MPB between the rhombohedral NBT and the tetragonal KBT was found 
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between 16-20mol% KBT. This MPB was also found by Sasaki et al (100). 

The d33 values at the MPB range from 140-192pCN-1 and the TC ranges from 

280-300°C. An issue with this system is that although the TC is high, the 

depolarization temperature is 140°C (99, 101). The highly volatile nature of 

the K+,Na+ and Bi+ ions makes sintering conditions very important (102). 

Zhang et al reported that a 40°C change in sintering temperature could be 

the difference between a d33 of 155pCN-1 and 192pCN-1. 

 NBT-KBT-BT 

 The ternary system (Na0.5Bi0.5)TiO3-(K0.5Bi0.5)TiO3-BaTiO3 was made 

by Li et al in the ratio (1-3x)NBT-2xKBT-xBT (103). The dielectric constant 

increases with x until reaching a maximum d33 of 150pCN-1 at x=0.035. The 

material 0.90(Na0.5Bi0.5)TiO3-0.05(K0.5Bi0.5)TiO3-0.05BaTiO3 or NBT-KBT-

BT5,is currently being used as a driving element in a cymbal actuator and is 

just as effective as PZT (104). 
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Figure 3.8: Phase diagram of (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3. 

3.2.1.3 Barium Calcium Titanate Zirconate  (Ba,Ca)(Ti,Zr)O3 

 Barium calcium titanate zirconate (BCTZ) lead-free systems have 

some of the highest d33 measurements of any lead-free polycrystalline 

materials. W. Liu and X. Ren made (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 

and measured a high d33 of 620pCN-1. They found that the material had a 

triple point of a cubic paraelectric phase, a ferroelectric rhombohedral and a 

ferroelectric tetragonal phases (see Figure 3.8) (105). The high d33 was 

attributed to the composition at room temperature being very close to that of 

the tricritical point which was found at 32% BCT, and 57°C. The authors 

predicted that a single crystal of BCTZ would have a d33 3-4 times larger 

between 1500-2000pCN-1
 (105) The major problem with this system is that 

the Curie point is very low. The TC being well below the manufacturing 

temperatures used for most devices would lead to the need for in-situ poling 

which is undesirable for manufacturers. However the composition at 50% 

BCT had a very low coercive field EC of 0.14kV/mm and an optimised poling 

regime by Praveen et al found that a sample can be poled at 0.42kV/mm 

which is a relatively low poling voltage, however these were made by the 

sol-gel process (106).  
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3.2.2. The Niobates 

 Most of the research concerning niobate based materials use 

(K0.5Na0.5)NbO3 as the starting material. Before the literature can be 

reviewed, it is necessary to understand the end members of this solid 

solution.   

3.2.2.1 Potassium Niobate – KNbO3 

Potassium niobate was discovered to be piezoelectric by Matthias in 

the 1951 (107).The phase transitions of potassium niobate are isomorphous 

to that of barium titanate. It has a Curie temperature of 435°C, below this 

temperature it is tetragonal until 225°C, between 225°C and -10°C the 

material is orthorhombic and a temperature further below this results in the 

material becoming rhombohedral (108).  Due to the volatility of potassium in 

the material, it can be difficult to produce a pure sample (18). It is possible to 

produce single crystals of potassium niobate which have interesting 

piezoelectric coefficients along certain directions of the crystal (109).  

3.2.2.2 Sodium Niobate – NaNbO3 

 Sodium Niobate is an antiferroelectric material and therefore does not 

exhibit a piezoelectric behaviour. It has an orthorhombic crystal structure at 

room temperature and becomes tetragonal at 370°C. Further increasing the 

temperature, it becomes cubic at 670°C (110). Pure sodium niobate has 

more than 7 polymorphs across the whole temperature range (111).   

 

3.2.2.3 Potassium Sodium Niobate – (KxNa1-x)NbO3 

 The phase diagram of the solid solution of KNbO3 and NaNbO3 was 

first studied by G. Shirane et al in 1954 (112). The phase diagram of the 

system can be seen in Figure 3.9 (18). The solid solution shows 

ferroelectricity, and keeps the phase transition sequence of pure KNbO3, up 

to 90% NaNbO3 (5). The phase transition temperature of the rhombohedral 

and orthorhombic phases change throughout the system. 

Although potassium sodium niobate (KNN) can mean any solid 

solution within the phase diagram found in Figure 3.9, unless otherwise 

stated, the solution that ‘KNN’ will refer to from here on will be 

(K0.5Na0.5)NbO3. Due to the presence of two different orthorhombic phases 

at this composition, the piezoelectric response of the system is at its 

maximum, and therefore it is thought to be a good base composition to begin 

with.  
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This composition has a Curie point of 420°C. Cooling below this 

temperature the system is tetragonal (P4mm) until 200°C and then 

orthorhombic (Amm2) all the way until the temperature reaches -120°C 

(113). However the primary cell of KNN at room temperature is monoclinic 

with the parameters am=cm>bm. Tellier et al did find a small difference 

between am and cm (0.002Å) with a β angle slightly above 90°. This small 

difference cannot be seen as a second peak using standard XRD 

techniques. There has also been a triclinic phase reported in particles with a 

size of 130nm (114).   

The high Curie point makes it a very good candidate for PZT 

replacement as it has a Curie point even greater than that of PZT.  As 

mentioned previously the volatility of potassium, and also sodium, is one 

large disadvantage of KNN. The ions are prone to leaving the sample during 

sintering which can result in lower density and can lead to secondary 

niobium-rich phases (115). The theoretical density of KNN is 4.62g/cm3 

(116).   

Figure 3.9: Phase diagram of (KxNa1-x)NbO3. 
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KNN based materials came to headline the lead free piezoelectric 

community after a paper by Saito et al was published in Nature in 2004 

(117). Saito et al optimized lithium, tantalum and antimony additions in KNN 

and formed (K0.48Na0.52)(Nb0.86Ta0.1Sb0.04)O3 more affectionately known as 

LF4. This polycrystalline material has a d33 of 300pCN-1 and a TC of 253°C. 

LF4 was then enhanced by texturing using a reactive grain growth method 

which grew <001> oriented crystals and had a d33 of 416pCN-1
 and was 

named LF4T. The high d33 in LF4 and LF4T was attributed to the presence 

of an MPB, which was later discovered by the same group to be a PPT near 

room temperature (118).  

One benefit of using KNN based lead free materials is that they have 

an inherent compatibility with nickel electrodes, which can help reduce costs 

(119, 120).   

The sintering conditions of KNN are very important and can make it 

hard to reproduce the same results. Sintering aids can be used to help 

reduce the sintering temperature, which is important as KNbO3 loses phase 

stability after 1040°C (121). Different sintering aids give different results and 

will be discussed in 3.2.2.3.3. Kari et al found large dielectric losses in single 

crystals of KNbO3 which was believed to be due to vacancies left behind by 

K+ ions leaving the sample (122). E. Wiesendanger reported that high 

temperature annealing, above TC post sintering can reduce losses (123). 

Another way of reducing the amount of K+ lost is to include excess alkali 

carbonates (124, 125). It has also been discovered that reducing the size of 

the starting reagent powders (126), and the calcined powders (127), can 

reduce loss of K+ and Na+ ions.  

Doping KNN changes the phase transition temperatures, a fact which 

is exploited by research groups as they aim to bring the phase transitions to 

the operating temperature of the end device, or more generally room 

temperature. Many different systems and dopants will be discussed 

however, a very good summary was written by Wu et al in (128). To bring 

the rhombohedral-orthorhombic phase transition (TO-R) up to room 

temperature, the dopants used are AZrO3 where (A=Ba2+, Sr2+ or Ca2+) or 

BiBO3 where (B=Sc3+, Al3+, Fe3+, or Co3+). To bring the orthorhombic-

tetragonal phase transition (TO-T) down to room temperature, the dopants 

used are LiCO3 where (C=Nb5+, Ta5+, or Sb5+), Bi0.5D0.5TiO3 where (D= Na+, 

Li+ or K+) or ETiO3 where (E=Ba2+, Sr2+ or Ca2+). Dopants that shift TO-T can 

get a d33 as high as 300pCN-1, but most are between 200-250pCN-1. The big 
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difference in d33 is believed to be the ratio of the orthorhombic and tetragonal 

phases in the sample, but may also be sintering related (129).   

Most dopants reduce the TC of KNN, except for lithium dopants which 

can increase the TC up to 500°C (130, 131). It is because of this effect that 

lithium doped KNN has been studied intently.  

  

 KNN-based Binary Systems 

KNN-xLiNbO3 

 Guo et al found a coexistence of an orthorhombic and tetragonal 

phase at room temperature when 6mol% LiNbO3 was added to KNN. The 

improved d33 of 235pCN-1 and coupling factor 44% were believed to be due 

to this coexistence. However after measuring the Raman-active vibrations it 

was determined that the KNN-LiNbO3 solid solution was a single 

orthorhombic phase, and that the NbO6 octahedra tilting and the formation of 

a KLN secondary phase showed the appearance of a tetragonal phase 

(132). Wang et al found that excess K+ in this system reduced the sintering 

temperature to below 950°C (133). They made (1-x)(Na0.535K0.48)NbO3-

xLiNbO3 between x=0.058 and 0.09 and obtained a d33 of 280pCN-1 and a kp 

of 48.3% at x=0.08. This d33 however was reduced 15% when the sample 

was heated up to 100°C, showing that there is a lack of thermal stability in 

the solid solution. Temperature stability was also a problem when 

Hollenstein et al made lithium doped KNN (134). The d31 and kp factor fell 

30% after one heating cycle at 140°C. The temperature stability of the 

sample can be improved by reducing the TO-T to well below room 

temperature, or by texturing (135, 136).  

KNN-xLiTaO3 

 Hollenstein et al doped KNN with LiTaO3 and measured a d33 of over  

300pCN-1 and a kp of 52% (137). Guo et al found a coexistence of 

orthorhombic and tetragonal phases when x was between 5-6mol% (138). 

They measured a d33 of 200pCN-1 and a kp of 36%. Saito et al measured a 

d33 of 230pCN-1 and a kp of 50% for the same system. Wang et al found that 

the addition of Li and Ta lead to compositional inhomogeneity which may be 

the cause of the large differences in the properties for the same system in 

the examples above (139). This inhomogeneity can be reduced by 

prereacting the tantalum and niobium to form [(1-x)Nb-xTa]2O5. Silver was 
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also added to the system and further improved the d33 to 252pCN-1, whilst 

also increasing the TC to 438°C (140).  

KNN-xLiSbO3 

 Yang et al found that as the amount of LiSbO3 is increased in KNN, 

the d33 and kp increase and the TC decreases. This is the case until the d33 

reaches a maximum, and then further addition reduces the piezoelectric 

properties (141). When 5mol% LiSbO3 is added to the TO-T shifts to near 

room temperature (35°C), and the d33 can be between 250-265pCN-1 (142). 

Zhang et al found the maximum properties when x=0.052, forming a sample 

with 95% theoretical density. The electromechnical coupling factors of this 

composition were kp 27%, k33 62%, and k31 30%. The piezoelectric 

coefficients were d33 of 265pCN-1 and a d31 of -116pCN-1
 (143).  

When the K:Na ratio is varied and LiSbO3 is added to 

(K0.48Na0.52)NbO3 a coexistence of orthorhombic and tetragonal was found 

between 0.04≤x≤0.06. At 5mol% the properties were d33 270pCN-1, kp 

27.2%, ɛr 1412, tanδ 2.8%, Pr 25.7µC/cm2, Ec 11.1kV/cm, the TO-T was 35°C 

and the TC was 364°C (144). Further changing the ratio, but keeping the 

LiSbO3 at 5mol% in the system 0.95(KxNa1-x)NbO3-0.05LiSbO3 it can be 

seen that the dielectric and piezoelectric properties strongly depend on 

potassium content. At x=0.40 the properties were d33 280pCN-1, kp 49.4%, ɛr 

1463, tanδ 2.3%, Pr 30.8µC/cm2, Ec 14.0kV/cm, the TO-T becomes 25°C and 

the TC remains 364°C (145). Zhang et al measured the temperature stability 

of LiSbO3 doped KNN and found that the d33* was 355pCN-1 at room 

temperature, became 250pCN-1 at 50°C (146).  

Saito et al formed a ternary system of KNN-LiTaO3-LiSbO3 and 

measured a d33 of 373pCN-1 (117).  

KNN-xCaTiO3 

 The TO-T was reported to be reduced to below room temperature after 

1wt% CaTiO3 was added to KNN, the d33 of 210pCN-1 was stable between -

50°C and 200°C (136, 147).  Park et al found a coexistence of orthorhombic 

and tetragonal phase at x=0.05 with a d33 of 241pCN-1, a kp of 41% and the 

TC measured was 306°C (148).          
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KNN-xBaTiO3 

  Wang et al added 6mol% of BaTiO3 to KNN and measured a d33 of 

150pCN-1, a kp of 34% and the TC remained at 279°C. This change in 

properties was attributed to an orthorhombic-tetragonal phase coexistence 

(147).  

 The addition of both CaTiO3 and BaTiO3 to KNN broadens the TC 

peak when the permittivity is measured as a function of temperature, and 

continues to broaden the more dopant that is added. This indicates that 

there is a diffuse phase transition from tetragonal to cubic and from 

ferroelectric to relaxor (148).  

KNN-xAgNbO3 

    Lei et al added AgNbO3 to KNN between 0≤x≤0.4. At x=0.2 the d33 

was measured to be 186pCN-1. This was without any significant change to 

the TO-T which stayed at 170°C (149). 

KNN-AZrO3 (A= Ba, Ca, Sr) 

R. Wang et al studied the effects of A-site ion substitution on the 

phase transition temperatures, doping KNN with xAZrO3 (A=Sr, Ba or Ca; 

0≤x≤0.25) (150). Each A-site dopant had the same effect on the phase 

structure as it was added. Below x≤0.06 the phase structure (at room 

temperature) was orthorhombic, between 0.08≤x≤0.10 the samples were 

rhombohedral, and for x≥0.15 the phase structure was cubic.  With 

increasing x, the TC and TO-T decreased, whilst TR-O increased. TO-T and TR-O 

showed little A-site dependence, whilst the TC showed much larger A-site 

dependence. There was a large difference in TC between the dopants, with 

CaZrO3 reducing it the least.  

KNN + alkaline earth ions 

 The effect of low amounts (0.5%) of Mg2+, Ca2+, Sr2+, and Ba2+ was 

researched in (151-154). Chang et al found adding Ca2+ and Sr2+ promoted 

densification, increased electric properties and cell parameters, whilst 

decreasing the phase transition temperatures. On the other hand Mg2+ 

increased TC, but lowers the density, cell parameters and considerably 

decreases the electrical properties. Adding Ba2+ decreased density, the 

phase transition temperatures and the electric properties whilst increasing 

the cell parameters (155).  
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 Manganese improves the sinterability of KNN (156) and adding 

1mol% to tantalum doped KNN decreases the TOT to room temperature 

without affecting the TC (157). 

 KNN-based Ternary Systems  

 Jiangang Wu’s research group from the Department of Material 

Science at Sichuan University have researched several complex KNN 

ternary systems with the aim to make high d33 materials whilst maintaining 

high TC. They researched (1-x)(K0.4Na0.6)(Nb0.965Sb0.035)O3-x(Bi0.5Li0.5)ZrO3 

and found a rhombohedral-tetragonal MPB between 0.025≤x≤0.035. With 

good thermal stability, a composition within these boundaries had a d33 of 

400pCN-1 and a TC of 292°C (158). Another system they looked at was 

(0.995-x)(K0.48Na0.52)NbO3-0.005BiScO3-xBi0.5(Na0.7K0.2Li0.1)ZrO3. At x=0.04 

the d33 was ~366pCN-1 the kp 47%, the TC remained as high as 335°C and 

an MPB was present. The high TC was due to the addition of BLZ. The d33 

stayed above 319pCN-1 up to 300°C (159). The final example of a complex 

system developed at Sichuan University is 0.992(K0.46Na0.54)0.965Li0.035(Nb1-

xSbx)O3-0.008BiScO3. A phase coexistence existed between 0.02≤x≤0.06. 

The d33 at the MPB was 325pCN-1, the kp was 48% and the TC was 358°C 

(160).    

  KNN Sintering Aids 

 Sintering aids in KNN as discussed previously, are very important for 

producing high density materials. A fact that has lead Toyota to patent 

several sintering aid inclusive processes for producing KNN based materials 

(161). Sintering aids reduce the sintering temperature by forming a liquid 

phase within the sample which improves densification by increasing atomic 

mobility. By lowering the sintering temperature, volatile ions such as K+, Na+ 

or Li+ are much less likely to leave the system.   

Park et al used CuO as a sintering aid and decreased the sintering 

temperature to below 1000°C. This reduced sodium loss and formed a 

dense microstructure and increased grain size (162). Copper entering the 

perovskite structure has a hardening effect as it replaces the Nb5+ this pins 

domain walls, increasing the coercive field. Matsubara et al and Seo et al 

also found that CuO enhances sinterability (163, 164) Bernard et al used 

germanite as a sintering aid and got to 95.6% of the theoretical density 

without degrading the properties (165).  

