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Major comments 

1) Justification of the use of the MFM model. As currently presented, the model seems to
include both a 3D model of the interior of the porous material, as well as a lumped model.
Though experimental results are good, the theory is not, as yet, internally consistent. One way
to test this would be to check results under the presence/absence of one or both of these
modeling features in the code. The two effects should be the same, leading to a potential
doubling of the correction in the LF range.

Response: 

The opportunity has been taken to try and clarify the text in current section 2.11.2 on the
implementation of the Moving Frame Model (MFM). In Chapter 5 Figures 5.2 and 5.3, and
Figures 5.4 and 5.5 show the FDTD result with and without the MFM model from which the
difference can be seen; the comparison of measurements against FDTD with and without the
MFM model provides evidence that there is no ‘double counting’. In the description of the
Rayleigh  model,  a  new  diagram  (current  Figure  2.10)  has  been  added  to  show  the
representation of the porous material as a set of parallel narrow channels. In addition, current
section 2.11.2 clarifies that the interior of the porous material was not included in the 3D
model since the density used for this medium was that of air, and also that the pressure inside
the  porous  material  is  updated  using  the  equation  of  continuity  for  the  Rayleigh  model
(equation 2.79) with the density of air. An additional clarification was added to text in section
5.2.5: “As mentioned in section 2.11.2, the value of density used to model the porous material
was that of air.”.

The calculation of the lump mass motion of the porous panel was also clarified in the text
indicating that the pressure gradient ∆p is calculated from the two pressure nodes that are
adjacent to opposite sides of the panel. Once the pressure gradient is known, Equation 2.78 is
used to calculate the frame velocity vF. Once the frame velocity is known, the velocity of the
air particles inside the air channel is calculated using equation 2.79. The MFM calculation
procedure is illustrated in a flow diagram – see Figure 2.13.

2) Definitions of efficiency. Claims regarding superior performance of the scaling approach
need to be back up by a solid definition of computational efficiency which is informed by the
low-frequency character of the problem, as well as bandwidth and dispersion characteristics
of the scheme. i.e. For a given bandwidth f Hz and maximal wave speed error y%, efficiency
could be defined as the number of floating point operations needed to carry out the simulation
per second

Response: 

A precise mathematical derivation of the numerical dispersion characteristics of the FDTD
scheme upon which the scaling approach is based is now flagged as potential future work in
section 7.1 “Suggestions for future work”: 



“The mathematical derivation of the numerical dispersion characteristics of the vibroacoustic
FDTD scheme [68] upon which the scaling approach is based could also be carried out in
future work.“.

The meaning of efficiency has been clarified in the text of current section 3.13 “Scaling of
vibroacoustic  fields”:  “In  this  thesis,  an  alternative  formulation  is  proposed  for  the
vibroacoustic problem to yield much faster results, in the sense of requiring less calculations
to  obtain  a  vibroacoustic  prediction,  than  using  only  a  non-parallelized  standard  FDTD
approach, based on the work of Toyoda et al [68]” 

The reduction in bandwidth associated with increased time step used is now addressed in
current section 3.14:

“Both the 'scaling' approach and 'simplified boundary' approach lead to a significant increase
in the  time step that  is  required  to  run the  simulations.  This  leads  to  a  reduction  in  the
maximum possible frequency for the analysis relating to the Nyquist frequency. However,
this is not problematic for the low-frequency applications that are considered in this thesis,
such as building acoustics.”

3) Use of the scaling approach: limit of validity of the approach, given the use of separate
models for the scaling factor and resulting FDTD method needs to be shown in a definitive
way. It is highly advised to perform simulations for the standard Kirchhoff plate model for
the sake of comparison. 

Response: 

This has been carried out by adding a new appendix (Appendix II - Comparison of isolated
aluminium plate mode shapes obtained via NMM and FDTD) which contains an assessment
of  the  validity  of  the  general  three-dimensional  FDTD method  for  simulating  thin  plate
bending wave motion.  It compares the results obtained for the isolated aluminium plate using
FDTD and analytical bending wave theory for thin plates. The correlation pattern obtained
between FDTD and the analytical model is similar to that which exists when the analytical
model  is  compared  with  itself.  This  confirms  that  the results obtained using the general
three-dimensional  FDTD  method  are  equivalent  to  those  of  the  analytical  model  which
describes thin plate bending wave motion.

Specific comments

Chapter 2

p.  7  Acoustic  impedance  of  a  surface  requires  both  pressure  and  velocity  to  be  readily
expressed: not in velocity potential form. 

Response: 



The correction is current section 2.4.1 “Field variables” :

Added text - “(…) requiring the implementation of digital filters. For the sake of simplicity, a
formulation based on both pressure and particle velocity was chosen as the method used for
this thesis, based on the work of Yokota et al [16].”

Removed text: “ (…) since, in its basic form, the acoustic impedance of a surface requires
both pressure and velocity to be readily expressed. Hence in this thesis both pressure and
velocity are used to allow detailed modelling of the boundary conditions.”

p. 7 It must represent curved boundaries using staircase geometry. Many techniques such as
finite volume method can be used. 

Response: 

Section 2.4.2 “Grid geometry”: Added the following text:  “In addition to the use of non-
Cartesian coordinate systems and non-regular grids, another closely related method to FDTD,
the finite volume method [32,33] can also be used to accurately represent curved surfaces.”

Added Reference [33] W. M. Henk Kaarle Versteeg, An introduction to computational fluid
dynamics - The finite volume method. Essex: Pearson Prentice Hall, second ed., 2007.

p.8 No definition of grids…Eq. 2.1 etc.: what dimension are we in? What is p? System under
study has not been defined yet. 

Response: 

Major restructuring of the text has been carried out: The Euler equations are now introduced
(current section 2.2) before the literature review (current section 2.4)..

In response to “what dimension are we in?”, Equation 2.1 refers to one-dimensional space (as
mentioned in text above the equation “taking the x-direction as an example”).

In response to “What is p?”,  p indicates pressure. In the current version of the text, this is
defined in section 2.2 – Sound propagation in acoustic media.

p. 8: Eq. 2.2; not fourth order as written (where is expansion point?) Not centered. 

Response: 

Equation  2.38  (which  corresponds  to  previous  2.2)  has  been  corrected.  Corresponding
bibliographic reference have also been updated.

p. 9: ‘This class of methods can be made  very efficient due to FFT and IFFT routines….’
Relative to what? High frequency behaviour? Accuracy remains second order in time.

Response: 



Section 2.4.4 “Approximation of space derivatives”: The phrase “made very efficient” has
been reworded to say “...can be implemented with widely-available, validated FFT and IFFT
routines...”.  

p. 9: sources. No model problem defined here yet. What are the sources driving it? 

Response: 

Restructuring of the text has been carried out so that the acoustics problem is now introduced
in current section 2.2 before the literature review (current section 2.4).

p.  10:  Figure 1.2 shows simulation  results  without  system descriptions  – restructuring  is
required.  What  problem is  being  solved?  What  is  the  driving  function?  Use  proper  axis
scalings. 

Response:

In  response  to “Figure  1.2  shows  simulation  results  without  system  descriptions  –
restructuring is  required”,   Restructuring of the text  has been carried out:  The acoustics
problem is now introduced (current section 2.2) before the first  simulation results,  which
have been moved into section 2.4

In  response  to “What  problem  is  being  solved?“, the  problem  of  the  acoustic  wave
propagation is now defined in section 2.2.

In response to “What is the driving function? “, a Gaussian function – please see the text of
in Section 2.4.5 - Types of sound sources which says states “A visualization of two hard
FDTD pressure sources can be seen in Figure 2.4, where two Gaussian pulses are positioned
close to one another“.

In response to “Use proper axis scalings”, the colorbar axis of figure 2.4 (corresponds to
former 2.1) is now bounded between -1.5 and 1.5. In addition, the source code that generated
this figure is included in Appendix III.

p. 10: staggering to prevent instabilities…how so? – reference [33] is missing. What about
solving 2D wave equation on non-staggered grid (which is equivalent)?

Response: 

A  reference  to  R.  Janaswamy  and  Y.  Liu,  “An  unstaggered  colocated  finite-difference
scheme  for  solving  time-domain  Maxwell’s  equations  in  curvilinear  coordinates,”  IEEE
Transactions on Antennas and Propagation, vol. 45, no. 11, pp. 1584–1591,1997, was added
to the statement:  “The main reason for the offset of field variables is to reduce discretization
error and prevent instabilities [41].”



p. 11: Use bold notation for vectors v. v_{i} conflicts with notation for grid indices. 

Response:

This has been corrected. The notation is now consistent throughout the thesis: The subscripts
that appear after the variable indicate the Cartesian coordinate directions (x,y,z, ithdirection).
The subscripts that appear after the vertical bar “|” indicate a position index in the grid.

p. 12 Figure 22; Systems were not defined yet – define systems (1D, 2D, and 3D) in advance.

Response: 

Restructuring of the text has been carried out. Before the literature review (which is now
current section 2.4), the acoustics problem is now introduced (current section 2.2) and 1D, 2D
and 3D systems are defined in current section 2.3.

p. 13: Section 2.4 should be first. Need to define system up front. No definition, explanation
of sigma 

Response: 

Sections 2.1 to 2.5 have been re-ordered and are now presented as:

2.1 Introduction

2.2 Sound propagation in acoustic media

2.3 Implementation of FDTD equations

2.4 Literature Review of the FDTD model

p. 14: Clarify that stress tensor is defined for Chapter 6 on vibroacoustics.

Response: 

Section 2.2.1 “Euler equation of motion”: Added “The use of the stress tensor components is
especially important when defining vibroacoustic problems, discussed in chapters 3 and 6 of
this thesis.”

p. 15: Define density

Response: 

Density is defined in section 2.2.1.

p. 15: Are we in 3D now? You have already shown grids for 1D and 2D.

Response: 



Restructuring  of  the  text  has  been  carried  out  and  the  problem  of  the  acoustic  wave
propagation is now defined in current section 2.2 for a 3D space. Note that dimensionality of
the field variables is discussed in current section 2.3.1 “Field variables in acoustics”.

p. 16: now in 2D?

Response: 

Justification for the jump from 3D to 2D is now in the text of current section 2.3.4: “To gain
insight  into  the  implementation  of  the  FDTD  three-dimensional  update  equations,  it  is
convenient to consider the two-dimensional version of the discrete field equations.”

p. 17: Very awkward notation in 2.21-2.26. Use subequations env’t. 

Response: 

The mathematical notation is now as follows:

p|i,j for positional indices;

pi,j, for cartesian coordinates

p. 17: v_{x} conflicts with v_{i}, etc.

Response: 

The notation is now consistent throughout the thesis: The subscripts that appear right after the
variable indicate Cartesian coordinate directions (x,y,z,  ithdirection) and the subscripts that
appear after the vertical bar “|” indicate a position index in the grid.

p.  17-20:  Section  2.5.1: probably unnecessary,  and quite  poorly explained.  These can be
simplified or a piece of code can be shown in appendix.

Response: 

A suitable piece of code has been included in Appendix IV.

p. 20: Error in Eq. 2.37, extra minus sign. 

Response: 

Extra sign was deleted.

p. 21: Highest phase velocity: reference should be mentioned. Courant condition is a heuristic
only. What system are we talking about now? One with a variable phase velocity? Like what?
Such systems do not appear in this work - it would be true in the case of the plate, but you do
not invoke the plate equation in this thesis. 

Response: 



In response to  “Highest phase velocity: reference should be mentioned.”, a reference was
added in the text following the Courant Condition equation 2.41 to “F. Zheng and Z. Chen,
“A finite-difference  time-domain  method  without  the  courant  stability  conditions,”  IEEE
Microwave and Guided Wave Letters, vol. 9, no. 11, pp. 441–443, 1999.”

In response to  “Courant condition is a heuristic only. What system are we talking about
now? One with a variable phase velocity? Like what? Such systems do not appear in this
work - it would be true in the case of the plate, but you do not invoke the plate equation in
this thesis. “, to make it clearer that dispersive systems are not being discussed, the text in
current section 2.5 has been clarified to say ”where  C is the highest phase velocity of any
wave motion within the frequency range of source excitation [47]“.

p. 21: Clarify what dh is? 

Response: 

Δh is defined as the distance between two source and receiver cells.

p. 22: dt must always be checked for the time period…do you mean stability depends on the
duration of the simulation? What is time period?

Response: 

Sometimes a simulation only shows the effects of instability (unbounded growth) after some
particular time duration, and therefore it is still possible to obtain useful information from the
period before this point. Such examples can be found in the literature, for example see Figure
4.54 below from section 4.8 of Electromagnetic Simulation Techniques Based on the FDTD
Method by W. Yu, John Wiley & Sons 2009:

p. 23: k should be replaced with kx.

Response: 

Done.



p. 24: Describe that ‘dt ->0, dx ->0…’ is for holing Courant condition.

Response: 

Done.

p. 25: already stated on p. 23 – 

Response: 

Only kx seems to be on this page. 

p. 25: v_{o}: a scalar? Another notation conflict.

Response: 

To avoid confusion with the variable velocity v, v_{o} was renamed to s_{o}.

 p. 26: eq. 2.46: hard source? Soft source?

Response: 

This is general acoustics theory and as it does not describe an FDTD source, the ‘hard’ or
‘soft’ terminology is not used. 

p. 26: S is not total area, but a defining surface

Response: 

Changed text from “total area” to “defining surface area”. 

p. 27: eq. 2.48: v(t). Is this v_{o}(t)? v is already used for velocity.

Response: 

Replaced v(t) by v_{z}(t), as the source function consists of a velocity node that points in the
vertical z-direction.

p. 28: what is v_{z}?  Is this for 3D field? 

Response: 

as stated in the text in current section 2.8 “FDTD acoustic sources”, “vz indicates the vertical
z-component of the velocity that was used to implement the source (figure 2.9)“

p. 29: what is sigma? = sigma_{o}?

Response: 

Changed caption of Figures 2.7 and 2.8 from “sigma” to sigma_{o}.

p. 30: Frequency dependent impedance introduced but not used - confusing.  



Response: 

Section 2.10 was simplified  and no longer  introduces  frequency-dependent  boundaries  as
they are not used.

p. 31: no equivalent in the time domain. Rational forms for Z? large literature on this as well. 

Response: 

Statement was removed from the text.

p. 31: do you actually use frequency-dependent impedances in this work? 

Response: 

Section 2.10 was simplified and no longer includes frequency-dependent boundaries as they
are not used.

p. 32: how to estimate phase from 2.58? This information and reference are required. 

Response: 

Equation 2.58 was not essential so it has been deleted and the corresponding section (2.10.1)
has been restructured and merged with part of section 2.10.2, to form what is now section
2.9.1. 

p.  32:  modal  expressions  given  without  any  justification/definition.  Or  2.10.2  could  be
omitted. 

Response: 

Most of section 2.10.2 has now been omitted and part of it was merged with section 2.10.1, to
form what is now section 2.9.1.

p. 33: stability conditions for 2.64?

Response: 

Equation 2.64 was omitted due to restricting the text to frequency independent variables.

p. 34: 2.65 to 2.67 are provably unstable. Need centering of variables!

Response: 

A reference to these equations has been added in section 2.10: T. Yokota, S. Sakamoto, and
H. Tachibana,  “Visualization of sound propagation and scattering in rooms,” Acoust. Sci.
Tech, vol. 23, no. 1, pp. 40–46, 2002, but no stability issues are mentioned by these authors,
and no stability issues have been identified in the models used in this thesis.

p.34: Moving Frame model. No explanation of what the “frame” is, or any diagrams here.



Response: 

Section  2.11  “Sound  propagation  in  porous  media”  -  Added  explanation  “(the  solid
constituent of a porous material)”

p. 35: parallel narrow channels: desperately needs diagram. What is the coordinate system
here?

Response: 

This diagram has been added as Figure 2.10.

p. 35: \bar{v}: a constant (i.e., not time dependent?)

Response: 

\bar{v} varies with time, and that is implicit in the time derivative. To make it more clear it is
a spatial  average,  the following was added to section 2.11.1 “Rayleigh model”:  “where \
bar{v}_{i}  is  the  average  air  particle  velocity  developed  across  each  air  channel  of  the
porous absorber along the ith direction.”

p.  35:  what  is  \bar{v}_{i}? Same as  \bar{v}? If  so,  why is  it  time differentiated  if  it  is
constant?

Response: 

This has been dealt with in the response above.

p. 35: r is a constant? Don’t use “t” here for averaging duration, better to use T. 

Response:

In response to “Don’t use “t” here for averaging duration, better to use T. “,   t has been
replaced by T.

In response to “r is a constant? “, r is a constant that corresponds to the airflow resistivity.
This constant is now introduced in the text of current section 2.11.1 - Rayleigh model: “the
airflow resistivity (Pa.s/m2), r, is then given by [64]:”

p.  36:  Eq.  2.74:  why  not  use  div  v?  What  dimension  are  we  in  “if  the  x  direction  is
considered”: does this mean we are in 1D?

Response: 

Changed text in section 2.11.1 “Rayleigh model” to “For example, in one dimension (along
the x-direction),  the continuity equation reduces to” to make it  clearer  that the following
equation is a 1D example of the 3D continuity equation.

p. 36: validity of 2.75; typical frequencies? Regarding the results on 118, more explanation
about frequency rages of Rayleigh is required.



Response: 

The validity of equation 2.68 ( previously eq. 2.75) has been included in section 5.2.5

p. 37:  if the frame is allowed to move: in what direction? Diagram is required.

Response: 

Clarification was added in the text (along with a diagram for the Rayleigh model) that the
frame of the porous panel is allowed to move along the direction of the narrow air channels
(Figure 2.10)

p. 37: which is the variable to be solved for, i.e., which v?

Response: 

Additional text has been added to give more clarity in this section.

p. 37: no explanation of v_{F}?

Response: 

Added definition of v_{F} as velocity of the frame. Also added equation v_{air|Frame} =
v_{air} - v_{F}

p. 37: pressure inside the panel is not introduced but it might have an impact on the results in
3D – it needs clarification. 

Response: 

Additional text has been added to give more clarity in current section 2.11.2 “Moving Frame
Model”.

p. 38: Figure 2.10 does not make sense 

Response: 

The caption of current figure 2.11 (previously fig. 2.10) now indicates which of the diagrams
corresponds to the room volume and to the spring-mass-spring model: “The room volume
separated by the porous panel (left) and its equivalent spring-mass-spring model (right)”

p. 38: k1, k2, m: from physical considerations? If so, what are they?

Response: 

The definitions of k1 and k2 were added to the text in current section 2.11.2 “Moving Frame
Model”.

p. 40: is m_{S} the same as m on page 38? 

Response: 



The  definition  of  m_{S}  was  restated:  “If  the  mass  per  unit  area  of  the  panel  m_{S}
approaches infinity”

p. 40: implemented in such a way that knowledge of k1, k2 is not required…really,  it  is
because you have not included this in your model in 2.77---but how does this relate to the
form with stiffness?

Response: 

The relation of k1 and k2 with the form with stiffness was added to the text in section 2.11.2:

“where m is the total mass of the panel and k_{1} and k_{2} are the stiffness corresponding
to each enclosed volume of air on either side of the porous panel. The stiffness values k_{1}
and k_{2} are calculated using\cite{Kinsler+2000}:

    k=rho_{o}c^{2}S^{2}/V

where V is the volume of air and S is the area of the porous panel.”

The spring-mass-spring  resonance,  and therefore  the constants  k1 and k2,  is  expected  to
occur when a room volume is completely divided by a porous panel, as indicated in Figure
2.11.  It  is  calculated  in  order  to  identify  the  frequency range where  the  MFM model  is
expected to make a difference to the predicted sound field.

Chapter 3

Clarify why 3D model is needed. 2D model is not enough?

Response: 

Flexibility  of  modelling  different  wave  types  using  a  single  implementation  is  the  main
motivation for not using 2D models. The following text was added to current section 3.3.3 to
make this point clearer: 

“This thesis primarily concerns the modelling of thin plates using a general three-dimensional
FDTD method that, for flexibility, can support all wave types. “

p.46: eq. 3.1 could be simplified. 

Response: 

It is not clear how the momentum equation 3.1 could be further simplified.  It is a tensor
equation, so it can be decomposed into several other equations 3.4 – 3.6 as indicated in the
text in current section 3.3.1 “Momentum Equation”: 

“Equation  3.1,  the  momentum  equation,  is  a  tensor  equation.  If  expanded  in  Cartesian
coordinates,  it  is  equivalent  to  the  following  system  of  first-order  partial  differential
equations (...)”



p. 46: sigma: depends on t only? Why written this way?

Response: 

Changed “sigma(t) =” in equation 3.2 to “sigma =”

p. 46: why asymmetry in definition 3.3?

Response: 

There was a typo in this equation. The ½ is now multiplied by both terms.

ε_ij=1/2 (duj/dxi + dui/dxj)

p. 46; C_{ijkl} need to define explicitly.

Response: 

Added the references [71] and [72], now the text reads: “where Cijkl is the stiffness tensor of
rank 4 [71][72].”

p. 47: eq. 34-3.6 could be combined.

Response: 

Equations 3.4 – 3.6 can be combined into tensor equation 3.1, as mentioned in the text in
current section 3.3.1 “Momentum equation”: 

“Equation  3.1,  the  momentum  equation,  is  a  tensor  equation.  If  expanded  in  Cartesian
coordinates,  it  is  equivalent  to  the  following  system  of  first-order  partial  differential
equations (...)”

p. 49: plates: have not defined these at all in Section 3.3.3; a plate is not the same as a solid
3D medium. Which plate model? Kirchhoff? Mindlin Reissner?

Response: 

In response to “plates: have not defined these at all in Section 3.3.3;”,  the text has been
rephrased as follows and reference [73] to “L. Cremer, M. Henckl, and E. Ungar, Structure-
borne sound. Berlin: Springer-Verlag, second ed.,” 1973 has been added:

“This thesis primarily concerns the modelling of thin plates [73] using a general three-
dimensional FDTD method that, for flexibility, can support all wave types. There are 
four types of structure-borne sound waves that occur over the audio frequency range in 
thin plates: bending, transverse shear, quasi-longitudinal and dilatational
waves [73].



For the low-frequency vibroacoustic applications that are considered for engineering
structures in this thesis it is often bending waves that are of primary interest. For this
 reason the validity of the general three-dimensional FDTD method in reproducing thin plate
bending  wave  motion  is  assessed  numerically.  A  comparison  of  FDTD  and  analytical
bending wave theory for thin plates [73] is shown in Appendix II through consideration of
both mode shapes and eigenfrequencies.  These results confirm the validity of the general
three-dimensional FDTD method for simulating thin plate bending wave theory.”

In response to “a plate is not the same as a solid 3D medium.”, the Response:  text has been
rephrased in section 3.3.3 as indicated in the previous response to emphasize that the strategy
is to model thin (Kirchhoff) plate dynamics using a 3D FDTD model.

In response to “Which plate  model? Kirchhoff? Mindlin Reissner?”,  the term “thin” was
added to the title of section 3.3.3 “Elastic waves occurring in thin plates”

p. 49: Third wave speed is introduced in eq. 3.10. This is from thins plate rather than the
system in previous pages. Justification is required to show mathematically why this is usable
and valid for scaling approach.

Response: 

Appendix II - comparison of isolated aluminium plate mode shapes obtained via NMM and
FDTD using MTMAC is introduced as evidence that the 3D scaling approach models the
dynamic behaviour of thin plates.

In addition, the text in section 3.3.3 has been rephrased as indicated in the previous responses
to emphasize that the strategy is to model thin (Kirchhoff) plate dynamics using a 3D FDTD
model.

p. 49: definition of \vu
Response: 

Added definition here when it appears for the first time (already defined in “List of symbols
and abbreviations”).

p. 49: expression in 3.10 does not follow from the analysis of a 3D solid directly, which is not
dispersive!  Are  you  suggesting  using  this  frequency-dependent  expression  as  Courant
condition? It comes from Kirchhoff model, which itself relies on other hypotheses (thin plate,
etc.)

Response: 

In response to “expression in 3.10 does not follow from the analysis of a 3D solid directly,
which is not dispersive!”, the strategy in this thesis is to model a thin Kirchhoff plate using a
general 3D model. This is achieved with the general 3D solid wave propagation equations



and  then  defining  the  appropriate  geometry  and  boundary  conditions.  For  out-of  plane
excitation and with bending wavelengths that are large relative to the plate thickness this
approach is shown to be valid in Appendix II. For clarity, the following text was added to
3.3.3: “This  thesis  primarily  concerns the modelling of thin plates  using a general  three-
dimensional FDTD method that, for flexibility, can support all wave types. There are four
types of structure-borne sound waves that occur over the audio frequency range in thin plates:
bending, transverse shear, quasi-longitudinal and dilatational waves [73]”

In response to “Are you suggesting using this frequency-dependent expression as Courant
condition? It comes from Kirchhoff model, which itself relies on other hypotheses (thin plate,
etc.)”, clarification was added in current section 3.9: “In this thesis, the mechanical behaviour
of thin plates is approximated and therefore the phase velocities mentioned in section 3.3.3.1
need to be considered, within the frequency range of the simulation, for stability analysis.

p. 50: use of a 3D model of losses in the context of thin structure vibration---justification?
See,  e.g.,  Lambourg  and  Chaigne:  https://asa.scitation.org/doi/pdf/10.1121/1.1354200.  Do
you not have to consider the boundary layer effects in the material? How are these modelled
in your 3D system?

Response: 

In response to “use of a 3D model of  losses in the context  of  thin structure vibration---
justification?“

The approach used in the thesis is to have the damping constants implemented directly in the
three-dimensional momentum and constitutive equations. This produced acceptable results in
terms of measured/predicted loss factors, as can be seen in Table 6.4.

In response to “See,  e.g.,  Lambourg and Chaigne”,  text  has been added in section 6.4 -
“Driving-point  mobility  of  the  aluminium  plate”.  This  notes  that  although  thermoelastic
effects  are  mentioned in the paper by Chaigne and Lambourg [93] indicate  how internal
damping and radiation damping could be incorporated in time-domain models for three basic
mechanisms of damping, which they list  as thermoelasticity,  viscoelasticity  and radiation.
This potentially has practical application to lightly damped musical instruments such as a
cymbal, but it is of limited use to engineering structures such as buildings, aircraft or marine
structures where the total loss factor of plates is determined by the sum of the internal losses,
radiation losses, losses due to additional damping layers and structural coupling losses. As
the latter two losses tend to dominate the response, the approach of Chaigne and Lambourg
was  not  incorporated,  and  experimental  determination  of  the  damping  was  used  in  the
model.”

Note that for the aluminium plate with additional damping material that is considered in this
thesis, the approach to incorporate damping in the FDTD model gives the required agreement
with measurements.

https://asa.scitation.org/doi/pdf/10.1121/1.1354200


In response to “Do you not have to consider the boundary layer effects in the material? How
are  these  modelled  in  your  3D  system?”,  the  boundary  layer  is  not  considered  in  the
modelling as the air is considered to be inviscid (current section 3.12 - “Simplified air/solid
boundary conditions”) and therefore the no-slip condition (zero velocity of the fluid relative
to the boundary) is not implemented.

p.  50:  ‘…damping  mechanism…’  is  required  the  reference  (Toyoda  et  al  [70])  and
justification is required to use this equation for this plate. 

Response: 

This reference was added and justification concerning the use of general  3D viscoelastic
equations for thin plates was added to the text in section 3.3.3

p. 51: Define F in eq. 3.13.

Response: 

Done.

p. 54: why are both the 2D and 3D systems presented here? It is especially unclear here,
given that you will be modelling plates, which system you are planning to use. 

Response: 

The 2D and 3D systems are presented in section 3.5 “Full  form of the viscoelastic  field
equations” because they are referenced in section 3.7 “FDTD viscoelastic update equations.”

p.  58:  various  new  notational  problems.  Use  of  0.5  instead  of  ½  in  index,  also  use  of
operators D (these should not be indexed by “i”)! Also, why are these being introduced at this
stage in the thesis? The place for these is in an introductory chapter on FDTD schemes.

Response: 

In response to “Use of 0.5 instead of ½ in index”, the whole thesis now complies to this: use
of ½ instead of 0.5.

In response to “also use of operators D (these should not be indexed by “i”)!”, there was an
error in the text as the index i in the operator D refers to the direction the derivative is taken
and so the text  was corrected to “where D denotes the forward difference,  as defined in
appendix  I.”  Having  made  this  correction,  the  equations  in  current  section  3.7  “FDTD
viscoelastic update equations” now show Dx, Dy and Dz depending  on the direction the
derivative is taken. Thus these equations are consistent with the notation agreed for this thesis
(in p.17), e.g. P|i,j for positional indices and Pi,j, for Cartesian coordinates. 

In response to “Also, why are these being introduced at this stage in the thesis? The place for
these is in an introductory chapter on FDTD schemes.”, the operator D is now defined in
Appendix I “Mathematical symbols and operators”.



Following  from  the  remarks  above,  the  two-dimensional  analysis  carried  out  in  current
section 3.7 “FDTD viscoelastic update equations” now uses x and y directions instead and y
and z. This provides consistency throughout the thesis.  Changes to Figure 3.4 have been
made accordingly.

p. 62 Is this your model? Or Toyoda’s? Or someone else’s? You claim that the approximation
is good, but can you back this up with a plot of reference?

Response: 

p.64/65: For clarity, minor text edits have been added along with a new reference [76] (L.
Boltzmann). In addition, a new appendix, “Appendix IV - frequency characteristics of the
damping coefficients”  has been included to show how beta and gamma can be varied to
achieve different loss factor frequency profiles.

p. 63; It is not always possible to tell whether waves with the highest phase velocity have
been excited…in the context of stability analysis, this is not really an issue, as roundoff error
will always lead to the production of such components. 

Response: 

Removed the text “In addition, it is not always possible to identify whether waves that have
the  highest  phase  velocity  have  actually  been  excited.”  from  section  3.9  “Stability  of
vibroacoustic simulations”.

p. 64; Eq. 3.55: new notation here; use of general grid indices i,j to represent position of a
source is not a good idea. 

Response: This has been fixed. The notation is now consistent throughout the thesis: The
subscripts that appear right after the variable indicate Cartesian coordinate directions (x,y,z,
ith  direction). The subscripts that appear after the vertical bar “|” indicate a position index in
the grid.

p. 65: simply supported conditions; it appears you are now referring back to the Kirchhoff
plate model (i.e., from notation “M” for moments). But Kirchhoff is not defined in the thesis.
Neither  are  the “M”. Are you talking about a 2D simulation of Kirchhoff here,  or a  3D
simulation? If so, in the case of the 3D simulation, how is the ss condition defined? Is there
pivoting about the midplane of the slab? Need to be very clear here. 

Response: 

In response to “simply supported conditions; it appears you are now referring back to the
Kirchhoff plate model (i.e., from notation “M” for moments) Are you talking about a 2D
simulation of Kirchhoff here, or a 3D simulation?”,  to make it clear that these conditions
refer  to  thin  plate  theory,  the  following  italic  text  was  added  to  section  3.11  “Simply
supported  boundary  conditions”:  “For  the  edges  of  the  three-dimensional  plate,  the



implementation  of  its  simply-supported  boundaries  aims  to  approximate  the  following
conditions corresponding to a simply-supported two-dimensional thin plate [79]”. 

In response to “If so, in the case of the 3D simulation, how is the ss condition defined? Is
there pivoting about the midplane of the slab?”, clarification in the text in section 3.11 has
been made: “This is approximately carried out by assigning a value of zero to the vertical
velocities that are located on the mid-plane around the plate edges as shown in Figure 3.7. As
shown in the same figure, the lateral velocity components of the plate edges are calculated
like the other velocity components of interior of the plate.”

p. 66: what is “w”? How does this relate back to vx,vy,vz and stress components? You say
that you are assigning a BC at the midplane of the slab, but what are the BCs everywhere
else? Have you verified that this is indeed a good approximation to a ss condition in 2D?

Response: 

In response to “what is “w”?”, text in section 3.11 “Simply supported boundary conditions”
has been added:  stating “w denotes displacement in the z-direction”.

In response to “How does this relate back to vx,vy,vz and stress components?”, Figure 3.7
illustrates the connection between the stress and velocity components of a SS condition, as
the text on page 66 states “This is approximately carried out by assigning a value of zero to
the vertical velocities that are located on the mid-plane around the plate edges as shown in
Figure 3.7”

In addition, added the text ”As shown in the same figure, the lateral velocity components of
the plate edges are calculated like the other velocity components of interior of the plate.”

