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Variational Image Segmentation Model Abdul K. Jumaat

Abstract

Image segmentation is a fundamental task in image analysis that aims at partitioning
an image into sub-regions or at representing the image into something that is more
meaningful and easier to analyse. Variational image segmentation models have become
very popular in recent years, especially global image segmentation models which aim
to segment all objects in an image. Given a set of user-defined prior points, selective
variational models aim to segment selectively one object only. Time marching methods
with semi-implicit schemes (gradient descents) or additive operator splitting (AOS)
are used frequently to solve the resulting partial differential equation (PDE) of Euler
Lagrange equations derived from these models. For images of moderate size, such
methods are effective. However, to segment images of large size, urgent need exists to
develop fast iterative solvers.

We first propose an optimisation based multilevel algorithm for efficiently solving a
class of nonconvex selective segmentation models. In literature, the models are originally
solved based on optimise-discretise scheme where the PDE derived from the models
are numerically solved using AOS method. The multilevel method we use is based
on discretise-optimise scheme where minimisation of a variational problem is solved
directly without using a PDE. Numerical results on synthetic and real medical data
show that good segmentation quality is obtained and, as expected, excellent efficiency
is observed in reducing computational time compare to AOS method.

Secondly, we propose a new convex selective segmentation model, allowing a global
minimiser to be found independently of initialisation. The existing convex segmentation
model however is expensive to solve and suffers from parameter sensitivity due to
existence of a highly nonlinear term in the formulation. Our new formulation using
primal-dual framework is able to reduce the complexity of the existing model. To speed
up the segmentation process, we also develop a multilevel algorithm for the new convex
segmentation model. Experiments using synthetic and real medical data shows that
the new model is less sensitive to parameters compared to the existing convex model
and an optimal computational time is achieved.

Many application fields such as medical imaging, geological surveying and com-
putational fluid dynamics can greatly benefit from 3-D selective segmentation as a
3-D representation carries more information compared to 2-D representation. This
information is highly useful for example in medical surgery planning. However, there
exist little literature addressing selective segmentation in 3-D and their formulations
are nonconvex. Hence, we present an extension of the multilevel algorithm and convex
selective variational image segmentation model above into 3-D framework. Numerical
tests show that the proposed model is effective and the algorithm is efficient in locally
segmenting 3-D complex image structures.

Due to natural complexity of real images, the targeted objects might be occluded
by other ones or some parts of them may not be distinguished from the background.
For example, in medical image analysis, targeted tumour might be blended by other
ones or some part of them may be occluded by other organs or tumour or some object

v



boundaries even missing due to imaging conditions. The grey intensity selective based
segmentation models might not be well suited to do the segmentation task as the
models heavily rely on grey intensity values of the given image. In the final study, we
develop two new selective segmentation models which impose curvature constraints
on the formulations to restore those boundaries that are missing or not well defined
by the grey intensity images. On top of that, we develop multilevel algorithms to
solve these higher order minimisation problems. Numerical tests demonstrated that
the models give satisfactory results in optimum computational time when compared to
other existing models.
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2.7 The illustration of Ck = Pk ĉ reproduced from [33]. . . . . . . . . . . . . 29

3.1 (a) Original grayscale image. (b) Gaussian noise corrupted image. (c)
Salt-and-pepper noise corrupted image. . . . . . . . . . . . . . . . . . . 31

3.2 (a) is a given image z(x, y)and (b) is the edge detection function, g(x, y)
defined in equation (3.7). . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 The interaction of φi,j at a central pixel (i, j) with neighboring pixels
on the finest level 1. Clearly only 3 terms (pixels) are involved with φi,j
(through regularisation). . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Illustration of multilevel coarsening. Partitions (a)-(e): the red “×”
shows image pixels, while blue • illustrates the variable c. (f) shows on
coarse level 3 the difference of inner and boundary pixels interacting
with neighboring pixels •. The middle boxes � indicate the inner pixels
which do not involve c, others boundary pixels denoted by symbols
C, B, ∆, ∇ involve c as in (4.16) via F locBC . . . . . . . . . . . . . . . . 53

4.3 New modelling setup: replacement of domain Ω1 by a smaller domain Ωγ . 60
4.4 Test images with the markers set. . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Segmentation of Problems 1-3: Column (a) BC1 and (b) BC2. . . . . . 67
4.6 Segmentation of Problem 1 of size 1024× 1024 for BC0, BCP, BC1, and

BC2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Segmentation of Problems 1-3. (a) and (b) show the segmentation using