Other sintering aids used are K4CuNb8O23 (166) and K5.4Cu1.3Ta10O29 

(167) which brought the sintering temperature below 950°C and encouraged 
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the sample to reach 97.5% of the theoretical density. ZnO, SnO2 and Sc2O3 

have all been used with only minor changes to the TC and TO-T (168, 169). 

 Other Processing Methods 

 Applying heat under the pressing process is known as ‘hot pressing’. 

Hot pressed KNN has reached 99% theoretical density, which compared to 

traditional air sintering methods that only reach 95% is a vast improvement 

(170). Spark plasma sintering can also improve dielectric and piezoelectric 

properties and involves applying a very large electric field over a short time 

which causes the sample grains to fuse (171). 

 

3.2.3. Lead-free PZT Alternative Conclusion 

 The academic effort has focused on producing a lead-free material 

with a similar MPB system to PZT, with the understanding that a phase 

coexistence has a large effect on improving desirable properties. Titanate 

based materials can be made that have very large piezoelectric response 

but have low Curie or depolarization temperatures that reduces the 

commercial viability of the materials. The most promising titanate based 

system, BCTZ, has a large d33 of 620pCN-1 but a very low Curie temperature 

of 50°C. 

Niobate based systems have higher Curie temperatures and can 

have large piezoelectric responses. However the piezoelectric properties of 

niobate based systems can suffer from low thermal stability as the ‘MPB’ 

often claimed, suffers from the polymorphic phase boundary effects. Some 

of the most interesting niobate based systems are very complex, but have a 

good compromise between piezoelectric response and Curie temperature, 

with a d33 of 319pC/N that persists up to 300°C.   

The argument could be made that it is not just the coexistence of 

different phases in PZT that makes the material so useful, but the 

temperature stability of the phase boundary (and properties) itself. It has 

been proposed by Zhang et al that a better comparison between lead-free 

materials would be to compare the maximum d33 versus the temperature of 

depolarization (4). 

To compare across different systems, the author proposes that the 

d33 should be multiplied by temperature range that said d33 persists, starting 

from room temperature (Equation 3.1).  
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𝑭. 𝑶. 𝑴 = (𝑻𝑪 − 𝑻𝒂𝒎𝒃𝒊𝒆𝒏𝒕) ∗ 𝒅𝟑𝟑     Equation 3.1 

 

Using this system, BCTZ, assuming a constant d33 of 620pCN-1 until 

50°C would be given a figure of merit of 15,500pCN-1K (105). The niobate 

based system made by X. Cheng et al (159) with a d33 of 319pCN-1 and a TC 

of 300°C, would have the figure of merit 87,725pCN-1K. The outcome of 

which would suggest that the leading lead-free niobate system is 5-6 times 

better than the leading titanate system. 

 The research done during this project attempts to prove if a low TC, 

lead-free material such as BCTZ can be incorporated into a transducer 

device. In doing so this bridges the gap between material science and 

device engineering and should be achieved by altering high-temperature 

manufacturing steps. A novel KNbO3 based material is then synthesised, 

which fills a compositional gap found in the literature whilst attempting to 

reproduce some advantageous properties found in BCTZ and PZT and 

attempting to keep the TC relatively high.  
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4 Experimental techniques 

This chapter describes the process used to synthesise the piezoelectric 

ceramic materials made during the project. It will also explain the techniques 

used to characterise the products made. 

4.1 Sample Synthesis 

Mixed oxide synthesis, or the solid state reaction process, is the 

conventional process used to produce polycrystalline ceramic powders from 

its constituent metal oxides and carbonates. The process allows for large 

batches of reagents to react together at high temperatures to produce fine 

powders of high purity. For example, reacting potassium carbonate (K2CO3), 

and niobium oxide (Nb2O5) together at 850°C for 4 hours will produce 

potassium niobate (KNbO3).  

The handling of the oxide/carbonate reactants before and after the heat 

treatment can heavily affect the product. Steps are taken to control purity, 

particle size, particle shape and heterogeneity of the powders before and 

during the process. This allows for consistent starting materials in order to 

reduce any variation on the densification, microstructure and electrical 

properties of the product.  

The steps used to produce the polycrystalline ceramic powders made 

by mixed oxide synthesis are described in subsequent sections, however a 

summarising flow chart can be seen in Figure 4.1. 

 

 

 

 

 

 

 

 

4.1.1  Powder Drying 

The oxides and carbonate reagents were dried for 24 hours at 150°C 
in a conventional drying oven. This was in order to remove any water that 
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Figure 4.1: Flow chart of mixed oxide processing. 
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may have been absorbed from the atmosphere into the powder. The oxides 

and carbonates used in this project can be seen in Table 4.1.  

Table 4.1: List of reagents used during the project 

Reagent Molar Mass (g/mol) Note 

K2CO3 138.2049 Sigma-Aldrich (99%) 

Nb2O5 265.8098 Aldrich (99.9%) 

CaCO3 100.0869 Sigma-Aldrich (99%) 

ZrO2 123.2228 Aldrich (99%) 

BaCO3 197.3359 Alfa Aesar (99%) 

TiO2 79.8688 Aldrich (99.9%) 

Li2CO3 73.8909 Aldrich (99.9%) 

 

 

4.1.2  Mass calculations and weighing reagents 

The molar mass of the reagent was multiplied by the desired 

percentage of occupation on a particular site (A-site or B-site) and divided by 

the molar mass of the product, allowing the mass ratio of reagents to be 

calculated. This is then multiplied by the number of grams of product 

required to calculate the mass of reagent needed to be weighed out. This 

ensured stoichiometry of the reagents. 

The dried powder was removed from the oven and weighed out onto 

plastic boats as quickly and as accurately as possible. This is to reduce the 

amount of water absorbed. This practice is particularly important when 

weighing out very hygroscopic powders such as K2CO3 and Li2CO3 as the 

masses are less accurate the longer the powder was out of the oven. 

The powder was then transferred into a high density polyethylene 

(HDPE) bottle and the weighing boats cleaned using 2-isopropanol (IPA) 

(Fisher Scientific, 99.8%) to ensure all of the powder was transferred. 

4.1.3  Ball Milling 

The ball milling process was used to produce a homogenous mixture of 

powders of uniform particle size and shape. IPA was added to the mixture of 

powders until a slurry of double-cream-viscosity was made. Then yttrium-
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stabilised zirconium milling media (9.5mm) was added to the bottle until a 

consistent cascading was heard during rotation on a ball mill.  

 

 

 

 

 

 

 

 

 

 

Under rotation the milling media breaks down the powder within the 

slurry and over 24 hours, the different size grains of each of the regents 

became uniform and a homogenous mixture was produced.  

 

4.1.4  Drying and sieving 

After 24 hours the milling media was removed from the slurry using a 

colander and the slurry is transferred to a metal bowl for drying, the bottle is 

rinsed with more IPA to ensure as much of the slurry is transferred as 

possible. The metal bowl was then placed on a conductive heater at 90°C 

and the slurry was stirred using metal stirrer until the slurry was dried into a 

powder (Kenwood KM080). This powder was moved to a pyrex beaker and 

left to dry further in a drying oven at 150°C for 12 hours.  

 The powder was then sieved through a 300µm mesh (Plastok) using 

a pestle, to remove any large clumps of powder that may have formed 

during the drying step. The milled, dried and sieved mixture of reagents was 

then transferred to an alumina crucible for calcination. 

4.1.5  Calcination 

The calcination step is a heat treatment of the reagents that allows 

them to react, forming the ceramic powder desired. It removes any of the 

extra carbon and oxygen atoms and ideally combines the reagents to 

produce the ABO3 perovskite powder.  
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slurry Milling 
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Rotating rods 
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Figure 4.2: Schematic of the ball milling process 
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Figure 4.3: The temperature profile of the calcination for all KNbO3-based samples. 

The calcination regime used for all of the KN-based samples can be seen in 

Figure 4.3. The powder was heated at 100°C/h to 850°C, kept at this 

temperature for 4 hours, and the cooled at a rate of 150°C/h to room 

temperature. Upon cooling, a small sample of calcined powder was removed 

for XRD characterisation.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The BCTZ powder was calcined using a different heating regime. It 

was heated to 500°C at a rate of 100°C/h and then further heated to 1250°C 

at a rate of 300°C/h. It was held at 1250°C for 3 hours before being cooled at 

a rate of 300°C/h to room temperature. The calcination temperature profile of 

BCTZ can be seen in Figure 4.4. 
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Figure 4.4: The temperature profile of calcination of the BCTZ powder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.6  Binder incorporation and pressing 

2% by weight of Glascol binder was added to the calcined powder to 

aid in the subsequent pressing step. The powder and binder was mixed with 

IPA, ball milled, dried and sieved repeating the previous steps. 

The powder was then weighed into 0.4g samples and pressed using 

5.0kN of pressure using a 10mm steel die.  This was to produce a round 

pellet of ≈1.2mm thickness and 10mm in diameter. The geometry and mass 

of the pellet was then measured to calculate a ‘green’ geometric density.  

 

4.1.7  Sintering 

Sintering is the step that turns a ceramic powder into a dense sample 

that can be used for characterisation or in a device. It allows for densification 

of the sample by growing the polycrystalline grains. The process is done at a 

higher temperature than calcination which can lead to volatile elements 

being lost from the system. To reduce this loss pelleted samples were 

placed inside a bed of its corresponding powder with more atmospheric 

powder added over it. Potassium is a very volatile element and begins to 
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evaporate at relatively low temperatures, as a result a more complex set up 

was used to sinter the potassium niobate samples in this work, a schematic 

of which can be seen in Figure 4.5.  

 

 

 

 

 

 

 

 

 

 

 

 

An extra, larger crucible is used to hold the crucible containing the 

green samples and the atmospheric powder. The aim of using this set up 

was to introduce excess potassium in the atmosphere in order to reduce 

potassium loss in the samples. Using this set up an extra crucible could be 

included so that 2 different compositions could be sintered at the same time. 

The lid of the larger crucible was cemented in place using alumina cement.  

The sintering regime used for the KN-based materials is seen in Figure 

4.6. There was an initial slow heating rate of 50°C/h to 550°C, this was to 

burn off the binder and slowly remove any moisture that may have been in 

the sample. From 550°C to the desired sintering temperature (Tsint) the 

heating rate was 100°C/h. The sintering temperature was held for 2 hours 

and then the temperature was decreased rapidly at 300°C/h to room 

temperature. 

Potassium 
Carbonate Powder 
(K2CO3)  

Sample 
Pellet Sample 

Powder 

Figure 4.5: Sintering set up for the potassium niobate based samples. 
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Figure 4.6: Sintering regime for the KN-based samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sintering temperature varies between compositions and materials. 

The optimum sintering temperature allows for the densest sample without 

melting or deformation.   

The BCTZ samples were sintered using a different regime (Figure 4.7). 

As the samples were larger (25mm diameter, ~5mm thick), they required a 

longer binder burn out step. Samples were heated to 220°C at 60°C/h then 

the heating rate was lowered to 10°C/h until reaching 300°C. At 300°C, the 

heating rate was increased to 90°C/h until reaching 620°C where the 

temperature was held for 6 hours. After the dwell, the sample was heated to 

1440°C at a rate of 300°C/h and held there for 2 hours. Finally it was cooled 

to room temperature from 1440°C at a rate of 300°C/h.  

As part of the sintering process the samples shrunk. Post sintering a 

geometric density was measured and compared to the green geometric 

density measured before sintering.  
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Figure 4.7: Sintering regime of the BCTZ samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.8  Grinding 

Sintered samples were ground to around ~1mm in thickness using 

Buehler P400 Carbimet SiC abrasive paper. This was to remove any 

atmospheric powder stuck to the sample and also to aid in the electrical 

characterisation process. Ensuring uniform thickness and parallel sides.  

 

4.1.9  Electroding 

Silver electrodes were painted on the samples that were to be 

characterised electrically. One side was painted and left in an oven to dry at 

120°C, then the other side was painted. The samples were then heated to 

550°C for 30 minutes to complete the electrode firing process. Care was 

taken to ensure that any silver paint bonded to the side of the samples was 

removed using abrasive paper to reduce the chance of samples electrically 

shorting or arching under an electric field.  
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4.2 Sample Characterisation  

4.2.1  Crystallographic Characterisation 

4.2.1.1 X-Ray Diffraction (XRD) 

The crystallographic characterisation technique used throughout the 

project was X-ray Diffraction (XRD). XRD is a technique used to determine 

the phase and purity of the samples synthesised. To help describe the 

process, discussed below is the x-ray source, the experimental configuration 

and how the x-rays interact with the sample. 

The x-rays are produced in the diffractometer x-ray tube where a 

tungsten filament is heated by an electrical current emitting electrons. These 

electrons are drawn to a metal, in the case of this work copper, however 

aluminium, molybdenum, magnesium and silver can also be used. This 

induces an electron to be ejected from the metal atom, see Figure 4.8. 

The electron from the filament causes an inner-shell electron to be 

excited to a higher energy level. An electron is then demoted to fill the inner-

shell and an x-ray is produced. The most intense emitted x-ray (Kα) will have 

an energy/wavelength that is unique to the metal used, in the case of copper 

the wavelength is 1.541Å. Other X-rays (Kβ or Lα) are emitted, however 

their low intensity means they are readily absorbed and can be filtered using 

a monochromator. 
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Figure 4.8: A diagram of the source of x-rays in a diffractometer. 
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The x-ray source is aimed at the sample passing through divergence 

slits which narrow the source beam (Figure 4.9). The source, or the sample, 

is then moved so that the incident angle of the x-ray beam on the sample 

changes. The x-rays are then able to interact with the sample and if Bragg’s 

law is satisfied then diffracted x-rays are detected by the x-ray detector.  

Bragg’s law describes the relationship between the x-ray wavelength, 

the space between planes of atoms and the incident angle of the x-ray 

beams.  
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Figure 4.9: A schematic of an x-ray diffraction experiment. 

Figure 4.10: A schematic of crystallographic planes used to derive Bragg's Law. 
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Consider Figure 4.10, the parallel x-rays of wavelength, λ, are 

separated by a distance, d. In order for there to be a constructive 

interference between at point B, the extra distance (AB+BC) the lower beam 

must travel must be an integer, n, number of wavelengths. Using 

trigonometry the distance between A and B, is equal to dsinϴ and since AB 

and BC are equal;  

                          𝑨𝑩 + 𝑩𝑪 = 𝒅𝒔𝒊𝒏(𝜭) + 𝒅𝒔𝒊𝒏(𝜭)   Equation 4.1 

 

                      𝒏𝝀 = 𝟐𝒅𝒔𝒊𝒏(𝜭)      Equation 4.2 

 

Where λ is the x-ray wavelength, d is the distance between planes, and ϴ is 

the angle of incident.  

 If Bragg’s law is satisfied then the diffracted x-rays will be detected as 

a large intensity. As the angle changes, peaks in intensity are seen along the 

detected x-ray plot. The angle can also represent the space between atomic 

planes known as the d-spacing.  

                  𝒅 =
𝒏𝝀

𝟐𝐬𝐢𝐧 (𝜭)
     Equation 4.3 

 

For a cubic system; 

 

  
𝟏

𝒅𝟐 =
𝒉𝟐+𝒌𝟐+𝒍𝟐

𝒂𝟐       Equation 4.4 

 

Where d is the distance between the planes (h,k,l) (see 2.1.3), and a is the 

unit cell length. 

 If there is more than one unit cell length, e.g. in a tetragonal system, 

or different angles in the unit cell, e.g. a rhombohedral system, then more 

peaks will be seen on the plot as there are extra inter-plane distances. This 

is known as peak splitting. Each crystal system theoretically splits a group of 

planes differently, the number of peaks for each group of planes can be 

seen in Table 4.2.  
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Table 4.2: Number of peaks arriving from peak splitting of planes in 
different crystal systems. 

h k l Cubic Tetragonal Orthorhombic Rhombohedral Monoclinic 
0 0 1 1 2 2 1 3 

1 1 0 1 2 3 2 4 

1 1 1 1 1 2 2 2 

0 0 2 1 2 2 1 3 

0 1 2 1 3 4 2 8 

1 1 2 1 2 4 3 6 

2 2 0 1 2 3 2 4 

0 0 3 1 2 2 1 3 

2 2 1 1 2 4 3 6 

1 0 3 1 3 4 2 8 

2 2 2 1 1 2 2 2 

1 2 3 1 3 6 4 8 

3 3 0 1 2 3 2 4 

 

Using the peak splitting and the different intensities of the split peaks, the 

phase of the material can be determined.   

 Extra peaks present can be an indicator of secondary phases. This 

may be due to a second phase of the same composition being present or an 

impurity within the sample. It can be very difficult to determine a coexistence 

of two phases within a sample as the peaks are close together, usually 

appearing as a broad peak rather than two or more separate peaks. This is 

due to the unit cell parameters of different phase of a material only differing 

by a small amount (Figure 4.11). 

 

 

 

 

 

 

 

 

 

 The x-ray diffractometer mainly used in this project was a Bruker D8. 