In response to “You say that you are assigning a BC at the midplane of the slab, but what are
the BCs everywhere else?”,  Response: text has been added in the same section 3.11: The
boundary conditions defined in this section refer to the plate edges. The solid-air boundary
conditions that cover the remainder of the domain are described in the following section 3.12.

In response to “Have you verified that this is indeed a good approximation to a ss condition
in 2D?”, text has been added to section 3.11: The validity of this approximation is confirmed
in the analytical/FDTD eigenfrequency results obtained for a simply supported plate that are
shown in Table 6.2.

p. 67; same grid over both solid/fluid regions? Implications for dispersion?

Response: 

Added text in section 3.13.6 “Limitations”: 

“Another  important  factor  that  introduces  errors  when  using  the  scaling  approach  is
numerical dispersion. When using the same space and time grid resolution for the air medium
and solid medium additional numerical dispersion is introduced since wave propagation in
the air medium occurs further away from the Courant limit than the wave propagation in the



solid medium (which comparatively has a higher phase velocity). In addition, the larger the
value used for the scaling factor s, the less uniform the rectangular grid will be and the more
problematic  the  numerical  dispersion  becomes.  For  the  scaling  factor  value  used  in  this
thesis,  s=6, the experimental validation of the numerical results suggests that the effects of
the numerical dispersion are negligible at the low frequency range considered in this thesis
(<200Hz). 

In order to know exactly by how much the numerical dispersion affects  the results when
using  the  vibroacoustics  FDTD  scheme,  it  is  necessary  to  mathematically  derive  the
numerical dispersion relation.  This derivation is now flagged as future work in section 7.1
“Suggestions for future work”: 

“The mathematical derivation of the numerical dispersion characteristics of the vibroacoustic
FDTD scheme described in this thesis upon which the scaling approach is based could also be
carried out in future work.“

p. 67: need to specify the boundary condition which is being employed here! All you have is
an update. 

Response:  

The  text  in  current  section  3.12.1  -  “Theoretical  background”  was  updated  with  more
information about  the boundary conditions:  “The implementation  developed in this  thesis
considers the update equations for the velocity nodes that lie on the boundaries to have the
same form as the other solid medium velocity update equation (Equation 3.37) for which the
density  equals  that  of  the  actual  solid  and the  space  steps  across  the  boundaries  remain
unchanged.”

p. 67: to improve computational efficiency: how?

Response: 

Modified the text in section 3.12.1 - “Theoretical background” to: “In order to avoid the time
step implications required by the standard boundary approach”. Also more details were added
in the same paragraph.

p. 71: statement  about grid coarseness and increased time step is a little  naïve…you can
always do this, but the cost is of reduced simulation bandwidth. 

Response: 

In  current section 3.14, the following text has been added “Both the ’scaling’ approach and
’simplified boundary’ approach lead to a significant increase in the time step that is required
to run the simulations.  This leads to a reduction in the maximum possible frequency for the
analysis  relating  to  the  Nyquist  frequency.   However,  this  is  not  problematic  for  low-
frequency  applications  below  250Hz  that  are  primarily  considered  in  this  thesis  for
engineering structures



such as small rooms in buildings, car cabins, or train carriages.”.

p. 72: In contrast to room acoustics simulations…this is backwards. It depends entirely on the
frequency range you want  to  simulate.  For  a  given material,  and frequency range,  wave
speeds are higher in solids, meaning larger grids. What you say about needing high resolution
for thin 3D solids implies that you should really be using a 2D model!

Response: 

Rephrased  text  in  section  3.13  to  “It  can  be  computationally  expensive  to  run  a  large
vibroacoustic model with a fine spatial resolution, especially because wavespeeds (e.g. for
quasi-longitudinal waves on structures) are significantly higher in solids than in air.“ 

p. 73: Are you assuming a synchronous time step for both the acoustic field and the solid? I
assume so!

Response: 

Yes, the following text was added in section 3.13.1 “Methodology”: ”(…), which in turn
results  in  a  synchronous  time  step  delta_t  step  for  both  the  plate  solid  medium and the
acoustic medium”

p. 73: this scaling assumes the mode frequencies for the Kirchhoff model. And yet you are
employing it within a 3D model. What is the validity range of this approximation, particularly
when you are scaling the plate dimensions?

Response: 

This is addressed in section 3.13.6:

“One limitation concerns the high-frequency limit for pure bending wave theory. If the thin
plate frequency limit for the actual plate is (Cremer et al)

f_B = 0.05c_L/h

the limit for the scaled plate f_B’ is given by f_B’ = f_B/s2 and the error in the simulation
results will increase above this limit.”

In addition, the reference to Cremer et al was repositioned in the text above.

p. 73: what is the effect on dispersion/cutoff of the use of different grid spacings? Generally,
using different grid spacings leads to very poor dispersion/cutoff behaviour. 

Response:

Added text in section 3.13.6 on page 83: 

“Another  important  factor  that  introduces  errors  when  using  the  scaling  approach  is
numerical dispersion. When using the same space and time grid resolution for the air medium
and solid medium additional numerical dispersion is introduced since wave propagation in



the air medium occurs further away from the Courant limit than the wave propagation in the
solid medium (which comparatively has a higher phase velocity). In addition, the larger the
value used for the scaling factor s, the less uniform the rectangular grid will be and the more
problematic  the  numerical  dispersion  becomes.  For  the  scaling  factor  value  used  in  this
thesis,  s=6, the experimental validation of the numerical results suggests that the effects of
the numerical dispersion are negligible at the low frequency range considered in this thesis
(<200Hz). ”

p. 73: same grid spacings for acoustic field and for plate? But then you are quite far from the
Courant limit in one of the two cases. 

Response: 

Added text in section 3.13.6 as indicated in the response above.

p.  73:  ‘…. much faster  results  than…’:  define  efficiency and make it  clearer  along with
bandwidth issue.

Response: 

Added text on section 3.13 so it says “In this thesis, an alternative formulation is proposed for
the  vibroacoustic  problem  to  yield  much  faster  results,  “In  this  thesis,  an  alternative
formulation is proposed for the vibroacoustic problem to yield much faster results, in the
sense of requiring less calculations to obtain a vibroacoustic prediction, than using only a
non-parallelized standard FDTD approach, based on the work of Toyoda et al [68].”. The
bandwidth issue is clarified in section 3.14 on page 83.

p. 74: a general notion that operating away from the Courant bond (i.e., with a larger grid
spacing) is a good idea…not true!

Response: 

The idea is that as the grid resolution gets larger, the corresponding time step given by the
Courant condition (Equation 2.41) will also be larger, which in turn allows for reducing the
number of iterations necessary to simulate a given time duration. 

p. 74: whole technique seems to rely on mode calculations---this seems unnecessary. What
you are really doing is coordinate scalings. This can be done, much more simply with the
model problem a priori, without resorting to a modal description at all!

Response: 

The modal description is considered to be a useful way of ensuring that the scaling factors
give the correct sound and vibration response, and is not disproportionately complex.

p. 75: p,q,r in expression for modes?



Response: 

Added in current section 3.13.2 - “Scaling of sound fields in rooms” : “(…) where p, q and r
are positive integers and correspond to room mode numbers.”

p. 77: modal  frequencies  for other BCs…this would be obvious if  the plate system were
scaled a priori. Can remove this section. Typo error in eq. 3.73.

Response: 

This  section  in  the  thesis  is  useful  as  it  confirms  that  for  ideal  free/clamped  boundary
conditions,  the  eigenfrequencies  expressions  have  the  same  form as  that  for  the  simply
supported  plate.  This  knowledge  is  required  to  prove  that  the  geometric  scaling  factors
remain invariant under any set of ideal free/clamped/simply-supported boundary conditions.

To emphasize this point, text on section 3.13.5 was corrected to: “For plates with boundary
conditions other than a combination of ideal free/clamped/simply-supported boundaries, it is
only necessary to be able to calculate or estimate the corresponding eigenfrequencies in order
to identify the scaling factor for the z-direction.”

In response to “Typo error in eq. 3.73”, this has now been corrected.

p. 79. How much dx is larger than dz?

Response: 

Equation 3.74 was corrected by adding s to the terms delta_x and delta_y. According to this
equation, sdx = s2dz or, equivalently, dx = sdz.

In  addition,  the  text  in  the  same  section  3.13.5  “Numerical  efficiency  of  the  scaling
approach” was also corrected: “Therefore the time step using the scaling approach is larger
than that obtained without scaling by a factor of up to s2.“

p. 80. Limitation of scaling approach should be clearly described. 

Response: 

Section 3.13.6 has been extended to include the limitations that result from the numerical
dispersion. The reduction of the Nyquist frequency that result from the  use of an increased
time step has also been pointed out in section 3.14.

Chapter 4

Lowest mode for plate here seems to be at about 100 Hz. But your measurement apparatus
only works up to 140 Hz. Could use a single mode “lumped” approximation. Are you really
testing the method here?

Response: 



This  comment  doesn’t  seem  to  be  specific  to  Chapter  4.  There  are  plate  modes  at
approximately 26Hz, 50Hz, 80Hz, 104Hz and 146Hz. Section 4.6 has been changed so that it
only describes the experimental procedures with the results moved into Section 6.4.

Chapter 5

p. 110: sufficiently  fine.  Frequency range of interest  here is 140 Hz. But scheme chosen
emulates behaviour up to 5000 Hz! Do you really need this resolution/level of accuracy?

Response: 

The 10k sampling frequency is dictated by the Courant condition, given both the spatial and
time  resolutions.  The  following  improvement  was  made  to  the  text  in  section  5.2.1
“Numerical  resolution”  to  clarify  this  point:  “the  grid  spacing  was  set  to  ∆x=0.0589m,
∆y=0.0574 m, ∆z=0.0578m . Assuming a speed of sound of 343 m/s, this corresponds to ∆t=
9.77×10−5s, i.e. a sampling frequency of 10240 Hz.”

p. 110: you are not modelling the room boundaries here? I.e., this is a free field simulation?

Response: 

This has been clarified through the addition of a new diagram in Figure 5.1.

pl.  111:  But  now,  you  are  saying  that  you  are  indeed  emulating  the  room  boundary
conditions. Why PMLs then? A diagram is essential here…the reader cannot follow (let alone
reproduce) this. 

Response: 

This has been clarified through the addition of a new diagram in Figure 5.1.

p. 116: you now have k1, k2 appearing…you previously said that these were not used in the
calculation. Now it is clear that these represent the total air volumes on either side of the
absorber.  But  you already have FDTD for  the room volume.  Are you then using both a
distributed and lumped representation for the room?

Response: 

In order to make it clear that the spring-mass-spring model (and therefore k1 and k2) are only
used to estimate the value of the resonance that occurs below the fundamental frequency of
the room, the following text in was moved into a new paragraph in section 5.4 “Results -
Point responses”: “For the configuration of the room that  was completely divided by the
porous panel, the frequency at which this resonance occurs can be estimated by considering
the room as a spring-mass-spring system,”

p. 118: OK matches. But improvement is very limited for MFM to very low frequency range
(mass-dominated). Contour plots---some ok, some very poor matches (e.g., p. 140). 

Response: 



In response to “OK matches. But improvement is very limited for MFM to very low frequency
range (mass-dominated).”, the improvement is significant as indicated by the text in section
5.4 which notes that “When the panel completely divides the room volume the results show
that the MFM is essential to correctly predict sound pressure levels near the spring-mass-
spring resonance otherwise errors up to 20 dB can be incurred. ”.

In response to “Contour plots---some ok, some very poor matches (e.g., p. 140).”, those plots
with close agreement and those where there is less agreement are indicated in the text.

Chapter 6

p. 148: thickness of plate?

Response: 

Thickness  of  the  plate  was  added  to  section  6.2  “FDTD  implementation  of  a  practical
vibroacoustics model”

p. 150: thickness appears. 

Response: 

Thickness  of  the  plate  was  added  to  section  6.2  “FDTD  implementation  of  a  practical
vibroacoustics model”

p. 150: the simulations stabilise: what is meant here? You are not able to vary C. 

Response: 

Yes, C was fixed at 6000 m/s and the following text was added to section  “6.2.6 – Stability
of the simulation” : “Therefore the value C=6000 m/s was used in the simulations to calculate
the value of dt using equation 2.41.”

p. 152: 5% error in wave speed is a lot if you are running at 50 kHz+!

Response: 

The frequency range of interest is below 200 Hz, as this is the highest frequency that was
measured. This is indicated in section 6.5.2 - “Comparison of measured and predicted contour
plots”: “The discussion is limited to frequencies below 200 Hz since this corresponds to the
highest frequency of the measurements.”

p. 152: BCs for plate---are you using free conditions here?

Response: 

This  is  now  clear,  as  the  text  of  section  6.2  -  “FDTD  implementation  of  a  practical
vibroacoustics model” was modified and now reads:



“To  assess  whether  the  scaling  approach  and  simplified  solid-air  boundary  conditions
described in chapter 3 can be applied to practical vibroacoustic problems, a model of an a
simply-supported  5 mm thick  aluminium plate  inside  a  small  reverberation  chamber  was
created using FDTD”

p. 160: Define HV.

Response: 

The “H” and “V” labels in table 6.5 now appear in either red or green, and the meaning of
these colours has been added to section 6.5.2: “Where there is a lack of agreement in either
the horizontal or the vertical plane for the same mode, a red coloured "H" (horizontal) or "V"
(vertical) is used. Conversely, a green "H" or "V" indicates close agreement in the horizontal
or the vertical planes, respectively.”

p. 161: Better to show source location in contour plots to easily understand transfer functions.

Response: 

The source location has been added to the plots as a black cross in Figures 6.4 – 6.18 a) and
b). The text on section 6.5.1 “Comparison of measured and predicted transfer functions” was
updated to: “with the outline of the plate indicated using solid black lines and the source
location indicated using a black cross.”



General comments
 There is a lack of scientific discussion in Chapters 5 and 6, i.e. criticize their methods, compare

their results to previous literature. In particular, advantages of the moving frame model (MFM)
and two new modelling approaches (scaling approach and simplified boundary conditions) can
be clearly explained.

Response:

Changes to Chapter 5:
Experimental validation of FDTD for a small room that is partially or completely divided by the
porous  panel  has  not  been published by others  in  the  literature;  however,  it  is  possible  to
compare results with previous literature for the empty room. Hence, in section 5.5.2, a critical
comparison with previous literature from Olesen is made in the results obtained for the empty
room configuration stating “The level of agreement obtained in the comparison between FDTD
results and experimental data for the empty room configuration is a significant improvement on
that obtained in the work of Olesen [92] which (a) used a coarser measurement grid (60 cm x 60
cm) to validate the finite difference predictions, (b) was limited to a horizontal grid plane and
(c) used 10dB steps in the contour plot which meant that it  was not possible to identify the
details between nodal and anti-nodal planes.”.

The main advantage of the MFM has been clarified in section 5.6 “Conclusions” stating “The
results show that the MFM enabled the FDTD model to estimate the higher response caused by
this spring-mass-spring resonance.”.

Cross-correlation  coefficients  between measured and predicted impulse responses have now
been included in Figures 5.6 -5.10. These coefficients are relatively high (range 0.77 – 0.91) so
they further confirm the close agreement between measurements and predictions. The values of
the cross-correlation coefficients are similar to those obtained by Sakamoto et al, which are in
the range 0.8 to 0.87. However, the situations are quite different, Sakamoto’s impulse responses
were determined in a large concert hall with numerous diffusing elements whereas the impulse
responses presented in this work were determined in a small room where the sound field is
primarily determined by the modal response.

Changes to Chapter 6:

The advantages  of the scaling approaches and the simplified  boundary approach have been
clarified in section 6.6 “Conclusions” stating “It was possible to obtain these numerical results
using  an  ordinary  desktop  computer  due  to  the  computational  advantages  enabled  by  the
simplified boundary and scaling approaches.”.

A comparison of the accuracy of measured and FDTD predicted eigenfrequencies with those in
the  work  of  Toyoda  was  added  in  section  6.4  “This  difference  between  measurement  and
prediction is similar to that obtained in the work by Toyoda et al [69]. Although their geometry
and structural supports were different, differences of approximately 10% can be identified in
their impedance level diagrams.”.

Discussion of the damping models employed by Chaigne and Lambourg is now included in
section  6.4  indicating  why  these  were  not  used  in  this  thesis,  stating  that  “Chaigne  and



Lambourg [92] indicate how internal damping and radiation damping could be incorporated in
time-domain  models  for  three  basic  mechanisms  of  damping,  which  they  list  as
thermoelasticity,  viscoelasticity  and  radiation.  This  potentially  has  practical  application  to
lightly damped musical instruments such as a cymbal, but it is of limited use to engineering
structures such as buildings, aircraft or marine structures where the total loss factor of plates is
determined by the sum of the internal losses, radiation losses, losses due to additional damping
layers and structural coupling losses. As the latter two losses tend to dominate, the approach of
Chaigne  and Lambourg  was  not  incorporated,  and experimentally-determined  values  of  the
damping were incorporated in the model.”.

Specific comments
Chapter 3

 Advantages of two new approaches (simplified boundary approach and scaling approach) were
described in 3.12.2 and 3.13.6 but they are too brief. In particular, in 3.13.6, descriptions of
limitations are longer than those of advantages.



Response:

The advantages of the simplified boundary and scaling approaches are that they both lead to the
use of larger spatial resolutions (which in turn will make the simulations run faster), and in
addition, in the case of the scaling approach, fewer cells are required than when using a non-
scaled model (which will also make the simulations run faster). In response to “Advantages of
two new approaches (simplified boundary approach and scaling approach) were described in
3.12.2 and 3.13.6 but they are too brief“, the opening paragraphs of Section 3.12.1 “Theoretical
background”  have  now  been  expanded  (partly  in  response  to  other  comments  from  the
examiners). This has given the opportunity to clarify and expand on the advantages. Both of the
advantages described above are given in 3.12.2 and 3.13.6, but it should be noted that the title
of section 3.12.2 is “Example application” and the role of this section is to reinforce (through an
example) the increase in space step which leads to computational benefits because of the larger
FDTD time step; the opening sentence has been changed to reinforce this. Note that it is not
possible to further expand on the descriptions of the advantages in the text without repetition.

In response to  “In particular, in 3.13.6, descriptions of limitations are longer than those of
advantages.“ it is clear that as other sections in 3.13 gave the advantages it is not appropriate to
repeat  them;  hence  this  section  is  now  renamed  “Limitations”  and  focuses  only  on  the
limitations  and has  been expanded to give more detailed  consideration  to  the  limitation  of
numerical dispersion.

Chapter 4
 P89: Figure 4.9 should be presented on page 89 along with the descriptions.

Response: 

Yes, current figure 4.5 “Setup used for the acoustic measurements” (previously 4.9) has been
moved to current section 4.4.2 - “Equipment”.

Chapter 6
 P158: In Figure 6.5, there were some differences in terms of sound pressure level but it was

described that there were close agreements – these differences are reasonable? If not, it would



be better to say there was a close agreement in terms of spatial variation but it is not the case for
SPLs.

Response: 

Yes, the statement was too general and has been corrected to “At frequencies corresponding to
plate modes $f_{11}$ and $f_{12}$ that occur below the lowest room mode $f_{010}$, the
contour  plots  in  Figures 6.5 and 6.6 show agreement  between measurements  and FDTD in
terms of the spatial variation with particularly close agreement in Figure 6.5(a,b)}.”.

 P160: Subjective terms? What is the criteria or value to say it is good or it is H V (?).

Response: 

In order to clarify what is meant by subjective terms, it is now noted in current section 6.5.2 that
“This comparison is primarily carried out in subjective terms as no exact numerical indicator or
threshold is used to categorise the level of agreement.”. The caption for Table 6.5 has been
changed to “Evaluation of the agreement between measured and predicted mode shapes and
transfer function levels”. Using Table 6.5, the cases where the agreement is close in either level
or spatial variation are now labelled with “HV” in colour code (red for agreement, green for
lack of agreement), where the H stands for horizontal and the V stands for vertical. This is now
described in the text of current section 6.5.2 “Comparison of measured and predicted contour
plots”.

 P176: No evidence about 63 dB and 66 dB in Figure 6.19. Are they ±3 dB and ±6 dB?

Response: 

63 dB and 66 dB were a typo and have now been corrected to ±3 dB and ±6 dB.

Chapter 7
 P188: Please define the experimental error.

Response: 

The statement in section 7 “Conclusions” mistakenly referring to “experimental error” has been
rephrased as “The general finding from the comparison of measured and predicted pressure-to-
force transfer functions is that FDTD is capable of predicting the spatial  variation of sound
pressure in close agreement with measured data.”.
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Abstract

Finite Difference Time Domain (FDTD) is a method used to predict field variables

related by a wave equation. This thesis focuses on the development and experimental

validation of FDTD for low-frequency applications in acoustics and vibroacoustics

such as in automotive, aeronautic, marine and building constructions.

For acoustic applications, the thesis focuses on FDTD modelling of porous panels

inside an acoustic cavity. This required development of a new modelling approach,

the Moving Frame Model (MFM) for porous materials with a non-stationary frame.

The MFM assumes lumped mass behaviour of the porous panel which is coupled

to the FDTD update equations that incorporate the Rayleigh model. Experimental

validation used a small reverberant room when empty, with a porous panel partially

dividing the room, and with a porous panel completely dividing the room. For

vibroacoustic applications, the thesis focuses on sound radiation from a plate into

an acoustic cavity. Two new modelling approaches were developed to significantly

reduce the computational cost for FDTD with vibroacoustic problems; a scaling ap-

proach to significantly increase the computational efficiency and modelling solid/air

boundary conditions to simplify their implementation. Experimental validation used

a point excited, thin aluminium plate inside a small reverberant chamber.

Both the acoustics and vibroacoustics FDTD modelling approaches were success-

fully validated against experimental results. For two spaces completely separated

by a porous panel, the MFM accounted for a spring-mass-spring resonance which re-

sults in a peak in the response below the fundamental room mode. Close agreement

between experimental results and FDTD validates the model as well as implementa-

tion of the loudspeaker as a hard velocity source. For the vibroacoustics application,

the scaling approach with simplified boundaries resulted in a significant reduction in

computation time. Experimental validation confirms the validity of implementing

a thin plate undergoing bending wave motion as a three-dimensional solid that can

support multiple wave types. Below the lowest room mode, close agreement between

FDTD and measurements shows the existence of large variations in sound pressure

level. This confirms the importance of validated vibroacoustic models to predict

sound fields inside acoustic cavities in the low-frequency range.
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1 Introduction

1.1 Background

Finite Difference Time Domain (FDTD) is a numerical method that is used to pre-

dict the distribution of field variables that are related by a wave equation. The

method is primarily based on a calculation cell first proposed by Yee [1], intro-

duced to solve the Maxwell’s equations of electromagnetism. However, the use of

FDTD has expanded into a variety of other fields and applications. Some examples

include:

• Acoustics - With the work of Kunz [2] and Botteldooren [3], FDTD has been

used to solve a number of problems in several fields of acoustics, such as room

acoustics [4] and environmental acoustics [5, 6];

• Geophysics - The modelling of infrasonic radiation from volcanic eruptions [7],

Borehole well prospection [8, 9] and human interaction with landmines [10];

• Medical Sciences - FDTD has been used to model ultrasound propagation

within medical contexts [11, 12];

• Seismology: FDTD has been widely used for the study of seismic wave prop-

agation [13] and earthquakes [14, 15].

FDTD is a direct time domain method, where the second-order wave equation or

a number of first-order equations of the problem under consideration is solved for

a given period of time. As a direct time domain method, it is well suited for the

visualization of both 2D and 3D transient sound fields [16, 17].

The FDTD method approximates the solution to the wave equation by replacing

its differentials with their finite-difference approximations, forming a system of al-
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gebraic equations. It calculates the solution to this system of algebraic equations

at a number of points in the domain, usually ordered in a rectangular mesh but

many other mesh types have also been used. Depending on the implementation,

the number of algeabric equations must be at least one per point in space. Since

typically the whole domain of the problem must be included, the computational

cost in FDTD increases as the highest frequency limit is raised, since the number of

algebraic equations necessary to solve the problem is accordingly higher.

1.2 Motivation

In automotive, aeronautic, marine or building constructions there are small spaces

where it is necessary to predict low-frequency sound fields (typically below 250Hz)

at the design stage. The aim of this thesis is to develop and experimentally validate

the FDTD method for low-frequency applications in acoustics and vibroacoustics

that are relevant to these areas of engineering.

For acoustic applications, this thesis focuses on FDTD modelling of porous materials

that divide or partially-divide an acoustic space in the low-frequency range. Such

situations could be an idealised representation of seats or dividers in car/aircraft/-

ship cabins or small rooms with excitation by an acoustic source such as a human

speaker or loudspeaker. Experimental work in this thesis showed that resonance

peaks can occur below the fundamental frequency of the room which prompted

the development of a new Moving Frame Model (MFM) to account for whole-body

motion of porous panels.

In most noise control situations it is common for sound to be radiated into an acous-

tic space by a vibrating plate. However, the application of FDTD to vibroacoustic

problems (even with small spaces) is limited by computational demands. Hence a

new scaling approach is developed in this thesis to significantly increase the effi-

ciency of FDTD models. In addition, a new approach to model solid/air boundary

conditions was developed to simplify the implementation of these type of bound-
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1.3. Outline of the thesis

aries in FDTD. This thesis considers the vibroacoustic problem for a mechanically

point-excited thin aluminium plate radiating into a small acoustic space.

1.3 Outline of the thesis

Chapter 2 reviews the literature for acoustic FDTD and gives the theoretical back-

ground for airborne sound propagation and its implementation in FDTD. A Mov-

ing Frame Model (MFM) is introduced to model porous panels that partition a

space.

Chapter 3 gives the theory of structure-borne sound propagation along with a litera-

ture review and a description of vibroacoustic FDTD modelling. Two new modelling

approaches are introduced in this chapter, the simplified boundary and scaling ap-

proaches.

Chapter 4 describes the experimental work used to validate the FDTD models. The

acoustic model considered a small reverberant chamber that was divided or partially-

divided by a porous panel and excited by a single loudspeaker. The vibroacoustic

model considered the same reverberant chamber with a point-excited plate.

Chapter 5 describes the implementation of the acoustic FDTD model for the exper-

imental validation of the acoustic FDTD model, and presents the comparisons of

FDTD and measurements with analysis.

Chapter 6 describes the implementation of the vibroacoustic FDTD model for the

experimental validation of the vibroacoustic FDTD model, and presents the com-

parisons of FDTD and measurements with analysis.

Chapter 8 gives the conclusions and suggestions for future work.

3



1. Introduction

4



2 Implementation of FDTD for acoustics

2.1 Introduction

For low-frequency problems (typically below 250Hz) in room acoustics, the Finite-

Difference Time-Domain method (FDTD) has been shown to have significant po-

tential [18, 16, 19, 20]. This chapter addresses both theoretical and numerical as-

pects that are required for a full understanding of the implementation of the FDTD

method regarding its application in acoustics.

Section 2.2 summarizes the theory used to model sound propagation in air, where

the first-order partial differential equations of momentum and continuity equations

are introduced.

Section 2.3 details the field variables necessary to describe acoustics problems and

the corresponding implementation in FDTD. The FDTD update momentum and

continuity equations are also derived and detailed to illustrate their implementation

using a computer programming language. These derivations will be carried out

in pseudo-code form, in order to remain neutral as far as programming languages

are concerned, although source code written in Python is provided in Appendix

III.

Section 2.4 contains a literature review, where the connection of the FDTD method

to acoustics modelling and the differences between the main approaches to FDTD

are discussed.

Sections 2.5 and 2.6 discuss the stability and numerical dispersion of FDTD algo-

rithms.

Sound sources are discussed both from a theoretical point of view in section 2.7 and

from a numerical point of view in section 2.8, focussing in particular on the FDTD

5



2. Implementation of FDTD for acoustics

modelling of a sub-woofer.

Section 2.9 describes the theoretical aspects of modelling acoustic boundary condi-

tions, that are necessary to understand their FDTD implementation using digital

filters, which is described in section 2.10.

Section 2.11 outlines the theoretical background used to describe the acoustic be-

haviour of porous materials using the Rayleigh model. The theory developed for the

implementation of the Moving Frame Model (MFM) is also described in this sec-

tion. The corresponding FDTD implementation of the Rayleigh model for a porous

absorber and of the MFM is described in section 2.12.

2.2 Sound propagation in acoustic media

This section addresses theoretical aspects of sound propagation in acoustic media

and its generation and interaction with acoustic boundaries.

2.2.1 Euler equation of motion

If air is assumed to be an inviscid fluid, no viscous forces of any type act on any

portion of the air medium. Under this assumption, the fluid cannot sustain any

shear stress. In addition, the normal stress components (σ) at any point in the fluid

are all identical and equal to the value of the pressure (p) at that point. Hence, the

stress tensor reduces to [21]:

σxy = 0, σxz = 0, σyz = 0 (2.1)

σxx = −p, σyy = −p, σzz = −p (2.2)
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2.2. Sound propagation in acoustic media

The use of the stress tensor components is particularly important when defining

vibroacoustic problems as discussed in chapters 3 and 6. The momentum equation

relates the particle velocity of an element of fluid with the corresponding pressure

applied to it. In the case of an inviscid fluid, the momentum equation is given by

the Euler equation [2]:
∂vi
∂t

= − 1
ρo
∇p (2.3)

where ρo is the density of air and ∇ is the gradient operator. This is a vector

equation whose Cartesian components are as follows:

ρo
∂vx
∂t

= −∂p
∂x

(2.4)

ρo
∂vy
∂t

= −∂p
∂y

(2.5)

ρo
∂vz
∂t

= −∂p
∂z

(2.6)

2.2.2 Continuity equation

The continuity equation expresses conservation of mass for the fluid motion. The

following form of the continuity equation (Eq. 2.7) takes into account both the

conservation of mass and the equation of state for a perfect gas. It must be satisfied

at all points in the acoustic medium:

∂p

∂t
= −ρoc2∇ · vi (2.7)

where p is the acoustic pressure, vi is the velocity vector and c is the speed of sound

in air, which is given by [22]:

c = 331 + 0.6T (2.8)

7



2. Implementation of FDTD for acoustics

where T is the temperature of air in ◦C.

Expanding the index notation of equation 2.7 using Cartesian coordinates, the fol-

lowing form is obtained:

∂p

∂t
= −ρoc2

(
∂vx
∂x

+ ∂vy
∂y

+ ∂vz
∂z

)
(2.9)

2.3 Implementation of the FDTD method

2.3.1 Field variables in acoustics

The field variables that are used to model sound propagation through an acoustic

medium are the acoustic pressure p and the acoustic particle velocity vi of the

medium. The acoustic pressure is a scalar variable, i.e. it is described only by

a single component at each point in space. For the medium of air it indicates a

deviation from the static equilibrium value of atmospheric pressure and can therefore

assume negative values. The particle velocity vi is a vector variable, comprising n

components in n-dimensional space. It indicates the direction of the cyclic motion

of air particles that is associated with the propagation of sound. In this thesis,

acoustic pressure and particle velocity are denoted as field variables for the acoustics

problems.

2.3.2 Implementation of field variables in FDTD

Use of FDTD in this thesis follows from the basic approach proposed by Bootle-

doren [18], where the variables of velocity and pressure are offset both in time and

in space, in an arrangement known as a ’staggered grid’ [23]. The diagram in Figure

8



2.3. Implementation of the FDTD method

Figure 2.1: One-dimensional staggered FDTD grid.

2.1 illustrates a staggered grid for a one-dimensional space. A staggered grid repre-

senting two-dimensional space is shown in Figure 2.2. This type of grid arrangement

is often called a Yee cell, after Kane Yee, who originally proposed it in 1966 [1]. By

convention, the pressure variables are assigned integers for their corresponding time

and spatial indexes, whereas the velocity variables are assigned fractions.

The implementation of the staggered grid requires a careful mapping between the

fraction indexes shown in Figures 2.1 and 2.2 and the corresponding computational

indexes implemented in a digital computer programming language, that must be

integers. One practical example of the implementation of the field variable indexes

can be found in the source code written in Python in Appendix III, with the cor-

responding output shown in Figure 2.4. Reference [24] also contains a code snippet

for use in Matlab/Octave. In addition, the book by Sullivan [25] contains code writ-

ten in the C programming language that covers one-, two- and three-dimensional

electromagnetic and acoustic FDTD simulations, including the implementation of

the PML boundaries.
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2. Implementation of FDTD for acoustics

Figure 2.2: Two dimensional acoustic FDTD grid.