RC1 and RC2 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 70

viii



4.8 Segmentation of Problem 1 of size 1024× 1024 for RC0, RCP, RC1, and
RC2. For the same segmentation result, RC2 can be 100 times faster
than RC0, 17 times faster than RCP and 4 times faster than RC1; see
Table 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 The number of iterations needed by BC2 and RC2 to achieve a set tol
(residual) in segmenting an image of size 2048× 2048. With tol = 10−4,
BC2 and RC2 need 2 iterations. The extension up to 6 iterations shows
that residuals of BC2 and RC2 keep reducing. . . . . . . . . . . . . . . . 72

4.10 Dependence of algorithms BC2, RC2 on parameter γ for Problem 4. . . 72

5.1 Segmentation test images and markers. . . . . . . . . . . . . . . . . . . . . 94
5.2 Test Set 1 – Segmentation of Problem 4 using our multilevel algorithms SC1, SC2,

and SC2M with same quality (JSC=0.96) achieved. However, SC2 performs

faster (4.9 seconds) compared to SC1 (10.5 seconds) and SC2M (6.3 seconds). . 96
5.3 Test Set 1 – Segmentation of Problem 5 of size 1024x1024 for SC1, SC2, and

SC2M. SC2 can be 277 seconds faster than SC1 and 222 seconds faster than

SC2M : see Table 5.2. All algorithms give similar segmentation quality. . . . . 96
5.4 Test Set 1 – The residual plots for SC1, SC2, and SC2M to illustrate the

convergence of the algorithms. The extension up to 10 iterations shows that

the residual of the algorithms keep reducing. The residual for SC2 and SC2M

decrease rapidly compared to SC1. . . . . . . . . . . . . . . . . . . . . . . . 97
5.5 Test Set 2 – The segmentation accuracy for SC0 and SC2 in segmenting Problem

6 using different values of parameter µ in (a) and parameter θ in (b). The

results demonstrate that SC2 is successful for a much larger range for both

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6 Test Set 3 – Comparison of SC2 with CMT model [83]. First row shows different

numbers of markers used for Problem 4. Second row demonstrates the respective

results (a2), (b2) and (c2) for (a1), (b1) and (c1) with different threshold values.

Clearly, CMT performs well only when the number of markers used is large

while our SC2 seems less sensitive to the number of markers used. Furthermore,

the range of threshold value that works for SC2 is wider than CMT. . . . . . 100
5.7 Problem 7 in Test Set 4 – Two types of markers used to label foreground region

(red) and background region (blue) for NCZZ model [103] in (a). Successful

segmentation result (zoom in): (b) by NCZZ model [103] and (c) by our SC2

(only using foreground markers). . . . . . . . . . . . . . . . . . . . . . . . . 101
5.8 Problems 1,8 in Test Set 4 – (a) and (d) show the foreground markers (red)

and background markers (blue) for NCZZ model [103]. Zoomed segmentation

results in (b) and (e) demonstrate the limitation of NCZZ model [103] that is

unable to segment semi-transparent boundaries and sophisticated shapes (such

as bush branches or hair as explained in [103]) in a clean way. Our SC2 gives

cleaner segmentation for the same problems as illustrated in (c) and (f). . . . 101
5.9 Test Set 5 – Performance comparison of BC, RC and SC2 models using 2

different initialisations. With Initialisation 1 in (a), the segmentation results for

BC, RC, and SC2 models are illustrated on second row (c-e) respectively. With

Initialisation 2 in (b), the results are shown on third row (f-h). Clearly, SC2

gives a consistent segmentation result indicating that our SC2 is independent of

initialisations while BC and RC are sensitive to initialisations due to different

results obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

ix



6.1 Illustration of level 3 for image size 16 × 16 × 16. (a) shows one of τ33 = 43

superpixel in level 3. Each superpixel contains b33 = 43 pixels. (b) represents

the top surface of (a). Using equation (6.13), the interaction of a pixel with

neighbouring pixel (red •) is illustrate in (c). (d) shows the interaction of pixels

in (b) based on equation (6.13) and (c). . . . . . . . . . . . . . . . . . . . . 113
6.2 (a) is an image used in test set 1, (b) and (c) for test set 2 and (d) for test set