The scans were taken between 20-80° with a scan step of 0.033425°, for a 

total scan time of 20mins. 
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Figure 4.11: Peak broadening in x-ray diffraction. 
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4.2.1.2 Rietveld Refinement 

Rietveld refinement creates a model diffraction pattern that is 

compared to the observed data. The differences between the model and the 

observed data is then minimized by varying different parameters in the 

model. When the modelled, and experimental diffraction patterns match, the 

model can be used as a representation of the original sample and so more 

information about the sample is determined.  

This modelling technique was used during the project to determine the 

different phases present. Rietveld refinement gives a best fit score, allowing 

for the likelihood of each combination of phases to be rated. Using peak 

intensity values it can give the percentage of each phase present. 

The software used during this project was High Score made by 

Panalytical. Each refinement was conducted with the same parameters in 

the same order unless otherwise stated. The initial phases were that of pure 

KNbO3 and can be found in Table 4.3.  

Table 4.3: Initial phases used during Rietveld Refinement. 

Crystal System Space Group ICDD code 

Orthorhombic Amm2 04-015-8615 

Tetragonal P4mm 04-008-4706 

Cubic Pm 3 m 04-014-0625 

Rhombohedral R3m 01-083-3858 

 

The dopant atoms were added to the unit cell and the occupancy 

adjusted accordingly. After the background was determined the scale factors 

were refined. The zero shift was then refined, followed by the unit cell 

parameters of each phase. The W, U and V parameters (used in the 

Cagliotti function) were then refined separately, which refined the peak 

width. W and U were constrained to be positive and V to be negative. Finally 

the peak shape was refined, whilst constrained between 0 and 1. This 

refined the ratio of Gaussian and Lorentzian profile shapes. Different space 

groups were not refined as the space groups initially used were the best fit, 

accounting for all the peak present.   
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4.2.2  Electrical Characterisation 

4.2.2.3 Permittivity versus temperature 

The permittivity of the samples was measured as a function of 

temperature and frequency. The permittivity of the sample changes as the 

phase of the sample changes and so it can be used as an indicator of phase 

transitions. The Curie point of a material can also be determined by the 

temperature of maximum permittivity. 

Measuring the permittivity as a function of frequency at each 

temperature can also reveal any divergence. This, along with a broad peak 

for a phase transition can indicate if a material is a relaxor (see section 

2.2.10). 

The permittivity was measured using a Hewlett-Packard 4192A. The 

sample was housed in a tube furnace with a K-type thermocouple to 

measure the temperature using a National Instruments USB-TC01. It was 

heated at 3°C/h to 550°C and cooled at the same rate.  

 

4.2.2.4 Impedance Measurements and PRAP  

Impedance measurements were measured using an Agilent 4192A. 

The resonance spectra were analysed using a Piezoelectric Resonance 

Analysis Program (PRAP). This fits a model to the experimental data which 

is used to calculate the piezoelectric coefficients. In order for a full matrix of 

coefficients to be determined, several different cuts of material need to be 

made (see 5.3). 

 

4.2.2.5 Polarization- Electric Field 

Measuring the polarization as a function of electric field is a 

fundamental technique when attempting to synthesise a ferroelectric. One 

defining property of a ferroelectric is the ability to switch between two states 

with the application of an electric field.  

The polarization of each composition was measured using a precision 

materials analyser (Precision LC Radiant technologies Inc.) at increasing 

electric fields using a Trek model 5/80 high voltage amplifier. The 

measurements began at 1kV/mm and were taken in 0.5kV/mm increments 

until the 5kV/mm, or until sample breakdown. Double bipolar measurements 

were made with full loop taking 1000 µs.  
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The polarization was compensated for leakage current. This was done 

by deducting the current from the resistor component of the ceramic at peak 

electric field.  

 

4.2.2.6 Strain- Electric Field 

The strain of each composition was measured concurrently to the 

polarization using an MTI-200 fotonic™ sensor. This measures the 

displacement of the material as an electric field is applied using fibre optic 

probes and an unclamped copper body which is attached to the sample, a 

schematic diagram of the setup can be seen in Figure 4.12.  

As the copper body is moved by the ceramic under an electric field, 

there is a change in the intensity of the light that is received by the receiving 

filament. After calibration, this received output corresponds to an accurate 

distance between the target and the probe. 

 

 

 

 

 

 

 

 

 

 

  

The change in distance between the probe and the target is then 

converted into strain by dividing by the sample thickness. High-field d33 (d33*) 

is obtained from the slope of the strain-electric field. A ‘low’-field d33 was also 

obtained by calculating the gradient of the strain-electric field at relatively low 

fields.  

E-field 

Light Transmitting  
Fibre Optic Filament 

Light Receiving  
Fibre Optic Filament 

Probe to target 
displacement  

Figure 4.12: Schematic diagram of the strain-field measurement setup. 

Ceramic 
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5 BCTZ Piezoelectric Devices 

5.1 Introduction 

This chapter will cover the synthesis of Barium Calcium Titanate 

Zirconate (BCTZ). The sample preparation and full matrix characterisation of 

BCTZ. It will show the results of a poling study, as well as the process used 

to produce the ring and disk samples that were subsequently used in two 

types of devices. Finally it will describe the manufacturing steps of the 

devices and the characterisation of said devices.  

5.2 BCTZ Synthesis, sample characterisation and poling 

The BCTZ composition, (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 was synthesised 

using the mixed oxide method outlined in section 4.1. The calcination and 

sintering temperatures were taken from the paper by Wu et al (172).  

10mm samples were made with 0.8g of calcined powder and 4.9kN of 

pressure. Larger pellets of BCTZ were made with 7g of calcined powder 

being uniaxially pressed using a 25mm die and 14.7kN of pressure. This 

produced green pellets with an average geometric density of 2.93g/cm3. Due 

to a binder burn out issue (seen in Figure 5.1), a binder burnout method 

developed using thermogravimetric analysis on a ceramic with a binder of a 

similar composition was used during sintering (173). 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Effect of binder burnout rate on sample during sintering  

(a) short binder burnout, (b) long binder burnout  

(a) (b) 

20mm 

20mm 
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5.2.1  X-ray Diffraction Results and Discussion 

XRD results of the calcined and sintered samples can be seen in 

Figure 5.2. There is a slight shift in peak position between the calcined 

powder and sintered pellet. This could be due to the sintered sample being 

less flat in the device holder than the sample in powder form. There is an 

increase in peak intensity after the sample is sintered. This is due to grain 

growth under the sintering process. Both samples show a pure perovskite 

material.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Literature values for the density of this composition of BCTZ are 

between 5.4-5.5g/cm3
 (174). After sintering the geometric density of the 

pellets was measured, with an average of 5.39g/cm3 (98-99% of the 

literature values).  

  

Figure 5.2: XRD results of calcined and sintered BCTZ from 20-80°. 
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5.2.2  Permittivity Results and Discussion 

The relative permittivity and tan(δ) of the BCTZ material was 

measured between room temperature and 180°C and at different 

frequencies. The results can be seen in Figure 5.3. The peak in relative 

permittivity, which corresponds to the TC, is found at 90°C. There is minimal 

permittivity difference between frequencies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Figure 5.3: Permittivity data of the BCTZ material. 
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Figure 5.4: Polarization-electric field and Strain-electric field results 
at a peak field of 3.0kV/mm. 

5.2.3  Polarization-Electric Field and Strain-Electric Field 

Results and Discussion. 

The polarization and strain of the material was measured from 0.5 to 

3.0kV/mm at 0.5kV/mm increments using the method described in sections 

4.2.2.5 and 4.2.2.6.  Shown in Figure 5.4 are the results, with the 

polarization in black and the strain in red.  

The Ps, Pr, and Pmax of BCTZ were 15.55, 9.04 and 18.15µC/cm2 

respectively. The coercive field, EC, was measured to be 0.2kV/mm. 

Calculating the average gradient between -0.2 to 1.0kV/mm, and                -

1.0kV/mm to -0.2kV/mm gives a figure for the ‘low’-field d33* of 745pC/N. 

The high-field d33*, or the average gradient between 2.0kV/mm to 3.0kV/mm, 

and -2.0kV/mm to -3.0kV/mm was calculated to be 287pC/N. 
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5.2.4  BCTZ Poling Study 

 In order to determine a poling regime, 12 10mm pellets were made. 

After grinding to below a millimetre in thickness and electroding, the samples 

were poled. They were poled at voltages ranging from 0.5kV/mm to 5kV/mm 

for 15 minutes. Different samples were poled in silicon oil at 2 different 

temperatures, room temperature and 50°C. The higher temperature of 50°C 

was used as it improved the mobility of the charge carriers whilst remaining 

below the TC. 

 The resulting d33, capacitance and tanδ measurements (Table 5.1) 

were taken 24 hours after poling, and are an average of 3 measurements in 

order to reduce error, measured using the Berlincourt method (Piezotest 

PM300).  

Table 5.1: The results of the poling study, samples 1-6 poled at room 
temperature and 7-12 at 50°C. 

Pellet 
Thickness 

(mm) 

Diameter 

(mm) 

Field 

(kV/mm) 

d33 

(pC/N) 

Capacitance 

(pF) 
Tan(δ) 

1 0.866 8.274 0.5 116 546 0.0213 

2 0.808 8.287 1.0 219 643 0.0194 

3 0.908 8.266 2.0 188 475 0.0193 

4 0.937 8.216 3.0 239 314 0.0177 

5 0.904 8.201 4.0 209 427 0.0580 

61 0.98 8.175 5.0 160 271 0.117 

       

7 0.981 8.226 0.5 213 456 0.0604 

8 0.970 8.274 1.0 250 1461 0.0521 

9 0.842 8.226 2.0 172 49.5 0.0459 

10 0.882 8.085 3.0 206 1284 0.0313 

11 1.004 8.095 4.0 263 1456 0.0373 

12 0.883 8.195 5.0 185 1479 0.0300 

                                            

1 This sample short circuited after 1 minute of poling 
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  Pellet numbers 1-6 were poled at room temperature and 7-12 were 

poled at 50°C. It can be seen that there was a large increase in d33 from 116 

to 219pC/N between poling voltages 0.5kV/mm and 1.0kV/mm at room 

temperature. A poling field increase from 1.0kV/mm to 2.0kV/mm made the 

d33 decrease to 188pC/N. Before increasing to 239pC/N at 3.0kV/mm and 

remaining high at 209pC/N at 4.0kV/mm. There is a decrease in d33 at 

5.0kV/mm this may be due to the voltage only being applied for 1 minute,due 

to short circuiting. However it can also be seen in the corresponding 

samples poled at 50°C. 

 The samples poled at 50°C followed the same trend, 213, 250, 172 

and 206pC/N at 0.5, 1.0, 2.0 and 3.0kV/mm respectively. There was an 

increase in d33 after 3.0kV/mm, from 206 to 263pC/N at 4.0kV/mm which is 

not seen in the room temperature samples. The d33 then decreased when 

poled at 5.0kV/mm.  

 The capacitance varied wildly with poling field and was consistently 

larger in the samples poled at 50°C over the room temperature samples, 

with the exception of pellet number 9, which may have been an anomaly. 

The losses (tan δ) were consistent and larger for samples poled at the 

higher temperature, with the exception of pellet 6 which was compromised in 

the poling process.  

 The poling conditions that were used during the project were 

1.0kV/mm at 50°C. While the increase in d33 from 0.5kV/mm to 1.0kV/mm 

was significant, further increasing the poling field had little, if any, desirable 

change in d33. Consequently the poling temperature of 50°C was chosen as 

the d33 was much larger than for the comparable voltage at room 

temperature.  
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5.3 Full matrix characterisation of BCTZ 

5.3.1  Sample Preparation 

The large samples were mounted on to an aluminium substrate using 

an adhesive (Loctite 162075) and left to dry for 12 hours. These samples 

were then cut into 3 different geometries using a precision cutter (Struers 

Accutom-5). The speed of the blade was 3000rpm and the feed was 

0.025mm/s. Figure 5.5 illustrates the order of the cutting process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 5.5: Cutting regime of the BCTZ pellets to manufacture the geometries 
need for full matrix characterisation. (a) length and width cuts, (b) thickness 

cuts. 



68 

 The larger samples were removed before the 8th and 9th cuts as well 

as the 9th and 10th cuts. The samples were then mounted again 90° to their 

previous mounting in order to cut the correct thickness. One pellet was cut 

across the face to produce the radial and thickness extension mode samples 

of diameter 20mm and thickness 0.5mm. The geometries cut from each 

pellet can be seen in Table 5.2. Figure 5.6 has a picture of the initial range of 

the samples.  

Table 5.2: The samples cut and the modes they were measured in. 

Mode 
Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Length Extensional (LE) 13.0 3.0 3.0 
Shear (S) 11.0 3.0 0.5 
Longitudinal Thickness Extension (LTE) 15.0 2.5 0.5 
Thickness Shear (TS)2 10.0 10.0 1.0 
Thickness Extension (TE2)2 10.0 10.0 1.0 

Mode 
Diameter 

(mm) 
Thickness 

(mm) 
- 

Thickness Extension (TE) 20.0 0.5 - 
Radial (RAD) 20.0 0.5 - 

 
  

                                            

2 These samples were cut following later results but have been included in 
this table for completeness. 

(LTE) 
15x2.5x0.5mm 

(S) 11x3x0.5mm 

(LE) 13x3x3mm 

(RAD) and (TE) 
20x0.5mm  

Figure 5.6: Image of all the cuts initially produced from 2 samples, with electrodes in grey 
and the poling direction as arrows and as – if polled perpendicular to the page. 

20mm 

- 
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 These samples were then electroded using a dual target sequential 

sputter coater (Quorum Q300TD). First a 20nm layer of titanium was placed 

and then a 200nm layer of silver. Hi-Bond (HB830) amber electrical tape 

was used as a mask. Each of the cut samples was then poled; the samples 

that needed a poling voltage above 10kV were poled at Ionix Advanced 

Technologies3. The shear samples were poled and then electrodes were 

removed and more added to 90° of the poling direction. 

 

5.3.2  Matrix Measurements 

 The cut, electroded, and poled samples were measured at the 

University of Glasgow so that the piezoelectric matrix could to be obtained4. 

The impedance (Z) of the samples was measured as a function of 

frequency, concurrently with the phase (ϴz). This data was then converted to 

resistance (R) and reactance (X) for use in a piezoelectric resonance 

analysis program (PRAP) (Equation 5.1and Equation 5.2).  The frequency 

range used to measure each cut can be seen in Table 5.3. 

𝑹 = 𝒁 × 𝐜𝐨𝐬(𝚹𝐳)     Equation 5.1 

𝑿 = 𝒁 × 𝐬𝐢𝐧 (𝚹𝐳)     Equation 5.2 

 
Table 5.3: The measured frequency range of impedance per cut. 
 

Mode 
Sample 

Dimensions 
(mm) 

Impedance 
Spectra (MHz) 

Length Extensional (LE) 13x3x3 0.14-0.17 

Shear (S) 11x3x0.5 2.00-3.50 

Longitudinal Thickness Extension (LTE) 15x2.5x0.5 0.09-0.16 

Thickness Shear (TS)5 10x10x1 0.95-1.50 

Thickness Extension (TE2)5 10x10x1 1.00-3.00 

Thickness Extension (TE) 20x0.5 4.50-6.50 

Radial (RAD) 20x0.5 0.10-0.38 

                                            

3 The author wishes to thank Dr Tim Comyn for their assistance. 

4 The author wishes to acknowledge Nicola Fenu for their invaluable assistance. 

5 These samples were measured at a later date but have been included for 
completeness 
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 An average of 16 impedance sweeps was measured per sample, with 

801 points taken per sweep. The sweep time was 3.14 seconds and the 

source was set at 15V, using an Agilent 4294a. The impedance analyser 

was calibrated upon switch on using the open and closed circuit process 

after the fixture was fitted, and also calibrated using a 50Ω resistor. 

 After the conversion of the data from impedance and phase to 

resistance and reactance, the data was analysed using PRAP (version 3.1). 

The impedance curve was modelled using the software and the statistics of 

the modelled curve produced corresponds to the materials properties. Each 

cut was analysed with different properties modelled. Table 5.4 presents the 

properties that were obtained from each cut. The PRAP software then used 

the results from each of the cuts to produce a composition file which 

contained the matrix of the material. 

 

Table 5.4: Properties obtained from each cut with PRAP. 

Length 

Extensional 

(LE) 

Thickness 

Shear 

(TS) 

Longitudinal 

Thickness 

Extension 

(LTE) 

Thickness 

Extension 

(TE) 

Radial 

(RAD) 

k33 k15 k31 kt sE
11 

sD
33 cE

55 sE
11 cD

33 sE
12 

sE
33 cD

55 ɛT
33 cE

33 d31 
d33 sD

55 d31 e33 ɛT
33 

g33 sE
55 g31 h33 kP 

ɛS3=0
33 e15  ɛS

33 kp 
ɛT

33 h15   ɛp
33  

d15   cp
11  

g15   ep
31  

ɛT
11   sE

66  
ɛS

11   cE
66 
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5.3.3  Impedance and Phase Results  

Each impedance measurement in this section are of each type of 

geometry or cut. Each graph of data shows the impedance frequency sweep 

as a solid line above the phase measurements, seen as a dashed line 

(Figure 5.7 to Figure 5.13).  