2.3.3 Discrete form of the Euler equations

In three dimensions, the discretization of the momentum equations 2.4-2.6 leads to

the following set of algebraic equations:

v
n+ 1

2
x

∣∣∣∣
i+ 1

2 ,j,k
= v

n− 1
2

x

∣∣∣∣
i+ 1

2 ,j,k
− ∆t
ρo∆x

(
pn|i+1,j,k − pn|i,j,k

)
(2.10)

v
n+ 1

2
y

∣∣∣∣
i,j+ 1

2 ,k
= v

n− 1
2

y

∣∣∣∣
i,j+ 1

2 ,k
− ∆t
ρo∆y

(
pn|i,j+1,k − pn|i,j,k

)
(2.11)

v
n+ 1

2
z

∣∣∣∣
i,j,k+ 1

2

= v
n− 1

2
z

∣∣∣∣
i,j,k+ 1

2

− ∆t
ρo∆z

(
pn|i,j,k+1 − pn|i,j,k

)
(2.12)
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2.3. Implementation of the FDTD method

The discretization of the continuity equation (2.9) results in the equation:

pn+1
∣∣∣
i,j,k

= pn|i,j,k −
ρoc

2∆t
∆x

(
v
n+ 1

2
x

∣∣∣∣
i+ 1

2 ,j,k
− v

n+ 1
2

x

∣∣∣∣
i− 1

2 ,j,k

)
−

− ρoc
2∆t

∆y

(
v
n+ 1

2
y

∣∣∣∣
i,j+ 1

2 ,k
− v

n+ 1
2

y

∣∣∣∣
i,j− 1

2 ,k

)
−

− ρoc
2∆t

∆z

(
v
n+ 1

2
z

∣∣∣∣
i,j,k+ 1

2

− v
n+ 1

2
z

∣∣∣∣
i,j,k− 1

2

)
(2.13)

However, as noted in section 2.3.2, care must be taken when implementing equations

2.10-2.13 using a programming language. The mapping between the integer and non-

integer indices and the corresponding computational indices needs to be considered.

A two-dimensional example of such a mapping is shown in Figure 2.3, where the

computational indices are indicated in blue and red for the pressure and velocity

nodes, respectively.

2.3.4 FDTD update equations in two dimensions

To gain insight into the implementation of the FDTD three-dimensional update

equations, it is convenient to consider the two-dimensional version of the discrete

field equations:

pn+1
∣∣∣
i,j

= pn|i,j −
ρoc

2∆t
∆x

(
v
n+ 1

2
x

∣∣∣∣
i+ 1

2 ,j
− v

n+ 1
2

x

∣∣∣∣
i− 1

2 ,j

)
−

− ρoc
2∆t

∆y

(
v
n+ 1

2
y

∣∣∣∣
i,j+ 1

2

− v
n+ 1

2
y

∣∣∣∣
i,j− 1

2

)
(2.14)

v
n+ 1

2
x

∣∣∣∣
i+ 1

2 ,j
= v

n− 1
2

x

∣∣∣∣
i+ 1

2 ,j
− ∆t
ρo∆x

(
pn|i+1,j − pn|i,j

)
(2.15)

v
n+ 1

2
y

∣∣∣∣
i,j+ 1

2

= v
n− 1

2
y

∣∣∣∣
i,j+ 1

2

− ∆t
ρo∆y

(
pn|i,j+1 − pn|i,j

)
(2.16)

First, the derivation will concern the computation of the spatial indices i, j and then

it will consider the computation of the time index n. In order to visualise the spatial
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2. Implementation of FDTD for acoustics

implementation process of the two-dimensional field equations, it is useful to consider

a finite-difference stencil [26]. The FD stencil considered for equation 2.14 is shown

in Figure 2.3. In order to convert equation 2.14 into a form that can be directly

implemented using a programming language it is necessary to map the indexes of

pressure and velocity nodes of the stencil into computational indexes. For the sake

of simplicity, the pressure at node (i, j) is considered for the derivation. Using

Figure 2.3 the following mapping between analytical and computational indexes are

obtained for the pressure and velocity nodes:

pn+1
∣∣∣
i,j
→ pn+1

∣∣∣
2,1

(2.17)

pn|i,j → pn|2,1 (2.18)

v
n+ 1

2
x

∣∣∣∣
i+ 1

2 ,j
→ v

n+ 1
2

x

∣∣∣∣
3,1

(2.19)

v
n+ 1

2
x

∣∣∣∣
i− 1

2 ,j
→ v

n+ 1
2

x

∣∣∣∣
2,1

(2.20)

v
n+ 1

2
y

∣∣∣∣
i,j+ 1

2

→ v
n+ 1

2
y

∣∣∣∣
2,2

(2.21)

v
n+ 1

2
y

∣∣∣∣
i,j− 1

2

→ v
n+ 1

2
y

∣∣∣∣
2,1

(2.22)

The variables in the update equation 2.14 have been transposed to a stencil at a

particular location centered at position (2,1). Equation 2.14 can now be written for

12



2.3. Implementation of the FDTD method

Figure 2.3: Stencil for equation (2.3.4). The computational indices corresponding

to integers (blue) and fractions (red) are also indicated
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2. Implementation of FDTD for acoustics

this particular grid position:

pn+1
∣∣∣
2,1

= pn|2,1 − ρoc
2∆t

[
1

∆x

(
v
n+ 1

2
x

∣∣∣∣
3,1
− v

n+ 1
2

x

∣∣∣∣
2,1

)

− 1
∆y

(
v
n+ 1

2
y

∣∣∣∣
2,2
− v

n+ 1
2

y

∣∣∣∣
2,1

)
(2.23)

The terms pn+1|2,1 and pn|2,1 are effectively the same variable where the value of

pn|2,1 is overwritten by the updated value of pn+1|2,1. Hence, as the time index n

increases, the values of the variables p, vx and vy are consecutively overwritten by

their updated instances. It is therefore possible to simplify the notation used in

equation 2.3.4 and drop the superscript n:

p|2,1 = p|2,1 − ρoc
2∆t

[
1

∆x
[
vx|3,1 − vx|2,1

]
− 1

∆y
[
vy|2,2 − vy|2,1

]]
(2.24)

Equation 2.24 is the continuity update equation for the pressure node centered at

position (2,1). It is important to consider the variables p, vx and vy to be imple-

mented as bidimensional arrays with computation indexes given by i and j. It is

now necessary to generalise equation 2.24 to any node (i, j) in the grid:

p|i,j = p|i,j − ρoc
2∆t

[
1

∆x
[
vx|i+1,j − vx|i,j

]
− 1

∆y
[
vy|i,j+1 − vy|i,j

]]
(2.25)

Equation 2.25 is the two-dimensional continuity update equation that is actually

implemented in a computer program and is valid for any spatial indices (i,j). The

update momentum equations for the velocity in the x- and y-directions can be

derived in the same manner. Considering the velocity update equation 2.15 and

Figure 2.3-b the following mapping between analytical and computational indexes
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2.3. Implementation of the FDTD method

are obtained for the pressure and velocity nodes along the x-direction:

v
n+ 1

2
x

∣∣∣∣
i+ 1

2 ,j
→ v

n+ 1
2

x

∣∣∣∣
3,1

(2.26)

v
n− 1

2
x

∣∣∣∣
i+ 1

2 ,j
→ v

n− 1
2

x

∣∣∣∣
3,1

(2.27)

pn|i+1,j → pn|3,1 (2.28)

pn|i,j → pn|2,1 (2.29)

Substituting the mapping defined by relations 2.26 - 2.29 into equation 2.15, the

following equation is obtained:

v
n+ 1

2
x

∣∣∣∣
3,1

= v
n− 1

2
x

∣∣∣∣
3,1
− ∆t
ρo∆x

[
pn|3,1 − pn|2,1

]
(2.30)

Generalizing equation 2.30 to indices (i, j) and taking into account that vn+ 1
2

x is

assigned the value of vn−
1
2

x , the following equation is obtained:

vx|i,j = vx|i,j −
∆t
ρo∆x

[
p|i,j − p|i−1,j

]
(2.31)

Following the same procedure for the velocity in the y-direction, the following equa-

tion is obtained:
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vy|i,j = vy|i,j −
∆t
ρo∆y

[
p|i,j − p|i,j−1

]
(2.32)

For each time iteration n, equations 2.25 and 2.32 are computed and the field vari-

ables are consequently updated until the desired time duration for the simulation is

reached. This update cycle can be visualised in the flow diagrams shown in Figure

2.13.

2.3.5 FDTD update equations in three dimensions

The extension of the update equations 2.25 and 2.32 to three-dimensional space

follows directly from the two-dimensional case. The three-dimensional continuity

update equation is given by:

p|i,j,k = p|i,j,k − ρoc
2∆t

[
1

∆x
(
vx|i+1,j,k − vx|i,j,k

)
− 1

∆y
(
vy|i,j+1,k − vx|i,j,k

)
−

1
∆z

(
vz|i,j,k+1 − vz|i,j,k

)
(2.33)

The 3D momentum update equations implemented in FDTD are given by:

vx|i,j,k = vx|i,j,k −
∆t
ρo∆x

[
p|i,j,k − p|i−1,j,k

]
(2.34)

vy|i,j,k = vy|i,j,k −
∆t
ρo∆y

[
p|i,j,k − p|i,j−1,k

]
(2.35)

vz|i,j,k = vz|i,j,k −
∆t
ρo∆z

[
p|i,j,k − p|i,j,k−1

]
(2.36)
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2.4 Literature review of the FDTD method

The FDTD method was originally developed to solve practical problems in elec-

tromagnetism [1]. One of the earliest references to the analogy between the FDTD

implementation of electromagnetic radiation and acoustic wave propagation routines

was noted by Kunz [2], who described the possibility to use the Euler and the con-

tinuity equations as an acoustic FDTD analog to the Maxwell curl equations that

are used to describe electromagnetic phenomena. Hence, most of the literature on

FDTD for electromagnetic problems can be very useful for acoustics and references

to these works will be made.

The FDTD method has been implemented in a number of different numerical ap-

proaches. In this section, some of the most important approaches and corresponding

aspects that differentiate these such as field variables, type of numerical grids, use of

implicit or explicit time solvers, approximation of space derivatives, and coordinate

systems are discussed. The following sections provide a survey of different FDTD

implementations.

2.4.1 Field variables

While the most common approach to acoustic FDTD requires both velocity and

pressure fields to be calculated, there are alternative methods that only require the

pressure field to be calculated [27]. One of the main advantages of requiring only the

pressure field for the calculations is a significant saving in memory resources. How-

ever, representation of the acoustic boundary conditions is more complex requiring

the implementation of digital filters. The formulation for both pressure and particle

velocity from the work of Yokota et al. [16] has been used in this thesis.
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2.4.2 Grid geometry

The use of Cartesian numerical grids in FDTD has a natural disadvantage: it must

represent any curved boundaries by using staircase geometry, which can be ineffi-

cient when the spatial resolution required is high. A variety of coordinate systems

other than the standard Cartesian coordinate system have been implemented in

FDTD. Examples include a hexagonal coordinate system that was used to model

the propagation of electromagnetic radiation on the surface of the earth caused by

lightning [28]. Moreover, the use of conformal grids overcomes this disadvantage by

allowing the use of non-regular grids, which will allow modelling geometries that

cannot be specified correctly using a specific type of coordinate system, such as

Cartesian coordinates. Several conformal FDTD methods are available in the lit-

erature [29, 30, 31]. In addition to the use of non-Cartesian coordinate systems

and non-regular grids, another closely related method to FDTD, the finite volume

method [32, 33] can also be used to accurately represent curved surfaces. In this

thesis, the FDTD models do not contain curved surfaces; hence, the use of Cartesian

grids provides a good approximation to their geometry.

2.4.3 Explicit and implicit methods

In the original FDTD formulation [1], time marching is explicit, and therefore the

Courant condition imposes a limit on the maximum time step required to obtain

stable simulations. Alternative formulations exist that are not subject to the re-

quirements dictated by the Courant condition. One of these formulations is known

as the Alternating-Direction Implicit FDTD (ADI-FDTD) and is known to be un-

conditionally stable [34], meaning that simulations are stable even if the time step

is above that dictated by the Courant condition. In this thesis the explicit method

is chosen for its simplicity and the need for additional resources is compensated by

using a new scaling approach.

18



2.4. Literature review of the FDTD method

2.4.4 Approximation of space derivatives

In order to approximate the spatial derivative of pressure, p, that is required to solve

the FDTD equations (section 2.3.3), standard FDTD uses two neighbouring points

from the domain (taking the x-direction as an example):

dp

dx

∣∣∣∣∣
n

x=i∆x
≈
p|ni+1 − p|ni

∆x (2.37)

where n denotes the time index upon which the spatial derivative is evaluated.

Alternative FDTD formulations have been proposed which use four points from

the domain, in what is known as a fourth-order finite-difference approximation [35,

36]:
dp

dx

∣∣∣∣∣
n

x=i∆x
≈
− p|ni+2 + 27 p|ni+1 − 27 p|ni−1 − p|ni−2

24∆x (2.38)

Both second-order and fourth-order approaches use local functions to approximate

spatial derivatives of a given analytical equation. A class of methods called ’spectral

methods’ use global functions to approximate spatial derivatives, resulting in more

accurate approximations of the spatial derivatives [37, 38]. These global functions

can be found using the differentiation property of the Fourier transform [39]:

dp(x)
dx

FT←→ iiikxP̃ (kx) (2.39)

where P̃ (kx) is the complex Fourier transform pair of p(x). Equation 2.39 establishes

a connection between the derivatives of a function and its Fourier transform. The

derivative of p(x) can therefore be approximated by:

d

dx
p(i∆x) ≈ F−1 {iiikxF {p(i∆x)}} (2.40)

where the symbol F and F−1 denote the Fourier transform and the respective in-

verse. Numerically the Fourier transform of a function is often evaluated using the
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Fast Fourier Transform (FFT) algorithm. This class of methods can be imple-

mented with widely available, validated FFT and IFFT routines readily available in

most numerical software libraries.

In this thesis the two-point approximation of the spatial derivatives is used.

2.4.5 Types of sound sources

Different approaches can be used to implement sound sources in FDTD. If the source

calculation cells follow the values dictated by the driving function, irrespective of

the state of their neighbour cells the type of source is called a ’hard’ source, since

it scatters sound waves that are incident upon it. On the other hand, if a sound

source follows the driving function but does not scatter the sound field in which it

is embedded, the source is termed a ’transparent’ source [40]. A visualization of two

hard FDTD pressure sources can be seen in Figure 2.4, where two Gaussian pulses

are positioned close to one another and the scattering of sound by each source is

visible around the source position. All the sources considered in this thesis, whether

acoustic and vibrational, follow the behaviour of a ’hard’ source.

2.4.6 Spatial offset of field variables

In most FDTD approaches, the field variables are offset in space and time, in an

arrangement known as a ’staggered’ grid. The main reason for the offset of field

variables is to reduce discretization errors and prevent instabilities [41]. However, the

spatial offset introduced by staggered grids increases the difficulty of implementing

boundary conditions and handling source and receiver locations [41]. Hence, there

are a number of alternative implementations in which the field variables are only

partially offset [42] or share the same positions in space and time [43]. In this thesis

the staggered grid approach is chosen in order to prevent instabilities and reduce

discretization error.
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Figure 2.4: Two hard Gaussian sources with opposite phases. The source positions

are (60m,60m) and (85m,85m).

2.4.7 Outer radiation boundary conditions

In order to simulate an acoustic free field it is necessary to create a domain which

avoids reflections from the numerical boundaries that is caused by the finite size

of the modelling space. This can be achieved by implementing Outer Radiation

Boundary Conditions (ORBCs). There are a number of ORBCs detailed in the

literature [2]. One of the most commonly used is the Perfectly Matched Layer

(PML) approach. PML boundaries are numerical boundaries that are not physically

meaningful but provide almost complete absorption of waves that are incident at

the edges of the numerical domain. PML boundaries were introduced by Berenger

in 1994 [44] in the context of electromagnetics, but were adapted to other fields such

as acoustics [45].
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Figure 2.5: Output example of a simulation showing instability, occuring before

0.0114 s.

2.5 Stability

A numerical simulation is said to be stable if it produces bounded output when op-

erating over bounded input [35]. An example of the output of an unstable numerical

simulation is shown in Figure 2.5.

A necessary, but not sufficient condition [46] for stability in the FDTD method is

the Courant stability condition:

∆t ≤

C
√√√√( 1

∆x

)2
+
(

1
∆y

)2

+
( 1

∆z

)2

−1

(2.41)

where C is the highest phase velocity of any wave motion within the frequency

range of source excitation [47] and ∆x, ∆y and ∆z are the spatial resolutions in

the x-, y- and z-directions respectively. In the case of acoustic wave propagation,

C will take the value of c, the phase velocity of sound waves propagating in air,

which is given by equation (2.8). The Courant condition is based on the fact that

a wave traveling at a speed C takes a time ∆t = ∆h/C to travel between two

adjacent source and target cells separated by a distance ∆h. If the time step is set
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2.6. Numerical dispersion

larger than ∆h/C, it will create a non-zero value at the target cell, even though

the wave has not physically reached it. This situation would violate causality and

result in numerical instability [48]. Other factors such as damping and boundary

conditions can also give rise to unstable solutions [2, 46] and therefore equation 2.41

is a necessary but not sufficient condition to guarantee numerical stability. Hence,

given a particular simulation, ∆t must always be checked for the time period that

is chosen for the FDTD simulation. Stability can be obtained using a time step is

used which is smaller than that given by the Courant condition [2]. However, the

ideal time step to minimise numerical dispersion errors is as close as possible to that

dictated by the Courant condition [2].

2.6 Numerical dispersion

The FDTD algorithm can also introduce non-physical dispersion in the propagation

of waves in a phenomenon that is known as ’numerical dispersion’. When the nu-

merical medium is dispersive, the phase velocity of the numerical waves depends on

their wavelength and grid density [35]. In a one-dimensional FDTD simulation, the

dispersion relation is given by [35]:

[
1
c∆tsin

(
ω∆t

2

)]2

=
[

1
∆xsin

(
kx∆x

2

)]2

(2.42)

where ω denotes angular frequency and kx denotes wavenumber. As shown in section

2.6.1, Equation 2.42 reduces to the ideal dispersion relation of an acoustic medium,

kx = ω/c when ∆t is set to the Courant limit, which in one dimension is ∆t = ∆x/c.

This indicates that numerical dispersion is completely avoidable in one-dimensional

simulations, provided the time step is set to the Courant limit. Figure 2.6 illustrates

the effect of numerical dispersion on the one-dimensional propagation of a triangular

pulse. The waveform of the triangular pulse is unaffected when the time step is set to

match the Courant limit, indicating there is no numerical dispersion. However, when

the time step is set to 90% of the value dictated by the Courant limit, the waveform of
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Figure 2.6: Triangular pulse propagation in one-dimensional FDTD where the time

step is set to 100% (left) and 90% (right) of the Courant limit.

the triangular pulse undergoes noticeable distortion as the pulse propagates through

the dispersive medium.

In a two or three dimensional FDTD grid, numerical dispersion causes waves to

travel at different speeds along different directions. In these cases, numerical dis-

persion is generally unavoidable, except in the case of a plane wave travelling along

the diagonal directions at the Courant time step. The severity of the numerical

dispersion will depend on several factors such as the direction of propagation in

respect to the grid and the size of the grid elements compared to the wavelength of

the numerical waves [48].

The numerical dispersion relation corresponding to the three-dimensional finite dif-

ference scheme, presented in section 2.3.3, is given by extending equation 2.42

[48, 35]:

[
1
c∆tsin

(
ω∆t

2

)]2

=
[

1
∆xsin

(
kx∆x

2

)]2

+
[

1
∆y sin

(
ky∆y

2

)]2

+
[

1
∆z sin

(
kz∆z

2

)]2

(2.43)

If the spatial resolution of the FDTD model is increased, it is possible to reduce the

numerical dispersion. In fact, by letting ∆t → 0, ∆x → 0, ∆y → 0 and ∆z → 0,

it can be shown that equation 2.43 converges to the ideal dispersion relation of a
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2.6. Numerical dispersion

non-dispersive medium (provided ∆t,∆x,∆y and ∆z follow the Courant condition

2.41) [35]: (
ω

c

)2
= (kx)2 + (ky)2 + (kz)2 (2.44)

A variety of alternative approaches to the standard FDTD finite difference scheme

have been developed that seek to minimise errors due to numerical dispersion, which

include [35]:

• Use of higher order differencing schemes [49, 36];

• Use of hexagonal grids [32];

• Use of the Fourier transform to calculate spatial derivatives [37].

2.6.1 Reduction of the one-dimensional FDTD dispersion relation to the

ideal dispersion relation

The relation that describes numerical dispersion in a 1D FDTD standard explicit

algorithm is given by:

[
1
c∆tsin

(
ω∆t

2

)]2

=
[

1
∆xsin

(
kx∆x

2

)]2

If the time step is set to ∆t = ∆x/c, the Courant limit, the previous relation

simplifies to: [
1

∆xsin
(
ω∆x

2c

)]2

=
[

1
∆xsin

(
kx∆x

2

)]2

Taking the square root on both sides and cancelling out the repeating terms yields:

sin
(
ω∆x

2c

)
= sin

(
kx∆x

2

)
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2. Implementation of FDTD for acoustics

Taking the arcsine of both sides of the equation the ideal dispersion relation is

obtained:

kx = ω/c

2.7 Sound sources

One of the simplest types of sound source is that of a pulsating sphere with radius

ro, where its surface vibrates with a velocity so. As the surface of the sphere moves,

it will displace a volume of fluid around it, since the velocity at the surface of the

sphere must be equal to the velocity of the air particles adjacent to it. The volume

velocity Q of a vanishingly small pulsating sphere is then defined as [50]:

Q = lim
ro→0

so4πr2
o (2.45)

The volume velocity provides a measure of the quantity of air moved per unit time

and is expressed in units of m3/s. Given a time history of Q(t), the corresponding

sound pressure p(r, t) radiated by a point source at a distance r from the source is

given by [51]:

p(r, t) = ρo

4πr
dQ(t− r/c)

dt
(2.46)

The ideal pulsating sphere source is therefore a point source exhibiting radial sym-

metry in the radiated sound field. This type of source is called a monopole point

source. Equation 2.46 also indicates that the time history of the radiated pres-

sure from a point monopole source follows the time derivative of the corresponding

volume velocity function.
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2.8. FDTD acoustic sources

2.7.1 Complex sound sources

More complex sound sources, such as vibrating surfaces can usually be decomposed

into a number of simple monopole sources, where the total radiation is calculated

via the Rayleigh integral [52]:

p(r, t) = iωρo
2π eiωt

∫∫
S

ṽn(rs)e−ik|r−rs|
|r − rs|

dS, (2.47)

where ṽn is the component of the complex velocity (ṽn = |vn| eiφ) that is perpen-

dicular to the vibrating surface, rs is the position of the monopole source on the

vibrating surface, dS is the infinitesimal area of the monopole source and S is the

defining surface area of the vibrating surface.

A moving-coil loudspeaker operated at low frequencies can be approximated as a

piston source, where the the loudspeaker diaphragm is assumed to vibrate with

equal phase and magnitude [53]. A piston with radius ro behaves like a monopole

source in the low-frequency region where kro << 1 [54]. Therefore the low fre-

quency radiation of an electrodynamic loudspeaker can be approximated as that of

a monopole, provided the wavelength of the radiated sound is much larger than any

of the dimensions of the loudspeaker cabinet [55]. This fact is of importance in this

thesis as a loudspeaker operating at low frequencies was used in the FDTD acoustic

models and corresponding experimental validations. The radiation pattern of the

loudspeaker used for this research work was experimentally validated to be that of

a monopole source.

2.8 FDTD acoustic sources

The sound source is a loudspeaker which is implemented in FDTD as a ’hard’ velocity

source, as described in section 2.4.5. The loudspeaker cone points upwards into the
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2. Implementation of FDTD for acoustics

room (z-direction - see Figure 2.9) and was experimentally characterized to be acting

as a piston in the frequency range of interest, as discussed in section 2.7.1 . For this

reason a uniform driving function can be applied over the surface area of the cone

on the FDTD grid. In this thesis, the driving function used for the numerical

simulations is a Gaussian pulse specified in terms of a z-direction velocity vz, which

has the form [46]:

vz(t) = 1√
2πσo

e−(t−to)2/2σ2
o (2.48)

where to indicates the mean value of the Gaussian pulse or, equivalently, the time

offset from the origin and σo represents the spread of the pulse over the time axis.

The constant σo is primarily responsible for the frequency content of the pulse. In-

creasing values of σo will result in wider pulses with lower frequency components.

Equation 2.48 also indicates that the analytical form of the Gaussian pulse does

not have a defined starting time nor does it have an end time. Hence, in numer-

ical computations, the Gaussian pulse must be truncated in such a way as not to

significantly change its frequency characteristics.

One of the main advantages of the Gaussian pulse resides in its simplicity and in

the fact that the analytical form of its frequency spectrum is known [46]:

Vz(ω) = e−iωσoe−ω
2σ2

o/2 (2.49)

Inspection of equation 2.49 shows that the magnitude of the frequency spectrum of a

Gaussian pulse is itself another Gaussian pulse. This implies that a Gaussian pulse

must contain a non-zero static component of the frequency spectrum (0 Hz). This

can be problematic, especially if displacements are being calculated, where the 0 Hz

component would correspond to static deformation. However, when a Gaussian pulse

waveform (equation 2.48) is used to excite the velocity component of the diaphragm

of a loudspeaker, the actual sound pressure radiated from its diaphragm follows the

derivative of this driving function, which contains no static (0 Hz) component. The

derivative of the Gaussian pulse is a function of the form [46]:
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2.8. FDTD acoustic sources

vz(t) = − 1√
2π

(t− to)
σ3

o
e−(t−to)2/2σ2

o (2.50)

This fact is discussed in detail in section 2.7, where it is mentioned that the radiated

sound pressure p(t) from a volume velocity source with a time dependence v(t) takes

its derivative form, p(t) ∝ v′(t). The analytical frequency spectrum of the time

derivative of the Gaussian pulse is given by the following equation [46]:

Vz(ω) = iωe−iωσoe−ω
2σ2

o/2 (2.51)

As can be deduced from equation 2.51, the static component of the time derivative

of the Gaussian pulse is zero. Hence, the radiated derivative of the Gaussian pulse

avoids the problems that can arise with static excitation.

In order to implement a Gaussian pulse in FDTD, equation 2.48 was discretized to

a finite number of values:

vz(n) = 1√
2πσo

e−(t(n)−to)2/2σ2
o (2.52)

where vz indicates the vertical z-component of the velocity that was used to imple-

ment the source (Figure 2.9). As mentioned previously, the choice of σo will mostly

depend on the desired frequency range of excitation. Figures 2.7 and 2.8 depict

the waveforms and corresponding frequency spectra for a Gaussian pulse and its

derivative. It can be seen that the static component is the highest of the frequency

components in the case of the Gaussian pulse and is vanishingly small for the deriva-

tive of the Gaussian pulse. Since the numerical Gaussian pulse must be a truncated

version of the analytical pulse, the choice of to should ensure that the discrete pulse

approximates the analytical pulse in a reasonable way, and that can be checked by

applying a DFT to the truncated pulse.

Figure 2.9 shows the FDTD implementation of the loudspeaker sound source used

in this thesis, for the x-direction (horizontal) and the z-direction (vertical). The
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Figure 2.7: Example of a Gaussian pulse (to = 0.01s, σo = 0.001s) waveform (left)

and corresponding magnitude frequency spectrum (right).
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Figure 2.8: Example of the derivative of the Gaussian pulse (to = 0.01s, σo = 0.001s)

waveform (left) and corresponding magnitude frequency spectrum (right).
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2.9. Boundary conditions

x

z

Driving Function

Room Boundary

Loudspeaker Cabinet

Figure 2.9: FDTD implementation of the loudspeaker as a hard velocity source.

velocity elements representing the loudspeaker cone were assigned the same velocity

values that correspond to the measured cone velocity with transient excitation from

a Gaussian pulse, which will be referred to as the driving function. The other velocity

elements that form the boundary are set to zero to represent the rigid boundaries

of the loudspeaker cabinet. Implementing the loudspeaker in this way emulates a

piston on the surface of a sealed cabinet, since all elements of the diaphragm move

with the same velocity.

2.9 Boundary conditions

The boundary conditions for acoustic problems are usually expressed in terms of

acoustic impedance, i.e. the ratio of sound pressure measured at a point on the sur-

face to the velocity component that is normal to the boundary, vn, at the same mea-

surement position. The normal acoustic surface impedance Za,n is defined as

Za,n = p

vn
(2.53)

The normal acoustic surface impedance is expressed in units of Pa.s/m.

The specific acoustic impedance is also often used and is defined as the ratio of the
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2. Implementation of FDTD for acoustics

normal acoustic surface impedance to the characteristic impedance of the medium:

Za,s = Za,n

ρoc
(2.54)

The specific acoustic impedance is a dimensionless quantity.

2.9.1 Estimation of the specific acoustic impedance

Several methods can be used to estimate the specific acoustic impedance of a sur-

face.

One method to estimate an average specific acoustic impedance of all the surfaces

present in a room is to perform acoustic measurements in the room and measure the

damping constants, δn, associated with each mode in a given frequency interval. The

damping constant associated with a particular room mode n with indices (p, q, r) is

calculated using the following expression [56]:

δn = π∆f/fo (2.55)

where ∆f corresponds to the 3dB down points associated with each modal peak,

as described in the literature [57, 58]. The damping constant, δn, is related to the

specific acoustic impedance using the following equation [57]:

Za,s = co

δn

(
εp,n
Lx

+ εq,n
Ly

+ εr,n
Lz

)
(2.56)

where εp,n = 1 if p = 0 and εp,n = 2 otherwise. The same applies to the other two

modal indices, q and r. The average specific acoustic impedance can be calculated

once the values of specific acoustic impedance are known for a number of room

modes.
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2.10. FDTD implementation of acoustic boundary conditions

2.10 FDTD implementation of acoustic boundary conditions

In this thesis, all the acoustic boundary conditions used were frequency-independent

and locally reactive.

Considering the three Cartesian directions, the FDTD equations for frequency-

independent acoustic boundary conditions assume the following form [16]:

v
n+ 1

2
x

∣∣∣∣
i+ 1

2 ,j,k
= pn|i,j,k /Za,x (2.57)

v
n+ 1

2
y

∣∣∣∣
i,j+ 1

2 ,k
= pn|i,j,k /Za,y (2.58)

v
n+ 1

2
z

∣∣∣∣
i,j,k+ 1

2

= pn|i,j,k /Za,z (2.59)

where Za,x, Za,y and Za,z are the acoustic surface impedance along the x, y and z

directions. In order to model more general frequency-dependent boundary boundary

conditions, other methods do exist, such as the approach developed by Sakamoto et

al [4] based on a mass-spring-damper model or using infinite impulse response filters

[59].

2.11 Sound propagation in porous media

Models that describe sound propagation inside porous materials range from detailed

theoretical models such as Biot theory for sound propagation within an elastic frame

(i.e. the solid constituent of a porous material) [60] to empirical models that use

the concept of an equivalent fluid such as the model from Delany and Bazley [61].

For a comprehensive review of different prediction models, see the works by Allard

[62] and Cox [63].
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x x

Figure 2.10: Rayleigh model: approximation of an open cell porous material as a

set of parallel narrow channels.

This section describes one of these models, the Rayleigh model [56], which has

previously been incorporated into FDTD to model the acoustic behaviour of a porous

sound absorber [24]. A new model was developed during this research, a Moving

Frame Model (MFM) to overcome the assumption of the Rayleigh model that the

frame of the porous material is rigid and stationary.