3. Markers set are in red and the green polyhedral surface constructed based

on the position of markers set are the initial solution. . . . . . . . . . . . . . 123
6.3 Test Set 1 –Successful results from 3DSC2, 3DSC3, 3DSC2M, and 3DSC3M for

image size 128× 128× 128 in the first column. The second and third columns

show the respective slice representation given by each algorithm. The CPU

time needed for our algorithm 3DSC3 is 70.8s ( 1.2 min) which is about 6.8,

8.0 and 1.5 times faster than 3DSC2, 3DSC2M and 3DSC3M respectively . . . 125
6.4 Test Set 1–The residual plots for 3DSC2, 3DSC3, 3DSC2M, and 3DSC3M to

illustrate the convergence of the algorithms. The extension up to 10 iterations

shows that the residual of the algorithms keep reducing. . . . . . . . . . . . . 126
6.5 Test Set 2–Sucessful segmentation result for 3DSC3 in segmenting medical

images. Figure 6.5(a) and 6.5(b) show the 3-D plots of objects extracted from

Figure 6.2(b) (blood vessel) and 6.2(c) (kidney) respectively. The figures 1(a)-

4(a) and the figures 1(b)-4(b) show the slice representation of the blood vessel

and kidney, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.6 Test Set 3–Segmentation of image in Figure 6.2(d) by 3DCHB and 3DSC3 using

tol = 10−6. 3DSC3 is about 9 times faster than 3DCHB (see Table 6.3). . . . 128
6.7 Test Set 4–Segmentation performance of 3DZCG and 3DSC3 using 2 different

initializations. With initialisation 1 in (a), the segmentation results for 3DZCG

and 3DSC3 are illustrated in 1(a) and 2(a) respectively. With initialisation 2

in (b), the segmentation results for 3DZCG and 3DSC3 are illustrated in 1(b)

and 2(b) respectively. Clearly, 3DSC3 gives a consistent segmentation result

indicating that our 3DSC2M is less dependent on initialisation while 3DZCG is

sensitive to initialisation as indicated by different results obtained. . . . . . . 129

7.1 Test Set 1—Figure (a) and (d) show the same targeted object with different

markers set used. Images (b) and (c) demonstrate the result of ES1 and ES2

respectively using markers in (a). ES1 needs 11.5 seconds while ES2 needs

7.6 seconds with the same accuracy, JSC=0.84. Images (e) and (f) illustrate

the result of ES1 and ES2 respectively using markers in (d). ES1 needs 23.1

seconds with JSC=0.82 while ES2 needs 7.6 seconds with accuracy, JSC=0.86.

Here, a = θ = 500 and b = 900. . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2 Test Set 1—(a) and (c) show the initial distance function φ of ES2 in equation

(7.29), computed from the corresponding contour generated by the first marker

set in 7.1(a) and second markers set in 7.1(d) respectively. Images (b) and (d)

illustrate the final distance function φ , calculated from the final contour of

ES2 in 7.1(c) and 7.1(f) respectively. The color bar indicates the value range of φ.151
7.3 Test Set 1— Images (b) and (c) show the effect of the curvature parameter

b = 1 and b = 900 respectively for real medical image in (a) with intensity

inhomogenity. Here, ES2 reads a = 500 and θ = 1500. . . . . . . . . . . . . . 151

x



7.4 Test Set 2—Images (a) and (b) show the targeted objects with markers used.

Images (d), (g), and (j) demonstrate the segmentation results of object (a) for

SC1, SC2, and ES2 respectively. We used b = 900, a and θ equal 500. Images

(e), (h), and (k) illustrate the segmentation results of the targeted object (b)

that is the cap of the mushroom for SC1, SC2, and ES2 respectively using

λ1 = 0.3, a = 900, b = 1500 and θ = 3500. For completeness, in (c) and (f) we

show the result of SC1 in segmenting objects in Figure 7.1(a) and 7.3(a) used

in test set 1 respectively, while in (i) and (l) show the result of using SC2 in

segmenting objects in Fugure 7.1(a) and 7.3(a) of test set 1 respectively. . . . 153
7.5 Test Set 3—Image (a) shows the targeted object with markers used. Images (b)

and (c) demonstrate the segmentation results of CMT [83] and ES respectively.

For completeness, in (d) we show the result of CMT [83] in segmenting object

of Figure 7.3(a) with intensity inhomogenity as used in test set 1. Here, we

used a = 900, b = θ = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.6 Test Set 4—Images (a) and (b) show the targeted object with markers used for

NCZZ model [103] and ES2 respectively. Image (c) demonstrate the segmen-

tation result of NCZZ [103] and in (d) we show the result of ES2 respectively.