The data obtained from shear mode samples seen in Figure 5.8 and 

the thickness extension samples seen in Figure 5.10 were of poor quality. 

This may be due to the relatively thin samples not being cut as parallel as 

necessary given their small size and as a result, several resonant 

frequencies or modes were measured during the shear mode. The 

electrodes for these samples were fragile and had a tendency to peel which 

also had an adverse effect on the sample. The circular thickness extension 

samples only gave a very small signal.  

Due to the poor quality of the spectra obtained, samples of 10x10x1mm 

were cut, electroded and poled at a later date. The thickness shear mode 

can be seen in Figure 5.12 and the thickness extension mode can be seen 

in Figure 5.13. 

It can be seen that the quality of the data from the shear mode 

sample (Figure 5.8) is much clearer in Figure 5.12 where the shear sample 

was changed from 11x3x0.5 to 10x10x1mm. The TE2 sample using the 

10x10x1mm geometry gave a larger much signal than the TE sample using 

the circular 20x0.5mm. This may be due to less clamping of the mode in the 

new cut.  

It should be noted that 801 points were taken for each measurement, 

regardless of the spectrum range. Therefore, the length extensional mode 

measurements of 140-170 kHz will have a higher density of points and so 

are more of an accurate measurement than the thickness extension mode 

measurement of 1.00-3.00 MHz.  
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Figure 5.7: Length extensional mode measurements of BCTZ with schematic of 
sample cut (in mm), electrodes in grey and poling direction indicated by arrow. 
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Figure 5.8: Shear mode measurements of BCTZ with schematic of sample cut 
(in mm), electrodes in grey and poling direction indicated by arrow. 
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Figure 5.9: Longitudinal Thickness Extension mode measurements of BCTZ with schematic of 
sample cut (in mm), electrodes in grey and poling direction indicated by arrow. 

90 100 110 120 130 140 150 160

1000

 1.1

 2.1

 2.2

 3.1
Im

p
e

d
a

n
c
e

 (
	Ω

)

Frequency (kHz)

-100

-80

-60

-40

-20

0

P
h

a
s
e

 (
°)

Figure 5.10: Thickness Extension mode measurements of BCTZ with schematic of 
sample cut (in mm), electrodes in grey and poling direction indicated by arrow. 
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Figure 5.11: Radial mode measurements of BCTZ with schematic of sample cut 
(in mm), electrodes in grey and poling direction indicated by arrow. 
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Figure 5.12: Thickness shear mode measurements of BCTZ with schematic of sample 
cut (in mm), electrodes in grey and poling direction indicated by arrow. 

1.0 1.1 1.2 1.3 1.4 1.5

60

80

100

120

140  1.0

 2.0

 3.0

Im
p

e
d

a
n

c
e

 (
	Ω

)

Frequency (MHz)

-100

-80

-60

-40

-20

0

P
h

a
s
e

 (
°)

0.5 
20.0 

1
0

.0
 

10.0 



75 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3.4  PRAP Results and Discussion  

The final PRAP analysis was done on all of the samples of each cut to 

give a more accurate representation of the material. The alternative 

thickness shear and thickness extension cuts were used as they gave higher 

quality data. The piezoelectric matrix and geometric cut that gave the 

coefficient can be seen in Table 5.5. 

The PRAP results are inconsistent with the finite element modelling 

(FEM) results obtained by Tung et al (175). PRAP was developed to 

measure the IEEE standard samples and assumptions were used in the 

calculations that heavily relied on PZT. It may be that PRAP is ill equipped to 

deal with lead-free systems. This may be due to different ferroelectric 

domains being present which may exhibit nonlinearity and aging effects   

that are not ‘within the scope of the IEEE standard’ (176). 

It should also be noted that the d33 measurements obtained by the 

Berlincourt method were consistently lower than quoted in numerous 

scientific papers. This is likely due to the BCTZ synthesis not being 

optimised, as the project was to determine the feasibility of low Curie point 

lead-free material being used in a device.  

Figure 5.13: Thickness extension mode measurements of BCTZ with schematic of 
sample cut (in mm), electrodes in grey and poling direction indicated by arrow. 
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Table 5.5: PRAP results of the; (a) elastic stiffness, c, charge, d, and 
mechanical, e, coefficients and the resonant frequencies of BCTZ and 
(b) the voltage, g, stiffness, h, elastic compliance, s, coefficients, the 
electromechnical coupling, k, and the permittivity of BCTZ, with the 

geometric cuts they came from. 

 

 

 

 

 

 

 

 

Cut Coefficient Value 

1x108 (N/m2) 

TE cD
33 16.83 

TS cD
55 3.73 

TE cE
33 16.41 

TS cE
55 3.49 

RAD cE
66 5.31 

RAD cp
11 9.33 

1x10-12 (C/N) 

TS d15 178.12 

LTE 
RAD 

d31 257.39 

LE d33 161.26 

1x101 (C/m2) 

TS e15 6.23 

TE e33 8.93 

RAD ep
31 4.69 

1x105 (Hz) 

 fp 1466.11 

 fp1 116.61 

 fs 1440.13 

 fs1 114.95 

 fs2 353.86 

Cut Coefficient Value 

1x10-3 (Vm/N) 

TS g15 10.25 

LTE g31 20.34 

LE g33 7.50 

1x108 (V/m) 

TS h15 3.83 

TE h33 4.65 

  

TS k15 0.25 

LTE k31 0.12 

LE k33 0.31 

RAD kP 0.10 

RAD kp 0.15 

TE kt 0.16 

1x10-12 (m2/N) 

LE sD
33 11.51 

TS sD
55 26.84 

LTE 
RAD 

sE
11 313.28 

RAD sE
12 1.50 

LE sE
33 12.73 

TS sE
55 28.68 

RAD sE
66 18.83 

1x108(F/m) 

RAD ɛp
33 2.42 

TS ɛS
11 1.62 

LE ɛS3=0_
33 1.94 

TE ɛS
33 1.90 

TS ɛT
11 1.73 

LE+LTE 
RAD 

ɛT
33 2.08 

(a) (b) 
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5.4 BCTZ machining and characterisation  

Two devices were fabricated using BCTZ as the active ceramic 

material. A stacked transducer known as a Tonpilz device and a simple 

hydrophone device was made with a disk shaped ceramic. 

5.4.1  Ceramic Machining 

Two different ceramic geometries were required for the two different 

devices fabricated. The first was a ring shape used in the Tonpilz devices 

and the second a disk which was used in the hydrophone devices. 

 The rings were cut using a water guided laser cutter (Synova 

MCS300)6. The disks were not machined, as the sintered pellet was within 

the boundaries of the necessary sample size. Both shapes were electroded 

using the process found in section 5.3.1. 

 

5.4.2  Ceramic Ring Characterisation 

The 15 ceramic rings were made in two batches. The first batch to 

determine the feasibility of using the laser to machine the samples, and the 

second batch once the laser was confirmed to be effective. There was a 

large difference between the batches. It can be seen in Figure 5.14 that the 

quality of the first set of samples was better than the second. This was 

reflected in the piezoelectric coefficients of the rings (Table 5.6). One side of 

the samples from batch 2 was more dense than the other. This was due to 

the uniaxial press used for the second batch of samples not having parallel 

plates.  

 

 

 

 

 

 

 

                                            

6 The author would like to thank Graham Brown at University of Leeds for 
their assistance. 

(a) (b) 

Figure 5.14: Optical microscopy image of a ring from (a) batch 1 (b) batch 2 
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The samples were then poled using the poling regime discussed 

previously (section 5.2.4). Due to the variation between batches, there was 

some disparity between the ring properties. The rings were measured using 

a Berlincourt device which directly measured the d33, capacitance and 

tan(δ). The impedance of the rings was also measured and PRAP was used 

to determine the d33, g33 and k33 from the modelled PRAP fitting. The results 

of both measurements can be seen in Table 5.6. It can be seen that the 

PRAP modelled d33 is consistently smaller than the Berlincourt measured 

d33.  

Table 5.6: Berlincourt and PRAP properties of the ceramic rings. 

 Berlincourt Measurements PRAP Modelled Properties 

Ring 
d33 

(pC/N) 
Capacitance  

(µF) 
tan(δ) 

d33 
(pC/N) 

g33 
(mVm/N) 

k33 

1 72.33 1299.67 0.025 20.80 1.00 0.041 
2 47.00 1171.67 0.028 10.80 0.30 0.016 
3 24.67 1360.00 0.027 22.20 0.98 0.041 
4 34.67 1380.00 0.027 25.40 1.03 0.045 
5 13.67 1381.67 0.025 12.50 0.52 0.022 
6 14.50 1387.67 0.024 15.50 0.84 0.032 
7 47.00 1279.67 0.025 17.00 0.60 0.027 
8 44.50 1070.33 0.026 25.30 1.12 0.047 
9 25.50 1431.00 0.025 13.70 0.57 0.025 

10 101.50 1167.67 0.027 86.60 3.38 0.134 
11 138.67 1148.67 0.020 105.40 5.40 0.212 
12 187.33 1184.33 0.020 139.40 6.58 0.264 
13 187.00 1211.67 0.030 136.40 6.92 0.276 
14 177.67 1216.00 0.024 141.60 6.48 0.259 
15 146.33 1160.00 0.021 122.80 5.65 0.229 

 

Three Tonpilz devices were made, with 4 rings per device. The rings 

were split into different qualities with a Bronze, Silver and Gold standard. 

The 4 rings with the best d33 measurements using the Berlincourt device 

were used in the gold standard, the next best were used in the Silver 

standard, and the third best were used in the bronze standard device. The 

capacitance of the rings was also measured using a multimeter at 1kHz. The 

grouped rings and the device they were used in can be seen in Table 5.7. 
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Table 5.7: The ceramic rings used in each Tonpilz device. 

Tonpilz 
Device 

Ring 
number  

Berlincourt 
d33 (pC/N) 

Capacitance 
at 1kHz (µF) 

Discarded 

3 24.67 1342.80 

5 13.67 1379.00 

6 14.50 1396.60 

Bronze 

8 44.50 1075.80 

2 47.00 1172.50 

4 34.67 1378.10 

9 25.50 1431.40 

Silver 

10 101.50 1096.20 

11 138.67 1112.70 

7 47.00 1293.80 

1 72.33 1300.60 

Gold 

15 146.33 1126.00 

14 177.67 1127.60 

12 187.33 1158.20 

13 187.00 1182.10 
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5.4.3  Ceramic Disk Characterisation 

The d33 and d31* of the disks were measured using the Berlincourt 

method. As the samples were large and the poling apparatus used a narrow 

rod, the samples were measured 4 times turning 90° after each 

measurement was taken, and the average calculated. The d31 was 

calculated using Equation 5.3, where t is the sample thickness and d is the 

diameter (177). The results can be seen Table 5.8. 

 

𝒅𝟑𝟏 =  
𝒅𝟑𝟏

∗ 𝒕⁄

𝒅
    Equation 5.3   

Table 5.8: d33 and d31 of the ceramic disks. 

Disc 
Number 

Thickness 
(mm) 

Diameter 
(mm) 

d33 
(pC/N) 

d31* 
(pC/N) 

d31 
(pC/N)  

1 4.80 21.29 115.5 -204.25 -46.05 
2 4.78 21.25 76.25 -225.25 -50.68 
3 4.40 21.18 30.75 -199.25 -41.41 
4 4.46 21.17 66.75 -236.5 -49.80 

 

The impedance, Z, phase, ϴZ, resistance, R, reactance, X, admittance, 

Y, conductance, G and susceptance, B, of the disk samples were measured 

between 100kHz to 1500kHz. Each of these measurements can be 

calculated from the impedance and phase measurements (Equation 5.1 and 

Equation 5.2 above, and Equation 5.4-Equation 5.7 below) and so only 

these are presented (Figure 5.15). The capacitance (at 1kHz) and the tan(δ) 

of the samples was measured using an Agilent 4990a, with 1601 points 

being averaged 3 times and can be seen in Table 5.9. 

 

 

𝒁 =  √𝑹𝟐 + 𝑿𝟐    Equation 5.4 

𝒀 =  √𝑮𝟐 + 𝑩𝟐 =  
𝟏

𝒁
=

𝟏

√𝑹𝟐+𝑿𝟐
  Equation 5.5     

𝑮 =  
𝟏

𝑹
      Equation 5.6 

𝑩 =
𝟏

𝑿
      Equation 5.7 
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Figure 5.15: Impedance and Phase measurements of Disks 1-4 from 100-150kHz. 
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Table 5.9: Table of Capacitance and tan(δ) of BCTZ disk samples 

 

 

 

 

 

Impedance measurements between 100-150kHz show a resonant 

frequency around 125kHz.  

The conductance versus susceptibility of the disks can be seen in 

Figure 5.16, known as a G-B loop. This helps predict the responsivity of the 

devices. The larger the diameter of the loop, the more responsive.   

 

 

 

 

 

 

Disk 
Number 

Thickness 
(mm) 

Diameter 
(mm) 

Capacitance 
(µF) Tan (δ) 

1 4.80 21.29 0.00234 0.0168 
2 4.78 21.25 0.00266 0.0171 
3 4.40 21.18 0.00237 0.0177 
4 4.46 21.17 0.00257 0.0163 
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Figure 5.16: G-B loop of the disk samples. 
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Both types of samples were thoroughly characterised in order to help 

estimate the best samples to be included in the devices, or in order for a 

comparison of free samples (not in devices) and clamped samples (in the 

devices) to be made. They were also used an indicators for which samples 

would produce the most sensitive devices.  

Upon completion of the measurements the samples were incorporated 

into devices. The next section describes the types of devices made, 

describes the measurements done on said devices, and the results of the 

device characterisation.    
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5.5 Lead-free Devices 

5.5.1  Device Schematics 

  A Tonpilz device  

A Tonpilz design device uses a piezoelectric stack between a piston 

head mass which radiates into the water and a tail mass at the rear which 

provides inertial backing (178). The ceramic rings were used to make this 

device, a schematic of a Tonpilz device can be seen in Figure 5.17, which 

was adapted from (179). 

 

 

 

 

 

 

 

 

 

 

 

 

 The hydrophone device 

The hydrophone devices were made using the disk shaped ceramic 

samples. The simple design was a piezoelectric ceramic connected to two 

wires via silver paste on silver tape. This design was used so as to remove 

any heat treatment that conventional soldering techniques would introduce 

to the ceramic.  

The whole arrangement was then covered in a ρ-c polyurethane. A ρ-c 

material allows sound to propagate at the same speed as in water, acting as 

an acoustic window, whilst environmentally protecting the device from water. 

In order to make sure the ceramic was at the centre of the mould when 

curing, small rods of cured ρ-c material of the same composition was used 

(as seen in the schematic found in Figure 5.18). 

Figure 5.17: Cross section of a Tonpilz device. 
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As the ρ-c material was poured and the devices were cured7, the 

temperature of the devices was measured in order to guarantee it did not 

exceed the Curie point of 90°C. The temperature of the curing material 

reached a maximum of 30°C within the first two hours and then remained far 

below this temperature afterwards (Figure 5.19). The curing process was 

done at ambient temperature over 12 days. 

 

 

 

 

 

 

 

 

 

                                            

7 The author would like to acknowledge and thank Bo Tyson for potting and 
wiring the samples. 

Figure 5.18: Schematic of the simple hydrophone device in the 
mould (before pouring the ρ-c material). 
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Figure 5.19: Temperature of the devices as the ρ-c material was cured. 
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5.5.2   Device characterisation signal processing 

In order to describe how the device characterisation was accomplished, 

a signal processing outline can be seen in Figure 5.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The signal was generated with specified characteristics (frequency or 

amplitude) by the Thales proprietary software. This was then converted from 

a digital signal to an analogue signal using the data acquisition card (DAQ), 

which is then amplified by 40dB (~ x100) by an amplifier. The signal was 

sent two ways. One was sent back to the computer display, after being 

attenuated by -40dB, and converted back to digital.  

The second was sent to a hydrophone which vibrated making an 

acoustic pressure wave in the water. This acoustic wave was then sent 

through the water to the device. The distance between the hydrophone and 

the device varied but was around 1.66m, the signal took 1.097µS to get from 

the source to the device, and the speed of sound in the water was therefore 

1513.2 m/s. 