2.11.1 Rayleigh model

Sound propagation inside a porous material is incorporated in the FDTD model

using the Rayleigh model [56]. This model treats the porous material as a set of

parallel narrow channels that are connected to the air outside the material, as shown

in Figure 2.10. These channels are assumed to be embedded in a rigid frame. As the

air particles propagate through the narrow channels, there are viscous losses which

lead to the conversion of mechanical energy into heat. These losses are characterised

by the airflow resistance of the channel which describes the ease with which air can

flow through a material. Assuming, the air flows at a constant velocity v throughout

the cross sectional area of the tube, the specific airflow resistance per unit length of

channel, Rs, is given by:

Rs = −1
v

∂p

∂x
(2.60)
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2.11. Sound propagation in porous media

where the SI units of the specific airflow resistance are Pa.s./m. Specific airflow

resistance can be directly measured with a sample of thickness d, cross-sectional

area S by establishing a pressure differential ∆p across the sample and therefore

forcing a volume V of air through the sample during a time T . For homogeneous

materials, the airflow resistivity (Pa.s./m2) , r, is then calculated from [64]:

r = −TS
V

∆p
d

(2.61)

The acoustic field inside each air channel for an arbitrary spatial orientation is

described by [65]:

ρo
∂vi
∂t

+∇p+ rvi = 0 (2.62)

where vi is the average air particle velocity developed across each air channel of the

porous material along the ith direction. This is a simplification, since the actual

velocity profile that develops across the air channel is not constant but is zero at the

boundaries and reaches its maximum at the middle section of the air channel [56]. In

three-dimensional space, the momentum vector equation (2.62) can be decomposed

into Cartesian components as follows:

ρo
∂vx
∂t

+ ∂p

∂x
+ rxvx = 0 (2.63)

ρo
∂vy
∂t

+ ∂p

∂y
+ ryvy = 0 (2.64)

ρo
∂vz
∂t

+ ∂p

∂z
+ rzvz = 0 (2.65)

where rx, ry and rz denote the airflow resistivities along the x-, y- and z-directions

as it is possible for a non-homogeneous porous material to have different airflow

resistivities along different directions, typically along the thickness (longitudinal)

and lateral directions of a sheet of porous material [57]. Various empirical formulae

and measured data for longitudinal and lateral air flow resistivities are available

in the literature [63, 57]. The continuity equation that is used to model a porous
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material is the same as equation (2.9), but it is necessary to consider the average

particle velocity of air across the channels:

∂p

∂t
= −ρoc2

(
∂vx
∂x

+ ∂vy
∂y

+ ∂vz
∂z

)
(2.66)

For example, in one dimension (along the x-direction), the continuity equation re-

duces to:
∂p

∂t
+ ρoc

2∂vx
∂x

= 0 (2.67)

The Rayleigh model provides an approximate description of the losses that occur due

to the friction between the air particles and the rigid frame of the porous material.

However, it assumes that the rigid frame remains stationary.

The Rayleigh model is valid for a range of frequencies ω that satisfy the relation

[56]:

ω .
4r
ρo

(2.68)

2.11.2 Moving Frame Model

The Rayleigh model provides an approximate description of the losses that occur due

to the friction between the air particles and the rigid frame of the porous material.

However, it assumes that the rigid frame of the porous panel remains stationary. At

’low’ frequencies the movement of the air particles inside the porous material cause

the frame to move due to its low mass impedance [66]. If the frame of the porous

panel is allowed to move along the direction of the narrow air channels (Figure 2.10)

and the velocity of the air particles is considered in relation to the frame for the

resistive term in equation 2.62, it is possible to account for the motion of the frame

in FDTD with a Moving Frame Model (MFM) by rewriting equation (2.62) as

ρo
∂vi
∂t

+−→∇p+ rvair|frame = 0 (2.69)
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2.11. Sound propagation in porous media

where vair|frame is the velocity of the air particles vi relative to the frame velocity, vF,

given by:

vair|frame = vi − vF (2.70)

The pressure inside the porous material is updated using the equation of continuity

for the Rayleigh model (equation (2.66)) with the density of air. The following

assumptions are now made in order to calculate the frame motion for the porous

panel:

1. The porous panel is a limp mass with no bending stiffness.

2. Each element of the panel can be treated as being independent from its sur-

rounding elements.

3. The frame is perfectly rigid and therefore does not undergo wave motion.

Therefore each volume element of the porous panel can be approximated as a lumped

mass and the corresponding equation of motion can be written as:

∆p = mS
∂vF

∂t
(2.71)

where ∆p represents the pressure difference across the porous panel element, mS is

the mass per unit area of the panel. The pressure gradient ∆p is calculated from

the two pressure nodes that are adjacent to opposite sides of the panel. Once the

pressure gradient is known, Equation (2.71) is used to calculate the frame velocity

vF. Once the frame velocity is known, the velocity of the air particles inside the

air channel is calculated using equation (2.69). The MFM calculation procedure is

illustrated using a flow diagram in Figure 2.13.

The MFM can be used for porous panels that partially or completely divide a room.

For the latter this leads to a spring-mass-spring resonance as shown in Figure 2.11,

which is not considered in existing literature.

For the system in Figure 2.11, the frequency at which the spring-mass-spring reso-
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Figure 2.11: Room volume separated by a porous panel (left) and its equivalent

spring-mass-spring model (right).

nance, fo, occurs is given by:

fo = 1
2π

√
k1 + k2

m
(2.72)

where m is the total mass of the panel and k1 and k2 are the stiffness corresponding

to each enclosed volume of air on either side of the porous panel. The stiffness values

k1 and k2 are calculated using [54]:

k = ρoc
2S2/V (2.73)

where V is the volume of air and S is the area of the porous panel.

2.12 FDTD implementation of the porous material

This section describes the implementation of an FDTD model of a porous material.

The implementation is based on the Rayleigh model for a porous material, which was

previously used by Suzuki et al [24]. However, there are a few limitations inherent to

the Rayleigh model, particularly the assumption of a stationary frame which limits

the accuracy of the FDTD predictions. Hence, a new Moving Frame Model (MFM),

described in section 2.11.2, was developed in this thesis to overcome this limitation

and its implementation is described in this section.
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2.12. FDTD implementation of the porous material

2.12.1 Rayleigh model of a porous material

As mentioned in section 2.11.1, the continuity equation for a porous material is

identical to that previously considered for the air medium.

Discretization of the momentum equations that describe the sound field inside a

porous material (equations 2.63 - 2.65) leads to

v
n+ 1

2
x

∣∣∣∣
i+ 1

2 ,j,k
= 1
ρo + rx∆t

[
−∆t

∆x
(
pn|i+1,j,k − pn|i,j,k

)
+ ρo v

n− 1
2

x

∣∣∣∣
i+ 1

2 ,j,k

]
(2.74)

v
n+ 1

2
y

∣∣∣∣
i,j+ 1

2 ,k
= 1
ρo + ry∆t

[
−∆t

∆y
(
pn|i,j+1,k − pn|i,j,k

)
+ ρo v

n− 1
2

y

∣∣∣∣
i,j+ 1

2 ,k

]
(2.75)

v
n+ 1

2
z

∣∣∣∣
i,j,k+ 1

2

= 1
ρo + rz∆t

[
−∆t

∆z
(
pn|i,j,k+1 − pn|i,j,k

)
+ ρo v

n− 1
2

z

∣∣∣∣
i,j,k+ 1

2

]
(2.76)

These update equations model the sound field inside the porous material. If the

airflow resistivity is set to zero, equations 2.74-2.76 reduce to equations 2.10-2.12,

respectively.

2.12.2 Moving frame model

The variable vair|frame in equation 2.69, denoting the velocity of the air particles

relative to the frame velocity is given in discretized form by:

vair|frame
n+ 1

2
∣∣∣
i+ 1

2
= vn+ 1

2
∣∣∣
i+ 1

2
− vn+ 1

2
F (2.77)

Figure 2.12 shows an example of the lumped mass in the thickness direction of the

panel which is represented by two velocity elements. The volume element with mass

m (shaded blue) is subject to a pressure gradient (which in this example is pi+1−pi−1)
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vi-3/2 vi-1/2 vi+1/2 vi+3/2

pi-1 pi pi+1

Figure 2.12: Example volume element with a mass m and velocity vF representing

the porous panel

such that all points within it move with the same velocity, vF. After some algebraic

manipulation, discretisation of equations 2.69 and 2.71 results in:

v
n+ 1

2
F = −∆t

mS

(
pn|i+1 − pn|i−1

)
+ v

n− 1
2

F (2.78)

vn+ 1
2
∣∣∣
i+ 1

2
= 1
ρo + r∆t

[
−∆t

∆x
(
pn|i+1 − pn|i

)
+ ρo v

n− 1
2
∣∣∣
i+ 1

2
+ r∆tvn+ 1

2
F

]
(2.79)

If the mass per unit area of the panel mS approaches infinity, the frame velocity

vF will approach zero and equation 2.79 reduces to equations 2.74, 2.75 or 2.76

depending on the direction being evaluated. The motion of the panel is assumed to

be unrestricted in the y-direction; hence only equations 2.78 and 2.79 are used to

calculate the panel motion in this direction.

The MFM is implemented in such a way that knowledge of k1 and k2 in equation

2.72 is not required for calculation of fo. This is because movement of the frame

is inherently included in FDTD update equations 2.78 and 2.79 regardless of the

volume of the room or whether the porous panel partially or completely divides the

room. This inherent connection between the frame velocity vF and the acoustic field

variables p and v is illustrated in Figure 2.13. The flow diagrams show the calculation

sequence followed by the FDTD main loop and compares a basic acoustic FDTD

routine with another that considers the MFM. In the case of the MFM diagram, it

can be seen that any changes in the frame velocity will effect subsequent calculations

of the pressure and velocity fields.
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Start loop

t < to?

Calculate p

Calculate v

Print results

False

True

t=t+Δt

Start loop

t < to?

Calculate p

Calculate v

Print results

Calculate vF

t=t+Δt

False

True

Figure 2.13: Flow diagrams indicating the acoustic FDTD routine (left) and the

routine including the Moving Frame Model (right)
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2. Implementation of FDTD for acoustics

2.13 Conclusions

This chapter addressed theoretical aspects of sound propagation in air by intro-

ducing the field variables and equations used to describe acoustics problems. The

implementation of the corresponding FDTD update acoustic equations was derived

and described alongside the theoretical aspects. For porous materials that divide

a space, a new model with a moving frame was introduced along with its deriva-

tion. This gives the potential for the existence of a spring-mass-spring resonance for

acoustic cavities separated by a porous material.
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3 Implementation of FDTD for vibroacoustics

3.1 Introduction

This chapter addresses both theoretical and numerical aspects that are required to

implement FDTD for vibration and vibroacoustics problems.

Section 3.2 outlines a brief literature review on vibroacoustics FDTD.

Section 3.3 considers some theoretical aspects of sound propagation in purely elastic

solid media, e.g. media where no losses in mechanical energy occur. A brief summary

of the elastic wave types that can occur in thin plate structures and corresponding

phase velocities is also included in this section.

Section 3.4 introduces the modelling of damping and the focus will turn to sound

propagation in viscoealstic media. The tensor form of the constitutive and mo-

mentum equations are introduced in this section. The vector form of the two- and

three-dimensional field equations for viscoelastic propagation is introduced in section

3.5, for the two- and three-dimensional cases.

Section 3.6 describes the field variables necessary to model vibration problems in

FDTD and section 3.7 describes the implementation of the viscoelastic update equa-

tions in FDTD.

Section 3.8, includes a description on the frequency characteristics of the viscoelastic

damping model described in the preceding sections which is used for the FDTD

simulations in this thesis.

Section 3.9 describes the factors that need to be considered to ensure stability of a

viscoelastic FDTD simulation.

Section 3.10 describes the implementation of vibration sources in FDTD.
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3. Implementation of FDTD for vibroacoustics

Section 3.11 describes the implementation of simply supported boundaries in FDTD.

Section 3.12 introduces a new approach to modelling the air/solid boundary condi-

tions, which results in significant computational efficiency and simplified implemen-

tation when compared to the standard approach.

In section 3.13 a new ’scaling approach’ to formulating vibroacoustics problems is

introduced. The scaling approach consists of scaling the geometrical and dynam-

ical characteristics of a systems in a way which greatly increases computational

efficiency.

3.2 Literature review on FDTD for vibroacoustics

This section presents a brief literature review of the FDTD method as applied to

vibration and vibroacoustics, covering fundamental aspects such as the field variables

used and the type and geometry of numerical grid used in the calculations.

3.2.1 Field variables

In terms of field variables, several formulations have been used in FDTD to de-

scribe elastic wave propagation. These include formulations based on displacement

and stress, formulations based on velocity and stress, and formulations based only

on displacement [67]. In terms of vibroacoustics, the velocity and stress field vari-

able formulation has been combined with the air pressure and particle velocity as

described by Toyoda et al [68]. In this thesis, the field variables that were imple-

mented in the vibroacoustics FDTD model are based on the work of Toyoda et al

[68].
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3.2.2 Grid geometry

The simplest type of grid geometry encoutered in vibration FDTD is the rectangular

grid. There are several examples illustrating the use of a rectangular grid geometry,

such as the work by Schroeder et al. [10]. More complex grid geometries have been

implemented. Cylindrical [8] and spherical coordinates [69] are examples of complex

grid geometries used in vibration FDTD.

3.2.3 Explicit and implicit methods

The field variables are related by algebraic equations, formulated in the time domain.

In this thesis, these equations are arranged so that they can be solved explicitly,

following the work by Toyoda et al [68]. Other arrangements of the discretized

equations to allow the use of implicit time solvers have also been described in the

literature [67], but these are not considered here given the increased complexity of

their implementation.

3.2.4 Spatial offset of field variables

In FDTD the two continuous field variables of stress and velocity are discretized

at several positions and can be offset in space, forming an arrangement known as

a staggered grid. Other approaches do exist where the field variables are partially

spatially offset or can be located at the same positions [67]. In this thesis, the

staggered grid approach was used.
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3.2.5 Outer radiation boundary conditions

As mentioned in chapter 2, it is necessary, in order to solve problems that require

open boundaries, to implement the Perfectly Matched Layers (PML). The PML

boundaries have been adapted to vibration FDTD, as can be found in the work of

Hastings et al [70].

3.3 Sound propagation in purely elastic media

The propagation of mechanical waves in three-dimensional solid elastic media is

modelled using a system of two tensor equations [71, 72], the momentum equa-

tion:

ρ
∂vi
∂t

= ∂σji
∂xj

(3.1)

where ρ is the density of the elastic solid medium, and the constitutive equa-

tion:

σij = Cijklεkl (3.2)

where Cijkl is the stiffness tensor of rank 4 [71, 72]. The strain tensor is related to

the material element displacement field by [72]:

εij = 1
2

(
∂uj
∂xi

+ ∂ui
∂xj

)
(3.3)

3.3.1 Momentum equation

The momentum equation describes the relationship between the stress tensor acting

on an element of solid material and the resulting state of motion of that element.
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3.3. Sound propagation in purely elastic media

Figure 3.1: Normal and shear stresses acting along the z-direction of a Cartesian

element of a solid medium.

Figure 3.1 illustrates the infinitesimal forces acting on the z direction of motion of a

solid medium element. Equation 3.1, the momentum equation, is a tensor equation.

If expanded in Cartesian coordinates, it is equivalent to the following system of

first-order partial differential equations:

ρ
∂vx
∂t

= ∂σxx
∂x

+ ∂σxy
∂y

+ ∂σxz
∂z

(3.4)

ρ
∂vy
∂t

= ∂σxy
∂x

+ ∂σyy
∂y

+ ∂σyz
∂z

(3.5)

ρ
∂vz
∂t

= ∂σzx
∂x

+ ∂σyz
∂y

+ ∂σzz
∂z

(3.6)

The momentum equations (3.4)-(3.6) can be derived using the diagram shown in

figure (3.1). This diagram illustrates the infinitesimal forces acting on the z direction

of motion of a solid medium element. If a force balance is taken, the following

relation is obtained:
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3. Implementation of FDTD for vibroacoustics

(
σzz + ∂σzz

∂z
dz

)
dxdy +

(
σyz + ∂σyz

∂y
dy

)
dxdz+

+
(
σxz + ∂σxz

∂x
dx

)
dydz − σzzdxdy−

− σyzdydz − σxzdxdz = ρ
∂vz
∂t

dxdydz

which is equivalent to

∂σzz
∂z

dxdydz + ∂σyz
∂y

dxdydz + ∂σxz
∂x

dxdydz = ρ
∂vz
∂t

dxdydz

which reduces to

∂σzz
∂z

+ ∂σyz
∂y

+ ∂σxz
∂x

= ρ
∂vz
∂t

which is identical to equation (3.6).

3.3.2 Constitutive equation

The constitutive equation describes the relation between the stress applied on an

element of the solid medium and the corresponding deformation of that element.

The 4th rank stiffness tensor Cijkl introduced in equation 3.2 contains 36 independent

elastic constants. However, if the propagation medium is assumed to be isotopic,

the number of elastic constants is reduced to two independent constants. Under the

assumption of isotropy, equation 3.2 can be simplified to [72]:

σij = λεkkδij + 2µεij (3.7)
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3.3. Sound propagation in purely elastic media

where λ and µ correspond to the first and second Lamé constants, respectively. The

constant µ is the shear modulus which is commonly denoted as G in the litera-

ture.

3.3.3 Elastic waves occurring in thin plates

This thesis primarily concerns the modelling of thin plates [73] using a general three-

dimensional FDTD method that, for flexibility, can support all wave types. There

are four types of structure-borne sound waves that occur over the audio frequency

range in thin plates: bending, transverse shear, quasi-longitudinal and dilatational

waves [73].

For the low-frequency vibroacoustic applications that are considered for engineering

structures in this thesis it is often bending waves that are of primary interest. For

this reason the validity of the general three-dimensional FDTD method in repro-

ducing thin plate bending wave motion is assessed numerically. A comparison of

FDTD and analytical bending wave theory for thin plates [73] is shown in Appendix

II through consideration of both mode shapes and eigenfrequencies. These results

confirm the validity of the general three-dimensional FDTD method for simulating

thin plate bending wave theory.

3.3.3.1 Phase velocity

Since the stability of the explicit FDTD method is limited by the Courant condi-

tion (equation 2.41), it is important to discuss the phase velocities of each type of

wave.

For dilatational waves, the phase velocity cD is given by [73]:

cD =

√√√√2µ (1− ν)
ρ (1− 2ν) (3.8)

where ν is Poisson’s ratio.
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3. Implementation of FDTD for vibroacoustics

For quasi-longitudinal waves, the phase velocity cL is given by [73]:

cL =
√

E

ρ (1− ν2) (3.9)

where E is Young’s modulus.

For bending waves, the phase velocity cB is given by [73]:

cB =
√

2πfhcL√
12

(3.10)

For transverse shear waves, the phase velocity cT is given by [73]:

cT = cL

√
1− ν

2 (3.11)

3.4 Sound propagation in viscoelastic media

In order to model the propagation of sound in media that is subject to dissipation

of mechanical energy, two different types of damping mechanisms are considered in

the implementation of the FDTD method. The combination of these two damping

mechanisms results in a frequency-dependent damping whose characteristics are

similar to that obtained when using Rayleigh damping. The method described in

this thesis largely follows from that presented by Toyoda et al [71].

50



3.4. Sound propagation in viscoelastic media

3.4.1 Momentum equation

The first type of damping mechanism considered in this work is implemented in the

momentum equation (3.1)[71]:

ρ
∂vi
∂t

= ∂σji
∂xj
− βvi (3.12)

The term βvi describes damping that is proportional to the velocity of each element

of the solid medium. It is worth noting that this form of damping is proportional

only to the velocity of the element, regardless of the velocities of its neighbour

elements, i.e. how the material deforms. It can equally be thought as a body force

per unit volume that is responsible for the dissipation of mechanical energy.

3.4.2 Constitutive equation

In order to model the elastic deformation of a material and consequent dissipation

of mechanical energy, it is necessary to consider the theory of viscoelasticity, which

encompasses the theories of elasticity and viscosity. The constitutive equation for a

solid in which the propagation of sound occurs with dissipation of energy is deter-

mined using the theory of viscoelasticity.

Basic viscoelasticity theory considers a solid material to be composed of a network

of ideal springs and dashpots, where elastic strain energy is stored at the springs

and dissipation of energy as heat occurs at the dashpots [74]. This viscoelastic

formulation of the solid medium allows for dissipation of energy as the material

deforms, and it will be shown that the rate of energy dissipation depends on how

the viscoelastic medium deforms.
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k c

A

B

Figure 3.2: Basic Voigt element.

3.4.2.1 One-dimensional constitutive equation

A linear viscoelastic material is idealized to consist of a linear network of elastic

elements (e.g. springs) and viscous elements (e.g. dashpots). In the basic Voigt

model, depicted in Figure 3.2, a spring (with associated stiffness k) and a dashpot

(with associated damping c) are connected in parallel. This results in the deforma-

tion of the spring being the same as the deformation of the dashpot, when a force F

is applied to endpoints A and B. The corresponding constitutive equation is given

by [74]:

F (t) = kε(t) + c
dε(t)
dt

(3.13)

where ε denotes the strain tensor. The Voigt model was chosen to simulate the

viscoelastic behaviour of the plate.

3.4.2.2 Three-dimensional constitutive equation

A three-dimensional viscoelastic constitutive relation based on the linear Voigt el-

ement is used to complement the damping form discussed in the previous section.

Equation 3.2 was modified to take into account mechanical energy losses:

σij(t) = Cijklεkl + ξijklεkl (3.14)
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3.4. Sound propagation in viscoelastic media

where ξijkl is the viscosity tensor. The rate-of-strain tensor, εkl is related to the

material velocity field by:

εij = dεij
dt

= 1
2

(
∂2uj
∂xi∂t

+ ∂2vi
∂xj∂t

)
= 1

2

(
∂vj
∂xi

+ ∂vi
∂xj

)
(3.15)

Considering equations 3.14 and 3.15, it can be seen that this type of damping is

proportional to the gradient of the components of the velocity field.

The first term of the right-hand side of equation 3.14 corresponds to the stresses orig-

inated by purely elastic deformations and the second term represents the stress that

are caused by viscous behaviour of the solid medium. However, if the propagation

medium is assumed to be isotropic, equation 3.14 can be simplified into

σij = λεkkδij + 2µεij + χ
dεkk
dt

δij + 2γ dεij
dt

(3.16)

where χ and γ are viscous constants responsible for energy dissipation. The term

εkk is defined by:

εkk = ∂ui
∂xi

=
∑
i

∂ui
∂xi

(3.17)

Since FDTD is a time marching method, the time derivative must be taken on both

sides of equation 3.16 in order to implement it:

dσij
dt

= λεkkδij + 2µεij + χ
dεkk
dt

δij + 2γ dεij
dt

(3.18)

where the term εkk is defined by:

εkk = ∂vi
∂xi

=
∑
i

∂vi
∂xi

(3.19)

Substituting equations 3.15 and 3.19 into equation 3.18, one obtains the constitutive

relation between stress and velocity fields for a given solid material element:

∂σij
∂t

= λ
∂vi
∂xi

δij + µ

(
∂vj
∂xi

+ ∂vi
∂xj

)
+ χ

∂

∂t

∂vi
∂xi

δij + γ
∂

∂t

∂vj
∂xi

+ γ
∂

∂t

∂vi
∂xj

(3.20)
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A useful substitution is found by applying Clairaut’s theorem of the equivalence of

reversed mixed derivatives to equation (3.20)[75]. Reversing the order of the mixed

derivatives of the viscous terms, the following equation is obtained:

∂σij
∂t

= λ
∂vi
∂xi

δij + µ

(
∂vj
∂xi

+ ∂vi
∂xj

)
+ χ

∂

∂xi

∂vi
∂t
δij + γ

∂

∂xi

∂vj
∂t

+ γ
∂

∂xj

∂vi
∂t

(3.21)

It is noted that
∂vi
∂t

= ai (3.22)

Hence, the advantage of reversing the partial derivatives is that the more familiar

quantity acceleration ai is now being considered for the computation of the viscous

terms, instead of using the spatial derivative of the velocity. In this thesis, Clairaut’s

theorem is used to derive the field equations that describe structure-borne sound

propagation in solid materials.

3.5 Full form of the viscoelastic field equations

In the previous section, the tensor form of the viscoelastic momentum and constitu-

tive equations was presented. In this section, the tensor form of these two equations

is expanded to obtain the corresponding system of linear partial differential equa-

tions.

3.5.1 Two dimensionions

When two-dimensional Cartesian space is taken into account, there are only five

variables to be considered and equations (3.12) and (3.18) reduce to a system of

five partial differential equations. Considering the xz-plane, the system of equations
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3.5. Full form of the viscoelastic field equations

is:

ρ
∂σxx
∂t

= (λ+ 2µ) ∂vx
∂x

+ λ
∂vz
∂z

+ (χ+ 2γ) ∂
2vx

∂x∂t
+ χ

∂2vz
∂z∂t

(3.23)

ρ
∂σzz
∂t

= λ
∂vx
∂x

+ (λ+ 2µ) ∂vz
∂z

+ χ
∂2vx
∂x∂t

+ (χ+ 2γ) ∂
2vz

∂z∂t
(3.24)

ρ
∂σxz
∂t

= µ

(
∂vx
∂z

+ ∂vz
∂x

)
+ γ

(
∂2vx
∂z∂t

+ ∂2vz
∂x∂t

)
(3.25)

ρ
∂vx
∂t

= ∂σxx
∂x

+ ∂σxz
∂z
− βvx (3.26)

ρ
∂vz
∂t

= ∂σzx
∂x

+ ∂σzz
∂z
− βvz (3.27)

where vx and vz are the velocity variables and σxx, σzz and σxz are the stress vari-

ables.

3.5.2 Three dimensions

In three dimensions, the system comprising the two tensor equations 3.12 and 3.18

encompasses the nine first-order linear differential equations that are necessary to

solve for the nine field variables of stress and velocity. These equations can be

written in full form as follows:

∂σxx
∂t

= (λ+ 2µ) ∂vx
∂x

+ λ
∂vy
∂y

+ λ
∂vz
∂z

+ (χ+ 2γ) ∂
2vx

∂x∂t
+ χ

∂2vy
∂y∂t

+ χ
∂2vz
∂z∂t

(3.28)

∂σyy
∂t

= λ
∂vx
∂x

+ (λ+ 2µ) ∂vy
∂y

+ λ
∂vz
∂z

+ χ
∂2vx
∂x∂t

+ (χ+ 2γ) ∂
2vy

∂y∂t
+ χ

∂2vz
∂z∂t

(3.29)

∂σzz
∂t

= λ
∂vx
∂x

+ λ
∂vy
∂y

+ (λ+ 2µ) ∂vz
∂z

+ χ
∂2vx
∂x∂t

+ χ
∂2vy
∂y∂t

+ (χ+ 2γ) ∂
2vz

∂z∂t
(3.30)
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∂σxz
∂t

= µ

(
∂vx
∂z

+ ∂vz
∂x

)
+ γ

(
∂2vx
∂z∂t

+ ∂2vz
∂x∂t

)
(3.31)

∂σyz
∂t

= µ

(
∂vy
∂z

+ ∂vz
∂y

)
+ γ

(
∂2vy
∂z∂t

+ ∂2vz
∂y∂t

)
(3.32)

∂σxy
∂t

= µ

(
∂vx
∂y

+ ∂vy
∂x

)
+ γ

(
∂2vx
∂y∂t

+ ∂2vy
∂x∂t

)
(3.33)

ρ
∂vx
∂t

= ∂σxx
∂x

+ ∂σxy
∂y

+ ∂σxz
∂z
− βvx (3.34)

ρ
∂vy
∂t

= ∂σxy
∂x

+ ∂σyy
∂y

+ ∂σyz
∂z
− βvy (3.35)

ρ
∂vz
∂t

= ∂σzx
∂x

+ ∂σyz
∂y

+ ∂σzz
∂z
− βvz (3.36)

The constants β, χ and γ account for the losses of mechanical energy losses in the

system, as was discussed in the analysis carried out in section 3.4.

3.6 FDTD vibration field variables

This section describes the field variables necessary to formulate vibracoustics prob-

lems and the corresponding implementation in FDTD.

3.6.1 Vibration

As mentioned in section 3.2.1, the field variables used in this thesis to model propa-

gation of elastic waves are the velocity vi and stress σ. In three dimensional space,

the velocity variable comprises the components vx, vy and vz, and indicates the di-
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3.6. FDTD vibration field variables

Figure 3.3: Three-dimensional staggered grid arrangement of a FDTD calculation

cell.

rection of the cyclic motion of the solid material particles that are associated with

the corresponding vibrations. The stress σ is a tensor variable which comprises six

independent components, σxx, σyy, σzz, σxy, σxz and σyz. The stress tensor estab-

lishes the relation between the cyclic stress applied to a material element and the

corresponding cyclic deformation of that element. In this thesis, the velocity and

stress components are denoted as field variables for the vibration problems.

3.6.2 Arrangement of vibration field variables in FDTD

Figure 3.3 illustrates the spatial arrangement of the field variables within a single

three dimensional calculation staggered grid cell [10, 68] used for this thesis. These

single calculation cells are combined together to form a larger structure, such as a

thin plate or a solid parallelepiped. Figure 3.3 indicates that the field variables are

generally offset in space except for the normal components of the stress tensor, which

are located at the same spatial position in the calculation cell. In this work, the

positions along the x, y and z axis are denoted by the indexes i, j and k respectively.

It is useful to consider a two-dimensional version of the staggered grid arrangement,

so the spatial indexes of the variables can be visualised. Figure 3.4 illustrates a

two-dimensional staggered grid for a FDTD vibration problem, where the indexes i

and j correspond to the positions along the x- and y-directions.

57



3. Implementation of FDTD for vibroacoustics

i-0.5 i i+0.5 i+1 i+1.5 i+2

j

j-0.5

j+0.5

j+1.5 vx

vy

σxx, σyy
σxy

x

y

Figure 3.4: Two-dimensional staggered grid arrangement of a FDTD calculation

cell.

3.7 FDTD viscoelastic update equations

In this section the discrete versions of the momentum and constitutive equations

presented in section 3.5 are indicated. The spatial indices i, j, k correspond to the

Cartesian x-, y- and z-directions.

3.7.1 Two-dimensional FDTD equations

The lattice shown in Figure 3.4 shows how the two-dimensional components of stress

and velocity are placed at different positions forming a staggered grid. However, the

normal stress components, σxx and σyy, are placed at the same position. In addition

to the spatial offset, there is also an offset in time, where the stress components are

calculated at different times to the velocity components.

Based on the space lattice shown in Figure 3.4, equation 3.27 is discretized as fol-
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lows:

v
n+ 1

2
y

∣∣∣∣
i,j+ 1

2

= v
n− 1

2
y

∣∣∣∣
i,j+ 1

2

+ ∆t
ρ

[
Dxσ

n
xy

∣∣∣
i− 1

2 ,j+
1
2

+ Dyσ
n
yy

∣∣∣
i,j
− βv

n− 1
2

y

∣∣∣∣
i,j+ 1

2

]
(3.37)

where D denotes the forward difference, as defined in Appendix I.

In order to discretize equation 3.24, the mixed derivatives can be reversed using

Clairaut’s theorem:
∂

∂t

(
∂vy
∂y

)
= ∂

∂y

(
∂vy
∂t

)
= ∂ay

∂y
(3.38)

where az represents the acceleration in the z-direction. In discrete form it is calcu-

lated from vz using:

an+1
y

∣∣∣
i,j

=
vn+1
y

∣∣∣
i,j
− vny

∣∣∣
i,j

∆t (3.39)

Using this variable substitution, equation 3.24 is discretized as:

σn+1
yy

∣∣∣
i,j

= σnyy
∣∣∣
i,j

+

+ ∆t
[
λ Dxv

n+ 1
2

x

∣∣∣∣
i− 1

2 ,j
+ (λ+ 2µ) Dyv

n+ 1
2

y

∣∣∣∣
i,j− 1

2

+

+χ Dxa
n+ 1

2
x

∣∣∣∣
i− 1

2 ,j
+ (χ+ 2γ) Dya

n+ 1
2

y

∣∣∣∣
i,j− 1

2

]
(3.40)

Equations 3.37 and 3.40 essentially form the update equations for vz and σzz, respec-

tively. The nature of the method is that the value of a variable at a given instant

of time is calculated directly from the values obtained at previous instants of time.