Here, we used a = 500, b = 900, θ = 3000 and λ1 = 0.01. . . . . . . . . . . . . 155
7.7 Test Set 5—The JX model [132] gives the same segmentation result as in (a)

for the task to segment an object in Figure 7.1(a), Figure 7.4(a) and Figure

7.5(a). Image (b) shows the targeted object with marker to be segmented by

JX model [132] and ES2. Images (c) and (d) display the result of JX model

[132] and ES2 respectively in segmenting image in (b). For completeness of

experiment, (f) demonstrates the result of ES2 in segmenting object in (e), the

markers are marked by the green boxes. Here, the ES2 reads a = 900, b = 1500.

The parameter θ = 500 for (b) and θ = 800 for (e) with image of size 256× 256.156
7.8 Test Set 6—Final segmentation curve of ES2 in segmenting targeted object

in Figure 7.6(b) with different resolution: Images (a) is size of 64 × 64, (b)

128× 128, (c) 256× 256, and (d) 512× 512. See Table 1 for the CPU time. The

residual curve for image size 64× 64 to reach tol = eps is shown in (e). Here,

eps is relatively small based on a machine epsilon that is, eps ≈ 2.2204× 10−16. 158

xi



List of Tables

4.1 Comparison of computation time (in seconds) of BC1 with BC2 for Problems

1-3. Note BC2 is about 2 times faster than BC1. . . . . . . . . . . . . . . . . 66
4.2 Comparison of computation time (in seconds) and segmentation quality

of BC0, BCP, and BC1 with our BC2 for Problem 1. The ratio close
to 4.4 for time indicates O(N logN) speed while a ratio of 2.2 indicates
O(
√
N logN) “super-optimal” speed, where the number of unknowns

N = n2. Here and later, ‘**’ means taking too long to run (> 24 hours). 68
4.3 Comparison of computation time (in seconds) and segmentation quality

of RC0, RCP, and RC1 with RC2 for Problem 1. Again, the ratio close
to 4.4 for time indicates O(N logN) speed while a ratio of 2.2 indicates
O(
√
N logN) “super-optimal” speed, where the number of unknowns

N = n2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Dependence of BC2 and RC2 on t for heart shape in Problem 1 (Figure

4.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Dependence of our new BC2 and RC2 on β for heart shape in Problem

1 (Figure 4.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Test Set 1 – Comparison of computation time (in seconds) and segmentation

quality of SC1, SC2, and SC2M for Problem 1- 4. Clearly, for all four test

problems, SC2 gives the highest accuracy and performs fast segmentation

process compared to SC1 and SC2M. . . . . . . . . . . . . . . . . . . . . . 95
5.2 Test Set 1 – Comparison of computation time (in seconds) and segmentation

quality of SC1, SC2 and SC2M for Problem 5. The time ratio, tn/tn−1 close to

4.4 indicates O(N logN) speed. Clearly, all algorithms have similar quality but

SC2 is faster than SC1 and SC2M for all image sizes. . . . . . . . . . . . . . 96
5.3 Test Set 2 – Comparison of computation time (in seconds) and segmentation

quality of SC0 and SC2 for Problem 5 with different resolutions. Again, the time

ratio, tn/tn−1 ≈ 4.4 indicates O(N logN) speed since NL = n2L = (2L)2 = 4L

and kNL logNL/(kNL−1 logNL−1) = 4L/(L− 1) ≈ 4.4. Clearly, all algorithms

have similar quality but SC2 is faster than SC0 for all image sizes. Here, (**)

means taking too long to run. For image size 512× 512, SC2 performs 33 times

faster than SC0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4 Test Set 2 – Dependence of our SC2 on β for segmenting Problem 6 in Figure 4.4. 98

6.1 Test Set 1–Comparison of computation time (in seconds) of 3DSC2, 3DSC3,

3DSC2M, and 3DSC3M for image Figure 6.2(a) with different resolutions.