The device then sensed the pressure being sent from the hydrophone 

and the piezoelectric material converts the mechanical signal back into an 

electrical charge signal which is sent through a long cable. In the long cable 

Signal 
Generator  

Amplifier  
(B&K type 27B) 

Computer  

Transmit Device (Tx) 

Attenuated 

Water 

Cable 

Receive 
Device (Rx) 

High Pass Filter 

Low Pass 
Filter 

Preamp 

Data Acquisition 
Card (DAQ) 

UWAT digital filter 
(Butterworth 

bandpass) 

Data Acquisition 
Card (DAQ) 

Preamp 

Data Acquisition 
Card (DAQ) 

Computer  Display  

Figure 5.20: Acoustic signal processing used during receive sensitivity 
characterisation. 
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some charge is lost and so the signal appears smaller than it should. This 

was corrected for later. The signal was then sent to a preamp which 

amplified the signal by 20dB for the hydrophone device, the signal was not 

amplified for the Tonpilz devices due to clipping. The signal passes through 

a high pass filter which allows through anything above the high frequency 

threshold. This high frequency threshold is usually set to twice the highest 

frequency generated. After the high pass filter 20dB amplification is applied 

before the signal passes through a low pass filter. The low pass is usually 

set to half the lowest frequency generated. The signal is then converted to a 

digital signal from an analogue signal using another DAQ, and sent to the 

computer. A Butterworth bandpass is applied which removes any signal 

missed by both the high and low pass filters from being displayed by the 

Thales proprietary software. 

 

 Transmit Voltage Response measurements 

The transmit voltage response (TVR) is defined as the output sound 

intensity level generated at 1m range by a transducer per 1V of input voltage 

as a function of frequency (180). The device is driven at a constant driving 

voltage over a range of frequencies and the output is measured by a 

receiving device. 

 

 Beam Pattern Measurement 

A directionality pattern, or beam pattern, is the sound intensity level 

as a function of angle on the same horizontal plane at a given frequency 

(180). The device is spun 360° and either transmits or receives a pressure. 

The measured response is displayed as a polar plot with 0° representing 

broadside. Within this chapter each segment of the polar plot is 30° and 

each ring is the equivalent of 10dB re µPa at 1 m if measuring the receive 

sensitivity or 10 dB re V/µPa if measuring the transmit sensitivity. 
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Figure 5.21: Impedance and phase of the Gold Tonpilz device in 
August and October 2018. 
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5.5.3  Tonpilz device characterisation and results 

 In Air testing 

The Tonpilz devices were housed in a steel housing to keep the 

direction of the devices consistent and to protect the devices from the water. 

Impedance measurements were taken in air in August 2018 and October 

2018 to see if there was any aging to the devices under preloading.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Gold device had the largest impedance peak of the three devices. 

This is due to the ceramic being of the highest quality and the highest 

piezoelectric d33. It can be seen that there is a large decrease in 

performance with time (Figure 5.21). The Gold device resonant peak is at a 

higher frequency than the Bronze and Silver devices at just below 36kHz, 

whereas the Bronze and Silver devices were at 32.7kHz and 35kHz 

respectively. 

Two smaller peaks can be seen, the first at 31.2kHz increases with 

time, this may be an due to the ceramic stack being forced to deform 

overtime increasing the prominence of this feature. The second smaller peak 

just before the resonant peak decreases and its presence, may be due to 

some non-uniformity in the ceramic rings.  
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It should be noted that each of the devices had a reduction in overall 

impedance with time. This is also reflected in the capacitance and loss of the 

devices. The capacitance dropping is an indication that there was a loss in 

overall piezoelectric performance.  

Table 5.10: Capacitance and tan (δ) of the devices measured in    
August and October 2018. 

 

 

 

 

Long cables were soldered to the devices in the housing so that the 

transmittance and sensitivity measurements could be taken in water. The 

capacitance of the devices, CT, and the capacitance of the cable, CC are 

used in Equation 5.8: 

𝒅𝑩 𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒐𝒏 = 𝟐𝟎 ×  𝒍𝒐𝒈𝟏𝟎(𝟏 +
𝑪𝑪

𝑪𝑻
)    Equation 5.8 

When measuring the receive sensitivity, dB correction is required as 

charge is lost in the cable leading to a lower voltage reading. The dB 

correction for the Bronze, Silver and Gold devices in the housing was 

calculated to be 1.50, 1.51 and 1.57dB respectively. Transmit voltage 

response measurements do not require this correction.   

Tonpilz 
Device 

Capacitance (µF) tan (δ) 

August October August October 

Bronze 0.00485 0.00457 0.0281 0.0176 

Silver 0.00481 0.00443 0.0188 0.0148 

Gold 0.00493 0.00435 0.0181 0.0131 
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Figure 5.22: Receive Sensitivity of the Tonpilz Bronze, Silver and Gold Devices 
from 25kHz to 60kHz. 
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 When measuring the receive sensitivity as a function of frequency of 

a device, the fast Fourier transform (FFT) of the data is also displayed. The 

points where the FFT follows the same trend as the signal received is the 

point at which the signal received can be seen above the noise. The receive 

sensitivity of the Tonpilz devices is shown in Figure 5.22.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is a broad peak in sensitivity between 30-34kHz depending on 

the device. The most sensitive device is the Gold, followed by the Silver and 

finally the Bronze. The largest recorded received sensitivity was -197dB re 

µPa at 1 m at 32-33kHz.  

The receive sensitivity as a function of angle of each device can be 

seen in Figure 5.23. The constant frequency used was 40kHz, as it was off-

resonance but remained a high sensitivity frequency.  
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Figure 5.23: Receive Sensitivity beam pattern of each Tonpilz device for comparison. 
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The devices receive the largest pressure signal at broadside, with 

gold having the largest sensitivity of -200dB re µPa at 1 m. Followed by the 

silver device at -205dB re µPa at 1 m and the bronze at -214dB re µPa at 

1m. All of the beam patterns appear fairly symmetrical either side of 

broadside. 
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Figure 5.24: Transmit voltage response (TVR) of each device driven at 111V. 
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  A comparison of each of the devices driven at 111V (RMS) can be 

seen in Figure 5.24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The bronze device response increases from 107dB re V/µPa at 

25kHz to 117.5dB re V/µPa at 32.5kHz. After this the signal decreases 

slightly to 110dB re V/µPa and remains fairly constant to 60kHZ. The silver 

device follows the same trend, peaking at 120.5dB re V/µPa at 31kHz, and 

remaining between 115 and 118dB re V/µPa until 60kHz. The gold device 

also follows this trend, with a peak response of 124dB re V/µPa at 35kHz 

and remaining between 121 and 125dB re V/µPa to 60kHz.  
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Figure 5.25: A comparison of the transmit sensitivity at 1m versus angle 
results of each Tonpilz device at 111V (RMS) and 40kHz. 
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The transmit signal received by the hydrophone as a function of angle 

at a frequency of 40kHz can be seen below (Figure 5.25). At a driving 

voltage of 111V (RMS) the beam pattern is fairly symmetrical. 
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Figure 5.27: Comparison of the impedance of disk 2 and hydrophone 2. 
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Figure 5.26: Impedance (solid line) and phase (dashed line) 
measurements of devices 2-4 from 100-150kHz. 
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5.5.4  Hydrophone device characterisation and results 

 In Air testing 

 

 

 

 

 

 

 

 

 

 

 

There is a large difference in impedance between the hydrophone 

devices as disk samples (Figure 5.15) and devices (Figure 5.26). The peak 

at 125kHz has been heavily damped, this is also reflected in the phase data 

where there is almost no phase change. To see this more clearly, Figure 

5.27 is the difference between the impedance of disk 2 and the impedance 

of the device 2. The sample becomes heavily damped when encapsulated in 

polyurethane.  
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Figure 5.28: Hydrophone receive sensitivity between 25-140kHz. 
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The receive sensitivity of the hydrophone devices between 25kHz and 

140kHz can be seen in Figure 5.28. The dB correction for devices 2, 3 and 4 

was calculated to be 4.39dB, 4.53dB and 4.49dB respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The receive sensitivity is constantly above -225dB re µPa at 1m from 40kHz 

to 140kHz and reaches a maximum at the resonance (~120kHz) of -200 dB 

re µPa at 1m. Generally device 2 is the most sensitive followed by device 4 

and finally device 3, which aligns with the diameters of the G-B loops 

measured in the disk samples (Figure 5.16). 
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Figure 5.29: Transmit Voltage Response at 1m of Hydrophone 4 driven at 
30V and 80V from 25kHz to 150kHz 
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The hydrophone device 4 was driven at 30V and 80V between 25 and 

150kHz. The transmittance was above 105 dB re V/µPa between 40kHz and 

150kHz, and peaked at 140 dB re V/µPa at 120kHz. Hydrophone devices 

are not usually used to project a pressure. It is compelling that it survived at 

all. 
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5.6 Conclusion 

The project proved that fabricating a lead-free transducer for SONAR 

applications is achievable and that with some adjustment to the procedure, 

the low Curie point of the material can be circumvented. However, there is 

still the issue of storage, where the device could feasibly reach temperatures 

as high as 70°C. 

The ability to produce large, dense ceramic samples of BCTZ was 

fundamental to this outcome. It allowed the samples to be machined to 

shape, as well as heavily preloaded in the device. This is why it is 

paramount that other lead-free candidates must be made to be as just as 

solid and tough. Optimisation of the synthesis of BCTZ would improve the 

overall piezoelectric performance. This could be done by isopressing 

samples before sintering, optimising the sintering temperature, and 

improving poling regime such as poling whilst cooling through the Curie 

point. 

The project also brought into question PRAP’s ability to correctly model 

the piezoelectric properties of lead-free materials. This may be due to 

assumptions in the development of the software. 
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 KNbO3 based materials 

KNN-based materials have been widely researched, with the main aim 

of tailoring the phase transitions to occur at room temperature, or the 

operating window of a device. This is done by doping or substitution of 

different ions into the base material, producing a solid solution. This chapter 

covers why the base material of this thesis is KNbO3, the effect substitution 

of CaZrO3, and LiNbO3 has on the phase of KNbO3 and the processing 

complications that arose. The aim of the work was to produce a KNbO3 

based material with a rhombohedral phase at room temperature and another 

KNbO3 based material with a tetragonal phase at room temperature and 

then combine them to replicate the mixed phase found in PZT or BCTZ. 

6.1 Pure Potassium Niobate  

6.1.1  KNbO3 as a base material  

The phase transitions of pure (K0.5Na0.5)NbO3 occur at -120°C, 200°C 

and 420°C for the TR-O, TO-T and TT-C respectively (113). This means that in 

order to bring the TR-O transition up to room temperature it must be tailored to 

move 145°C and to bring the TO-T transition down to room temperature it 

must be moved by 175°C. As the inclusion of most ions reduces the Curie 

point of a material, it is favourable to add the minimum number of ions 

required for the desired outcome.  

 Pure KNbO3 on the other hand has phase transitions that occur at      

-10°C, 225°C and 435°C for the TR-O, TO-T and TT-C respectively. This means 

that to tailor the TR-O phase transition to room temperature it must be moved 

up 35°C, significantly less than KNN. The TO-T transition must be moved 

200°C to room temperature, more than KNN by 25°C. The Curie point (or  

TT-C or TC) of KNbO3 is slightly higher than KNN by 15°C.  

It was therefore determined that, although there is much less 

research associated with it, the phase transitions temperatures of KNbO3 

may make it a superior base material to KNN. KNbO3 and KNN are 

isomorphous (albeit at different temperatures) and almost identical in unit 

cell parameters. It was therefore assumed that doping KNbO3 with similar 

ions to the research on KNN would produce a similar outcome (181, 182). 
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6.1.2  Pure KNbO3 Synthesis  

KNbO3 was synthesised using the mixed oxide method outlined in 

section 4.1. The sintering temperature (Tsint) was 1025°C. Initially, the 

sintering setup was as standard in electroceramic synthesis, pressed pellets 

surrounded by KNbO3 powder placed on an alumina tile, with an upside 

down alumina crucible acting as a lid. However the XRD results obtained 

from a crushed sample did not match the ICDD data on KNbO3. Rietveld 

refinement was performed and from this the occupancy of the potassium 

atoms was determined to be 0.621. This meant that the potassium lost 

during conventional sintering set up was 37.9%.  

The revised sintering setup seen in section 4.1.7 was proposed, the 

idea being that the atmosphere would have an increased amount of 

potassium, increasing the partial pressure and therefore decreasing the 

potassium lost from the pellets. Pellets made using this sintering setup were 

crushed and XRD was performed on them. Both refinements were 

undertaken using the same steps to make them comparable and the 

occupancy of the potassium atoms remained at 1. This suggests that the 

overall potassium loss during the sintering process was drastically reduced, 

with the modelled refinement indicating there was no loss at all.  

6.1.3  Characterisation, Results and Discussion 

6.1.3.1 XRD data 

The crushed pellets were measured between 20-80°, with a scan step 

of 0.033425°, the total scan time being 20 minutes using a Bruker D8 

diffractometer.  The XRD data was analysed using Rietveld refinement 

following the process outlined in 4.2.1.2 with the addition of the occupancy of 

the potassium atom being refined as the KNbO3 sintered conventionally was 

inconsistent with the ICDD data.  

The XRD data of the conventionally sintered sample can be seen in 

Figure 6.1. The (001) and (100) peak intensities are relatively higher than 

observed in the ICDD data (108). The ICDD data has the (001) intensity at 

43.3% the height of the largest (011) peak. The conventionally sintered (001) 

peak was 84.8% the intensity of the (011) peak. This was the indication that 

there was substantial potassium loss. The (001) peak of the K-rich 

atmosphere sintered KNbO3 with much less potassium loss had the peak 

intensity at 44.9% that of the (011) peak (Figure 6.2). Indexed as pseudo-

monoclinic.   
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Figure 6.2: XRD of KNbO3 synthesised with K-rich atmosphere sintering set up. 
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Figure 6.1: XRD of KNbO3 synthesised using the conventional sintering set up. 
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The Rietveld refinement results can be seen in Table 6.1. The weighted 

R profile (WRP) is the overall fitting score of a refinement, this ideally should 

be below 10. R expected value or Rexp is the ideal score of a refinement and 

is an indicator of the quality of the raw data.  

The WRP of the refinements are high. This is due to the quality of the 

XRD data, as the Rexp was also high. The number of x-rays detected was 

low, this may be due to the diffractometer requiring a new filament tube at 

the time of scanning. The orthorhombic parameters were calculated by the 

software and converted manually to the pseudo-monoclinic parameters 

which were used to index the peaks of the XRD data.  

 

Table 6.1: Table of Rietveld refinement results of KNbO3 sintered 
conventionally and with a K-rich atmosphere. 

Factor Sintering set up 

 

Conventional 
K-rich 

atmosphere  

 Rietveld Refinement Score 

WRP 16.884 16.632 
Rexp 8.031 12.999 

 Orthorhombic Parameters (Å) 

a 3.977 3.976 
b 5.697 5.695 
c 5.723 5.718 

 Pseudo-monoclinic Parameters (Å) 

a 4.037 4.035 
b 4.037 4.035 
c 3.977 3.976 
β 89.74 89.77 

 Potassium loss (%) 

 38.70 0.00 

 Density (g/cm3) 

 3.825 4.271 

 Theoretical Percentage (%) 

 90.39 92.62 

 

The theoretical density of the samples was calculated using the unit 

cell parameters modelled in the Rietveld refinement (Table 6.1). The molar 

mass of the unit cell assumed to be 108.0026g. The percentage of the 

theoretical density of the K2CO3 sintered pellets was 93% whereas for the 

conventionally sintered pellets it was 90%. The density was calculated using 

the geometric measurements as the conventionally sintered pellets would 
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Figure 6.3: XRD against scan temperature for KNbO3 sintered in K-rich atmosphere. 

dissolve in the water, which was not the case for the K-rich atmosphere 

sintered pellets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.2: Rietveld refinement results of KNbO3 with 
temperature. 

Temperature (°C) Phases High Score Fraction WRP 

25 O     3.979 

175 O   4.274 
175 O T 99.9 0.1 4.254 

200 T    5.276 

350 T     4.149 
350 T C 80.1 19.9 3.523 

375 T 100.0   7.362 
375 T C 50.5 49.5 3.660 
375 C   7.551 

400 T C 0.0 100.0 4.526 

500 C     4.223 

XRD was undertaken from 25°C to 500°C at 25°C intervals, using the 

hot stage attachment of a X’pert Diffractometer. The sample remains 

orthorhombic (Amm2) until 200°C, where it switches to tetragonal (P4mm). 
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Figure 6.4: The {200} peaks of pure KNbO3 with temperature of scan. 

The 175°C scan was refined as pure orthorhombic and as a mixture of 

orthorhombic and tetragonal with the best score being a mixture of 99.9% 

orthorhombic and 0.1% tetragonal. The large bias towards orthorhombic and 

a c/a ratio of the refined tetragonal phase changing from 1.015 to 0.918 

brings into question whether the refinement of the mixed phase is accurate. 

Given the small difference in score, the more sensible analysis of the sample 

at 175°C is that of a pure orthorhombic sample. 

It remains purely tetragonal form 200°C until 350°C. At 350°C the best 

refinement has a mixture of 80.1% tetragonal and 19.9% cubic. At 375°C the 

most accurate refinement is a mixture of tetragonal and cubic (Pm-3m) 

phases, 50.5% and 49.5% respectively. At 400°C a mixture of tetragonal and 

cubic was refined, with the model eliminating the likelihood of a tetragonal 

phase being present, the sample therefore becoming pure cubic in phase, 

which remains to 500°C. These results suggest that the tetragonal-cubic 

phase transition is continuous, or 2nd order, rather than the 1st order that is 

seen between orthorhombic and tetragonal at 200°C. The XRD results and 

the Rietveld refinement results are found in Figure 6.3 and Table 6.2 

respectively. The {200} peaks surrounding the 45° are an excellent indication 

of the phase of the sample. The key temperature scans can be seen in 

Figure 6.4. 
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Figure 6.5: Permittivity and tan(δ) of KNbO3  as a function of temperature and frequency. 