Note that in order to transform equations 3.37 and 3.40 into a form that can be

implemented using a programming language, the indexes of the field array variables

must be integers and cannot be fractions.
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3.7.2 Three-dimensional FDTD equations

For the vibroacoustic problem considered in this thesis, the variables are arranged in

three-dimensional space according to a lattice described by Schroeder et al [10]. The

discretization of the constitutive equations 3.28 - 3.33 and momentum equations 3.34

- 3.36 is analogous to the discretization process described in section 3.7.1. The three-

dimensional equations will necessarily have more terms than their corresponding

two-dimensional equations, since it is necessary to consider the non-zero velocity

field in the y-direction, vy. The discrete three dimensional form of the constitutive

equations 3.28 - 3.33 is then:

σn+1
xx

∣∣∣
i,j,k

= σnxx|i,j,k +

+ ∆t
[
(λ+ 2µ) Dxv

n+ 1
2

x

∣∣∣∣
i− 1

2 ,j,k
+ λ Dyv

n+ 1
2

y

∣∣∣∣
i,j− 1

2 ,k
+

+ λ Dzv
n+ 1

2
z

∣∣∣∣
i,j,k− 1

2

+ (χ+ 2γ) Dxa
n+ 1
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σn+1
zz

∣∣∣
i,j,k

= σnzz|i,j,k +

+ ∆t
[
λ Dxv

n+ 1
2

x

∣∣∣∣
i− 1

2 ,j,k
+ λ Dyv

n+ 1
2

y

∣∣∣∣
i,j− 1

2 ,k
+

+ (λ+ 2µ) Dzv
n+ 1

2
z

∣∣∣∣
i,j,k− 1

2

+ χ Dxa
n+ 1

2
x

∣∣∣∣
i− 1

2 ,j,k
+

+χ Dya
n+ 1

2
y

∣∣∣∣
i,j− 1

2 ,k
+ (χ+ 2γ) Dza

n+ 1
2

z

∣∣∣∣
i,j,k− 1

2

]
(3.43)

σn+1
xz

∣∣∣
i,j,k

= σnxz|i,j,k +

+ ∆t
[
µ

(
Dzv

n+ 1
2

y

∣∣∣∣
i− 1

2 ,j,k
+ Dyv

n+ 1
2

z

∣∣∣∣
i,j,k+ 1

2

)
+

+γ
(
Dza

n+ 1
2

x

∣∣∣∣
i− 1

2 ,j,k
+ Dxa

n+ 1
2

z

∣∣∣∣
i,j,k+ 1

2

)]
(3.44)

σn+1
yz

∣∣∣
i,j,k

= σnyz
∣∣∣
i,j,k

+

+ ∆t
[
µ

(
Dzv

n+ 1
2

y

∣∣∣∣
i,j− 1

2 ,k
+ Dyv

n+ 1
2

z

∣∣∣∣
i,j,k+ 1

2

)
+

+γ
(
Dza

n+ 1
2

y

∣∣∣∣
i,j− 1

2 ,k
+ Dza

n+ 1
2

z

∣∣∣∣
i,j,k+ 1

2

)]
(3.45)

σn+1
xy

∣∣∣
i,j,k

= σnxy
∣∣∣
i,j,k

+

+ ∆t
[
µ

(
Dyv

n+ 1
2

x

∣∣∣∣
i− 1

2 ,j,k
+ Dxv

n+ 1
2

y

∣∣∣∣
i,j+ 1

2 ,k

)
+

+γ
(
Dya

n+ 1
2

x

∣∣∣∣
i− 1

2 ,j,k
+ Dxa

n+ 1
2

y

∣∣∣∣
i,j+ 1

2 ,k

)]
(3.46)

The discrete three dimensional form of the momentum equations 3.34 - 3.36 is the

following:
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v
n+ 1

2
x

∣∣∣∣
i+ 1

2 ,j,k
= v

n− 1
2

x

∣∣∣∣
i+ 1

2 ,j,k
+

+ ∆t
ρ

[
Dxσ

n
xx|i,j,k + Dyσ

n
xy

∣∣∣
i,j,k

+ Dzσ
n
xz|i,j,k − βv

n− 1
2

x

∣∣∣∣
i+ 1

2 ,j,k

]
(3.47)

v
n+ 1

2
y

∣∣∣∣
i,j+ 1

2 ,k
= v

n− 1
2

y

∣∣∣∣
i,j+ 1

2 ,k
+

+ ∆t
ρ

[
Dxσ

n
xy

∣∣∣
i,j,k

+ Dyσ
n
yy

∣∣∣
i,j,k

+ Dzσ
n
yz

∣∣∣
i,j,k
− βv

n− 1
2

y

∣∣∣∣
i,j+ 1

2 ,k

]
(3.48)
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3.8 Damping frequency characteristics

Ideally, it would be possible to derive a model of damping that would provide loss

factors with an arbitrary frequency dependence. A very general description of damp-

ing can be obtained by using a ’relaxation function’ approach [76]. According to this

approach, the stress depends on the time history of the strains, rather than just its

instantaneous value. The relation between stress and strain assumes the following

form [73]:

σ(t) = E1ε(t)−
∫ ∞

0
ε(t−∆t)ϕ(∆t)d(∆t) (3.50)

where ϕ(∆t) are the relaxation functions, given by:

ϕ(∆t) = E2

τ
e−∆t/τ (3.51)
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3.9. Stability of vibroacoustic simulations

where E2 is a constant and τ is the relaxation time. If a given frequency-dependent

profile is desired, more complex relaxation functions can be obtained by adding

more terms containing different relation times. The disadvantage of the ’relaxation

function’ approach is that it leads to complex constitutive relations. Nonetheless,

this method has been successfully implemented in FDTD [77].

The approach used in this thesis, developed by Toyoda et al [71], is to model vis-

coelastic damping by employing two constants in the constitutive equation 3.16 and

another constant in the momentum equation 3.12. This approach results in a inter-

nal loss factor that depends on frequency in a similar way to mechanical systems that

follow Rayleigh damping [71]. The constant β results in damping that is propor-

tional to velocity. The frequency dependence of the β loss factor curve is inversely

proportional to frequency. The constants γ and χ result in equivalent frequency

characteristics, as can be found through numerical experiments; hence it is possible

to consider just γ and set χ to zero whilst still obtaining a general Rayleigh damping

profile. Therefore using only the constants β and γ, the frequency-dependent loss

factor is well approximated by the following relation [78]:

η = β

ρω
+ ωγ

E
(3.52)

In this thesis the frequency-dependent loss factor of the plate is determined from

measurements and the damping coefficients are calculated so that the resulting in-

ternal loss factor used in FDTD follows the loss factor measured for the actual plate

as closely as possible. Appendix IV indicates how β, γ and χ can be varied to

achieve different frequency-dependent profiles for the loss factors.

3.9 Stability of vibroacoustic simulations

As mentioned in section 2.5, the Courant condition (equation 2.41) determines the

maximum possible value for the time step in the explicit FDTD model. In the
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Figure 3.5: Example of numerical instability obtained using a inadequate time step

for an aluminium plate. Stress excitation (left) and corresponding velocity level

response (right).

Courant condition, C is the highest phase velocity of any wave motion within the

frequency range of excitation. In this thesis, the mechanical behaviour of thin plates

is approximated and therefore the phase velocities mentioned in section 3.3.3.1 need

to be considered, within the frequency range of the simulation, for stability anal-

ysis.If the chosen time step does not satisfy the inequality in equation 2.41, the

solution becomes unstable, i.e., the response will be unbounded. In practice, other

factors such as damping and boundary conditions can also give rise to unstable solu-

tions, even at time steps shorter than those determined by the Courant condition, as

this condition is a necessary but not sufficient condition for stability [35]. Hence the

aim is to find the largest possible value of time step that provides a stable solution

over the time period of the FDTD simulation.

3.10 Vibration source

A widely used type of source in vibration and vibroacoustics simulations is the

’hard’ source, where a prescribed time function, a designated ’driving’ function, is

assigned to a stress or velocity component. This type of source is described by
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3.10. Vibration source

Schneider [40]. The time history of the source node is dictated only by the ’driving’

function, irrespective of the state of its neighbour nodes. For example, considering

a normal stress source along the z-direction defined at grid positions (i, j), its time

history is defined by:

σnzz|i,j = f (n) (3.53)

where f denotes the ’driving’ function. When the stress values σnzz are converted

to forces F n
z , so that mobilities can be calculated, the ’driving’ function must be

multiplied by the area perpendicular to the direction of the source. In the case of a

source defined along the z-direction, it is necessary to multiply the ’driving’ function

by the spatial resolutions along the x-and y-directions:

F n
z |i,j = σnzz|i,j ∆x∆y (3.54)

The simulations in this thesis use a ’hard’ vibration source. For this source the

normal stress component in the z-direction is assigned a time dependence F (t),

which is converted into σzz(t) through division by the area of a single horizontal

grid cell, ∆x∆y. The time dependence used was the derivative of the Gaussian

pulse (section 2.8) in order to avoid static loading and corresponding deformation

of the plate. The vibration source node follows the driving function irrespective of

the state of its neighbour nodes.

Figure 3.6: Vibration hard source: Time-dependent normal stress (left) and corre-

sponding magnitude of the Fourier spectrum (right).
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3. Implementation of FDTD for vibroacoustics

3.11 Simply supported boundary conditions

For the edges of the three-dimensional plate, the implementation of its boundaries

aims to approximate the following conditions corresponding to a simply-supported

two-dimensional thin plate [79]:


w = 0,Mx = 0

w = 0,My = 0

for x = 0, Ly

for y = 0, Lx
(3.55)

where w denotes displacement in the z-direction and Mx and My indicate the bend-

ing moments along the x- and y-directions respectively.

To implement simply-supported boundaries using the general viscoelastic FDTD

formulation, only the kinematic condition w = 0 needs to be specified. This is ap-

proximately carried out by assigning a value of zero to the vertical velocities that are

located on the mid-plane around the plate edges as shown in Figure 3.7. As shown

in the same figure, the lateral velocity components of the plate edges are calculated

like the other velocity components of interior of the plate. The validity of this ap-

proximation is confirmed in the analytical/FDTD eigenfrequency comparison results

obtained for a simply supported plate that are shown in table 6.2. In this diagram

the velocity nodes of the air particles are represented by a single arrow whereas the

velocity of the solid medium is represented by a double arrow. Note that the ap-

proach described here differs from the implementation used for dimension-reduced

models [80] which require both displacement and bending moment conditions.

The boundary conditions defined in this section refer to the plate edges. The solid-

air boundary conditions that cover the remainder of the domain are described in the

following section 3.12.
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3.12. Simplified air/solid boundary conditions

Figure 3.7: Lattice diagram for a cross-section through the solid medium (shaded

grey) indicating the implementation of the simply-supported boundary condition

using a velocity node set to zero which is shown in red.

3.12 Simplified air/solid boundary conditions

The aim of the new solid/air boundary conditions which is developed in this section

is to provide an alternative to the approach of Toyoda et al [81] that is less complex

and brings significant computational advantages.

3.12.1 Theoretical background

For the velocity nodes at the boundary between air and solid media, Toyoda et al [81]

split the velocity update equation into two equations involving a forward difference

and a backward difference. These equations are then combined to form a new

equation, where the space step across the boundary is divided by a factor of two and

the density at the boundary between the two media is averaged. The halving of the

space step across the boundary will lead to a smaller time step being required for the

simulation to be stable, according to the Courant Condition (equation 2.41). This

type of boundary condition is referred to in this thesis as the ’standard approach’.

In order to avoid the time step implications required by the standard approach,

the implementation developed in this thesis considers the update equations for the
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3. Implementation of FDTD for vibroacoustics

velocity nodes that lie on the boundaries to have the same form as the other solid

medium velocity update equation (Equation 3.37) for which the density equals that

of the actual solid and the space steps across the boundaries remain unchanged.

However, in this thesis both the pressure and stress fields are modelled; hence the

velocity update equation for a boundary node must include both pressure and stress

terms, as indicated in equation 3.56:

v
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2
z

∣∣∣∣
i,k+ 1

2

= v
n− 1

2
z

∣∣∣∣
i,k+ 1

2

+ ∆t
ρ

 σnxz|i+ 1
2 ,k+ 1

2
− σnxz|i− 1

2 ,k+ 1
2

∆x

+
σnzz|i,k+1 + pn|i,k

∆z − βv
n− 1

2
z
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i,k+ 1

2

]
(3.56)

It is assumed that compression corresponds to a positive pressure increment, whereas

in terms of stress tensors the same compression is assumed to be a negative stress

increment (σxx=σyy=σzz=−p ) [62]. This sign convention is used in equation 3.56.

The shear stress nodes adjacent to the boundary are set to zero because air is

assumed to be an inviscid medium. This approach to implementing solid-air bound-

aries is used in this thesis and will be referred to as a ’simplified approach’ because

the implementation requires fewer calculations than the standard approach. For

convenience the derivation considers a plate lying in a Cartesian coordinate plane,

although it is feasible (but more complex) to consider other plate orientations.

The standard and simplified approaches result in the pattern shown in Figure 3.8.

Note that the principle applies to all nodes of the solid medium that are adjacent to

the surrounding medium, not just the upper and lower surfaces of the solid medium.

In this lattice diagram, the simplified approach results in boundary conditions for

the plate which appear to be ’ragged’, although in terms of its eigenfrequencies the

plate behaves as if it has smooth edges. Note that the eigenfrequencies correspond

to a different set of physical dimensions as might be expected from the number of

nodes in the solid medium. The physical dimensions along a given direction using

the simplified boundary conditions are referred to as ’effective’ dimensions, which

are Lx,eff, Ly,eff and Lz,eff. Considering the number of normal stress nodes assigned
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3.12. Simplified air/solid boundary conditions

Figure 3.8: Lattice diagram indicating the solid medium (shaded grey), the expected

boundary between the air and the solid medium (red dashed line) and the effective

boundary (red solid line).

to the plate, or by considering the standard approach, the physical dimensions that

are to be expected, are referred to as ’expected’ dimensions, Lx,exp, Ly,exp and Lz,exp.

In Figure 3.8, the spatial offset along the ith Cartesian direction between Li,eff and

Li,exp is denoted by δi,boundary. Li,eff can be obtained from Li,exp via the relation

Li,eff = Li,exp − 2δi,boundary. Hence, it is necessary to quantify δi,boundary in order to

predict Li,eff from Li,exp and to be able to design plates with a prescribed set of

dimensions.

To quantify the value of δi,boundary along a given direction i of the plate, a number

of numerical tests are now carried out. These tests are based on the assumption

that the mismatch between the expected and effective dimensions along a given

direction must vanish as the number of calculation cells in that direction is increased.

Therefore, tests are carried out with the minimum possible number of nodes along

the thickness direction of the plate (two normal stress nodes) and the largest possible

number of nodes along the other two lateral directions. The difference between

the eigenfrequencies obtained from the FDTD model using the simplified approach

and the eigenfrequencies corresponding to a plate with the expected dimensions

given by equation 3.58 is primarily due to the difference between the expected and
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3. Implementation of FDTD for vibroacoustics

the effective thickness of the plate. Although it is only possible to identify an

approximate value for δi,boundary using this numerical approach, this approximation

becomes more accurate as the number of lateral calculation cells increases.

To carry out these tests, consider the analytical equation for the prediction of the

eigenfrequencies fp,q for the bending modes (p,q) of a simply-supported plate in the

xy plane [57]:

fp,q = πLzcL

2
√

12

( p

Lx

)2
+
(
q

Ly

)2
 (3.57)

where Lz is the plate thickness, cL is the quasi-longitudinal wavespeed and Lx and

Ly are the lengths of the plate along the x- and y-directions, respectively.

The eigenfrequencies of a plate with expected dimensions are calculated as fol-

lows:

f exp
p,q = πLz,expcL

2
√

12

( p

Lx,exp

)2

+
(

q

Ly,exp

)2
 (3.58)

and the eigenfrequencies of a plate with effective dimensions are given by:

f eff
p,q = πLz,effcL

2
√

12

( p

Lx,eff

)2

+
(

q

Ly,eff

)2
 (3.59)

As the number of lateral nodes along the x- and y-directions is increased, the

accuracy is increased for the two approximations: Lx,eff ≈ Lx,exp and Ly,eff ≈ Ly,exp.

The number of normal stress nodes across the thickness (z-direction) of the plate

is set to two. This is the minimum number to allow bending wave motion where

the lower stress node is strained and the upper node is under compression, and

vice-versa. Hence, Lz,exp = 2∆z.

With the approximations for the expected and effective lengths across the lateral

directions of the plate, the expected and effective eigenfrequencies are then related

to the expected and effective thicknesses of the thin plate by:

f eff
p,q/f

exp
p,q = Lz,eff/Lz,exp (3.60)

70



3.12. Simplified air/solid boundary conditions

Number of nodes 20 40 60 80 100 120

f eff
1,1/f

exp
1,1 (−) 0.68 0.69 0.69 0.69 0.70 0.70

Table 3.1: Ratios of eigenfrequencies obtained using effective and expected bound-

aries using different numbers of normal stress nodes

Since Lz,eff = Lz,exp − 2δz,boundary it can be shown that

δz,boundary = Lz,exp

2

(
1−

f eff
p,q

f exp
p,q

)
(3.61)

Since Lz,exp = 2∆z, the following equation relates δz,boundary to the spatial resolution

along the z-direction:

δz,boundary = ∆z
(

1−
f eff
p,q

f exp
p,q

)
(3.62)

Equation 3.62 can also be used to relate δi,boundary to the spatial resolution along the

ith direction.

In principle, equation 3.62 applies to any plate mode (p,q); however, the numerical

tests use the lowest fundamental mode (p=q=1) to determine the effective thickness

because higher modes are increasingly affected by numerical errors such as spatial

discretization and numerical dispersion.

The numerical tests are carried out using undamped plates (arbitrary material prop-

erties) with two normal stress nodes along the thickness direction (for example, see

Figure 3.8 where i corresponds to the z-direction) and a varying number of normal

stress nodes along each of the horizontal x- and y-directions. The spatial resolution

is set to 0.025 m in all directions so the expected plate thickness hexp is 0.05 m.

The results are given in Table 3.1 in terms of the ratio f eff
1,1/f

exp
1,1 . Assuming that the

mismatch between the expected and effective lengths along a given direction van-

ishes as the number of nodes is increased in that direction, the ratio of 0.70 obtained

using 120 stress nodes can be considered to be the most accurate; hence the value

of δz,boundary is calculated to be δz,boundary = (1− 0.7) ∆z = 0.3∆z. Therefore, the

relation between δi,boundary and the spatial resolution along the ith direction, denoted

by xi, is also given by δi,boundary = (1− 0.7) ∆xi = 0.3∆xi
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3.12.2 Example application

In this section, an example is used to define a methodology using the simplified

boundaries approach to model a generic plate with a prescribed set of dimensions.

In order to model a plate with n normal stress nodes and a side length of Lx,eff

along the x-direction, it is necessary to set the spatial resolution, ∆x, to: Lx,eff =

n∆x−2×0.3∆x⇐⇒ ∆x = Lx,eff/(n−0.6). It can be seen that the spatial resolution

which is required along that direction is defined by ∆x = Lx/(n− 0.6) rather than

∆x = Lx/n, where n is the number of normal stress nodes along a given direction.

If n is set to two, which represents the number of stress nodes along the thickness

direction, the space step along the thickness direction needed to implement the

simplified boundary conditions approach is around 40% larger than that required

using the approach described by Toyoda et al [81]. This larger space step provides

significant computational benefits because the FDTD time step will be larger and

the number of iteration required to reach a given time interval will be reduced.

3.13 Scaling of vibroacoustic fields

The Courant condition (equation 2.41) dictates the maximum possible value for the

time step in the FDTD model given a grid size (∆x,∆y,∆z) [2, 35]. The smaller

the time step, the longer it will take the simulation to run a given time interval. If

∆t does not satisfy the inequality in Equation 2.41, the solution becomes unstable,

i.e. for transient excitation the response will tend to infinity.

It can be computationally expensive to run a large vibroacoustic model with a fine

spatial resolution, especially because wavespeeds (e.g. for quasi-longitudinal waves

on structures) are significantly higher in solids than in air. Such a fine spatial

resolution is often required when dealing with geometrically thin objects, such as

a thin plate radiating onto a room. Several approaches to model fine geometric
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3.13. Scaling of vibroacoustic fields

details embedded in large FDTD models have been primarily concerned with the

use of non-uniform grids, parallelization of the FDTD computations and the use of

dimension-reduced models. The parallelization of FDTD consists of splitting the

routine calculations and memory over a number of CPU and GPU units, enabling

shorter computation times. In FDTD, parallelization has been implemented by a

variety of authors in a number of research fields such as electrodynamics [35], vi-

bration [82], acoustics [83] and vibroacoustics [68]. The use of subgrids allocates

a finer spatial resolution to regions that require more detail whilst using a coarser

resolution elsewhere [35, 49]. Sub-gridding techniques have also been applied to

acoustics problems [3, 84], but is seemingly not yet used in vibroacoustics. The use

of dimension-reduced models is another alternative to model the vibration of geomet-

rically thin structures embedded in large acoustic domains. In these models, a one-

or two-dimensional grid is used to solve the bending wave equations for a beam or a

thin plate, respectively, and are coupled with a three-dimensional acoustic grid. The

procedure of converting a three-dimensional solid structure into a two-dimensional

structure results in significant memory savings and reduced computation times. The

two-dimensional implementation of thin plates has been carried out using Kirchhoff-

Love theory [85] and for two-dimensional thick plates using Mindlin-Reissner theory

[86]. Dimension-reduced models have also been used to study structure-borne sound

transmission in beam-plate composite structures [87]. In this thesis, an alternative

formulation is proposed for the vibroacoustic problem to yield much faster results, in

the sense of requiring less calculations to obtain a vibroacoustic prediction, than us-

ing only a non-parallelized standard FDTD approach, based on the work of Toyoda

et al [68]. The main issue with vibroacoustic models is that if the spatial resolu-

tion is kept constant, a large number of cells are required to represent the whole

domain. With a fine spatial resolution, the required time step will be very small as

a consequence of the Courant condition. To overcome this problem, the proposal is

to model a larger structure that has the same vibration characteristics as the actual

structure and couple it to the acoustic medium because a coarse spatial resolution

will result in a larger time step.
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3.13.1 Methodology

Once the equivalent structure is identified and processed, the results can be scaled

back to represent the actual structure. Assuming the thickness direction of the plate

is coincident with the z-direction (vertical direction), the following steps are used

to scale the vibroacoustic model:

(1) A scaling factor s > 1 is chosen and a plate with the same eigenfrequencies as the

actual plate is identified where the side dimensions of the scaled plate are Lx′ = sLx

and Ly′ = sLy respectively. In order to obtain the same bending eigenfrequencies

(given by equation. 3.57), the thickness of the scaled plate is h′ = s2h.

(2) The spatial resolution of the scaled problem is then dictated by the dimensions

of the scaled plate to give ∆x′ = s∆x, ∆y′ = s∆y and ∆z′ = s2∆z, which in turn

results in a synchronous time step ∆t′ step for both the plate solid medium and

the acoustic medium. In addition to scaling the plate, the x-,y- and z-dimensions

of the cavity also need to be scaled up by a factor of s to match the scaled x- and

y-dimensions of the plate and to maintain the eigenfrequencies of the cavity. The

scaled acoustic cavity with dimensions Lx′ = sLx, Ly′ = sLy and Lz′ = sLz is

modelled using the aforementioned spatial resolutions: ∆x′, ∆y′ and ∆z′. Uniform

scaling of the x-,y- and z-dimensions of the cavity by a factor of s results in the use

of fewer calculation cells along the z-direction because the space step is larger along

this direction (∆z′= s2∆z > s∆z), requiring a factor of s fewer cells than if the

spatial resolution along the z-direction was given by z′ = s∆z. The advantage of

requiring fewer cavity cells along the z-direction is not exclusive to explicit FDTD

routines that depend on the Courant condition as it could be used to increase the

computational efficiency of other prediction methods. To calculate the eigenfrequen-

cies of a scaled rectangular room so that they equal those of the actual room, the

speed of sound in air must be scaled using c′ = sc, such that:

f
′

nx,ny ,nz = sc

2

√√√√( nx
sLx

)2
+
(
ny
sLy

)2

+
(
nz
sLz

)2
(3.63)
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where f ′
n denotes the eigenfrequencies of the scaled room.

(3) It is important that the absorption that occurs at the acoustic boundaries of the

scaled model remain invariant. Since the sound absorption of a boundary is directly

dependent on the specific acoustic impedance, the characteristic acoustic impedance

of the air medium must remain constant. Since the speed of sound in air was scaled

using c′ = sc, the density of the air medium has to be scaled using ρ′o = ρo/s so that

c′ρ′ = cρ.

(4) The magnitude of the driving-point mobility for the scaled plate needs to be offset

from that of the actual plate. The driving-point mobility Ydp of a simply-supported

isotropic plate is given by:

Ydp = v

F
= i4ω
ρLzS

∞∑
p=1

∞∑
q=1

ψ2
p,q(x, y)

ω2
p,q (1 + iη)− ω2 (3.64)

where i2 = −1, S is the surface area of the plate, ψ2
p,q(x, y) is the local bending

mode shape, and ωp,q denotes the angular mode frequency.

Since the mode shapes, eigenfrequencies and loss factors are the same for the actual

and scaled plates, the only difference between their transfer mobilities is in the

absolute value. Taking the absolute value of the transfer mobility yields:

|Ydp| =
∣∣∣∣ vF
∣∣∣∣ =

∣∣∣∣∣ i4ωρLzS

∣∣∣∣∣
∣∣∣∣∣∣
∞∑
p=1

∞∑
q=1

ψ2
p,q(x, y)

ω2
p,q (1 + iη)− ω2

∣∣∣∣∣∣ (3.65)

Hence the following ratio is expected between the driving-point mobility of the scaled

and actual plates:

|Ydp|scaled
|Ydp|actual

= LzS

L′zS
′ = LzLxLy

L′
zL

′
xL

′
y

= LzLxLy
s2LzsL

′
xsL

′
y

= s−4 (3.66)

This result indicates that the magnitude of the scaled driving-point mobility is

smaller than that of the actual plate, by a factor of s−4 or when considering mobility

in decibels using 20log10(|Ydp|), by 80log10(s) dB. Therefore the results obtained

should be scaled accordingly, in order to account for this offset in the magnitude of
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3. Implementation of FDTD for vibroacoustics

the driving-point mobilities. For the model used for the experimental validation in

this thesis, s = 6 and therefore the shift in level is ≈ 62 dB.

3.13.2 Scaling of sound fields in rooms

The sound field occurring in a rectangular room with dimensions Lx, Ly and Lz is

characterised by the following eigenfrequencies fp,q,r [57]:

fp,q,r = c

2

√√√√( p

Lx

)2
+
(
q

Ly

)2

+
(
r

Lz

)2
(3.67)

where p, q and r are positive integers and correspond to room mode numbers. The

eigenfrequencies of a room whose dimensions have been scaled by a factor of s are

given by:

f
′

p,q,r = c

2

√√√√( p

sLx

)2
+
(

q

sLy

)2

+
(
r

sLz

)2
= c

2s

√√√√( p

Lx

)2
+
(
q

Ly

)2

+
(
r

Lz

)2
(3.68)

Hence, in order to keep the same eigenfrequencies, the speed of sound c needs to be

multiplied by a factor of s, hence the scaled speed of sound c
′ = sc.

3.13.3 Extension to other topologies

The scaling approach is readily applied to more complex problems involving a num-

ber of geometrically parallel thin plates and/or acoustic cavities as illustrated by

the examples in Figure 3.9. This includes the situation which simulates a sound

transmission suite that can be used to determine impact or airborne sound insu-

lation (Figure 3.9-d). When scaling a thin plate, the spatial resolution across its

lateral dimensions is scaled by a factor of s, whereas the spatial resolution along

the thickness direction must be scaled by a factor of s2, so that the eigenfrequencies

predicted by equation 3.57 remain invariant. This scaling of the spatial resolution

can be considered as a coordinate transformation that applies to the whole FDTD
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(a) (b) (c) (d)

Figure 3.9: Examples of valid configurations for the scaling method: (a) and (b)

two isolated, parallel plates, (c) two isolated plates that each face into an acoustic

cavity and (d) two acoustic spaces separated by a plate. Scaled thin vibrating plates

are shown in blue with the grey surfaces representing the boundaries of the acoustic

cavity.

model, given by: 
x′ = sx

y′ = sy

z′ = s2z

(3.69)

For models involving one or more parallel plates, the scaling of their dimensions will

be congruent because their lateral dimensions will be scaled by a common factor of

s and their thickness direction will be scaled by a common factor of s2. Therefore

all the scaled plates will preserve the dynamic characteristics of the actual plates.

For example, the plates shown in Figure 3.9-b can be simultaneously scaled if the

thickness value for each of the two plates is set to h′1 = s2h1 and h′2 = s2h2. Addi-

tionally, since both plates use the same scaling factor, their lateral dimensions are

given by L′x1 = sLx1, L′y1 = sLy1 and L′x2 = sLx2, L′y2 = sLy2.

3.13.4 Extension to other plate boundary conditions

In this section, the effects on scaling of having a set different boundary conditions

other than the simply supported will be investigated.

The out-of-plane eigenfrequencies corresponding to the mode indices (m,n) of a
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Boundary conditions Gx Hx Jx

Pinned-pinned m m2 m2

Clamped-pinned m+ 1
2

(
m+ 1

2

)2 [
1− 4

(2m+1)π

] (
m+ 1

2

)2 [
1− 4

(2m+1)π

]
Free-free m+ 1

2

(
m+ 1

2

)2 [
1− 4

(2m+1)π

] (
m+ 1

2

)2 [
1 + 12

(2m+1)π

]
Clamped-free m+ 1

2

(
m+ 1

2

)2 [
1− 4

(2m+1)π

] (
m+ 1

2

)2 [
1 + 4

(2m+1)π

]
Clamped-pinned m+ 1

4

(
m+ 1

4

)2 [
1− 4

(4m+1)π

] (
m+ 1

4

)2 [
1− 4

(4m+1)π

]
Free-pinned m+ 1

4

(
m+ 1

4

)2 [
1− 4

(4m+1)π

] (
m+ 1

2

)2 [
1 + 12

(4m+1)π

]

Table 3.2: Constants Gx, Hx and Jx for m > 1

rectangular thin plate subject to any arbitrary combination of free, simply supported

and clamped conditions applied to its boundaries were originally approximated by

Warburton [88] and summarised by Fahy et al.[89]:

ωmn = hcL

2
√

3

(
π

Lx

)2
qmn (3.70)

where the term qmn is given by

qmn =

√√√√G4
x(m) +G4

y(n)
(
Lx
Ly

)4

+ 2
(
Lx
Ly

)2

[νHx(m)Hy(n) + (1− ν)Jx(m)Jy(n)]

(3.71)

The constants Gx, Hx, Jx, Gy, Hy and Jy are characteristic of each type of boundary

condition and can be found for a great number of possible combinations in the work

published by Warburton [88]. Table 3.2 shows the expressions for Gx, Hx and Jx

as a function of the mode index m. The expressions for Hy, Jy and Jy are identical

with the index m replaced for n.

These constants depend exclusevely on the mode indices m and n.

When the lateral dimensions of the plate are scaled by a factor of s, the corresponding
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eigenfrequencies of the scaled system are given by:

ω′mn = hcL

2
√

3

(
π

sLx

)2
qmn (3.72)

The term qmn remains unaffected by geometric scaling, since the constants Gx, Gy,

Hx, Hy, Jx and Jy depend exclusively on the on the mode indices m and n and

the scaling factors on the terms sLx/sLy do cancel out. Hence, to obtain the same

eigenfrequencies as those of the unscaled system, it is necessary to scale the thickness

of the plate by a factor of s2.

It is therefore concluded that the scaling methodology for plates with any combina-

tion of free/clamped/simply supported boundaries is exactly the same as that used

for simply supported plates.