Again, the time ratio, tn/tn−1 close to 8.8 indicates O(N logN) speed while

the ratio 2.2 indicates O( 3
√
N logN) speed for that particular test image. All

algorithms successfully segmenting the image with additional noise but 3DSC3

is up to 23.3, 29.5 and 1.5 times faster than 3DSC2, 3DSC2M and 3DSC3M

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xii



6.2 Test Set 2–The computation time (in seconds) of 3DSC2, 3DSC3, 3DSC2M, and

3DSC3M for segmenting Problem in Figure 6.2(b) (blood vessel) and Figure

6.2(c)(kidney). Notice that 3DSC3 is faster than other algorithms. . . . . . . 127
6.3 Test Set 3–Comparison of computation time (in seconds) of 3DCHB with 3DSC3

for Problem in Figure 6.2(d) for different stopping accuracy. Note 3DSC3 can

be up to 56 times faster than 3DCHB for tol = 10−9. . . . . . . . . . . . . . 127

7.1 Test Set 6—CPU time (in seconds) of ES2 in segmenting object in Figure 7.6(b)

with different resolutions. The time ratio, close to 4.4 indicates O(N logN)

optimal speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xiii



Chapter 1

Introduction

This thesis will focus on a specific branch of computer vision called image segmentation.

The objective of image segmentation is to obtain meaningful partitions of an input

image into a finite number of disjoint homogeneous regions. This task is obviously

very difficult to achieve and there exist many methods to realize it. The definition of

meaningful depends on the problem setting, and the possible application. For example,

it could mean identifying the boundary of an organ or tumour in medical imaging field.

From a security perspective, it might mean selecting certain objects such as vehicles or

people from the image.

Different models and techniques have been developed so far, including histogram

analysis and thresholding [88, 121], region growing [1], edge detection and active

contours [7, 38]. Of all these techniques, variational techniques [38, 102] have proven

to be very efficient for extracting homogeneous areas compared with other models such

as statistical methods [45, 44, 58] or wavelet techniques [90].

Segmentation models can be classified into two categories, namely, edge based and

region based models; other models may mix these categories. Edge based models refer

to the models that are able to drive the contours towards image edges by influence of

an edge detector function used. The snake algorithm proposed by Kass et al. [77] was

the first edge based variational models for image segmentation. Further improvement

on the algorithm with Geodesic Active Contours and the level-set formulation led to

effective models [25, 123].

Region based segmentation techniques try to separate all pixels of an object from its

background pixels based on the intensity and hence find image edges between regions

satisfying different homogeneity criteria. Examples of region-based techniques are

Region growing [69, 16], Watershed algorithm [69], Thresholding [69, 143], and Fuzzy

clustering [126] and variational models such as Mumford-Shah [102] model and the

Chan-Vese (CV) [38] model.

The most celebrated and efficient variational model for the images with and without

noise is the Mumford-Shah [102] model, that reconstructs the segmented image as a

piecewise smooth intensity function. Since the model cannot be implemented directly

and easily, it is often approximated. The Chan-Vese (CV) [38] model is simplified

and reduced from [102], without approximation. The simplification is to replace the
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piecewise smooth function by a piecewise constant function and, in the case of two

phases, the piecewise constant function divides an image into the foreground and the

background.

Segmentation models described above are used for global segmentation due to the

fact that all features or objects in an image are to be segmented. This thesis is concerned

with another type of image segmentation models, namely selective segmentation models.

They are defined as the process of extracting one object of interest in an image based

on some known geometric constraints [65, 111, 129].

Two effective models are Badshah-Chen [12] and Rada-Chen [111] which use a

mixture of edge-based and region-based ideas in addition to imposing constraints.

Recently, a convex selective variational image segmentation model called as Convex

Distance Selective Segmentation was successfully proposed by Spencer and Chen [129].

The convex model allows a global minimiser to be found independently of initialisation

[129, 34]. The additive operator splitting (AOS) method was proposed to solve the

models which is suitable for image of moderate size. However, to process images of

large size, urgent need exists in developing fast methods.

The multigrid and multilevel method have been developed using the idea of hierarchy

of discretisations to solve problem with huge data. A multilevel method is based on

discretise-optimise scheme where minimisation of a variational problem is solved directly

without using a PDE. In contrast, a multigrid method is based on optimise-discretise

scheme where it solves a resultant PDE generally from Euler Lagrange equation derived

from the objective functional. The two methods are inter-connected since both can

have geometric interpretations and use similar inter-level information transfers.

The multigrid methods have been used to solve a few variational image segmentation

models in the level set formulation [78, 108, 109, 10, 11]. While the practical performance

of these methods is good, however, they are sensitive to parameters and hence not

effective, mainly due to non-smooth coefficients which lead to smoothers not having an

acceptable smoothing rate and behave like the cascadic multigrids [100] where only one

multigrid cycle is needed.

Here we pursue multilevel optimisation methods, based on a discretise-optimise

scheme where the minimisation is solved directly (without using PDEs). The idea has

been applied to other image problems in denoising and debluring [33, 29, 30], but not

yet to selective segmentation problems.