50 100 150 200 250 300 350 400 450 500

0

500

1000

1500

2000

2500

3000

 1kHz

 10kHz

100kHz

R
e
la

ti
v
e
 P

e
rm

it
ti
v
it
y
, 
 r

Temperature (°C)

100 200 300 400 500
0

1

2

3

4

T
a
n
(

)

Temperature (°C)

6.1.3.2 Permittivity data  

The permittivity of the K-rich atmosphere sintered KNbO3 was 

measured against temperature and frequency and the results can be seen in 

Figure 6.5. The tan(δ) data is shown in the inset. The phase transitions can 

be seen as peaks in the permittivity, the TO-T transition occurring at 200°C 

and the TT-C (or TC) can be seen at 392°C. These phase transformation 

temperatures are in agreement with the XRD versus temperature data. 

There is some dispersion with frequency, this may be due to porosity or 

other inhomogeneity within the sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.4  Conclusion 

The sintering regime was optimised to produce pure potassium niobate 

with minimum potassium loss. This sintering set up was used throughout the 

work. The phase transition temperatures measured in the pure potassium 

niobate were in agreement with the temperatures found in the literature, and 

will be used to compare the phase transitions of the doped samples in the 

work proceeding this section.   
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6.2  KNbO3 – CaZrO3 

Substituting KNN with CaZrO3 increases the TR-O phase transition to 

room temperature (150). It was proposed that this may also be the effect for 

KNbO3.    

6.2.1  (1-x)KNbO3-xCaZrO3  (KNCZ) synthesis  

Five different compositions were synthesised, where x=0.01, 0.02, 

0.03, 0.06, and 0.09 by the mixed oxide process outlined in section 4.1. The 

sintering temperature (Tsint) increased as the amount of CaZrO3 increased, 

x=0.01 and 0.02 had a Tsint of 1100°C and x= 0.03-0.09 had a Tsint of 

1150°C. The sintering process produced samples with poor density, unfit for 

high electric field characterisation. Samples were ground and electrodes 

were applied for permittivity measurements, however the samples were 

prone to breaking.   

6.2.2  Characterisation, Results and Discussion 

6.2.2.1 XRD data at 25°C 

The crushed pellets were measured between 20-80°, with a scan step 

of 0.033425°, the total scan time being 20 minutes using an X’Pert 

diffractometer with a hot stage attachment. A comparison of the XRD results 

at 25°C for each composition can be seen in Figure 6.6, and the Rietveld 

refinement results can be seen in Table 6.3. The {200} peaks near 45° for 

each composition can be seen in Figure 6.7. 

Pure KNbO3 (x=0.00) is orthorhombic, with the refinement score being 

vastly improved as the quality of data was improved. The 0.01 composition 

remains purely orthorhombic. An attempt to refine a coexistence of 

orthorhombic and rhombohedral phases resulted in the WRP increasing 

from 5.473 to 10.498.  

The best refinement for the 0.02 composition was a mixed phase of 

orthorhombic and rhombohedral. However, the model calculated the unit cell 

parameters of the rhombohedral phase as impossible, the α angle being 

above 90°. This would suggest that the rhombohedral phase was forced into 

the model and may not be present in the sample, or present but with less 

phase fraction. For this reason, the 0.02 will be classed as orthorhombic. 

However, the high score phase fraction of the orthorhombic-rhombohedral 

refinement is compatible with the compositions succeeding it.  
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Figure 6.6: XRD results of every KNbO3-CaZrO3 composition at 25°C. 
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 The compositions 0.03 and 0.06 are best modelled as orthorhombic-

rhombohedral phase mixture. The percentage of rhombohedral phase 

present increases with CaZrO3 substitution, from 37.9% in 0.03 to 61.1% in 

0.06. 

 The 0.09 composition is best modelled as a mixture of orthorhombic 

and cubic phases. This is due to the cubic phase becoming more stable at 

lower temperatures as the amount of CaZrO3 is increased. This will be 

shown in section 6.2.2.2. When refined as a mixture of orthorhombic and 

rhombohedral, the rhombohedral unit parameters are impossible as α is 

above 90°.  
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Figure 6.7: The {200} peaks of each KNbO3-CaZrO3 composition at 25°C. 
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Table 6.3: Table of Rietveld refinement results of (1-x)KNbO3-xCaZrO3 
compositions at room temperature. 

Composition 
 (x) Phases 

High 
Score 

Fraction 
(%) WRP 

Pseudo-monoclinic 
Rhombohedral 

/ Cubic 

a (Å) b (Å) c (Å) β (°) a (Å) α (Å) 

0.00 O     3.979 4.011 4.011 3.977 89.538     

0.01 O     5.473 4.028 4.028 3.994 89.874     

0.02 O R 71.8 28.2 3.578 4.034 4.034 3.982 89.815 4.016 90.008 

0.02 O     5.018 4.030 4.030 3.989 89.845     

0.03 O R 62.1 37.9 3.606 4.033 4.033 3.985 89.799 4.016 89.979 

0.06 O R 38.9 61.1 3.453 4.032 4.032 3.992 89.844 4.017 89.996 

0.09 O R 35.5 64.5 3.438 4.031 4.031 3.999 89.839 4.018 90.007 

0.09 O C 52.3 47.7 3.331 4.028 4.028 4.002 89.891 4.018  
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Figure 6.8: XRD with scan temperature of 0.99KNbO3-0.01CaZrO3. 

6.2.2.2 XRD with temperature 

An XRD phase study was performed on each composition over a range 

of temperatures using a PANalytical X’Pert diffractometer and a temperature 

controller. From 25°C to 500°C at 25°C intervals. This was to identify the 

phase(s) present at room temperature and in order to see the effect the 

substitution had on the TO-T and the TT-C phase transitions. The scans at a 

range of temperatures would also contribute to an explanation for the shape 

of the permittivity data seen in section 6.2.2.3.  

 0.99KNbO3-0.01CaZrO3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 shows the XRD measurements as a function of 

temperature for 1% CaZrO3 substitution. When x=0.01, the material remains 

orthorhombic until 175°C. At 200°C the material had a phase mixture of 

orthorhombic and tetragonal, 44.7% and 55.3% respectively. There was no 

pure tetragonal material as the best fitting model was a tetragonal-cubic 

phase coexistence at 225°C, with the phase fraction being 62.1% to 37.9% 

respectively. This phase mixture remained in the same range until 275°C. 

The cubic phase fraction then increased to 46.7% at 325°C, 56.8% at 350°C 

and then 64.5% at 375°C. Finally at 400°C the best fit was purely cubic. The 
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Figure 6.9: The {200} peaks of 0.99KNbO3-0.01CaZrO3 with scan temperature.  
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Rietveld refinement results can be seen in Table 6.4 and the {200} peaks at 

notable temperatures are seen in Figure 6.9. 

Table 6.4: Rietveld refinement results of 0.99KNbO3-0.01CaZrO3 with 

temperature. 

Temperature 
(°C) Phases 

High 
Score 

Fraction 
(%) WRP 

Monoclinic/Cubic (Å) Tetragonal (Å) 

a b c β (°) a c c/a 

25 O   5.4733 4.028 4.028 3.994 89.874       

175 O   4.4669 4.030 4.030 4.001 89.953     

175 OT 100, 0 3.3968 4.030 4.030 4.001 89.967    

200 OT 44.7, 55.3 3.7022 4.028 4.028 4.011 89.979 4.002 4.055 1.013 

225 TC 62.1, 37.9 3.8821 4.023 4.023 4.023   4.003 4.053 1.012 

325 TC 53.3, 46.7 3.6536 4.025 4.025 4.025   4.011 4.051 1.010 

350 TC 43.2, 56.8 3.5146 4.025 4.025 4.025   4.011 4.051 1.010 

350 C   5.4697 4.024 4.024 4.024         

375 TC 35.5, 64.5 3.4445 4.025 4.025 4.025   4.022 4.040 1.004 

375 C   4.2361 4.025 4.025 4.025         

400 C   4.4435 4.026 4.026 4.026         
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The TO-T phase transition (200°C) does not appear to have been 

reduced by the substitution of 1% CaZrO3.The result once again suggests 

that the tetragonal-cubic phase is a continuous, 2nd order transition. It also 

implies that the cubic phase of the material is present at a much lower 

temperature of 225°C rather than in pure KNbO3 where it appeared at 350°C. 

However it becomes purely cubic at the same temperature as pure KNbO3, 

at 400°C.  

 0.98KNbO3-0.02CaZrO3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similar to x=0.01, when x=0.02 (XRD versus temperature results 

seen in Figure 6.10) the phase remains orthorhombic until 175°C where the 

tetragonal phase is introduced. The phase mixture starts at 50.9% 

orthorhombic, 49.1% tetragonal at 175°C. The tetragonal phase grows 

significantly to 73.4% at 200°C, which is the last temperature the 

orthorhombic phase is present. From 225°C to 375°C a tetragonal-cubic 

Figure 6.10: XRD with scan temperature of 0.98KNbO3-0.02CaZrO3. 
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phase coexistence is found. The cubic phase is constantly increasing in 

fraction, becoming the dominant phase at 350°C. The refinement at 400°C is 

best represented as this same mixture, with the tetragonal phase 

representing 2.4% of the sample. The tetragonal phase in the model has an 

unrealistic c/a ratio of 1.128 suggesting the refinement is forcing a fit. In this 

case, the slightly higher scoring pure cubic phase may be more accurate; 

visually, there are no shoulders either side of the cubic peak (see Figure 

6.11 of the {200} peaks). A summary of the Rietveld refinement results can 

be seen in Table 6.5.  

Table 6.5: Rietveld refinement results of 0.98KNbO3-0.02CaZrO3 with 
temperature. 

Temperature 
(°C) 

Phases 

High 
Score 

Fraction 
(%) 

WRP 

Monoclinic / Cubic (Å) 
Tetragonal / 

Rhombohedral (Å) 

a b c β a 
c or 
α (°) 

c/a 

25 O   5.0179 4.030 4.030 3.989 89.814       

25 OR 71.8, 28.2 3.5777 4.034 4.034 3.982 89.815 4.016 90.008  

175 OT 50.9, 49.1 3.6794 4.033 4.033 3.993 89.813 4.008 4.048 1.010 

200 OT 26.6, 73.4 3.7919 4.031 4.031 4.006 89.835 4.003 4.057 1.014 

225 TC 78.6, 21.4 4.0075 4.024 4.024 4.024   4.005 4.056 1.013 

275 TC 74.7, 25.3 3.9286 4.025 4.025 4.025   4.007 4.055 1.012 

325 TC 59.4, 40.6 3.9709 4.025 4.025 4.025   4.011 4.051 1.010 

350 TC 42.5, 57.5 3.8157 4.024 4.024 4.024   4.016 4.046 1.008 

375 TC 27.7, 72.3 3.6684 4.025 4.025 4.025   4.022 4.044 1.005 

375 C   4.5622 4.025 4.025 4.025         

400 TC 2.4, 97.6 4.1306 4.026 4.026 4.026   3.656 4.124 1.128 

400 C   4.3741 4.026 4.026 4.026         

425 TC 0.0, 100.0 4.4627 4.027 4.027 4.027         

 

  



111 

Figure 6.11: The {200} peaks of 0.98KNbO3-0.02CaZrO3 with temperature. 
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 0.97KNbO3-0.03CaZrO3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: XRD with temperature of 0.97KNbO3-0.03CaZrO3. 
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Table 6.6: Rietveld refinement results of 0.97KNbO3-0.03CaZrO3 with 

temperature. 

 

 The phase remains purely orthorhombic for x=0.01 and 0.02. 

However, for x=0.03 the rhombohedral phase appears with the orthorhombic 

phase at room temperature, with a phase fraction of 37.9%. The XRD scan 

results for x=0.03 from 25 to 500°C can be seen in Figure 6.12 and the 

Rietveld refinement results can be seen in Table 6.6. This coexistence 

remains until 100°C, with the rhombohedral phase being reduced to 26.9%. 

The increased CaZrO3 substitution brings the cubic phase down to appear at 

125°C, however it is not the only phase as the orthorhombic phase remains. 

At 175°C the tetragonal phase appears with the orthorhombic and cubic 

phase, with the orthorhombic phase disappearing at 200°C. This leaves the 

tetragonal and cubic phases to coexist, with the phase fraction of the cubic 

phase increasing with temperature, from 24% at 200°C to 52.9% at 350°C.   

The tetragonal-cubic phase coexistence is the best refinement at 

375°C, however the c/a ratio of the tetragonal unit cell modelled is much 

smaller than that modelled at lower temperatures. This, along with the fact 

that the tetragonal {200} peaks cannot be seen in the 375°C  XRD scan 

(Figure 6.13) would suggests that at 375°C the sample is pure cubic.  

The refinement results further confirm that the tetragonal-cubic phase 

transformation is a 2nd order continuous transition. They also suggest that 

the cubic phase is heavily affected by the CaZrO3, its presence being found 

~300°C lower than it is in pure KNbO3. The rhombohedral phase found at 

Temperature 
(°C) 

Phases 

High 
Score 

Fraction 
(%) 

WRP 

Pseudo-Monoclinic / 
Cubic (Å) 

Tetragonal / 
Rhombohedral (Å) 

a b c β a 
c or 
α(°) 

c/a 

25 OR 62.1, 37.9 3.6058 4.033 4.033 3.990 89.799 4.016 89.979   

100 OR 73.1, 26.9 3.6717 4.034 4.034 3.990 89.851 4.017 89.984   

125 OC 70.1, 29.9 3.4412 4.034 4.034 3.992 89.884      

        4.017         

150 OC 67.6, 32.4 3.8371 4.036 4.036 3.994 89.920       

        4.017          

175 OTC 38.3, 43.1, 
18.6 

3.4875 4.035 4.035 3.992 89.803 4.008 4.047 1.010 

      4.021        

200 TC 76.0, 24.0 4.1531 4.023     4.006 4.048 1.010 

225 TC 70.4, 29.6 3.9615  4.023       4.006 4.051 1.011 

250 TC 63.4, 36.6 3.9559 4.023     4.007 4.052 1.011 

275 TC 55.8, 44.2 3.8847 4.024     4.008 4.053 1.011 

325 TC 49.7, 50.3 3.7928 4.025     4.012 4.052 1.010 

350 TC 47.1, 52.9 3.7333 4.025     4.014 4.049 1.009 

375 TC 35.6, 64.4 3.7808 4.025     4.020 4.046 1.006 

375 C   4.7961 4.025             
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Figure 6.13: The {200} peaks of 0.97KNbO3-0.03CaZrO3 with temperature. 
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lower temperatures may be a false refinement and could also be the cubic 

phase. To counter this point, the refinement scores themselves are better for 

the rhombohedral phase, and the unit cells modelled are realistic. Also, the 

phase fraction decreases with an increasing temperature until the cubic 

phase appears, which would be expected for a phase that is usually present 

below room temperature. 
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Figure 6.14: XRD with temperature of 0.94KNbO3-0.06CaZrO3. 

 0.94KNbO3-0.06CaZrO3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The full XRD scans of x=0.06 can be seen Figure 6.14, with the {200} 

peaks being highlighted in Figure 6.15. The Rietveld refinements results 

from the full scans can be seen in Table 6.7. 

 The rhombohedral-orthorhombic phase coexistence found in x=0.03 

is also seen in x=0.06 with the rhombohedral phase making up an increased 

61.1% of the sample. This coexistence remains until a higher 125°C, with 

the rhombohedral phase being reduced to 47.1%. The coexistence of 

orthorhombic, tetragonal and cubic also appears at 175°C. However the 

cubic phase makes up much more of the sample at this temperature 

compared to the x=0.03 composition. From 200°C until 350°C both 

tetragonal and cubic phases are present. The cubic phase becomes the 

dominant phase at the lower temperature of 225°C, peaking at roughly the 

same percentage of 64.5% at 350°C. 
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 At 375°C, the cubic phase stops growing and shifting and the 

tetragonal {200} shoulders are not present. The sample becomes pure cubic.  

 

Table 6.7: Rietveld refinement results of 0.94KNbO3-0.06CaZrO3 with 
temperature. 