3.13.5 Numerical efficiency of the scaling approach

As noted in section 3.13.1, the scaling approach requires a factor of s fewer elements

than without scaling. In addition to the computational gain from the reduction

in the number of elements, there is the additional benefit of being able to use a

larger time step. The ratio between the time steps corresponding to the scaling and

non-scaling approaches can be derived:

∆t′
∆t =

[
C

√(
1

∆x

)2
+
(

1
∆y

)2
+
(

1
∆z

)2
]

[
C

√(
1

s∆x

)2
+
(

1
s∆y

)2
+
(

1
s2∆z

)2
] (3.73)

Equation 3.73 is not trivial to factorise or simplify, since the scaling factor s is

not common to all the terms in the denominator. However, the gain in numerical

efficiency can be estimated by assuming that ∆x � ∆z and ∆y � ∆z such that

the corresponding terms for ∆x and ∆y in the Courant condition (equation 2.41)

can be omitted. For thin plates this approximation is reasonable because the plate
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thickness (z-direction) is typically at least one order of magnitude smaller than the

lateral dimensions of the plate. Hence the relation between the original time step

and the scaled time step can be estimated:

∆t′
∆t ≈

C
√( 1

∆z

)2
 /

C
√( 1

s2∆z

)2
 = s2 (3.74)

Therefore the time step using the scaling approach is larger than that obtained

without scaling by a factor of up to s2. In addition, the scaling approach requires

s fewer cells and the relationship between the scaled and original time steps is a

maximum of s2. Hence the total computational time of the scaled model is estimated

to be reduced by a factor up to s × s2 = s3 compared to the computation time

needed for the original model. Note that this is the maximum possible reduction

in computation time; the actual reduction in computation time will be less than

s3.

The scaling approach has the advantage of using larger time steps and fewer calcu-

lation cells than would be required without it. In addition, for plates with bound-

ary conditions other than a combination of ideal free/clamped/ simply-supported

boundaries, it is only necessary to be able to calculate or estimate the corresponding

eigenfrequencies in order to identify the scaling factor for the z-direction.

3.13.6 Limitations

One limitation concerns the high-frequency limit for pure bending wave theory. If

the thin plate frequency limit for the actual plate is [73]:

fB ≈ 0.05cL

h
(3.75)

the limit for the scaled plate f ′B is given by f ′B = fB/s
2 and the error in the simulation

results will increase above this limit.

Another important factor that introduces errors when using the scaling approach is
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numerical dispersion. When using the same space and time grid resolution for the

air medium and solid medium additional numerical dispersion is introduced since

wave propagation in the air medium occurs further away from the Courant limit

than the wave propagation in the solid medium (which comparatively has a higher

phase velocity). In addition, the larger the value used for the scaling factor, s, the

less uniform the rectangular grid will be and the more problematic the numerical

dispersion becomes. For the scaling factor value used in this thesis, s = 6, the

experimental validation of the numerical results suggests that the effects of the

numerical dispersion are negligible in the low frequency range considered in this

thesis (< 200Hz).

3.14 Conclusions

This chapter covered both theoretical and numerical aspects of the application of

FDTD to vibration and vibroacoustics problems. A new approach to model air/-

solid boundaries was introduced. Two new approaches were introduced in order to

gain computational efficiency and simplify the implementation of the FDTD models.

The new ’simplified boundary approach’ applies to modelling air/solid boundaries

and results in significant computational advantage and simplified implementation

when compared to the approach introduced by Toyoda et al [81]. The new ’scaling

approach’ scales the whole geometry and physical characteristics of the vibroacous-

tic model in order to reduce the computational cost of FDTD simulations when

compared to the approach presented by Toyoda et al [68].

Both the ’scaling’ approach and ’simplified boundary’ approach lead to a significant

increase in the time step that is required to run the simulations. This leads to

a reduction in the maximum possible frequency for the analysis relating to the

Nyquist frequency. However, this is not problematic for low-frequency applications

below 250Hz that are primarily considered in this thesis for engineering structures

such as small rooms in buildings, car cabins, or train carriages.
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4 Experimental work

4.1 Introduction

This chapter describes the measurement procedures, and corresponding environ-

ments for all the experimental work carried out which can be divided into acoustic

and vibroacoustic measurements.

Section 4.2 describes the measurement environment used for the acoustics and vi-

broacoustics experimental validations. The first set of measurements comprises a

series of vibration and acoustic tests of the subwoofer used for the subsequent acous-

tics experimental work. These tests were carried out in the anechoic chamber and

aim to characterise the dynamic behaviour of the subwoofer diaphragm when oper-

ating at low frequencies as well as its radiation pattern and were carried out inside

an anechoic chamber. The remainder of the acoustic and vibroacoustic experiments

described in this chapter were carried out in a small reverberation chamber.

Section 4.3 describes the measurements carried out to characterise the acoustic be-

haviour of the loudspeaker used for the acoustics measurements.

Section 4.4 describes the measurement procedure that was followed in order to esti-

mate the damping constants of the room boundaries.

Section 4.5 details the measurement environment and setup used for the acoustic

measurements that took place in the small reverberation chamber, where acoustic

pressure grid measurements were carried out in the empty chamber and with the

chamber divided and partially divided by a porous material.

Section 4.6 describes the procedure followed to measure the driving-point mobility

of a thin aluminium plate.
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Section 4.7 describes the vibroacoustic measurements that took place inside the small

reverberation chamber, where the sound pressure field radiated by a mechanically

point-excited aluminium plate was measured.

4.2 Acoustic chambers

The loudspeaker measurements (section 4.3) were carried out in the anechoic cham-

ber of the Acoustics Research Unit, as shown in Figure 4.2. This chamber has

dimensions 5 m × 4 m × 2.6 m. The sources were placed on resilient mountings to

prevent the transmission of vibration to the metal supporting grid.

The experimental validations of the acoustics and vibroacoustics FDTD models (sec-

tions 4.4 - 4.7) were carried out in the small reverberation chamber. This chamber

has dimensions 1.83 m × 2.87 m × 2.48 m and a volume of 13 m3. The walls are

brick with a painted plaster finish and the floor and ceiling are cast in situ concrete

slabs. On one of the walls of the room, there is a heavy access door, that is primarily

made of steel, with dimensions 78 cm × 216 cm. On the same wall, there is also a

small 4 cm thick glass observation window, with dimensions 29 cm × 27.5 cm. There

are a number of small objects inside the room that cannot be removed, such as two

ceiling lamps, one fire alarm lamp and a cluster of electrical cables that connect the

room to its exterior; these would have a negligible effect in the low-frequency range

under investigation. The temperature of the reverberation room during the several

measurement sessions varied between 20◦C and 24◦C.
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4.3 Loudspeaker measurements

4.3.1 Equipment

The following equipment was used to carry out the loudspeaker measurements:

• USB Sound Card Trust 5.1 Surround;

• Sound Level Meter B&K type 2231;

• Microphone calibrator B&K type 4230;

• Omni-directional reference sound source B&K type 4204;

• Power amplifier B&K type 2706;

• Quad 50E power amplifier;

• TEAC CD Player CD-P1160D;

• Decade Attenuator, Tech Instruments co. LTD, model TE-111;

• FFT analyser - Multi Channel Data Station DS-9110;

• Accelerometer Conditioning Amplifier - BK Nexus;

• Laser vibrometer VH300+ OMETRON type No1/3030;

• Piston calibrator - BK type 4294;

• Celestion Csixs subwoofer loudspeaker (electronics removed);

4.3.2 Directivity measurements

The main purpose of this set of measurements is to test whether the Celestion sub-

woofer unit exhibits an omni-directional radiation pattern at frequencies below 150
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Hz. To test this, the sound field was measured at seven different positions cover-

ing a hemisphere around the speaker. It was also necessary to verify whether the

room would still be anechoic in this low frequency range, so that the results ob-

tained would yield useful conclusions related to the actual behaviour of the speaker.

To test this, the horizontal directional response of a known omnidirectional sound

source was measured. This reference sound source consists of a fan type device

manufactured by B&K, whose specifications indicate that the deviation in horizon-

tal response should be less than 0.2 dB for frequencies above 100 Hz. Therefore

any deviations above this range are not due to the speaker but rather to a possible

non-anechoic measurement environment and/or experimental errors.

4.3.2.1 Measurement positions and results

In order to check whether the anechoic room could be considered anechoic below

150 Hz, a reference omni-directional sound source was placed in the centre of the

chamber and placed on top of resilient material to prevent vibration of the floor

of the chamber as indicated in Figure 4.2. In the first set of measurements, all the

measurement positions were placed 1 m away from the source, forming angles of 120◦

between them. The average difference of sound pressure level obtained between the

three positions above 100 Hz was 0.70 dB. The maximum difference between the

measured levels was 2.7 dB and occured at 161 Hz. Since the maximum difference

between the measured positions is less than 3 dB, the sound field in the anechoic

chamber can be considered approximately anechoic above 100 Hz and below 150

Hz.

A second set of measurements was carried out in the centre of the anechoic room

using four measurement positions, forming angles of 90◦ between them. Figure 4.1-

a and -b shows a diagram where the orientation of the measurement positions in

relation to the omni-directional reference source is indicated. Analysis of the results

obtained for the four measurement positions indicate that the maximum difference

in sound pressure level obtained was 2.4 dB. This confirms that the sound field inside

the anechoic chamber can be approximated as a free field above 100 Hz (the cut-off
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frequency for omni-directionality behaviour of the reference source) and below 150

Hz.

Reference source

P1

P2P3
(a)

Reference source

P1

P2

P3

P4

(b)

Sub-woofer
P1

P4P2

P3

P5 P7

P6

(c)

Figure 4.1: Measurement positions: a) and b) reference source c) subwoofer.

Figure 4.2: Directivity measurements in the anechoic chamber using the reference

source (left) and subwoofer (right).

In order to measure the directivity of the subwoofer radiation pattern, a set of mea-

surements was carried out in the anaechoic room. In this set of measurements, the

Celestion subwoofer was placed at the centre of the chamber, with the diaphragm
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facing up. Seven measurement positions were considered, covering a 1 m radius

hemisphere around the speaker. The measurement positions used to measure di-

rectivity of the Celestion subwoofer are shown in Figure 4.1-c, where position 1 is

located above the speaker, along its axis. Positions 2, 3 and 4 are located in the

horizontal plane. Positions 5, 6 and 7 form an angle of 45◦ with the speaker and

the horizontal plane. The results obtained for the directivity measurements of the

Celestion subwoofer for the horizontal plane positions (positions 2, 3 and 4) are

similar to those obtained using the omni-directional source in terms of differences

in sound pressure levels. For the remaining positions, the maximum difference be-

tween responses in the frequency range between 100 Hz and 200 Hz is around 2.9 dB,

confirming that it is reasonable to approximate the subwoofer as a omni-directional

source in this range.

4.3.3 Measurement of loudspeaker cone velocity

The cone velocity of the subwoofer was measured at a number of different positions

of its diaphragm, to assess whether its motion could be assumed to exhibit pistonic

behaviour (Figure 4.3). This measurement was carried out using a laser vibrome-

ter. The results, shown in Figure 4.4, indicate that for frequencies below 140 Hz

the velocity levels obtained at the different cone positions show variations smaller

than 3 dB. This is an indication that the assumption of pistonic behaviour of the

speaker membrane is reasonable. Above this frequency limit, several positions of the

diaphragm move with significantly different velocities indicating modal vibration of

the subwoofer cone.

In order to check for non-linearities in the measurement chain, the polarity of the

power amplifier was reversed and the cone accelerations corresponding to each po-

larity recorded. The acceleration response to reversed polarity was tested for two

speaker configurations: diaphragm facing up and facing down. To reverse the polar-

ity, the leads that connected the output of the power amplifier to the subwoofer were

swapped. The results obtained (indicated in Figure 4.4) show that there were no
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non-linearities observed for frequencies below 140 Hz when the subwoofer was facing

up, as the accelerations measured for different polarities indicate a level difference

of less than 3 dB. Above 140 Hz, reversal of the polarity of the loudspeaker results

in significant cone acceleration possibly due to mechanical interference between the

diaphragm of the speaker and the top plate of the magnet or some other component

of the subwoofer.

The non-pistonic and non-linear behaviour observed in the subwoofer operation

effectively limits the experimental validation to frequencies below 140 Hz.

Figure 4.3: Measurement of subwoofer cone velocity using a laser vibrometer (left)

and cone velocity measurement positions (right).
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Figure 4.4: Velocity levels measured at different positions of the subwooder di-

aphragm (left) and the effect of reversing the polarity of the power amplifier on the

subwoofer diaphragm (right).
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4.4 Measurement of acoustic damping constants

This section contains the details of the experimental method used in the measure-

ments of the damping constants that characterise the surface boundaries of the small

reverberation chamber. In order to check for the influence of the measurement equip-

ment in the chamber, a similar experiment was carried out in the room without any

equipment.

4.4.1 Estimation of the reverberation times

For each resonance peak obtained in the room frequency response function, equation

2.55 was used to estimate the damping constant associated with that peak.

4.4.2 Equipment

The following equipment was used for this experiment:

• FFT analyser - Multi Channel Data Station DS-9110

• FFT analyser B&K type 2144

• B&K Nexus conditioning amplifier

• Microphone pre-amp type 2670;

• Microphone B&K type 4135;

• USB sound card Lexicon Lambda;

• Power amplifier B&K type 2706;

• Celestion Csixs subwoofer loudspeaker (electronics removed)
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Figure 4.5: Setup used for the acoustic measurements

Figure 4.5 shows the measurement chain used for this experiment. The measure-

ments were taken with a sampling rate of 44100 Hz and 16 bit depth. The recordings

were clipped to 26,400,000 samples, corresponding to a recording duration of around

598.6 s. Each recording was then split into five sections of 5,280,000 samples. Each

of these samples were divided into 64 sub-signals and the corresponding average

spectrum was calculated. The final spectrum is then given by the average of the five

spectra of each of the five sections that make up the original signal.

4.4.3 Source and microphone positions

Figure 4.6 shows a schematic indication of the source and the three receiver positions

inside the small reverberation chamber. For all the measurement positions, the

microphone was placed in the corner of the room (with the exception of the corner

containing the subwoofer), at a distance of less than 1 cm from the walls and the

floor. The subwoofer was placed with the diaphragm facing up, at a distance of less

than 1 cm from the side walls (Figure 4.7-f). The reason for placing the microphones

and subwoofer in the room corners is to be able to excite and detect all the room

modes, with the highest possible amplitude. In order to prevent the transmission of

vibration directly into the floor of the chamber, the subwoofer was mounted on top

of resilient material.
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Figure 4.6: Positioning of the source and receivers inside the reverberation chamber.

4.5 Impulse response measurement of the room with porous

material

The objective of the set of experiments described in this section is to measure the

sound field in the small reverberation chamber when porous material is present.

The porous material consisted of rock wool slabs 100 mm thick with dimensions

1.2 m x 0.6 m, and density of 100 kg/m3. Measured values of airflow resistivity

for the rock wool slabs were 48,820 Pa.s/m2 in the thickness direction and 23,560

Pa.s/m2 in the lateral direction [65]. The 13 m3 reverberation chamber was used for

the experimental validation. Measurements are carried out in three different room

configurations: empty room, the room partially divided by a porous panel and the

room completely divided by a porous panel. The source and receiver positions

remain the same for all the different conditions. B&K Type 4135 free-field 1/4”

microphones are used to measure the sound pressure level on a horizontal grid (6

x 8) and a vertical grid (6 x 7), as shown in Figure 4.8. The distance between

receivers is 350 mm along the x−axis and 400 mm along the y−axis. The location

index in the y− and z−directions is referred to by row number and the location

in the x−direction referred to by position number as shown in Figure 4.9. The

loudspeaker is positioned facing upwards in one corner of the room, with the centre
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4.5. Impulse response measurement of the room with porous material

of the cone at a height of 270 mm, a distance from the side walls of 210 mm in the

x−direction and 180 mm in the y−direction. On Figures 4.8 and 4.9, the position

of the centre of the cone is indicated by a red shaded circle.

4.5.1 List of equipment

The following equipment was used to carry out the acoustic impulse response mea-

surements:

• Accelerometer B&K type 4393;

• Accelerometer conditioning amplifier B&K type 2692-OS4;

• Accelerometer conditioning Amplifier (custom made unit);

• Acoustic calibrator B&K type 4230;

• Dual channel real-time frequency analyser B&K type 2144;

• FFT analyser Onno Sokki Multi channel Data Station DS-9110;

• Loudspeaker Celestion Csixs (electronics removed);

• Microphone B&K type 4135;

• Microphone conditioning amplifier B&K type 2690

• Microphone power supply B&K type 2801;

• Microphone pre-amplifier B&K type 2670;

• Multimeter Precision Gold WG022;

• Power Amplifier B&K type 2706;

• TEAC CD Player CD-P1160D;

• Thermometer Meterman TRH22;
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4. Experimental work

(a) (b)

(c) (d) (e)

(f) (g)

Figure 4.7: a) Microphone measurement array b) 1/4” microphones used for the

experiments c) Porous panel deployed has full partition d) Porous panel deployed

as partial partition e) Vertical microphone array. Celestion subwoofer used for the

measurements: f) side view and g) view of the loudspeaker cone.
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4.5. Impulse response measurement of the room with porous material

(a) (b)

(c) (d)

Figure 4.8: Reverberation room: (a) Horizontal measurement grid, (b) Vertical

measurement grid, (c) Porous panel forming complete divider, (d) Porous panel

forming partial divider. The centre of the loudspeaker cone is indicated by the red

dot.
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Figure 4.9: Source and receiver positions with row and position numbers for the

horizontal grid (left) and vertical grid (right).

4.5.2 Positioning of the porous material

The rock wool slabs were positioned so that they would form a barrier dividing the

room into two cavities whose air volumes are connected (Figure 4.7-d). The location

of the barrier within the room is indicated in Figure 4.8. The height of the barrier

corresponded to the height of an individual slab, which is 1.2 m. The cavity that

contained the source is referred to in this thesis as the source cavity. The other

cavity will be referred as the enclosed cavity. To allow access to the enclosed cavity

volume one of the slabs had to be removed and replaced for both horizontal and

vertical grid measurements.

4.5.3 Sound source

The source used for the measurements was a closed cabinet subwoofer (Celestion

C6S 10” driver) with the electronics removed so that the unit is passive. Preliminary

measurements confirmed that the loudspeaker could be modelled as a linear system

with pistonic behaviour over the frequency range of interest which is below 140 Hz.
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4.5. Impulse response measurement of the room with porous material

Figure 4.10: Measured velocity on the loudspeaker cone. Time history (left) and

magnitude spectrum (right).

The input signal used for the measurements is a Gaussian pulse characterised by

σ=2.7 ms and produced by the CD player at a sampling rate of 44.1 kHz and 16 bit

encoding depth. A train of 10 pulses was used in order to obtain a smoother power

spectrum, by averaging the measured responses. As the Gaussian pulse is modified

by the loudspeaker, signal processing and amplification chain, the driving function

used in the FDTD models is given by the measured velocity at the centre of the

loudspeaker cone in the anechoic chamber and is shown in Figure 4.10. The sub-

woofer had a 1 cm aluminium cube attached to the centre of its cone. A B&K Type

4393 accelerometer with a weight of 2.4 g was glued (with Cyanoacrylate) to the

top of the aluminium cube. This accelerometer was chosen for the measurement as

its mass loading is negligible over the frequency range of interest. The approximate

diameter of its cone is 11 cm and its height is approximately 35 cm. The speaker

was supported on three small pieces of thick foam.

4.5.4 Microphone and source positions

The source and microphone receiver positions were kept constant for all the different

configurations (empty room, room partially divided by a porous panel and fully

divided by a porous panel) and are indicated in Figures 4.8 and 4.9. To carry out
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4. Experimental work

Level 5%

Position -200

Hysteresis 0

Slope +

Table 4.1: Trigger settings used for the FFT analyser

the vertical grid measurements, two tripods were used to hold the microphones at

the correct position (Figure 4.7-e). This arrangement was especially important in

order to provide stability for the measurements positions that were close to the

ceiling.

4.5.5 Monitoring of diaphragm acceleration

In order to ensure repeatibility the motion of the speaker cone throughout the mea-

surements, its acceleration level was measured and recorded for each measurement

row of both the horizontal and the vertical grid. The measured accelerations indi-

cated no significantly different acceleration levels between the measurements, e.g.

all the variations were within 1 dB for the 0 - 140 Hz frequency range.

4.5.6 FFT analyser

The frequency range was set to 200 Hz throughout all the measurements. The time

window was set to ’rectangular’. The time averaging was set to 10 samples for the

pulse. The trigger detection settings used are indicated in Table 4.1
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4.5. Impulse response measurement of the room with porous material

4.5.7 Power amplifier

The open circuit output voltage level of the B&K power amplifier was measured

using a 120 Hz sine signal played-back using the CD player. To measure the output

voltage before each measurement session, the power amp was left on for at least 10

minutes to warm up. The power amplifier output voltage was measured before and

after each measurement session in order to ensure the operation conditions remained

constant.

4.5.8 Background noise level

Measurements of background noise level were necessary in order to confirm that the

signal from the Gaussian driving function was at least 10 dB above the background

noise. The background noise levels were measured using a Hanning time window

with time averaging of 60 s. The bandwidth of the FFT analyser was 200 Hz.

The background noise levels were measured at the beginning of every session with

the power amplifier switched on and using the measurement settings previously

described.

4.5.9 Valid frequency range

Since the signal output by the CD player rolls-off for frequencies below 20 Hz and the

analysis carried out measuring velocity levels at several positions of the subwoofer

cone (section 4.3.3) limited the valid higher frequency range to 140 Hz, the valid

frequency range of the grid measurements is 20-140 Hz.
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4.6 Measurement of the driving-point mobility on the plate

The set of driving-point mobility measurements was carried out in the small rever-

beration chamber as detailed in section 4.2. A 5 mm thick aluminium plate (1.2

m × 0.8 m) was supported on a steel metal frame which rested on a metal frame

removed from a university desk. To avoid propagation of vibrations between the

steel frame and the desk frame, a resilient rubber material was used to support the

steel frame, as can be seen in Figure 4.14-b. The following physical properties for

aluminium were taken from the literature [57]: ρ=2700 kg/m3, cL = 5100 m/s and

ν = 0.34.

4.6.1 Equipment

The following equipment was used to carry out the measurement of the driving-point

mobility:

• Accelerometer B&K type 4393;

• Accelerometer conditioning amplifier B&K type 2692-OS4;

• Acoustic calibrator B&K type 4230;

• Block calibration mass (3.85 Kg);

• Calibration force driver B&K type 4810;

• Dynamic shaker 400 Series Ling;

• FFT analyser Onno Sokki Multi channel Data Station DS-9110;

• Force transducer B&K type 8200;

• Microphone pre-amp type 2670;

• Microphone conditioning amplifier B&K type 2690
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4.6. Measurement of the driving-point mobility on the plate

   Power     
Amplifier

   Dynamic 
     Shaker

   
Microphones

   
Conditioning 

Amplifier
Type 2692

  FFT
  Analyser
DS-9110

   Computer 

   
Accelerometer

   
Conditioning 

Amplifier
Type 2690

     Force 
  Transducer

Aluminium Plate

Small Reverberation Chamber

Figure 4.11: Setup used for the vibroacoustic measurements

• Microphone B&K type 4135;

• Multimeter Tenma 72-2050;

• Piston calibrator B&K type 4294;

• Power Amplifier B&K type 2706;

• Thermometer Meterman TRH22;

This equipment was connected as shown in Figure 4.11.
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(a) (b)

(c) (d)

(e)

Figure 4.12: a) Small reverberation chamber b) Setup used to calibrate the force

transducer c) Accelerometer mounted on aluminium plate d) Force transducer (top),

dynamic shaker (bottom) e) Acoustic calibration microphone.

102



4.7. Impulse response measurement for the room excited by the plate

4.7 Impulse response measurement for the room excited by

the plate

4.7.1 Measurement setup

A 5 mm thick aluminium plate (1.2 m × 0.8 m) was placed inside a 13 m3 reverber-

ation chamber (1.83 m × 2.87 m × 2.48 m) - see Figure 4.13-a. This configuration

was chosen to validate the vibroacoustic FDTD model in the low-frequency range

where the first two bending modes of the plate occurred below the fundamental

acoustic mode of the cavity.

The plate is positioned at a height of 0.78 m above the floor using a metal frame as

shown in Figure 4.14. The minimum distance between the short edge of the plate

and the nearest wall is 0.53 m and between the long edge and the nearest wall is

0.33 m. A simply-supported boundary condition is applied around its edges by using

a heavy steel frame with pins at 20 mm centres as described by Yin and Hopkins

[90]. To provide damping similar to the Rayleigh curve, a viscoelastic damping

material (Sylomer) is fixed onto the surface of the plate. Different configurations of

damping material are applied over the surface with loss factors measured using the

3 dB down-points in the magnitude of the driving-point mobility. The diamond-

shaped configuration shown in Figure 4.14 was chosen because the overall damping

(a) (b) (c)

Figure 4.13: Reverberation room indicating (a) the plate (grey surface), (b) the

horizontal measurement grid (yellow surface) and (c) the vertical measurement grid

(yellow surface).
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approximately follows a Rayleigh damping curve below 200 Hz.

Sound pressure measurements inside the chamber are taken using two grids, one

horizontal grid (15 × 11 positions) and one vertical grid (13 × 11). Figure 4.13-a

defines the x-, y- and z-directions for these grids. The horizontal grid is 0.84 m

above the floor and 0.06 m above the plate (Figure 4.13-b). The vertical grid is 0.82

m from the back wall and 0.32 m from the edge of the plate (Figure 4.13-c). The

distance between consecutive positions is 0.2 m in the x-direction for the horizontal

grid, 0.18 m in the y-direction for both horizontal and vertical grids, and 0.2 m in

the z-direction for the vertical grid. An array of six 1/4” microphones (B&K Type

4135 with B&K Type 2670 pre-amplifiers) is used to measure the sound pressure at

the grid points. The worst case for the uncertainty in the microphone positioning at

grid positions is estimated to be ±1.5 cm in the plane of the horizontal or vertical

grid.

A force transducer (B&K Type 8200) and accelerometer (B&K Type 4393) are

connected at the excitation point to allow continuous monitoring of the input force.

This also allows measurement of the driving-point mobility in order to estimate the

modal loss factors.

Since FDTD is a time domain method, several attempts were made in order to carry

out the measurements using transient signals as source functions. However, there

were experimental difficulties associated with these approaches, mostly manifesting

as a rattle sound that would be radiated by the aluminium plate and also as a strong

shifting of the fundamental resonance frequency of the plate, nearly every time the

impulse source function was played. Hence, a steady state source signal had to be

used and the comparison with the FDTD results will be carried out in the frequency

domain.

The sound pressure and force signals are used to calculate a complex transfer func-

tion of pressure-to-force at all grid positions. These calculations were automatically

handled within the Ono Sokki frequency analyser. The frequency resolution of the

measurement analysis was set to 0.25 Hz and the maximum frequency of analysis

was 200 Hz. Additionally, it also output the coherence function corresponding to
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4.7. Impulse response measurement for the room excited by the plate

the measured transfer functions.

The measurement chain used for this experiment is shown in Figure 4.11, where it

is indicated whether the equipment was placed inside the measurement chamber or

fixed onto the aluminium plate. The position of the aluminium plate inside the room

and the corresponding microphone measurement positions are indicated in Figure

4.15.

(a) (b)

(c) (d)

Figure 4.14: a) Aluminium plate with green viscoelastic material (NB Microphone

array is also visible) b) Support conditions of the metal frame. c) Rubber isolator

d) Detail of the support conditions at the edge of the aluminium plate.
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Figure 4.15: Source and receiver positions for the horizontal grid (left) and vertical

grid (right).

4.7.2 Vibration source function

The type of excitation signal used for the experiments was a steady-state broadband

signal. The Ono Sokki FFT analyser generates this signal using high-pass filtered

pseudo-random sequences, with 1.2 V of amplitude and an offset of 0 V. During

each measurement, the FFT analyser carried out a power sum average over a time

period of 60 s using a Hanning time window. The maximum voltage of the FFT

analyser channels was set to 3.16 VRMS for the microphones and the accelerometer

channel and 10 VRMS for the force transducer channel.

4.7.3 Data processing

As described in section 4.7.1, the linear complex transfer function P/F was output by

the frequency analyser. The magnitude of the transfer function was then calculated

using:

|P (ω)/F (ω)| =
√

Re {P (ω)/F (ω)}2 + Im {P (ω)/F (ω)}2 (4.1)
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4.8. Summary

The magnitude transfer functions were in 0.25 Hz lines linearly averaged into 1 Hz

lines. Finally, the transfer function level was calculated from the 1 Hz resolution

lines using:

20log10(|P (ω)/F (ω)|) (4.2)

4.8 Summary

The details of the experimental work have been described in this chapter, including

measurement equipment and measurement chain diagrams.

Descriptions were given of the measurements taken in the anechoic chamber in order

to characterise the loudspeaker behaviour. In terms of its acoustic radiation, the

results show that the subwoofer performed as a monopole radiation source. In

terms of vibration of the subwoofer cone, the measurements confirmed its pistonic

behaviour.

The experimental validation took place in a small reverberation chamber. The sound

field in the room was measured with three different configurations: empty room,

partially divided by porous absorber and completely divided by a porous panel.

Details were also given on the vibroacoustic experiments with a point-excited plate

in the reverberation chamber were carried out. Tests were carried out to confirm

that the support conditions of the plate would provide repeatable conditions over

time.
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5 Validation of the acoustic FDTD model for an

acoustic cavity containing porous panels

5.1 Introduction

This chapter concerns the experimental validation of the acoustic FDTD predictions

and includes the implementation details of the FDTD model and a comparison be-

tween the results obtained in the simulations and those obtained in the corresponding

measurements that were described in chapter 4.

Section 5.2 describes the implementation of the FDTD acoustic model for the small

reverberation chamber described in chapter 4. The implementation of the subwoofer

source and the porous panel is also disscussed in this section.

Section 5.3 presents the results obtained in the measurements of the room damping

constants, which were described in section 4.4.

Section 5.4 presents a comparison between measured results and corresponding

FDTD predictions obtained for a number of receiver positions in the small reverber-

ation room under three different configurations: empty room, partially divided by

a porous panel and completely divided by a porous panel. In addition, a compari-

son between FDTD simulations carried out with/without using the Moving Frame

Model (MFM) is shown.

Section 5.5 presents the comparison between acoustic grid measurements carried

out in the small reverberation chamber and the corresponding FDTD results for the

same three different configurations that were described in section 5.4.
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5.2 Implementation of the FDTD acoustics model

In order to validate the modelling techniques for porous materials described in chap-

ter 2, an FDTD model of a small reverberation room has been created that incor-

porates a porous panel. The results obtained for this FDTD model are compared to

those obtained in the corresponding measurements described in this chapter.

5.2.1 Numerical resolution

The spatial resolution of the FDTD model must be sufficiently fine to model the

geometry of the room and the porous panel at the frequency range of interest. In

the FDTD model considered in this thesis, the grid spacing was set to ∆x=0.0589

m, ∆y=0.0574 m, ∆z=0.0578 m. Assuming a speed of sound of 343 m/s, this

corresponds to ∆t = 9.77× 10−5s, i.e. a sampling frequency of 10240 Hz.

5.2.2 Frequency range

For the acoustic FDTD simulations, the frequency range of interest is limited by

experimental constraints, particularly those related to the subwoofer behaviour used

for the measurements. As detailed in section 4.3.3, the subwoofer no longer shows

pistonic behaviour at frequencies above 140 Hz, which effectively sets an upper limit

for the frequency range of interest of the FDTD simulations.

5.2.3 Boundary conditions

In the FDTD model, the reverberation room is embedded in an acoustic medium

that emulates a free field through the implementation of PML boundaries such that

any acoustic waves escaping the room walls towards its exterior are not reflected
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PML

PML

P
M
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P
M
L

Room acoustic boundaries

Source

Receiver

Figure 5.1: Example of PML boundaries implemented outside the room domain.

back at the edges of the numerical domain - see Figure 5.1.

All six boundaries of the room were assumed identical. The measurement of the

damping constants of the room boundaries is described in section 4.4. The room

boundary conditions were frequency-independent and were implemented using equa-

tions 2.57 - 2.59. The value considered for the specific acoustic impedance was

224.9, which corresponds to the average of the measured values of specific acoustic

impedances obtained for the first 11 room modes (below 150 Hz), indicated in Tables

5.1 - 5.3.

5.2.4 Source

The sound source is a subwoofer loudspeaker which is implemented in FDTD as

a hard velocity source. The loudspeaker cone points upwards into the room (z-

direction) and was experimentally characterised to be acting as a piston in the

frequency range of interest (below 140 Hz). For this reason a uniform driving func-

tion is applied over the surface area of the cone on the FDTD grid. Section 2.8

provides details on the implementation of FDTD velocity hard sources.

The driving function used in the FDTD models was obtained by measuring the veloc-
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5. Validation of the acoustic FDTD model for an acoustic cavity containing porous panels

ity on the centre of the loudspeaker cone in an anechoic chamber. This measurement

was carried out using a laser vibrometer (Figure 4.3), and the resulting time history

is shown in Figure 4.10. The electrical signal used to drive the loudspeaker was a

Gaussian pulse, as described in section 2.8.