1.1 Thesis Outline

The remaining chapters of this thesis are organised as follows.

Chapter 2 - Mathematical Preliminaries

In this chapter, we introduce some mathematical tools which will be used throughout

this thesis. A brief review is given on definitions, theorems and examples of some

important and relevant mathematical topics including normed vector spaces, convex
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sets and functions, calculus of variations, and functions of bounded variations. In

relation to variational methods, we also discuss inverse problems and regularisation,

discretising partial differential equations, image representation, level set method and

iterative solutions to equations.

Chapter 3 - Review of Variational Models in Image Processing

In this chapter, the most important segmentation models in variational setting are

reviewed. These are useful and closely related to our work. The models include

Mumford-Shah model [102], Snake model [77], Geodesic Active Contour [25] , Chan and

Vese model [38], global minimisation model [34], Geodesic Aided CV Model [41], and

lastly the selective segmentation model namely Geometrical Constraint Segmentation

Model [67].

Chapter 4 - An Optimisation based Multilevel Algorithm for Variational

Image Segmentation Models

In this chapter we develop an optimisation based multilevel algorithm for efficiently

solving two nonconvex selective segmentation models. Moreover, we propose the

modified localised version of these models to exploit the local nature of segmentation

contours in order to speed up the computation time, solved using multilevel algorithm.

Experiment is done using synthetic and real medical data.

Chapter 5 - A Reformulated Convex and Selective Variational Image Seg-

mentation Model and its Fast Multilevel Algorithm

The existing convex segmentation model is expensive to solve and suffers from param-

eter sensitivity due to existence of highly nonlinear term in the formulation, hence

reformulated version of the model using primal-dual framework is done in this chapter.

In addition, we also develop a multilevel algorithm to solve both the original and

the new model. To get a stronger decaying property, a new variant of the multilevel

algorithm to solve the new model is introduced where we can prove the convergence of

the multilevel algorithm.

Chapter 6 - A Three-dimensional Convex and Selective Variational Image

Segmentation Model and Its Fast Algorithms

Developing a reliable 3-D segmentation model is important to many fields of study as it

can produce results with much information for further analysis compare to 2-D model.

We introduce a 3-D convex segmentation model in this chapter. Localised version of

the model is introduced to deal with large 3-D data, solved using a new develop 3-D

multilevel framework to ensure the computational speed is optimum. A new variant

for 3-D multilevel algorithm to solve the 3-D model is proposed and its convergence is

proven.
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Chapter 7 - Euler’s Elastica based Selective Segmentation Model and Its

Fast Algorithm

Some objects in images might be occluded by other ones or some parts of them may

not be distinguishable from the background. Consequently, the segmentation task is

extremely hard and may not be possible for grey intensity based segmentation models.

To do this segmentation task, we propose two new Euler’s Elastica based selective

segmentation models which impose curvature constraints on the formulation. These

restore those boundaries that are missing or not well defined. Multilevel algorithm is

proposed to solve these higher order minimisation problems efficiently.

Chapter 8 - Conclusion and Future Research

In the final chapter, we discuss our conclusions and outline possible future research

directions arising from the work presented in this thesis.
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Chapter 2

Mathematical Preliminaries

In this chapter we provide a summary of relevant mathematical preliminaries that will

be used in later chapters. We first introduce some concepts of normed linear space

and some background for functions of bounded variation. Then, the idea about inverse

problem and the theory of calculus of variations are introduced before moving on to

discretisation of partial differential equations (PDE) related to inverse problem and

concepts on interface representation. Next, we provide an overview of conventional

methods for iteratively solving equations, both in the linear and nonlinear case. We

end this chapter with an introduction to multigrid and optimisation based multilevel

algoritms.

2.1 Normed Vector Spaces

We first introduce the vector space (also called a linear space), a basic mathematical

structure formed by a collection of elements

u = (u1, ..., un) , v = (v1, ..., vn)

called vectors. Literature can commonly be found in either linear algebra or advanced

calculus literature such as [5, 79, 118].

Definition 2.1.1. (Vector Space). Let V be a vector set on which two operations,

addition and scalar multiplications, have been defined. For u,v ∈ V, the sum of u and

v is denoted by u + v, and if c is a scalar, the scalar multiple of u by c is denoted by

cu. If the following axioms hold for all u,v,w ∈ V and for all scalars c, d, then V is

called a vector space and its elements are called vectors.