   
Temperature 

(°C) 

Phases 

High 
Score 

Fraction 
(%) 

WRP 

Pseudo-Monoclinic / Cubic 
(Å) 

Tetragonal / 
Rhombohedral (Å) 

a b c β a 
c or 
α(°) 

c/a 

25 OR 38.9, 61.1 3.4531 4.032 4.032 3.992 89.844 4.017 89.996   

25 OC 37.7, 62.3 3.4755 4.033 4.033 3.991 89.839    

    4.017       

100 OC 55.9, 44.1 3.5369 4.033 4.033 3.995 89.916    

    4.019       

150 OR 52.9, 47.1 3.8011 4.037 4.037 3.995 89.890 4.020 89.997  

150 OC 49.1, 50.9 3.6271 4.035 4.035 3.997 89.964       

      4.020         

175 OTC 29.1,29.6, 
41.3 

3.5099 4.034 4.034 3.996 89.832 4.013 4.041 1.007 

      4.021         

200 TC 54.7, 45.3 3.7219 4.022     4.011 4.043 1.008 

225 TC 47.3, 52.7 3.4753 4.022     4.009 4.047 1.009 

250 TC 45.8, 54.2 3.5900 4.024     4.011 4.048 1.009 

300 TC 41.7, 58.3 3.5760 4.025     4.014 4.048 1.009 

325 TC 44.4, 55.6 3.4480 4.026     4.017 4.045 1.007 

350 TC 35.5, 64.5 3.5905 4.026     4.020 4.045 1.006 

350 C   4.4416 4.026           

375 C  4.016 4.027       
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Figure 6.15: The {200} peaks of 0.94KNbO3-0.06CaZrO3 with scan temperature. 

Figure 6.16: XRD with scan temperature of 0.91KNbO3-0.09CaZrO3. 
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Table 6.8: Rietveld refinement results of 0.91KNbO3-0.09CaZrO3 with 

temperature. 

 

The full XRD scans of the x=0.09 composition can be seen in Figure 

6.16, the Rietveld refinement results of key temperatures can be seen in 

Table 6.8. The {200} peaks of the scans at further key temperatures can be 

seen in Figure 6.17. 

At x=0.09 the cubic phase is present at room temperature. The 

rhombohedral phase may be present however if it is, it is masked by the 

cubic phase. The orthorhombic-cubic phase coexistence is the best refined 

model until 175°C. From 175°C to 350°C a tetragonal-cubic phase is the 

best model. The percentage of tetragonal to cubic should be contested, as 

the tetragonal phase has a much lower c/a ratio than in other models. There 

is also a large difference between the amount of cubic phase modelled with 

the orthorhombic phase at 150°C and with the tetragonal phase at 175°C. If 

the c/a ratio was more realistic, the phase fraction would be lower and more 

in line with the trend found from x=0.01 to 0.06. The sample does not 

become purely cubic until 375°C, similar to other compositions.  

 

 

 

 

 

Temperature 
(°C) 

Phases 

High 
Score 

Fraction 
(%) 

WRP 

Pseudo-Monoclinic / Cubic 
(Å) 

Tetragonal / 
Rhombohedral (Å) 

a b c β a 
c or 
α(°)  

c/a 

25 OR 35.5, 64.5 3.4382 4.031 4.031 3.999 89.835 4.018 90.01  

25 OC 52.3, 47.7 3.3312 4.028 4.028 4.002 89.891       

        4.018           

150 OR 35.4, 64.6 3.9200 4.035 4.035 4.002 89.906 4.021 90.01  

150 OC 39.4, 60.6 3.6858 4.034 4.034 4.003 89.895       

        4.021           

175 TC 72.4, 27.6 3.5987 4.022     4.017 4.033 1.004 

200 TC 45.3, 54.7 3.6169 4.022     4.016 4.039 1.006 

225 TC 40.0, 60.0 3.4817 4.023     4.016 4.042 1.007 

250 TC 36.1, 63.9 3.5032 4.024     4.017 4.043 1.007 

300 TC 38.4, 61.6 3.5145 4.025     4.020 4.042 1.006 

325 TC 37.3, 62.7 3.6127 4.026     4.022 4.042 1.005 

350 TC 32.8, 67.2 3.5073 4.027     4.023 4.042 1.005 

375 C   4.2600 4.028           
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Figure 6.17: The {200} peaks of 0.91KNbO3-0.09CaZrO3 with scan temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 KNCZ Phase Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.18: Phase Diagram of (1-x)KNbO3-xCaZrO3, each grid line intersection indicating a 

scan point and each red dot indicating a Rietveld refinement point. 
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 This phase diagram of (1-x)KNbO3-CaZrO3 with temperature (Figure 

6.18) was made using the results from the XRD with temperature and is a 

summary of the analysis provided in the previous sections. It can be seen 

that the temperature region where the tetragonal and cubic phases coexist 

increases with x. The minimum temperature for the tetragonal phase to 

appear is reduced, however the cubic phase is affected the most by the 

CaZrO3 substitution. The rhombohedral phase is present at room 

temperature from x=0.03, where it coexists with orthorhombic. When the 

cubic phase is reduced to room temperature it may mask any presence of 

the rhombohedral phase at x=0.09.  
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Figure 6.19: Relative permittivity and tan (δ) of 0.99KNbO3-0.01CaZrO3 
with temperature and frequency. 
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Figure 6.20: Relative permittivity and tan (δ) of 0.98KNbO3-0.02CaZrO3 
with temperature and frequency. 

6.2.2.3 Permittivity data  
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 The permittivity data for x=0.01 (Figure 6.19) and x=0.02 (Figure 

6.20) are very similar to pure potassium niobate (Figure 6.5) however, the 

phase transition peaks are broader. They are found at the same 

temperatures as the phase transitions in the XRD data, just below 200°C 

and 400°C. The Curie point near 400°C in the x=0.02 composition is shifted 

to a slightly lower temperature to the x=0.01. The gradient leading up to the 

Curie point is much smaller than in pure potassium niobate, this may be due 

to the continuous transition in the material from tetragonal to cubic. There is 

a decrease in permittivity from room temperature to ~60°C, which is seen in 

each sample, albeit with much narrower temperature range in the pure 

potassium niobate. This may be due to charge carriers or pores in the 

sample being affected by the alternating current before being fixed in place. 

There is an increase in frequency dispersion with temperature, although the 

peaks in permittivity all appear at the same temperature at each frequency.   

All of the compositions suffer from conductivity at higher 

temperatures. This is seen as an increase in permittivity after the initial 

decrease after the Curie point.   

 When x=0.03, Figure 6.21, there is a large change in the shape of the 

permittivity with temperature graph when compared to x=0.00, 0.01 and 

0.02. There is some noise and outlying data at the lower temperatures and 

around 175°C which may indicate a poor sample-wire contact.  

  After the initial decrease in permittivity to ~50°C there is some stability 

until around 125°C when it then starts to increase. There is a very broad 

bump in permittivity just below ~200°C, where the OTC phase mixture 

appears, this is more noticeable in the tan(δ) data. The permittivity then 

increases linearly to the peak permittivity at just below 400°C. There is 

noticeable difference in the shape of the tan(δ) with frequency in this 

composition, with the OTC bump appearing at different temperatures. There 

is also a large difference in the permittivity with frequency at the Curie point. 

This, along with the very broad OTC peak, may be an indication of relaxor-

like behaviour. 

The permittivity results of x=0.06 (Figure 6.22) and x=0.09 (Figure 

6.23) have a peak at a much lower temperature than the Curie point, which 

is also an indication of a relaxor. There is also a small bump in both samples 

which may occur where the tetragonal phase finally disappears and the pure 

cubic phase remains at 375°C. 
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Figure 6.22: Relative permittivity and tan (δ) of 0.94KNbO3-0.06CaZrO3 
with temperature and frequency. 

Figure 6.21: Relative permittivity and tan (δ) of 0.97KNbO3-0.03CaZrO3 
with temperature and frequency. 
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Figure 6.23: Relative permittivity and tan (δ) of 0.91KNbO3-0.09CaZrO3 
with temperature and frequency. 
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Figure 6.24: Relative permittivity of all KNbO3-CaZrO3 compositions with 
temperature at 10kHz. 

 

 

 

 

 

 

 

 

 

 

 

 

For ease of comparison the relative permittivity with temperature for 

each composition can be seen below (Figure 6.24).  
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6.2.3  Conclusion 

Substitution of KNbO3 with CaZrO3 increases the temperature of the 

rhombohedral phase up to room temperature at x=0.03. Although it is never 

the most energetically favourable phase, always coexisting with the 

orthorhombic phase. CaZrO3 reduces TO-T slightly, but decreases the 

temperature at which the cubic phase can be present by much more. The 

substitution also broadens the TO-T and TT-C phase transitions. At x≥0.03 

some relaxor-like behaviour occurs in the material.   
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6.3 KNbO3 – LiNbO3 

Substituting LiNbO3 into (K,Na)NbO3 reduces the TO-T phase transition 

down to room temperature (134). It was proposed that this also may be the 

case for KNbO3.  

6.3.1  (1-x)KNbO3-xLiNbO3 (KNLN) synthesis 

Six compositions were synthesised, where x=0.03, 0.04, 0.07, 0.08, 

0.09, and 0.10 by the mixed oxide method outlined in section 4.1. The 

sintering temperature decreased as the amount of LiNbO3 increased, x=0.03 

and 0.04 had a Tsint of 1050°C, 0.07 had a Tsint of 1030°C and compositions 

x=0.08-0.10 had a Tsint of 950°C. The samples were ground and silver 

electrodes were applied for electrical characterisation.  

 

6.3.2  Characterisation, Results and Discussion 

6.3.2.1 X-ray Diffraction data 

Sintered and crushed pellets were measured between 20-80° using a 

Bruker D8 X-ray diffractometer, with a scan step of 0.033425° for a total 

scan time of 20 minutes, the results can be seen in Figure 6.25. Rietveld 

refinement was carried out on the samples to determine the phase of the 

material and index the peaks.  

The substitution of potassium for lithium had no effect on the phase of 

the material, every composition was pure orthorhombic. A secondary phase 

identified as K3Li2Nb5O15 was found and increased in phase fraction with an 

increase in lithium substitution (Table 6.9). This suggests that there is finite 

amount of lithium that can be introduced into the perovskite KNbO3 

structure. When x=0.03 there is 1.8% of the secondary phase, this increased 

to 13.2% at x=0.10. The WRP of the refinements are high but are below the 

10 threshold. This should be expected as introducing a secondary phase 

increase the number of refinement parameters that could be refined.  
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Table 6.9: Rietveld Refinement results of (1-x)KNbO3-LiNbO3 
compositions. 

 

 

 

 

Composition 

High Score Phase Fraction 
(%) 

WRp 

Pseudo-monoclinic               
unit cell parameters 

Orthorhombic        
KNbO3-
LiNbO3 K3Li2Nb5O15 a (Å) b (Å) c (Å) β (°) 

0.03 98.2 1.8 8.3332 4.0340 4.0340 3.9719 89.73 
0.04 97.9 2.1 6.5292 4.0336 4.0336 3.9712 89.73 
0.07 91.2 8.8 8.6239 4.0292 4.0292 3.9741 89.77 
0.08 90.8 9.2 7.2154 4.0326 4.0326 3.9726 89.74 
0.09 90.2 9.8 7.6313 4.0320 4.0320 3.9732 89.74 
0.10 86.8 13.2 7.1232 4.0324 4.0324 3.9725 89.74 
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Figure 6.25: X-ray diffraction results of (1-x)KNbO3-xLiNbO3, indexed using as 
psuedo-monclinic and asteriks indicating secondary phase peaks. 
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Figure 6.26: Relative permittivity of all KNbO3-LiNbO3 compositions with 
temperature at 10kHz. 
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6.3.2.2 Permittivity data 

Although the introduction of lithium had no effect on the 

crystallographic phase at room temperature, the permittivity results suggest 

there is a change in phase transition temperatures (Figure 6.26). The phase 

transitions of pure KNbO3 are seen at 200°C and 390°C for the TO-T and TC, 

respectively. These transitions occur around 20°C lower than those found in 

the literature which may be an indication that the thermocouple used to 

measure the temperature was experiencing a lower temperature than the 

sample. The thermocouple was positioned as close as possible to the 

sample for the remaining compositions.  

Unlike when CaZrO3 was added to KNbO3, LiNbO3 substitution does 

not cause the phase transitions to broaden, also there is no change in 

frequency dispersion8. This suggests there is no relaxor behaviour within the 

samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                            

8 Permittivity measurements at 1kHz, 10kHz, and 100kHz between 25-500°C 
for each composition can be seen in the Chapter 6 Appendix. 
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Figure 6.27: Phase transitions from the permittivity data of all KNbO3-LiNbO3 
compositions. 

0 3 6 9

0

50

100

150

200

250

300

350

400

450

500

550

600

T
e
m

p
e

ra
tu

re
 (

°C
)

xLiNbO
3
 

 O-T

 T-C

O

T

C

The addition of LiNbO3 causes the TO-T to decrease with increasing 

LiNbO3, moving from 200°C in pure KNbO3 to 160°C at x=0.10. After the 

initial decrease in TO-T, the transition temperature stabilises at around 160°C 

from x=0.07. Adding lithium causes the TC to increase, from 390°C (or 420°C 

in the literature (113)) , to 460°C when x=0.10. The phase transition 

temperatures of each composition can be seen in Figure 6.27.  
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6.3.2.3 Polarization- Field and Strain- Field data 

The polarization was measured as a function of electric field applied in 

0.5kV/mm steps from 1kV/mm to 5kV/mm. All compositions survived the 

maximum available field that could be applied by the voltage amplifier. This 

is an indication that the samples were well sintered, even with a large 

amount of secondary phase found in compositions with increased x. The full 

results can be seen in the appendix however, Figure 6.28 shows the 

polarization loops for each composition at 4.5kV/mm.  

Each sample is fully saturated at 4.5kV/mm as seen by the pinching of 

the loops at the extreme fields. 4.5kV/mm is far above the switching field of 

every sample. The coercive field, EC, of each composition as well as other 

polarization properties can be seen in Table 6.10. With the exception of 

x=0.08, there is a tendency for the saturated polarization, Ps, and the 

remnant polarization, Pr¸ to decrease with an increased amount of LiNbO3. 

The composition where x=0.08 is an outlier in most cases, this may be due 

to poor synthesis of the sample or poor electrode application. The coercive 

field, EC, at first decreases with an increase in x to 0.07, and then increases 

from x=0.07 to 0.10. This was also seen by Du et al when LiNbO3 was 

substituted into KNN (183) 

 

 

Table 6.10: Polarization-electric field properties of the KNbO3-LiNbO3 
system. 

 
xLiNbO3 

Ps 

(µC/cm2) 
Pr 

(µC/cm2) 
EC 

(kV/mm) 

0.03 13.23 10.12 1.83 
0.07 13.54 9.17 1.08 

0.08 8.09 5.89 1.24 

0.09 12.08 9.01 1.12 

0.10 9.41 6.84 1.58 
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Figure 6.28: Compensated polarization-electric field results at 4.5kV/mm for 
KNbO3-LiNbO3 compositions, for x= (a) 0.03, (b) 0.07, (c) 0.08, (d) 0.09, (e) 

0.10, and (f) every composition. 
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Figure 6.29: Strain-electric field results at 4.5kV/mm for KNbO3-LiNbO3 
compositions, for x= (a) 003, (b) 007, (c) 008, (d) 009, (e) 010, and (f) every 

composition. 
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The strain-electric field results of every composition with a peak field 

of 4.5kV/mm can be seen in Figure 6.29. Some of the notable properties can 

also be seen in Table 6.11. The ‘low’-field d33* was determined by the 

gradient of the strain-electric field loop from -1kV/mm to 1kV/mm, the high-

filed d33* was determined by the average of the gradients found between 30 

to 40kV/mm and -30 to -40kV/mm. This type of analysis appears to 

exaggerate the piezoelectric response of x=0.03 and x=0.10 as they have 

curved extremities likely due to conductivity. 

Smax and Emax are the maximum strain and the electric field at which 

the maximum strain is found. As the strain measurement is the change in 

strain against electric field, the spontaneous strain (or the material strain at 

0kV/mm) is equal to the minimum strain in Figure 6.29 for each composition. 

 

Table 6.11: Strain-electric field results of the KNLN system. 

xLiNbO3 
'Low'-

field d33* 
(pV/m) 

High-
field d33* 
(pV/m) 

Smax 

(x10-3) 
Emax 

(kV/mm) 
Smax/Emax 

(pV/m) 

Spontaneous 
Strain 
 (x10-3) 

0.03 245.71 309.25 - - - 0.73 

0.07 191.26 311.15 0.77 4.60 167.39 0.24 

0.08 156.77 198.53 0.35 4.43 79.01 0.22 

0.09 180.84 210.83 0.44 4.51 97.56 0.17 

0.10 179.15 301.10 0.46 4.38 105.02 0.30 

 

6.3.3  Conclusion 

The incorporation of LiNbO3 into KNbO3 had no effect on the 

crystallographic phase at room temperature, although a secondary phase 

increases in fraction with an increase in LiNbO3. LiNbO3 did reduce TO-T by 

40°C, which theoretically would make the tetragonal phase more 

energetically favourable to spontaneously appear at room temperature when 

compared to pure KNbO3. The lithium acted as a sintering aid, allowing the 

KN-based samples to be characterised under large electric-fields. 

The polarization and strain data implies that every sample is 

ferroelectric, and that composition x=0.07 would have the best piezoelectric 

response.  
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6.4 Ternary System 

6.4.1  (1-x-y)KNbO3-xCaZrO3-yLiNbO3 synthesis 

After the crystallographic characterisation of the KNCZ and KNLN 

systems, both were incorporated into a ternary system (KNCZLN). The idea 

being that the sintering aid of LiNbO3 would allow for the KNCZ samples to 

be measured under electric field. Six compositions were synthesised by the 

mixed oxide method outlined in section 4.1. Figure 6.30 shows the varied 

amounts of CaZrO3 and LiNbO3 substituted into KNbO3 for each 

composition. This is also shown in Table 6.12, along with the sintering 

temperatures.   