5.2.5 Properties of the porous material

The porous material was rock wool, whose physical properties are described in sec-

tion 4.5. According to equation 2.68, these values of airflow resistivity result in

a maximum frequency limit of 25,913 Hz along the thickness direction and 12,505

Hz along the lateral directions of the porous panel. Both of these values are much

higher than the 140 Hz frequency limit dictated by the experiments (section 5.2.2).

These values of airflow resistivity were incorporated in equation 2.79 for each of the

corresponding directions. As mentioned in section 2.11.2, the value of density used

to model the porous material was that of air.

5.2.6 Numerical receiver positions

The sound field was sampled using two different grids, one horizontal (xy−plane)

and the other vertical (xz−plane) as described in section 4.5.4 and shown in Figures

4.8 and 4.9. The horizontal grid consisted of 6 × 8 measurement positions, spaced

by 350mm along the x−axis and 400mm along the y−axis. The vertical grid con-

sisted of 6 × 7 positions, spaced by 350mm along the x−axis and 400mm along the

z−axis.
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p q r
Frequency

(Hz)
δ(s−1) Za,S(—)

0 1 0 59.8 3.35 168.9

0 0 1 69.2 2.59 225.5

0 1 1 91.4 2.90 243.1

1 0 0 94.2 2.90 219.1

1 1 0 111.6 3.34 225.6

1 0 1 116.9 3.40 227.5

0 2 0 119.5 3.55 159.4

1 1 1 131.3 3.12 286.0

0 2 1 138.1 3.12 225.6

0 0 2 138.3 2.57 227.9

0 1 2 150.7 2.97 236.9

Table 5.1: Measured specific acoustic impedances for each normal mode - corner

position 1

5.3 Results - Acoustic boundary damping constants

For the three corner microphone positions indicated in Figure 4.6, the specific acous-

tic impedances obtained from the measurements for each room mode are indicated

in Tables 5.1 - 5.3. This indicates that although there is variation, it is reason-

able to use an average value in the FDTD model. The value considered for the

frequency-independent specific acoustic impedance was obtained from the average

of the specific acoustic impedances obtained from the first 11 room modes for all

three measurement positions, which is 224.9. This value was subsequently multiplied

by the value of characteristic impedance of air to yield the average specific acoustic

impedance of the room surfaces needed as input data in equations 2.57 - 2.59.
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p q r
Frequency

(Hz)
δ(s−1) Za,S(—)

0 1 0 59.2 3.34 169.3

0 0 1 68.5 2.59 225.8

0 1 1 90.6 2.90 242.8

1 0 0 93.4 2.90 218.8

1 1 0 110.6 3.38 223.2

1 0 1 115.9 3.41 226.9

0 2 0 118.5 3.55 159.4

1 1 1 130.1 3.13 285.2

0 2 1 136.9 2.58 273.2

0 0 2 137.1 2.58 226.9

0 1 2 149.3 2.98 236.4

Table 5.2: Measured specific acoustic impedances for each normal mode - corner

position 2.
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p q r
Frequency

(Hz)
δ(s−1) Za,S(—)

0 1 0 59.2 3.37 167.7

0 0 1 68.5 2.58 226.2

0 1 1 90.6 2.89 243.5

1 0 0 93.4 2.89 219.5

1 1 0 110.6 3.35 225.0

1 0 1 115.9 3.41 226.5

0 2 0 118.5 3.51 161.1

1 1 1 130.1 3.16 282.4

0 2 1 136.9 2.56 274.6

0 0 2 137.1 2.56 228.0

0 1 2 149.3 3.01 233.8

Table 5.3: Measured specific acoustic impedances for each normal mode - corner

position 3.
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5.4 Results - Point responses

This section shows the comparison between acoustic measurements and correspond-

ing FDTD predictions for a number of receiver positions in the small reverberation

chamber under three different conditions: empty room, room partially divided by a

porous panel and room completely divided by a porous panel.

The inclusion of the MFM (described in section 2.11.2) in FDTD with the porous

panel has been assessed through comparison of FDTD results with measurements.

Figures 5.2 - 5.5 show three different microphone positions taken from the measure-

ment grids for the room when partially and completely divided by the porous panel

respectively. The results show a resonance peak that occurs below the fundamental

frequency of the room, the frequency at which this resonance occurs depends upon

the configuration of the porous panel in the room.

For the configuration of the room that was completely divided by the porous panel,

the frequency at which this resonance occurs can be estimated by considering the

room as a spring-mass-spring system, as described in section 2.11.2. For the rever-

beration room with the panel as the system in Figure 2.11, the spring-mass-spring

resonance frequency, fo, is given by equation 2.72. The stiffness corresponding to

each volume of air on either side of the porous panel is given by equation 2.11.2.

The mass of the porous panel was calculated using its bulk density (100 kg/m3) and

its value is 0.1 m x 2.48 m x 1.82 m x 100 kg/m3 = 45.13 kg. To this mass it is

necessary to add the mass of the wooden plank support which is about 1.140 kg.

The stiffnesses of air volumes 1 and 2 are given by:

k1 = 1.2 kg/m3× (343 m/s)2× (2.48 m×1.82 m)2/(2.48 m×1.82 m×1.46 m)

k1 = 4.365× 105N/m

k2 = 1.2 kg/m3× (343 m/s)2× (2.48 m×1.82 m)2/(2.48 m×1.82 m×1.46 m)

k2 = 4.864× 105N/m

From equation 2.72 the spring-mass-spring resonance frequency is 22.5 Hz.
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5.4. Results - Point responses

For the room that is partially divided by the porous panel, inclusion of the MFM is

necessary to correctly predict the lowest frequency peak in the spectrum, although

it has negligible effect at higher frequencies. When the panel completely divides the

room volume the results show that the MFM is essential to correctly predict sound

pressure levels near the spring-mass-spring resonance otherwise errors up to 20 dB

can be incurred. As previously mentioned, the spring-mass-spring resonance occurs

below the first room mode and is calculated to be 22.5 Hz, although the shallow

peak in the measurements is only evident at 27 Hz. There is an indication that

the MFM can improve the FDTD predictions outside the damping controlled region

(i.e., 3 dB bandwidth) of the room modes as can be seen between 70 Hz and 90 Hz

on Figures 5.4 - 5.5.

Having demonstrated the validity of FDTD with MFM for the room with the porous

panel, an additional comparison between FDTD and measurement results is shown in

terms of magnitude, phase (wrapped) and impulse responses in Figures 5.6 - 5.10 at

two different grid positions. The peak in the magnitude at 60 Hz shown in Figure 5.6

(empty room) corresponds to the lowest frequency room mode which is f010, where

the subscript indicates p, q, and r corresponding to the x−, y− and z− directions

respectively. Close agreement between FDTD and measurements indicates that

the impulse from the loudspeaker has been correctly incorporated as a hard velocity

source in FDTD. It also indicates that it is reasonable to use a frequency-independent

impedance for all the walls and floors. However, whilst FDTD predicts all the

trends of the phase excursions there are occasional discrepancies which become most

apparent when the phase wraps at 180◦.

The cross-correlation coefficients obtained between the measured and the FDTD

impulse responses are indicated by ”Corr.” in Figures 5.6 - 5.10. These are in the

range 0.77 - 0.91. Although there are no similar cross-correlation coefficients quoted

in the literature for a small room whose sound field is primarily dictated by its

modal response, there are values from Sakamoto et al.[4] for a large concert hall with

numerous diffusing elements. Those cross-correlation coefficients for measurements

and FDTD were in the range 0.79 - 0.87; these values are similarly high to those

obtained in this work. The close agreement of FDTD with measurements indicates
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5. Validation of the acoustic FDTD model for an acoustic cavity containing porous panels

that there is potential to use the predicted impulse response for the purpose of

auralisation.
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Figure 5.2: Room partially divided by porous panel: without MFM.
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Figure 5.3: Room partially divided by porous absorber: with MFM.
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Figure 5.4: Room completely divided by porous panel: without MFM.

119



5. Validation of the acoustic FDTD model for an acoustic cavity containing porous panels

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Frequency (Hz)

10
20
30
40
50
60
70
80
90

So
un

d 
Pr

es
su

re
 L

ev
el

 (
dB

) (a) Row 2 - Position 5 (Horizontal grid)

FDTD
Measured

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Frequency (Hz)

10
20
30
40
50
60
70
80
90

So
un

d 
Pr

es
su

re
 L

ev
el

 (
dB

) (b) Row 5 - Position 3 (Horizontal grid)

FDTD
Measured

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Frequency (Hz)

10
20
30
40
50
60
70
80
90

So
un

d 
Pr

es
su

re
 L

ev
el

 (
dB

) (c) Row 7 - Position 5 (Vertical grid)

FDTD
Measured

Figure 5.5: Room completely divided by porous absorber: with MFM.
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Figure 5.6: Empty room: FDTD and measured responses on the horizontal grid,

Row 1 Position 4.
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Figure 5.7: Room partially divided by a porous panel: FDTD and measured re-

sponses on the horizontal grid, Row 1 Position 4.
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Figure 5.8: Room completely divided by a porous absorber: FDTD and measured

responses on the horizontal grid, Row 1 Position 4.
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Figure 5.9: Room partially divided by a porous panel: FDTD and measured re-

sponses on the horizontal grid, Row 6 Position 4.
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Figure 5.10: Room completely divided by a porous absorber: FDTD and measured

responses on the horizontal grid, Row 6 Position 4.
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5. Validation of the acoustic FDTD model for an acoustic cavity containing porous panels

5.5 Results - Contour plots

The final stage of the validation is to compare measurements with FDTD using the

MFM in terms of the spatial variation of the sound pressure level over the measure-

ment grids. The results obtained for the horizontal and vertical grids correspond to

three different room configurations: empty room, room partially divided by a porous

panel and room completely divided by a porous panel. The source and receiver po-

sitions are indicated in Figure 4.8 and the details of the experimental procedure are

described in section 4.5.

5.5.1 Contour plots of spring-mass-spring resonances

This section shows the sound pressure level contour plots obtained at the two spring-

mass-spring resonances observed when the room was completely and partially di-

vided by the porous panel. Both spring-mass-spring resonances occur below the

fundamental mode of the room, which occurs at 60 Hz.

The contour plots in Figures 5.11 and 5.12 show small variation in the spatial dis-

tribution of sound pressure level, in particular in those obtained for the vertical

grid. However, FDTD successfully predicts the more significant spatial variation of

sound pressure level, corresponding to the resonance horizontal grid for the partially

divided room at 46 Hz (See Figure 5.11-c and -d).

FDTD predictions overestimate the measured sound pressure levels for the 46 Hz

spring-mass-spring resonance by around 5 dB. However, there is close agreement

between predicted and measured sound pressure levels for the first mass-spring-mass

resonance.
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(a) 27 Hz
s

(b) 22 Hz

(c) 46 Hz
s

(d) 46 Hz

Figure 5.11: FDTD and measured sound pressure levels on the horizontal grid at the

spring-mass-spring resonance for the room completely divided by the porous panel -

a) and b) - and partially divided by the porous panel - c) and d). The black dashed

line indicates the porous panel
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(a) 27 Hz
s

(b) 22 Hz

(c) 46 Hz
s

(d) 46 Hz

Figure 5.12: FDTD and measured sound pressure levels on the vertical grid at the

spring-mass-spring resonance for the room completely divided by the porous panel -

a) and b) - and partially divided by the porous panel - c) and d). The black dash-dot

lines on (b) indicate the height of the porous panel that partially divides the room.
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5.5. Results - Contour plots

5.5.2 Contour plots at room resonances

This section shows a comparison between measured and predicted grid contour plots

obtained at the modal resonances of the empty room. The source position and the

number and positioning of the receivers used for each of the horizontal and vertical

grid are described in section 4.5. Contour plots of the sound pressure level (dB

re 2 × 10−5 Pa) with 1 Hz FFT lines are shown in Figures 5.13 - 5.28 for the

eigenfrequencies indicated in Table 5.1. The results shown in Figures 5.13 - 5.20

correspond to the horizontal grid, while the results shown in Figures 5.21 - 5.28

correspond to the vertical grid.

It can be seen that the presence of the porous panel results in significant distortion

of the empty room mode shapes, especially for mode shapes where the air particle

velocity is high across the thickness of the porous panel. The results obtained

show that the FDTD model of the porous absorber, which included the new MFM,

successfully predicted the changes introduced in the mode shapes caused by the

porous panel.

The close agreement between experimental data and numerical predictions was ob-

tained for both horizontal and vertical grids, and for the three aforementioned room

configurations. The horizonal grid contour plot shown in Figure 5.13 illustrates this,

where the mode shape of the empty room corresponding to mode (0,1,0) undergoes

great distortion introduced by the presence of the porous panel, since the air particle

velocity is very high (SPL is low) across the thickness of the panel. One example

where distortion occurs to a lesser extent can be seen in the results shown in Fig-

ure 5.18, where the porous panel is located close to a nodal line (anti-nodal line

of sound pressure) of particle velocity across its thickness. Discrepancies between

measurements and FDTD predictions can also be found, such as those observed in

Figures 5.14-a and 5.22-a (70 Hz) and 5.15-a and 5.23-a (91 Hz), both of which refer

to the empty room configuration, where discrepancies can be seen to occur mostly

in the level of the modes. These discrepancies could be attributed to errors caused

by the simplifying assumption of uniform damping of room walls as they are most
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5. Validation of the acoustic FDTD model for an acoustic cavity containing porous panels

evident for the empty room configuration since the results obtained for the other two

configurations are strongly affected by the presence of the porous panel. The level

of agreement obtained in the comparison between FDTD results and experimental

data for the empty room configuration is a significant improvement on that obtained

in the work of Olesen [91] which (a) used a coarser measurement grid (60 cm × 60

cm) to validate the finite difference predictions, (b) was limited to a horizontal grid

plane and (c) used 10dB steps in the contour plot which meant that it was not

possible to identify the details between nodal and anti-nodal planes.
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(b) Room partially divided by a porous panel
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(c) Room completely divided by a porous panel

Figure 5.13: FDTD and measured responses on the horizontal grid at 60 Hz. The

black dashed line indicates the porous panel
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(b) Room partially divided by a porous panel

 

 
Measured

1 2 3 4 5 6
1

2

3

4

5

6

7

8

10

20

30

40

50

60

70

80

90

100
[dB] [dB]

 

 
FDTD

1 2 3 4 5 6
1

2

3

4

5

6

7

8

10

20

30

40

50

60

70

80

90

100

(c) Room completely divided by a porous panel

Figure 5.14: FDTD and measured responses on the horizontal grid at 70 Hz. The

black dashed line indicates the porous panel.
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(c) Room completely divided by a porous panel

Figure 5.15: FDTD and measured responses on the horizontal grid at 91 Hz. The

black dashed line indicates the porous panel.
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(c) Room completely divided by a porous panel

Figure 5.16: FDTD and measured responses on the horizontal grid at 94 Hz. The

black dashed line indicates the porous panel.
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(c) Room completely divided by a porous panel

Figure 5.17: FDTD and measured responses on the horizontal grid at 112 Hz. The

black dashed line indicates the porous panel.
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(c) Room completely divided by a porous panel

Figure 5.18: FDTD and measured responses on the horizontal grid at 120 Hz. The

black dashed line indicates the porous panel.
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Figure 5.19: FDTD and measured responses on the horizontal grid at 131 Hz. The

black dashed line indicates the porous panel.
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(c) Room completely divided by a porous panel.

Figure 5.20: FDTD and measured responses on the horizontal grid at 138 Hz. The

black dashed line indicates the porous panel.

138



5.5. Results - Contour plots

Measured

 

 

1 2 3 4 5 6
1

2

3

4

5

6

7

10

20

30

40

50

60

70

80

90

100
[dB] [dB]FDTD

 

 

1 2 3 4 5 6
1

2

3

4

5

6

7

10

20

30

40

50

60

70

80

90

100

(a) Empty room

 

 
Measured

1 2 3 4 5 6
1

2

3

4

5

6

7

10

20

30

40

50

60

70

80

90

100
[dB] [dB]

 

 
FDTD

1 2 3 4 5 6
1

2

3

4

5

6

7

10

20

30

40

50

60

70

80

90

100

(b) Room partially divided by a porous panel

Measured

 

 

1 2 3 4 5 6
1

2

3

4

5

6

7

10

20

30

40

50

60

70

80

90

100
[dB] [dB]FDTD

 

 

1 2 3 4 5 6
1

2

3

4

5

6

7

10

20

30

40

50

60

70

80

90

100
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Figure 5.21: FDTD and measured responses on the vertical grid at 60 Hz. The black

dash-dot lines on (b) indicate the height of the porous panel that partially divides

the room.
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(c) Room completely divided by a porous panel

Figure 5.22: FDTD and measured responses on the vertical grid at 70 Hz. The black

dash-dot lines on (b) indicate the height of the porous panel that partially divides

the room.
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(c) Room completely divided by a porous panel

Figure 5.23: FDTD and measured responses on the vertical grid at 91 Hz. The black

dash-dot lines on (b) indicate the height of the porous panel that partially divides

the room.
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(c) Room completely divided by a porous panel

Figure 5.24: FDTD and measured responses on the vertical grid at 94 Hz. The black

dash-dot lines on (b) indicate the height of the porous panel that partially divides

the room.
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(c) Room completely divided by a porous panel

Figure 5.25: FDTD and measured responses on the vertical grid at 112 Hz. The

black dash-dot lines on (b) indicate the height of the porous panel that partially

divides the room.
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(c) Room completely divided by a porous panel

Figure 5.26: FDTD and measured responses on the vertical grid at 120 Hz. The

black dash-dot lines on (b) indicate the height of the porous panel that partially

divides the room.

144



5.5. Results - Contour plots

Measured

 

 

1 2 3 4 5 6
1

2

3

4

5

6

7

10

20

30

40

50

60

70

80

90

100
[dB] [dB]FDTD

 

 

1 2 3 4 5 6
1

2

3

4

5

6

7

10

20

30

40

50

60

70

80

90

100

(a) Empty room

 

 
Measured

1 2 3 4 5 6
1

2

3

4

5

6

7

10

20

30

40

50

60

70

80

90

100
[dB] [dB]

 

 
FDTD

1 2 3 4 5 6
1

2

3

4

5

6

7

10

20

30

40

50

60

70

80

90

100

(b) Room partially divided by a porous panel

Measured

 

 

1 2 3 4 5 6
1

2

3

4

5

6

7

10

20

30

40

50

60

70

80

90

100
[dB] [dB]FDTD

 

 

1 2 3 4 5 6
1

2

3

4

5

6

7

10

20

30

40

50

60

70

80

90

100

(c) Room completely divided by a porous panel

Figure 5.27: FDTD and measured responses on the vertical grid at 131 Hz. The

black dash-dot lines on (b) indicate the height of the porous panel that partially

divides the room.
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(c) Room completely divided by a porous panel

Figure 5.28: FDTD and measured responses on the vertical grid at 138 Hz. The

black dash-dot lines on (b) indicate the height of the porous panel that partially

divides the room.
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5.6 Conclusions

The implementation of the FDTD acoustics model of the small reverberation cham-

ber and the porous panel was described in this chapter. The prediction of low-

frequency sound fields using FDTD in a small room incorporating a porous panel

was investigated. Close agreement was obtained between FDTD and measurements

in terms of time domain response and the corresponding magnitude and phase of

the Fourier transforms. The experimental results indicate the existence of a spring-

mass-spring resonance that occurs below the fundamental acoustic resonance of the

room when the porous panel is present. The results show that the MFM enabled

the FDTD model to estimate the higher response caused by this spring-mass-spring

resonance. The contour plots obtained for the room eigenfrequencies show that the

majority of measured features relating to the nodal and anti-nodal planes for the

axial, tangential and oblique modes are predicted by the FDTD model. The close

agreement between FDTD and measurements can be found over both horizontal and

vertical measurement grids. This demonstrates the ability of FDTD to accurately

predict the sound field with or without a porous panel that partially or completely

divides the room.

The close agreement between FDTD and measurements shows that: (a) the Rayleigh

model is valid for a room that is partially or completely divided by a porous panel

of fibrous material, (b) an additional moving frame model is required in FDTD

to introduce low-frequency panel motion and (c) a loudspeaker driven by a pulse

can be accurately modelled in FDTD as a hard velocity source acting as a piston

with all other velocity elements forming the cabinet set to zero to represent rigid

boundaries.
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6 Validation of the vibroacoustic FDTD model for

a point-excited plate in an acoustic cavity

6.1 Introduction

This chapter concerns the experimental validation of the vibroacoustics FDTD

model, corresponding to the prediction of the sound field produced by a mechanically

excited aluminium plate.

Section 6.2 describes the numerical details of the FDTD model used for the small

reverberation chamber that includes the aluminium plate.

Section 6.3 discusses the effects of numerical dispersion in the FDTD vibroacoustics

model by comparing the resonances for the room and the aluminium plate with

those calculated using analytical models.

Section 6.4 details the experimental validation of the FDTD predictions of the

driving-point mobility of the aluminium plate.

Section 6.5 describes the experimental validation of the FDTD predictions in terms

of frequency response contour plots of the small reverberation chamber excited by

a vibrating aluminium plate. The results obtained for the experimental validation

are discussed in terms of differences in level and mode shapes for the frequency

response contour plots. The validity of the frequency response measurements is

evaluated based on the coherence measurements.
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6.2 FDTD implementation of a practical vibroacoustics model

To assess whether the scaling approach and simplified solid-air boundary conditions

described in chapter 3 can be applied to practical vibroacoustic problems, a model

of a simply-supported 5 mm thick aluminium plate inside a small reverberation

chamber was created using FDTD. The accuracy of the FDTD predictions were

experimentally validated using the experiment setup described in section 4.7. The

comparison and discussion of the results obtained for this vibroacoustic FDTD model

and the corresponding measurements is shown in sections 6.4 and 6.5.

6.2.1 Material properties

The physical properties assigned to the aluminium plate in the FDTD model were

previously described in section 4.6. The values of these physical properties result in

the following Lamé constants, µ = 2.32× 1010 N/m2 and λ = 4.92× 1010 N/m2. In

order to account for mechanical energy dissipation, the following Rayleigh damping

constants were used to approximate the damping measured in the vibroacoustic

experiments: β = 11, 000 Ns/m4, γ = 0 Ns/m2 and χ = 0 Ns/m2.

The properties of air for the acoustic medium were set to ρo= 1.2 kg/m3 and c = 343

m/s. A scaling factor of s=6 was chosen to carry out the simulations which gives

ρ′o=0.20 kg/m3 and c′ = 2058 m/s.

The Lamé and damping constants were used in the discretized version of the 3D con-

stitutive equations 3.28 - 3.30. The density used in the FDTD equations corresponds

to the discretized form of the 3D momentum equations 3.34 - 3.36.
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6.2.2 Numerical resolution

The global Cartesian frame of reference used in the FDTD model is the same as

previously shown in Figure 4.13. The spatial resolution used for the scaled FDTD

model is ∆x′=0.39 m, ∆y′=0.35 m and ∆z′=0.13 m. The largest wave speed that

is accounted for in the vibroacoustic model is the quasi-longitudinal phase velocity

of aluminium, 5100 m/s. As discussed in section 3.13, the largest time step which

satisfied the Courant condition and provided stability was found to be 1.93× 10−5

s. The simulations are carried out over a time interval of 4 s.

6.2.3 Boundary conditions

The acoustic boundary conditions of the reverberation chamber were modelled ex-

actly as described in section 5.2.3, i.e. the boundaries were modelled as frequency

independent with a value of specific acoustic impedance of 224.9.

6.2.4 Source function

The driving function assigned to the source is proportional to the first time derivative

of the Gaussian pulse, which has the form:

σzz(t) = −Ao
(t− to)
σ3

o
exp

[
(t− to)2

2σ2
o

]
(6.1)

where to is the time offset and σo is the Gaussian width of the pulse and Ao is an

amplitude constant which was assigned the value of 10−4 Ns2/m2. This particular

waveform is chosen because its spectrum contains no energy at 0 Hz (which would

represent static loading). The values chosen for to and σo determine the frequency

content of the source function. In this thesis, to = 10 ms and σo = 10−3ms. Refer

back to Figure 3.6 for the waveform and frequency response of the pulse. It is
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necessary that most of the power of the source function lies below the maximum

frequency allowed by the domain discretization [18].

6.2.5 Frequency range of the FDTD analysis

It is necessary to estimate an upper frequency limit for the FDTD analysis; however,

there is more than one factor that determines this limit. The sampling frequency

used in the FDTD simulations is 51,724 Hz and according to the Nyquist sampling

theorem this results in an upper limit of 25,862 Hz. In contrast, the upper limit

due to the scaling approach for the aluminium plate with a scaling factor of six is

1418 Hz. In terms of spatial discretization for the air, the use of six computational

cells per wavelength results in an upper limit of ≈ 870 Hz (based on c′ = sc =2040

m/s). For bending waves on the plate, six cells per wavelength gives an upper limit

of ≈ 300 Hz; hence as this is the lowest value, it provides an estimate for the upper

frequency limit of the FDTD simulation.

6.2.6 Stability of the simulation

The general FDTD implementation of the plate can potentially involve any type of

vibratory wave motion. Hence, it is necessary to consider the different wave types

that might occur in the problem. In this example, the FDTD simulation of a 5

mm thick aluminium plate followed a general approach that does not restrict any

particular type of wave motion from propagating in the solid medium. Figure 6.1

shows the different wave types and corresponding phase velocities that occur below

500 Hz. Since the frequency range of interest is below 200 Hz, as this corresponds

to the highest frequency of the measurements, the dilatational wave has the highest

phase velocity, at a value of 6052 m/s. However, as discussed in section 3.9, it is

not always possible to identify whether waves that have the highest phase velocity

have actually been excited and therefore it was necessary to test several values of C

(using equation 2.41) for stability. After assessing values for C in the range 5000 m/s
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Figure 6.1: Phase velocities of different types of waves occurring in a aluminium

plate 5 mm thick.

to 6100 m/s, it was concluded that the simulations stabilise at a value of C =6000

m/s, which is slightly lower than the phase velocity of dilatational waves. The value

of C obtained for stability was found to be invariant with the type of excitation,

whether out-of-plane or in-plane excitation. Therefore the value C =6000 m/s was

used in the simulations to calculate the value of dt using equation 2.41.

6.2.7 Processing of numerical results

The output of the FDTD simulation consisted of a time history of transient pressure

signals and a force driving function, each with a duration 4 s and a time step of

1.93×10−5 s. The force driving function f(t) and the pressure time signals p(t) were

then Fourier transformed using FFT, which resulted in P (ω) and F (ω). In order to

obtain the complex transfer function P/F the complex vectors P (ω) and F (ω) were

pointwise divided. After obtaining the complex transfer function, its magnitude

gives |P (ω)/F (ω)|. The level of the the magnitude of the transfer function was then

calculated using 20log10(|P (ω)/F (ω)|). Finally, the logarithmic transfer function

was linearly averaged over every 4 points (0.25 Hz each) giving a frequency resolution
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of 1 Hz (this corresponds to that used for the measurements described in section

4.7.3).

6.2.8 Scaling of FDTD model

The vibroacoustic FDTD model uses a scaling factor of s = 6. After accounting for

the total number of calculation cells and the time step used in the scaled model, the

computation time was reduced by a factor of 170 compared to the original model.

As expected (see section 3.13.5), this factor does not exceed the ratio of 216 that

corresponds to s3 which was estimated using equation 3.74.

6.3 Numerical dispersion

To assess numerical dispersion in the FDTD model for wave motion in the acoustic

medium, a hard, point pressure source is implemented in one corner of the empty

room (i.e., without the plate). The sound pressure response in a different corner is

then used to identify modal peaks for comparison with the analytical eigenfrequen-

cies that are calculated for an empty room with rigid boundaries (given by equation

3.63). Results for modes below 200 Hz are shown in Table 6.1. These indicate

that the errors are less than 2.2%. To assess numerical dispersion for the elastic

plate, analytical eigenfrequencies for a simply supported plate are compared with

the modal peaks in the FDTD driving-point mobility below 200 Hz. The results are

shown in Table 6.2 which indicates that the errors are no more than 5.1%. Hence,

numerical dispersion can be considered to be negligible for both the air and plate

below 200 Hz.
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Mode Analytical (Hz) FDTD (Hz) Difference (%)

1 60.3 f010 60.0 0.5

2 69.8 f001 68.9 1.3

3 92.3 f011 91.0 1.4

4 94.6 f100 95.0 -0.4

5 112.2 f110 112.5 -0.3

6 117.6 f101 117.3 0.3

7 120.6 f020 119.2 1.2

8 132.1 f111 131.7 0.3

9 139.4 f021 136.4 2.2

10 139.6 f002 137.8 1.3

11 152.1 f012 148.9 2.1

12 153.3 f120 152.5 0.5

13 168.4 f121 166.1 1.4

14 168.6 f102 167.8 0.5

15 179.1 f112 176.7 1.4

16 181.0 f030 178.4 1.4

17 184.5 f022 182.0 1.4

18 189.2 f200 189.4 -0.1

19 194.0 f031 191.4 1.3

20 198.6 f210 198.5 0.1

Table 6.1: Room - comparison of analytical eigenfrequencies and the frequencies of

peaks in the room response from FDTD.
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Mode Analytical (Hz) FDTD (Hz) Difference (%)

1 26.1 f11 27.5 -5.1

2 50.2 f21 52.2 -3.9

3 80.3 f12 83.0 -3.3

4 104.4 f22 106.7 -2.2

5 146.0 f41 145.0 0.7

6 200.0 f42 195.7 2.2

Table 6.2: Plate - comparison between analytical eigenfrequencies and modal peaks

in the FDTD driving-point mobility.

6.4 Driving-point mobility of the aluminium plate

Figure 6.2 shows the driving-point mobility after accounting for the level offset

due to scaling and allows a comparison between FDTD and the measurements. A

comparison of the frequencies at which the peaks occur in the measured and FDTD

driving-point mobilities is shown in Table 6.3. The agreement confirms that the

experimental setup provides a reasonable approximation of simply supported plate

boundaries, with the largest difference (7.7%) occurring for mode 2, the f21 mode.

This difference between measurement and prediction is similar to that obtained in

the work by Toyoda et al [68]. Although their geometry and structural supports were

different, differences of approximately 10% can be identified in their impedance level

diagrams.

In addition to the agreement in the frequencies at which the peaks occur, reasonable

agreement can be found in terms of level with differences ranging from 0.4 to 7

dB. This indicates that the approach used to model the damping of the plate is

appropriate, which is also confirmed by comparing loss factors from measurements

and FDTD obtained using the 3 dB down points in the driving-point mobility in

Table 6.4. For the measured data, it was necessary to perform extra measurements

employing zoom FFT technique [92] to increase the frequency resolution around the

peaks. The agreement between measured and predicted loss factors is reasonable
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for the first three modes but has errors of 50% for modes 4 and 5.

Chaigne and Lambourg [93] indicate how internal damping and radiation damp-

ing could be incorporated in time-domain models for three basic mechanisms of

damping, which they list as thermoelasticity, viscoelasticity and radiation. This

potentially has practical application to lightly damped musical instruments such as

a cymbal, but it is of limited use to engineering structures such as buildings, aircraft

or marine structures where the total loss factor of plates is determined by the sum

of the internal losses, radiation losses, losses due to additional damping layers and

structural coupling losses. As the latter two losses tend to dominate, the approach

of Chaigne and Lambourg was not incorporated, and experimentally-determined

values of the damping were incorporated in the model.
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Figure 6.2: Plate - measured and FDTD driving-point mobilities.
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Mode Measured (Hz) FDTD (Hz) Difference (%)

1 27.3 27.5 0.9

2 48.5 52.2 7.7

3 82.3 83.0 1.0

4 105.0 106.7 1.6

5 148.3 145.0 -2.2

Table 6.3: Plate - comparison of measured and FDTD eigenfrequencies for the plate.