1. Closure under addition: If u,v ∈ V, then u + v ∈ V.

2. Commutativity under addition: If u,v ∈ V, then u + v = v + u.

3. Associativity under addition: If u,v,w ∈ V, then (u + v) + w = u + (v + w).

4. Existence of an identity element of addition: There exists an element 0 ∈ V,

called a zero vector, such that u + 0 = u for all u ∈ V.
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5. Existence of additive inverse: For each u ∈ V, there is an element −u ∈ V such

that u + (−u) = 0.

6. Closure under scalar multiplication: If c is a scalar, and u ∈ V , then cu ∈ V.

7. Distributivity: If u,v ∈ V and c is a scalar then c (u + v) = cu + cv.

8. Distributivity under scalar multiplication: If u ∈ V and c, d are scalar then

(c+ d) u = cu + du.

9. Associativity under scalar multiplication: If u ∈ V and c, d are scalar then

c (du) = (cd) u.

10. Existence of an identity element of scalar multiplication: There exists an element

scalar 1 called the scalar multiplicative identity, such that 1u = u for all u ∈ V.

Example 2.1.2. Examples of vector spaces include:

• The space Ck (Ω) of all functions on the domain Ω ⊂ Rd whose partial derivatives

of order up to k are continuous.

• The space Rd for all d ∈ N.

Definition 2.1.3. (Norm and Seminorm). A norm ‖·‖ on a vector space V is a

real-valued function ‖·‖ : V→ R that satisfies the following properties:

1. Faithfulness: ‖u‖ = 0 if and only if u = 0 and ‖u‖ > 0 if u 6= 0.

2. Absolute homogeneity: ‖λu‖ = |λ| ‖u‖ for all scalars λ.

3. Triangle inequality: ‖u + v‖ ≤ ‖u‖+ ‖v‖

for all u,v ∈ V.

A seminorm is defined similarly as above but the first property is replaced by

‖u‖ ≥ 0.

Example 2.1.4. (p-norm). Consider x ∈ Rd , then for any real number p ≥ 1 the

p-norm of x is defined by

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

,

where for p = 2 we have the Euclidean norm. The infinity norm is defined as

‖x‖∞ = max (|x1| , |x2| , ..., |xn|) .

Example 2.1.5. (Lp-norm). Consider a continuous function f defined on a domain

Ω such that ∫
Ω
|f(x)|pdx <∞,
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with 1 ≤ p ≤ ∞. Then the Lp-norm of f on Ω is defined as

‖f(x)‖Lp =

(∫
Ω
|f(x)|pdx

) 1
p

.

The special case of p =∞ is defined as

‖f(x)‖∞ = sup
x
|f(x)| .

Definition 2.1.6. (Inner Product). Let u,v,w ∈ V with a scalar λ. An inner

product on the vector space V is a function 〈·, ·〉V defined on V ×V which satisfies

1. Positive definiteness: 〈u,u〉V > 0 when u 6= 0.

2. Linearity under scalar multiplication: 〈λu,v〉V = λ〈u,v〉V .

3. Linearity under vector addition: 〈u + v,w〉V = 〈u,v〉V + 〈v,w〉V.

4. Symmetry: 〈u,v〉V = 〈v,u〉V.

Example 2.1.7. Examples of inner products are

• The standard inner product

〈x,y〉d =
d∑
i=1

xiyi

for all x,y ∈ Rd

• For real-valued continuous functions f(x) and g(x) defined on the interval [a, b]

〈f, g〉 =

∫ b

a
f(x)g(x) dx

When given a complex vector space, the last property above is replaced by conjugate

symmetry: 〈u,v〉V = 〈v,u〉V .

Definition 2.1.8. (Normed Vector Space). If a vector space V is equipped with a

norm ‖·‖ defined on it, then V is called a normed vector space (also called a normed

linear space).

Remark 2.1.9. A relevant example is Euclidean n-space (or Cartesian space), where

the space of all n-tuples of real numbers x,y ∈ Rn is equipped with the Euclidean metric

(distance between two elements x,y ∈ Rn)

d(x,y) =

(
n∑
i=1

(xi − yi)

) 1
2

.