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.12: (1-x-y)KNbO3-xCaZrO3-yLiNbO3 compositions and sintering 

temperatures. 

 

 

 

 

 

 

 

Composition 
(1-x-y) 

KNbO3 

CaZrO3 

(x) 

LiNbO3 

(y) 

Sintering 

Temperature 

(°C) 

0 1.00 0.00 0.00 1020 

1 0.97 0.02 0.01 1100 

2 0.95 0.04 0.01 1125 

3 0.93 0.06 0.01 1125 

4 0.96 0.02 0.02 1100 

5 0.94 0.04 0.02 1125 

6 0.95 0.02 0.03 1125 
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Figure 6.30:  KNCZLN compositions synthesised. 
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Figure 6.31: X-ray Diffraction data of each KNCZLN composition. 
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For ease of comparison, the characterisation analysis will be split into 

compositions with equal CaZrO3 percentages (compositions 1, 4 and 6 or 2 

and 5) and equal LiNbO3 percentages (compositions 1, 2 and 3, or 4 and 5) 

wherever possible. Samples 2 and 5 were very conductive and as a result, 

high-field characterisation was not possible. 

6.4.2  Characterisation, Results and Discussion 

6.4.2.1  X-Ray Diffraction Data 

Sintered and crushed pellets were measured between 20-80° using a 

Bruker D8 X-ray diffractometer, with a scan step of 0.033425° for a total 

scan time of 20minutes. Rietveld refinement was carried out on the samples 

to determine the phase of the material. The results of which can be seen in 

Table 6.13. The full scan results can be seen in Figure 6.31, and a 

comparison of the {200} peaks can be seen in Figure 6.32, where 

composition 0 is pure KNbO3 for comparison. 
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 Table 6.13: Rietveld refinement results of each KNCZLN composition. 

 

Rietveld refinement results of the KNCZLN system can be seen in 

Table 6.13. Compositions 1, 2 and 3 follow a similar trend to the KNCZ 

system. As the amount of CaZrO3 was increased so did the rhombohedral 

phase fraction from 31.2% to 55.1%. This is also seen when comparing 

compositions 4 and 5, where the rhombohedral percentage increased from 

16.5% to 32.2%.  

When the CaZrO3 percentage remains constant and LiNbO3 is 

increased, the rhombohedral phase fraction is decreased, this is seen in 

samples 1 and 4. The refinement of composition 6 calculated the 

rhombohedral phase fraction to be slightly increased compared to that of 

Composition 

High Score 
Fraction 

(%) 
WRp 

Pseudo-monoclinic unit 
cell parameters 

Rhombohedral 
unit cell 

parameters 

O R a (Å) b (Å) c (Å) β (°) a (Å) α (°) 

1 68.8 31.2 5.3245 4.030 4.030 3.985 89.84 4.013 89.99 

2 47.9 52.1 5.8047 4.030 4.030 3.988 89.88 4.015 89.97 

3 44.9 55.1 5.3381 4.029 4.029 3.993 89.87 4.015 89.97 

4 83.5 16.5 5.8302 4.030 4.030 3.984 89.83 4.011 89.98 

5 67.8 32.2 5.2574 4.031 4.031 3.984 89.83 4.013 89.99 

6 83.1 16.9 5.6477 4.030 4.030 3.982 89.81 4.011 89.98 
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Figure 6.32: {200} peaks of pure KNbO3 and each KNCZLN composition. 
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Figure 6.33: Relative permittivity of all KNCZLN compositions with 
temperature at 10kHz. 
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composition 4. This may be due to the increase in lithium inducing the 

secondary phase found in the KNLN system, and therefore reducing the 

amount of lithium incorporated into the perovskite structure. This in turn 

would reduce the amount the orthorhombic phase is stabilised. However, the 

secondary phase cannot be seen in the XRD scan.  

 

6.4.2.2 Permittivity Data 

A comparison of the permittivity data at 10kHz over a temperature 

range of 25-500°C for each composition can be seen in Figure 6.33. Each 

composition was measured at a range of frequencies, the results of which 

can be found in the Chapter 6 Appendix.   

Increasing CaZrO3 caused the peaks to broaden and made TC 

decrease. Comparing samples 1, 2 and 3, it is clear that the more CaZrO3 

led to broader transition peaks. When comparing samples 1 and 4, it can be 

seen that increasing LiNbO3 reverses the peak broadening, which is further 

reduced in sample 6. The LiNbO3 also increases the TC, reversing the effect 

2% CaZrO3 addition had on KNbO3. Increasing the amount of LiNbO3 also 

reduced TO-T in the ternary system.    
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Figure 6.34: Compensated polarization-Electric Field data for KNCZLN 
compositions 1, 4 and 6 (increasing LiNbO3) at a peak field of 4.5kV/mm. 
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Figure 6.35: Strain-Electric Field data for KNCZLN compositions 1, 4 and 6 
(increasing LiNbO3) at a peak field of 4.5kV/mm. 

6.4.2.3 Polarization-Field and Strain-Field Data 
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Figure 6.36: Compensated polarization-Electric Field data for KNCZLN 
compositions 1 and 3 (increasing CaZrO3) at a peak field of 4.5kV/mm. 
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Figure 6.37: Strain-Electric Field data for KNCZLN compositions 1 and 3 
(increasing CaZrO3) at a peak field of 4.5kV/mm. 
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The polarization and strain of compositions 1, 4 and 6 can be seen in 

Figure 6.34 and Figure 6.35 respectively. This is to compare the effect an 

increasing amount of LiNbO3 has on the KNCZLN system. Figure 6.36 and 

Figure 6.37 are the polarization and strain results for compositions 1 and 3, 

these figure help compare the effect and increasing CaZrO3 content has on 

the KNCZLN system. 

Table 6.14: Polarization-electric field properties of each KNCZLN 
composition. 

KNCZLN  
Ps 

(µC/cm2) 
Pr 

(µC/cm2) 
EC 

(kV/mm) 

1 16.71 8.51 0.90 
2 - - - 
3 15.41 5.58 0.73 
4 14.86 8.41 0.87 
5 - - - 
6 14.1 9.16 0.89 

 

 

Table 6.15: Strain-electric field results of each KNCZLN composition. 

KNCZLN 
'Low'-field 
d33* (pC/N) 

High-field 
d33* (pC/N) 

Smax 

(x10-3) 
Emax 

(kV/mm) 
Smax/Emax 

(pC/N) 

Remnant 
Strain 
(x10-3) 

1 61.10 143.07 0.43 4.58 93.89 0.056 

2 - - - - - - 

3 9.07 52.89 0.17 4.49 37.86 0.007 

4 87.46 124.50 0.42 4.58 91.70 0.105 

5 - - - - - - 

6 82.61 135.15 0.35 4.44 78.83 0.074 

 

When the amount of LiNbO3 is increased, there is an initial increase in 

the remnant strain and calculated ‘low’-field d33* from 1 to 2%, but this then a 

decreased when 3% LiNbO3 is added. However, the high-field d33* 

decreases when the LiNbO3 goes from 1 to 2% before increasing from 2 to 

3%. The d33 calculated at the maximum strain when the maximum field is 

applied tends to decrease when LiNbO3 is increased, decreasing a small 

amount from 1 to 2% LiNbO3 before decreasing by a larger amount from 2 to 

3% LiNbO3.  
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 Every calculated piezoelectric coefficient is decreased with an 

increase in CaZrO3. From the strain-field data in Figure 6.37 it can be seen 

that the electrostriction effect is dominant in composition 3 as there is 

minimum negative relative strain.  

 

6.4.3  Conclusion 

Generally, the ternary phase diagram follows the trends of the two 

individual constituent systems. 

 An increase in CaZrO3 causes an increase in the presence of the 

rhombohedral phase at room temperature. It also broadens or widens the 

boundary of the phase transition. Polarization and strain versus electric field 

shows a decrease in piezoelectric performance with an increase in CaZrO3. 

This could not be shown in the KNCZ samples as high-field characterisation 

was not possible due to poor sample sintering. There is also a tendency for 

the material to become very conductive with an increase in CaZrO3 as 

shown by the lack of high-field characterisation of compositions 2 and 5.  

Adding LiNbO3 to KNCZ improved the overall sinterability of the 

material. With an increased addition of LiNbO3 there is an increase in the 

orthorhombic phase at room temperature. LiNbO3 also reduces the effect of 

phase transition broadening found when adding CaZrO3. The piezoelectric 

performance of the samples at first is increased and then decreases with 

more LiNbO3 addition.  
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Figure 6.38: Relative permittivity and tan (δ) of 0.97KNbO3-0.03LiNbO3 
with temperature and frequency. 

6.5 Chapter 6 Appendix  

6.5.1  KNLN supplementary data 

6.5.1.1 Permittivity data of each composition 
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Figure 6.39: Relative permittivity and tan (δ) of 0.93KNbO3-0.07LiNbO3 
with temperature and frequency. 
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Figure 6.40: Relative permittivity and tan (δ) of 0.92KNbO3-0.08LiNbO3 
with temperature and frequency. 
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Figure 6.42: Relative permittivity and tan (δ) of 0.90KNbO3-0.10LiNbO3 
with temperature and frequency. 
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Figure 6.41: Relative permittivity and tan (δ) of 0.91KNbO3-0.09LiNbO3 
with temperature and frequency. 
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Figure 6.43: Compensated Polarization-Electric Field data for 

0.97KNbO3-0.03LiNbO3 with increasing fields. 
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6.5.1.2 Polarization-electric field data at each peak field. 
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Figure 6.44: Compensated Polarization-Electric Field data for 

0.93KNbO3-0.07LiNbO3 with increasing fields. 
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Figure 6.45: Compensated Polarization-Electric Field data for 

0.92KNbO3-0.08LiNbO3 with increasing fields. 

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30
Peak Field

 (kV/mm)

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

 5.0

 5.5

P
o
la

ri
z
a
ti
o
n
 (

μ
C

/c
m

2
)

Field (kV/mm)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



146 

Figure 6.46: Compensated Polarization-Electric Field data for 

0.91KNbO3-0.09LiNbO3 with increasing fields. 
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Figure 6.47: Compensated Polarization-Electric Field data for 

0.90KNbO3-0.10LiNbO3 with increasing fields. 
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Figure 6.49: Strain-Electric Field data for 0.93KNbO3-0.07LiNbO3 

with increasing fields. 
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Figure 6.48: Strain-Electric Field data for 0.97KNbO3-0.03LiNbO3 

with increasing fields. 
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6.5.1.3 Strain-electric field data at each peak field.  
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Figure 6.51: Strain-Electric Field data for 0.91KNbO3-0.09LiNbO3 

with increasing fields. 
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Figure 6.50: Strain-Electric Field data for 0.92KNbO3-0.08LiNbO3 

with increasing fields. 
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Figure 6.52: Strain-Electric Field data for 0.90KNbO3-0.10LiNbO3 

with increasing fields. 
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Figure 6.53: Relative permittivity and tan (δ) of KNCZLN composition 1 with 

temperature and frequency. 

6.5.2  KNCZLN supplementary data 

6.5.2.1 Permittivity data of each composition.  
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Figure 6.54: Relative permittivity and tan (δ) of KNCZLN composition 2 with 

temperature and frequency. 
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Figure 6.55: Relative permittivity and tan (δ) of KNCZLN composition 3 

with temperature and frequency. 
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Figure 6.56: Relative permittivity and tan (δ) of KNCZLN composition 4 

with temperature and frequency. 
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Figure 6.57: Relative permittivity and tan (δ) of KNCZLN composition 5 

with temperature and frequency. 
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Figure 6.58: Relative permittivity and tan (δ) of KNCZLN composition 6 

with temperature and frequency. 
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Figure 6.59: Compensated Polarization-Electric Field data for KNCZLN 

composition 1 with increasing fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5.2.2 Polarization- electric field data at each peak field.  
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Figure 6.60: Compensated Polarization-Electric Field data for KNCZLN 

composition 3 with increasing fields. 
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Figure 6.61: Compensated Polarization-Electric Field data for KNCZLN 

composition 4 with increasing fields. 
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Figure 6.62: Compensated Polarization-Electric Field data for KNCZLN 

composition 6 with increasing fields. 
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Figure 6.63: Strain-Electric Field data for KNCZLN composition 1 

with increasing fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5.2.3 Strain-electric field data at each peak field. 
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Figure 6.64: Strain-Electric Field data for KNCZLN composition 3 

with increasing fields. 
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Figure 6.65: Strain-Electric Field data for KNCZLN composition 4 

with increasing fields. 
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Figure 6.66: Strain-Electric Field data for KNCZLN composition 6 with 
increasing fields. 
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7 Summary and Conclusion 

 Due to EU legislation, there is a need to find an alternative to lead for 

use in piezoelectric transducers.  

In this work the full piezoelectric matrix of pure 

(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 was characterised. This BCTZ material was then 

used in two types of devices and the devices themselves were 

characterised.  

A poling study was done to determine the correct poling conditions 

and large BCTZ, dense, ceramic samples were synthesised and machined 

into specific geometries. Impedance measurements were made and the 

results used in PRAP to produce a compositional file with the full 

piezoelectric matrix of the material. The properties calculated were not self-

consistent, producing some unrealistic values. This brought into question the 

ability of PRAP to calculate the properties of the lead-free system. 

The project proved the feasibility of a low Curie point material being 

used in a device with minimum adjustments to the procedure. There was a 

reasonable level of transmittance and sensitivity from the devices, especially 

when considering the devices were not designed specifically for BCTZ.  

A novel lead-free ferroelectric material was made with the aim of 

reproducing the phase coexistence found in both PZT and BCTZ. Potassium 

niobate was used as the base material and CaZrO3 and LiNbO3 were used 

as dopants, the phase and electrical properties of the materials produced 

were then characterised. The dopants did bring the TO-R and TO-T phase 

transitions closer to room temperature. However no pure rhombohedral or 

tetragonal phase was detected at room temperature.  

 The sinterability of the KNbO3-CaZrO3 samples was poor. This was 

overcome by the introduction of LiNbO3 which acted as a sintering aid. This 

allowed for high field characterisation techniques to be used. Strain-field 

analysis allowed for a d33* figure to be calculated. LiNbO3 improved the 

piezoelectric coefficient of pure KNbO3, however the incorporation of CaZrO3 

did not.  

 KNCZLN composition 4, and the BCTZ material made during this 

project are compared with a leading KNN material and PZT (Navy Type I) in 

Table 7.1. It can be seen that although KNCZLN composition 4 has a higher 

TC than BCTZ, the overall piezoelectric performance is worse, the 
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temperature stability figure of merit proposed in section 3.2.3 is also 

calculated to be less. 

 

Table 7.1:  Comparison of properties BCTZ and KNCZLN composition 4 

made in this project with a leading KNN material and PZT. 

 

 

 

 

 

 

 

 

 

 

 

Whilst the research done here has been worthwhile and explores a 

compositional space not previously looked at, the material properties 

investigated here suggest that KNCZLN is unlikely to become a suitable 

replacement for PZT and so the search continues. 

 

Material 
TC 

(°C) 

d33 or d33
* 

(pC/N) 

F.O.M                      

(pCN-1K) 

BCTZ                 

(from this study) 
80 745.0 59,575 

KNCZLN comp. 4 

(from this study) 
375 87.5 30,625 

Best KNN 

(159) 
300 319.0 87,725 

PZT                   

(Navy type 1) 
325 307.0 92,100 
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Further Work 

There are a number of further work opportunities which spring from 

the work undertaken in this thesis. First would be to increase the 

understanding of the synthesised materials produced. This could include a 

microstructure study of the materials using optical or scanning electron 

microscopy. This would help determine the conductivity issues in the KNCZ 

compositions as well as the effect LiNbO3 has on grain growth during 

sintering. Other sintering aids could be used to improve the sample density 

such as CuO. Any increase in density and decrease in conductivity would 

allow for the samples to be more readily characterised using high electric 

field techniques.   

The optimisation of the synthesis of BCTZ would help improve the 

overall piezoelectric response from the material and therefore improve the 

sensitivity or transmittance of the device. This would include a complete 

study of the sintering temperatures and dwell times, the optimum milling 

lengths, including different milling techniques such as attrition milling. 

Different grades or size of starting reagents could be used. Optimising the 

uniaxial pressure required for the best green density as well as isopressing. 

Different machining techniques could be applied such as cutting out the ring 

before sintering, or pressing rings directly. Using the full matrix of the 

optimally synthesised material, a device could be designed specifically for 

the material. This would involve increasing or decreasing the end tail mass 

or changing the length of the stress rod. 

The project highlighted the potential for using KN rather than KNN as 

a base material for doping. This offers plenty of research opportunities to 

synthesis and characterise more binary and ternary solid solutions. As well 

as fundamental studies into the loss of volatile elements and sintering in 

general.   
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