Mode Measured (-) FDTD (-) Difference (%)

1 0.0269 0.0266 -1.4

2 0.0109 0.0125 15.1

3 0.0075 0.0078 3.8

4 0.0145 0.0066 -54.8

5 0.0112 0.0047 -57.8

Table 6.4: Plate - comparison of measured and FDTD loss factors.
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6.4. Driving-point mobility of the aluminium plate

6.4.1 Monitoring of driving-point mobilities

This section covers the details and the results of the measurement of the driving-

point accelerance of an aluminium plate placed inside a reverberation chamber. The

measured driving-point accelerance data was then converted into driving-point mo-

bility by means of division by iω. The measurement of accelerance was used to

investigate the modal loss factors of the plate and to monitor the power input to the

electrodynamic shaker or the integrity of the plate supports throughout all the mea-

surements. Such monitoring activities were needed to ensure that the experimental

conditions remained constant. Figure 6.3 shows an overlay of all the driving-point

mobilities that were captured throughout all the measurements. These show that

the support conditions of the plate did not vary significantly over time because the

level of the driving-point mobilities remained constant (within 0.5 dB) throughout

the measurements and the corresponding resonance frequencies changed by less than

1 Hz.

Zoom FFT analysis was carried out in order to measure the loss factors associated

with the modal peaks. Standard FFT was used to monitor the power input to

the plate. Beeswax was used to fix the accelerometer on top of the aluminium

plate.
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Figure 6.3: Overlay of the magnitude of measured driving-point mobilities: 0 Hz-200

Hz range (left) 44 Hz-53 Hz range (right).
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6. Validation of the vibroacoustic FDTD model for a point-excited plate in an acoustic cavity

6.5 Vibroacoustic response of the room due to point-excited

aluminium plate

This section compares the results obtained in the FDTD vibroacoustic model to the

corresponding measurements carried out in the small reverberation chamber. The

comparison is carried out in terms of measured and predicted transfer functions and

pressure-to-force transfer function contour plots.

6.5.1 Comparison of measured and predicted transfer functions

To assess the ability of FDTD to predict the spatial variation in sound pressure in

the room, a comparison is now made between measured and FDTD magnitudes of

the transfer functions. The transfer functions for all grid points in the vertical and

horizontal grids are shown in Figures. 6.4 a) and b) and 6.4 c) and d) respectively.

Peaks in these transfer functions correspond to global resonances of the plate-cavity

system for which there are fifteen peaks below 200 Hz. For the first six of these

global resonances, contour plots are shown in Figures 6.5 to 6.19 with the outline

of the plate indicated using solid black lines and the source location indicated using

a black cross. These plots allow comparisons of measurements and FDTD for the

horizontal and vertical grids.

6.5.2 Comparison of measured and predicted contour plots

This section compares the predicted and measured transfer function contour plots.

The discussion is limited to frequencies below 200 Hz since this corresponds to the

highest frequency of the measurements.

At frequencies corresponding to plate modes f11 and f12 that occur below the lowest

room mode f010, the contour plots in Figures 6.5 and 6.6 show close agreement
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6.5. Vibroacoustic response of the room due to point-excited aluminium plate

(a) (b)

(c) (d)

Figure 6.4: Transfer functions corresponding to all grid points in the vertical grid -

(a) measured and (b) FDTD - and horizontal grid - (c) measured and (d) FDTD -

overlaid.

161



6. Validation of the vibroacoustic FDTD model for a point-excited plate in an acoustic cavity

between measurements and FDTD in terms of the spatial variation with particularly

close agreement in Figure 6.5(a,b). For the horizontal grid, the sound pressure field

corresponds to the vibration field of the plate mode. The results for the vertical grid

show that the sound pressure level varies by up to 40 dB over the grid surface. This

demonstrates that it is inappropriate to assume a uniform sound field (pressure zone)

below the first room mode in a small acoustic cavity which is excited by a plate.

Figure 6.7 shows the spatial variation above the lowest room mode at a frequency

close to the lowest axial mode f001 (vertical direction) and in between plate modes

f12 and f21. In terms of the spatial variation in the horizontal and vertical grids,

there is close agreement between measurements and FDTD, with the vertical grid

showing the expected variation in sound pressure corresponding to the lowest axial

mode in the vertical direction. However, FDTD underestimates the level by 8 dB for

both grids. This issue in predicting the correct level has been observed to occur at

other frequencies where there is a room mode that is in between plate modes where

at least one of the plate modes fpq has a p or q as an even number. This could be due

to cancellation in the radiated field that occurs with the unbaffled plate in the FDTD

model but does not occur exactly in the experimental setup due to the existence of

the metal frame that supports the plate. The spatial variation in the horizontal grid

is characterised by low sound pressure levels over the surface of the plate because

in the vicinity of the plate it prevents the establishment of the mode shape for the

lowest axial mode. Figure 6.8 shows the response at 82 Hz near the f12 plate mode

which is inbetween room modes f001 and f011. There is close agreement between

measurements and FDTD for the horizontal grid in terms of the spatial variation

and levels. However, there is less agreement for the vertical grid, particularly at

grid positions that are at a higher elevation than the plate. Figure 6.9 shows close

agreement between measurements and FDTD for the horizontal and vertical grids

for the response at 92 Hz which is close to the lowest tangential room mode f011

and in between excited plate modes f21 and f22. There is similarly close agreement

in Figure 6.10 at 104 Hz which is close to the f22 plate mode and inbetween room

modes f011 and f110.

A possible reason for the differences in the results is due to the discrepancies in
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6.5. Vibroacoustic response of the room due to point-excited aluminium plate

the geometries of the measurements and the idealised numerical FDTD model. The

small reverberation chamber is not a perfect cuboid and includes a number of fea-

tures not included in the FDTD model such as a small observation window and

a heavy steel door. Another potential source of error could be that of microphone

positioning, especially when the measurement grid is located in a zone of high sound

pressure gradient. However, positional errors seem unlikely because close agreement

has been obtained for modes where very pronounced pressure gradients are visible,

such as those corresponding to Figures 6.17 and 6.18. In addition, the boundary con-

ditions of the real plate are only an approximation to a simply supported condition,

and, at higher frequencies, this approximation could lead to significant deviations

from the FDTD predictions. At frequencies above 190Hz the significant discrepan-

cies obtained in terms of mode shapes and level along the horizontal plane are likely

to be caused by the coarse measurement grid.

A comparison between the measured and predicted contour plots is summarised in

Table 6.5, where the agreement in terms of level, shape and proximity to analytical

room and plate modes is indicated. This comparison is primarily carried out in

subjective terms as no exact numerical indicator or threshold is used to categorise the

level of agreement. Where there is a lack of agreement in either the horizontal or the

vertical plane for the same mode, a red coloured ”H” (horizontal) or ”V” (vertical)

is used. Conversely, a green ”H” or ”V” indicates agreement in the horizontal or the

vertical planes, respectively.

6.5.3 Level differences between predicted and measured modes

Tables 6.6 and 6.7 show the maximum level detected in each FDTD/measured con-

tour plot for the horizontal and vertical grids, respectively. It also shows the corre-

sponding average level, obtained using equation 6.2:

L = 10log10


N∑
i

10Li/10

N

 (6.2)
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6. Validation of the vibroacoustic FDTD model for a point-excited plate in an acoustic cavity

n
Frequency

(Hz)

Shape

agreement

Level

agreement

Frequency

close to room

mode

Frequency

close to plate

mode

1 27/28 Yes Yes No (below f010) Yes (f11)

2 48/52 Yes Yes No (below f010) Yes (f21)

3 68/65 Yes H V Yes (f001) No (f21–f12)

4 82/83 H V Yes No (f001–f101) Yes (f12)

5 92/90 Yes Yes Yes (f011)
Yes (f31,

FDTD only)

6 104/107 Yes Yes No (f011–f110) Yes (f22)

7 116/116 Yes Yes Yes (f101) No (f22–f41)

8 131/131 H V H V Yes (f111) No (f22–f41)

9 133/128 H V Yes Yes (f111) No (f22–f41)

10 139/137 H V H V Yes (f021–f002) No (f22–f41)

11 148/145 Yes H V No (f002–f012) Yes (f41)

12 150/147 Yes Yes Yes (f012) Yes (f41)

13 166/163 Yes Yes Yes (f121–f102) No (f41–f42)

14 177/175 Yes Yes Yes (f112) No (f41–f42)

15 193/190 H V H V Yes (f031)
Yes (f42,

FDTD only)

Table 6.5: Evaluation of the agreement between measured and predicted mode

shapes and transfer function levels.
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6.5. Vibroacoustic response of the room due to point-excited aluminium plate

(a) (b)

(c) (d)

Figure 6.5: Transfer functions - Measured (27 Hz, left column) and FDTD (28 Hz,

right column) for (a,b) horizontal grid and (c,d) vertical grid.
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6. Validation of the vibroacoustic FDTD model for a point-excited plate in an acoustic cavity

(a) (b)

(c) (d)

Figure 6.6: Transfer functions - Measured (48 Hz, left column) and FDTD (52 Hz,

right column) for (a,b) horizontal grid and (c,d) vertical grid.
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6.5. Vibroacoustic response of the room due to point-excited aluminium plate

(a) (b)

(c) (d)

Figure 6.7: Transfer functions - Measured (68 Hz, left column) and FDTD (65 Hz,

right column) for (a,b) horizontal grid and (c,d) vertical grid.
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6. Validation of the vibroacoustic FDTD model for a point-excited plate in an acoustic cavity

(a) (b)

(c) (d)

Figure 6.8: Transfer functions - Measured (82 Hz, left column) and FDTD (83 Hz,

right column) for (a,b) horizontal grid and (c,d) vertical grid.
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6.5. Vibroacoustic response of the room due to point-excited aluminium plate

(a) (b)

(c) (d)

Figure 6.9: Transfer functions - Measured (92 Hz, left column) and FDTD (90 Hz,

right column) for (a,b) horizontal grid and (c,d) vertical grid.
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6. Validation of the vibroacoustic FDTD model for a point-excited plate in an acoustic cavity

(a) (b)

(c) (d)

Figure 6.10: Transfer functions - Measured (104 Hz, left column) and FDTD (107

Hz, right column) for (a,b) horizontal grid and (c,d) vertical grid.
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6.5. Vibroacoustic response of the room due to point-excited aluminium plate

(a) (b)

(c) (d)

Figure 6.11: Transfer functions - Measured (116 Hz, left column) and FDTD (116

Hz, right column) for (a,b) horizontal grid and (c,d) vertical grid.
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6. Validation of the vibroacoustic FDTD model for a point-excited plate in an acoustic cavity

(a) (b)

(c) (d)

Figure 6.12: Transfer functions - Measured (131 Hz, left column) and FDTD (131

Hz, right column) for (a,b) horizontal grid and (c,d) vertical grid.
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(a) (b)

(c) (d)

Figure 6.13: Transfer functions - Measured (133 Hz, left column) and FDTD (128

Hz, right column) for (a,b) horizontal grid and (c,d) vertical grid.
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6. Validation of the vibroacoustic FDTD model for a point-excited plate in an acoustic cavity

(a) (b)

(c) (d)

Figure 6.14: Transfer functions - Measured (139 Hz, left column) and FDTD (137

Hz, right column) for (a,b) horizontal grid and (c,d) vertical grid.
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(a) (b)

(c) (d)

Figure 6.15: Transfer functions - Measured (148 Hz, left column) and FDTD (145

Hz, right column) for (a,b) horizontal grid and (c,d) vertical grid.
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6. Validation of the vibroacoustic FDTD model for a point-excited plate in an acoustic cavity

(a) (b)

(c) (d)

Figure 6.16: Transfer functions - Measured (150 Hz, left column) and FDTD (147

Hz, right column) for (a,b) horizontal grid and (c,d) vertical grid.
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(a) (b)

(c) (d)

Figure 6.17: Transfer functions - Measured (166 Hz, left column) and FDTD (163

Hz, right column) for (a,b) horizontal grid and (c,d) vertical grid.
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(a) (b)

(c) (d)

Figure 6.18: Transfer functions - Measured (177 Hz, left column) and FDTD (175

Hz, right column) for (a,b) horizontal grid and (c,d) vertical grid.
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(a) (b)

(c) (d)

Figure 6.19: Transfer functions - Measured (193 Hz, left column) and FDTD (190

Hz, right column) for (a,b) horizontal grid and (c,d) vertical grid.
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6. Validation of the vibroacoustic FDTD model for a point-excited plate in an acoustic cavity

n
Measured FDTD

Frequency

(Hz)

Max. Level

(dB)

Avg. Level

(dB)

Frequency

(Hz)

Max. Level

(dB)

Avg. Level

(dB)

1 27 -3.7 -23.5 28 -2.2 -20.3

2 48 3.2 -17.1 52 -2.7 -21.8

3 68 -9.9 -11 65 -17.2 -19.2

4 82 3.1 -16.8 83 0.4 -18.6

5 92 -13.9 -19.1 90 -16.3 -20.3

6 104 -1.3 -21.1 107 -0.2 -19.3

7 116 -14.4 -20.7 116 -17.8 -22.9

8 133 -2.9 -16.2 131 -20.3 -27.5

9 131 -8.6 -10.3 128 -6 -12.6

10 139 -8.8 -15.7 137 -16.3 -25.1

11 148 5 -7.1 145 9 -0.8

12 150 -0.2 -8 147 -2.4 -6.9

13 166 -8.9 -16.7 163 -11.8 -18.7

14 177 -13.1 -20.5 175 -13.9 -22.5

15 193 -17 -24.6 190 -19.3 -28.9

Table 6.6: Maximum transfer function values for the horizontal grid.

In order to indicate the accuracy after spatial-averaging, Figure 6.20 shows differ-

ences between the measured and FDTD spatial-average magnitude of the transfer

functions for all fifteen peaks that occur below 200 Hz. This scatter plot indicates

that 60% of the data points are within ±3dB, and that 76% are within ±6 dB.

6.5.4 Validity of the frequency response measurements

The validity of the frequency response function was checked using the coherence

function. Considering x(t) as the input signal and y(t) as the output signal in the
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6.5. Vibroacoustic response of the room due to point-excited aluminium plate

n
Measured FDTD

Frequency

(Hz)

Max. Level

(dB)

Avg. Level

(dB)

Frequency

(Hz)

Max. Level

(dB)

Avg. Level

(dB)

1 27 -19.3 -25.8 28 -16.8 -23.5

2 48 -17.1 -26.2 52 -22.4 -30.1

3 68 -3.7 -8 65 -11.2 -15.4

4 82 -16 -26.8 83 -22.4 -31.2

5 91 -11.8 -15.8 90 -13.2 -17.2

6 104 -23.6 -34.6 107 -24.5 -35.1

7 116 -10.6 -18.5 116 -12.3 -20.5

8 133 -7.3 -16.1 131 -20.5 -26.3

9 131 -9 -12.6 128 -7.5 -15.4

10 139 -10 -18.8 137 -20.8 -27.9

11 148 0 -4.9 145 4.9 0.4

12 150 0 -3.8 147 -0.3 -4.5

13 166 -8.3 -17.3 163 -11.3 -19.9

14 177 -11.6 -20.5 175 -14.3 -23

15 193 -15.5 -23.1 190 -18.8 -23.9

Table 6.7: Maximum transfer function values for the vertical grid.
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Figure 6.20: Differences between measured and predicted transfer function magni-

tudes for the horizontal (black circles) and vertical grids (white circles).
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6.5. Vibroacoustic response of the room due to point-excited aluminium plate

measurement, the coherence function is defined by [92]:

γ2 (ω) = |Gxy (ω)|2

Gxx (ω) .Gyy (ω) (6.3)

The coherence function γ2 indicates the extent to which two signals are linearly

related. Its values are always between 0 and 1. If γ2 = 0 there is no relationship

between x(t) and y(t). If γ2 = 1 the two signals are perfectly linearly related. The

coherence function will assume values between 0 and 1 if any of the four conditions

are met:

• There is a given amount of random noise contaminating the input x(t) or the

output y(t);

• x(t) and y(t) are not linearly related;

• There is a poor choice of time window function or insufficient frequency reso-

lution;

• There is a time delay between the two signals x(t) and y(t) comparable to the

length of the recording.

The coherence function was measured for all the horizontal and vertical grid posi-

tions and the results are shown in the remainder of this section. The correlation

values obtained are always less than 1 which indicates the presence of random noise

in the measurements. The values of correlation are very close to 1 for the major-

ity of the modes that were measured, except in the modes below the fundamental

resonance of the room, where the correlation values obtained are small when the

receiver is not located close to the source. A low value of coherence indicates that

the measured output was affected by noise and was not linearly related to the input

signal.

The other three possible causes of γ2 < 1 are ruled out. The input and output signals

are expected to be linearly related as the system under measurement is expected

to be a linear time invariant (LTI) system. The possible effect of poor choice of

frequency analyser settings discounted because values of coherence very close to 1
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were obtained and the settings were kept constant throughout the entirety of the

measurements. The length of the recordings was set to 4 s which is much larger than

the time delay to be expected between the input and output signals which should be

a maximum of 6 ms, considering acoustic propagation over a 2 m distance between

the excitation point and microphone.

The coherence contour plots obtained (Figures 6.21 - 6.25) generally show values

very close to 1, which indicates that the transfer function measurements are valid.

However, low coherence values were obtained in some areas of the contour plots

corresponding to the resonance peaks below the fundamental frequency of the room,

indicating that the sound radiation from the plate was very weak in these areas and

therefore the response at the microphones was dominated by random noise.
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Figure 6.21: Coherence function contours measured at resonance frequencies.
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Figure 6.22: Coherence function contours measured at resonance frequencies.
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Figure 6.23: Coherence function contours measured at resonance frequencies.
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Figure 6.24: Coherence function contours measured at resonance frequencies.
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Figure 6.25: Coherence function contours measured at resonance frequencies.
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6.6 Conclusions

This chapter described the experimental validation of the vibroacoustic FDTD

model for a mechanically point-excited aluminium plate radiating into a small re-

verberation chamber. The effects of numerical dispersion in the FDTD model were

found to be negligible when comparing the FDTD resonance peaks with the analyt-

ical solution for an acoustic enclosure and for a simply supported plate.

The results of the FDTD predictions were compared to the measured driving-point

mobilities of the plate and transfer functions of pressure-to-force inside the small

reverberation chamber. The close agreement between FDTD and measurements

validates both the scaling approach and the simplified boundary approach to mod-

elling the interface between air and the plate that were proposed and implemented in

FDTD. It was possible to obtain these numerical results using an ordinary desktop

computer due to the computational advantages enabled by the simplified boundary

and scaling approaches.

The vibroacoustic FDTD results for the aluminium plate radiating inside the small

reverberation chamber were experimentally validated in terms of pressure-to-force

transfer functions taken at several positions along a horizontal and a vertical mea-

surement grid. The validity of the transfer function measurements was confirmed

by a set of coherence grid measurements. Close agreement between measured and

FDTD pressure-to-force transfer function contour plots was obtained, including for

the two resonance peaks obtained below the fundamental acoustic mode of the

room.
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7 Conclusions

In this thesis, new approaches to acoustic and vibroacoustic modelling with FDTD

at low-frequencies have been described and experimentally validated.

For acoustic modelling of a space containing a porous panel with air on both sides,

the porous material has been incorporated into FDTD using a Rayleigh model as

proposed by Suzuki et al. However, to accurately reproduce the low-frequency sound

field, a Moving Frame Model (MFM) was introduced to account for motion of the

porous panel. The MFM assumes lumped mass behaviour of the porous panel which

is coupled to the FDTD update equations that incorporate the Rayleigh model. Ex-

perimental validation used a small reverberant room under three different conditions:

(1) empty room, (2) with a mineral fibre panel partially dividing the room, and (3)

with a mineral fibre panel completely dividing the room. This confirmed that for

two spaces that are completely subdivided by a porous panel, the MFM can account

for a spring-mass-spring resonance which results in a peak in the response below

the fundamental frequency of the room. Close agreement was obtained between

experimental results and FDTD incorporating the MFM; this validates the models

as well as implementation of the loudspeaker as a hard velocity source.

The vibroacoustic modelling focused on the prediction of the vibration of a thin

elastic plate undergoing point excitation and radiating into an acoustic cavity. To

achieve this, two new modelling approaches were introduced: scaling procedures

to significantly reduce computation times and a simplified boundary approach to

simplify the implementation of the solid-air boundaries. In comparison with room

acoustic simulations, it can be computationally expensive to run a vibroacoustic

model with a fine spatial resolution because wavespeeds for structure-borne sound

are relatively high. The scaling approach was proposed and validated to overcome

this problem. Modifications to the geometry and physical properties are used to

preserve the dynamic characteristics of the model whilst allowing much larger time
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steps. This reduces the total number of iterations necessary to complete the simu-

lation and significantly reduces computation times. In addition, it was shown that

the scaling approach can be applied to more complex problems that involve more

than one geometrically parallel thin plate and more than one acoustic cavity. An

alternative approach to model the boundaries between the air and the solid medium,

the simplified boundary approach, is also proposed and implemented in FDTD to

improve computational efficiency and allowing for simpler implementation. Both

modelling approaches proposed were experimentally validated by the agreement be-

tween FDTD and measurements. This confirms the validity of implementing a thin

plate undergoing bending wave motion as a three-dimensional solid that can support

multiple wave types. The general finding from the comparison of measured and pre-

dicted pressure-to-force transfer functions is that FDTD is capable of predicting the

spatial variation of sound pressure in close agreement with measured data. In the

frequency range below the lowest room mode, the close agreement between FDTD

and measurements shows the existence of large variations in sound pressure level.

This confirms the importance of validated vibroacoustic models to predict sound

fields inside acoustic cavities in the low-frequency range.

7.1 Suggestions for future work

Future work on acoustic FDTD modelling of porous materials could be extended to

deal with materials covered by a thin layer of fabric. This would be useful to the

automotive industry for modelling low-frequency sound fields in car cabins as many

car seats have a thin protective cover layer.

Future work on vibroacoustic FDTD modelling could consider whether it is compu-

tationally advantageous and feasible to apply the scaling approach to orthogonally-

arranged plates, i.e. two plates forming an L-junction or to a set of six plates forming

a rectangular cavity. The mathematical derivation of the numerical dispersion char-

acteristics of the vibroacoustic FDTD scheme described in this thesis upon which the
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scaling approach is based could also be carried out in future work. It would also be

of interest to assess whether it is feasible to apply the scaling approach to situations

where these sets of orthogonal plates were mechanically connected, instead of being

simply supported. The development of a scaling approach that could be applied

for a vibroacoustic rectangular cavity problem would be of particular interest for

engineering fields such as building acoustics, where it is necessary to predict both

direct and flanking transmission between rooms.
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Appendix I - Mathematical symbols and opera-

tors

This appendix defines mathematical operators and symbols used in Chapters 2 and

3. The material included in this appendix is entirely based on published literature

[79, 94].

7.1.1 Forward difference operator

The forward difference operator of a scalar field f at a position (i, j, k) along the

x-direction is defined as:

Dxf
n|i,j,k =

fn|i+1,j,k − fn|i,j,k
∆x

along the y-direction:

Dyf
n|i,j,k =

fn|i,j+1,k − fn|i,j,k
∆y

along the z-direction:

Dzf
n|i,j,k =

fn|i,j,k+1 − fn|i,j,k
∆z

7.1.2 Divergence

The divergence of a vector field fi = (fx, fy, fz) is denoted by∇ and defined by:

∇ · fi = ∂fx
∂x

+ ∂fy
∂y

+ ∂fz
∂z
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7.1.3 Fourier transform

The symbol F denotes the Fourier transform. The Fourier transform establishes an

equivalence between the time domain and the frequency domain [39]:

p(t) F←→ P̃ (ω)

and is defined by [94]:

P̃ (ω) = F {p(t)} = 1√
2π

∫ ∞
∞

p(t)e−iiiωtdt

where P̃ (ω) is a complex function of frequency known as the ’spectral function’.

Conversely F−1 denotes the inverse Fourier transform and is denoted by:

p(t) = F−1
{
P̃ (ω)

}
= 1√

2π

∫ ∞
∞

P̃ (ω)eiiiωtdω

Other physical variables related by the Fourier transform include the spatial po-

sition and corresponding wave number. For example the a spatial distribution of

pressure p(x) yields the following Fourier transform, also known as the ’wavenumber

transform’ [52]:

P̃ (kx) = 1√
2π

∫ ∞
∞

p(x)e−iiikxxdx

and the inverse

p(x) = 1√
2π

∫ ∞
∞

P̃ (kx)eiiikxxdkx
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7.1.4 Gradient

The gradient of a multi-variable function f(x1, x2, ..., xn) is denoted by∇ and defined

by:

∇f = ∂f

∂x1
ê1̂e1̂e1 + ...+ ∂f

∂xn
ên̂en̂en

7.1.5 Kronecker delta

The Kronecker delta δij is defined by:

 δij = 1 if i = j

δij = 1 otherwise

where i and j are integers.

7.1.6 Laplacian

In Cartesian coordinates, the Laplacian operator over a scalar filed ψ is defined

by:

∇2ψ = ∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2

7.1.7 Orthogonal functions

Two polynomials pi(x) and pj(x) are orthogonal with respect to a weight function

w(x) if the following condition is verified over an interval x1 < x < x2 [95]:

∫ x2

x1
pi(x)pj(x)w(x) = 0
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for i 6= j and w(x) > 0.

In addition, if, the following is verified to be true

∫ x2

x1
p2
i (x)w(x) = 1

for all i, then the polynomials pi(x) form an orthonormal set.
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Appendix II - A comparison of isolated aluminium

plate mode shapes obtained from NMM and FDTD

using MTMAC

This appendix contains an assessment of the validity of the general three-dimensional

FDTD method for simulating thin plate bending wave motion. It compares the re-

sults obtained for the isolated aluminium plate using FDTD and analytical bending

wave theory for thin plates [73].

The analytical approach uses a Normal Mode Model (NMM) to calculate the eigen-

frequencies (equation 3.57) and the mode shapes of a simply-supported plate given

by [73]:

ψX = sin(nxπx
Lx

)sin(nyπy
Ly

)

The Modal Assurance Criterion (MAC) can be used to assess the spatial correlation

between FDTD and analytical mode shapes, and is given by [96]:

MAC(X, Y ) =

∣∣∣{ψX}T {ψY }∣∣∣2(
{ψX}T {ψX}

) (
{ψY }T {ψY }

)

where ψX and ψY are the modal shapes associated with modes X and Y.

However, the MAC does not account for any differences in the predicted eigen-

frequencies; hence a comparison is carried out using the Modified Total Modal

Assurance Criterion (MTMAC). This is based on the spatial correlation between

corresponding FDTD and analytical mode shapes as well as the difference in their

eigenfrequencies. MTMAC is defined by [97]:

209



7. References

MTMAC(X, Y ) = MAC(X, Y )

1 +
∣∣∣∣ω2
ψX
−ω2

ψY

ω2
ψX

+ω2
ψY

∣∣∣∣
where ωψX and ωψY are the eigenfrequencies at which the corresponding modes

occur.

For the simply supported aluminium plate considered in this thesis, the MTMAC

values obtained for the comparison of the first six modes (up to 200Hz) from FDTD

and the analytical model are shown in Figure 7.1.
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Figure 7.1: MTMAC values for the first six modes of the aluminium plate using

eigenfrequencies and mode shapes determined from FDTD and an analytical model

for thin plate bending wave theory.

Figure 7.1 shows that the MTMAC values are close to unity on the leading diagonal

(i.e. highly correlated), with low values on the off-diagonal elements. The correlation

pattern obtained between FDTD and the analytical model is similar to that which

exists when the analytical model is compared with itself. This confirms that the
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results obtained using the general three-dimensional FDTD method are equivalent to

those of the analytical model which describes thin plate bending wave motion.
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Appendix III - Basic FDTD source code

The following FDTD source code is written in Python and simulates two acoustic

impulse sources that occur simultaneously in 2D space. The output of this simulation

is shown in Figure 2.4. The code attempts to be clear and readable rather than

computationally efficient.

import numpy as np

import matp lo t l i b . pyplot as p l t

################ DEFINE VARIABLES ###############

c = 343 # speed o f sound

rho = 1 .2 # ai r d e n s i t y

k = 1 / ( rho ∗( c ∗∗2)) # c o m p r e s s i b i l i t y modulus

DimX = 140 # number o f e lements a long the x−d i r e c t i o n

DimY = 140 # number o f e lements a long the y−d i r e c t i o n

N i t e r a t i o n = 57 # number o f i t e r a t i o n s

dx = 1 # s p a t i a l r e s o l u t i o n a long the x d i r e c t i o n

dy = 1 # s p a t i a l r e s o l u t i o n a long the y d i r e c t i o n

dt = 1 / ( c ∗( 1/( dx ∗∗2) + 1/( dy ∗∗2) ) ∗ ∗ 0 . 5 ) # time r e s o l u t i o n ( Courant cond i t i on )

# Pre−a l l o c a t e pre s sure and v e l o c i t y f i e l d v a r i a b l e s #

P = np . z e r o s ( (DimX,DimY) )

Vx = np . z e ro s ( (DimX,DimY) )

Vy = np . z e ro s ( (DimX,DimY) )

################ DEFINE SOURCE FUNCTION ###############

# pre−a l l o c a t e memory f o r the source func t i on #

source = np . z e ro s ( N i t e r a t i o n )

# Define source cons tan t s #

sigma = 0.01

to = 0.02
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# Define source func t i on ( d e r i v a t i v e o f the Gaussian pu l s e ) #

for N in range (0 , N i t e r a t i o n ) :

t = N ∗ dt # Ca lcu l a t e the va lue o f time

source [N] = (1 e−3)∗(( t − to )/ sigma ∗∗3)∗np . exp (−(( t − to )∗∗2)/ (2∗ ( sigma ∗∗2) ) )

################ MAIN FDTD LOOP ###############

for N in range (0 , N i t e r a t i o n ) :

t = N ∗ dt # Ca lcu l a t e the va lue o f time

######### Update p r e s su r e s ###########

for i in range (1 ,DimX−1):

for j in range (1 ,DimY−1):

i f ( ( i == 60) and ( j == 60) ) :

# Source e x c i t a t i o n ( d e r i v a t i v e o f the Gaussian pu l s e ) :

P[ i , j ] = source [N]

e l i f ( ( i == 85) and ( j == 85) ) :

# Another source :

P[ i , j ] = source [N]

else : # Pressure update equat ion :

P[ i , j ] = P[ i , j ] − (1/k ) ∗ dt ∗ ( ( (Vx [ i +1, j ] − Vx[ i , j ] ) / ( dx ) )

+ ( (Vy [ i , j +1] − Vy[ i , j ] ) / ( dy ) ) )

######### Update v e l o c i t i e s ###########

for i in range (1 ,DimX) :

for j in range (1 ,DimY) :

Vx [ i , j ] = Vx [ i , j ] − (1/ rho ) ∗ dt / dx ∗ (P[ i , j ] − P[ i −1, j ] )

Vy [ i , j ] = Vy [ i , j ] − (1/ rho ) ∗ dt / dy ∗ (P[ i , j ] − P[ i , j −1])

################ PLOTTING ###############

p l t . pcolormesh (P, cmap=p l t . cm . RdYlGn)

p l t . c l im (−1.5 , 1 . 5 )

p l t . x l a b e l ( ’ x (m) ’ )

p l t . y l a b e l ( ’ y (m) ’ )

bar = p l t . c o l o rba r ( )

bar . s e t l a b e l ( ’ Pressure (Pa) ’ , r o t a t i o n =90)

p l t . show ( )
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Appendix IV - Frequency characteristics of the damp-

ing coefficients

This appendix documents the results of a numerical investigation into the damping

characteristics of each of the damping coefficients β, χ and γ. Several simulations

were carried out using different values for the β, χ and γ coefficients and the corre-

sponding loss factors were calculated.

The 0.05m thick plate used in the numerical investigation is simply supported and

has dimensions of 1.2m x 0.70m. The material properties correspond (arbitrary

choice) to medium density fiberboard (ρ=760 kg/m3, cL = 2560 m/s and ν =

0.3.).

Figure 7.2 shows the calculated loss factors as a function of frequency using different

sets of values for the damping coefficients:

The results indicate that the damping coefficient β results in a loss factor that is

inversely proportional to frequency, whereas χ and γ result in similar frequency

characteristics, i.e. a linear increase with frequency. When all the loss factors β, χ

and γ are considered simultaneously, the results show that the loss factor obtained

follows a frequency-dependent loss factor [71] similar to Rayleigh damping. Since the

loss factor profile of χ and γ are very similar, this numerical investigation suggests

that, in principle, one of these damping coefficients can be set to zero without any

loss of generality in the overall frequency dependence of the loss factor profile.
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Figure 7.2: Frequency characteristics of the damping coefficients
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