Any inner product defined on a vector space V induces a norm defined by ‖u‖V =

〈u,u〉1/2V , is a special type of normed vector space. When a vector space is equipped

with a seminorm, then it is called a seminormed vector space.
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Definition 2.1.10. (Cauchy Sequence and Completeness). A sequence {xi}i∈N
in a normed vector space V is called a Cauchy sequence if for any real number ε >

0, there exists M ∈ Z+ such that for every natural number m,n > M , we have

‖xm − xn‖ < ε . A normed vector space V is said to be complete if every Cauchy

sequence {xi}i∈N ∈ Vconverges to an element x ∈ V which implies that limi→∞xi = x.

Note that Cauchy sequence is a sequence where all terms, except a counted number,

become arbitrarily close to one another.

Definition 2.1.11. (Banach Space). A complete normed vector space is called

Banach space.

Example 2.1.12. The space of all continuous functions f in an interval [a, b], denoted

C ([a, b],R), is a Banach space if we define the supremum norm of such function as

‖f‖ = sup {|f(x)| : x ∈ [a, b]} .

It is a well-defined norm since all continuous functions on a compact interval are

bounded.

Definition 2.1.13. (Hilbert Space). A Hilbert space is a vector space V with an

inner product defined on it such that every Cauchy sequence converges to an element of

the vector space V.

Example 2.1.14. Two relevant examples of Hilbert space are the space Rd together

with the Euclidean inner product and the space L2(Ω) together with the inner product

defined by

〈f, g〉L2(Ω) =

∫
Ω
f(x)g(x) dx.

Definition 2.1.15. (Lipschitz Continuous Function). A function J is called

Lipschitz continuous with Lipschitz constant Lf on R if there is a nonnegative constant

Lf such that

‖J(y)− J(x)‖ ≤ Lf ‖y − x‖ for all x,y ∈ R

for any given operator norm.

Definition 2.1.16. (Convex Set). A set S in a vector space V is said to be convex

if, for all u,v ∈ S and all λ ∈ [0, 1] , the point

(1− λ) u + λv ∈ S.

In other words, every point on the line segment connecting u and v is in S.

Definition 2.1.17. (Convex Function). Suppose that f is a real-valued function

defined on a convex set S ∈ Rd . Then the function f is convex on S if

f (λu + [1− λ]v) ≤ λf (u) + [1− λ]f (v) (2.1)
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for all u,v ∈ S and all λ with λ ∈ [0, 1]. The function f is strictly convex if the

inequality is always strict for u 6= v.

Example 2.1.18. Examples of convex functions are

• exponential: eax, for any a ∈ R on domain R.

• affine function: f(x) = Ax + b where f : R2 → R.

• the linear combination function h = αf + βg for α, β ≥ 0 , given that f and g

are convex.

2.2 Calculus of Variation

Calculus of variations is a field of mathematical analysis that is concerned with the

problem of extremising a functional (a function which depends on one or more functions)

using variations, which are small changes in functions and functionals. This problem

is a generalisation of the problem of finding extrema of functions of several variables.

Details about this field can be found for example in [57, 61, 60].

Functionals are often expressed as definite integrals involving functions and their

derivatives. Functions that maximise or minimise functionals may be found using the

Euler–Lagrange equation of the calculus of variations. Consider a general functional

J(u) : Ω→ R

J (u) =

∫
Ω
F (x, u(x),∇u(x)) dx (2.2)

where Ω represents some normed vector space (for example, Ω = Rd, d ≥ 1 ) that is a

solution space for the unknown function u(x). Here, the functional J depends upon the

independent variable x = (x1, x2, .., xd), ∇u(x) = (∂u/∂x1, ∂u/∂x2, ..., ∂u/∂xd) denotes

the gradient of u, and dx is the n−differential element defined as dx = dx1dx2...dxd .

We are concerned with the problem of minimising the functional J(u) using calculus of

variation:

min
u

J (u) . (2.3)

The necessary condition to be satisfied by any minimiser of a variational integral is

the vanishing of its first variation δJ defined as:

δJ (u) =
d

dε
J (u+ εϕ)

∣∣∣∣
ε=0

= 0 (2.4)

Here ϕ ∈ Ω represents a test function and ε is a real parameter. If u is a minimiser of

J(u), then (2.4) must be satisfied for all ϕ. We call δJ(u) the first variation of J at u

in the direction of ϕ.

Definition 2.2.1. (Gateaux Derivative). Suppose X and Y are Banach spaces,

U ⊂ X is open, and J : U → Y . The Gateaux differential derivative (or directional

derivative or first variation) of J at u ∈ U in the direction of ϕ ∈ X is defined as
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δJ (u : ϕ) =
d

dε
J (u+ εϕ)

∣∣∣∣
ε=0

= lim
ε→0

J (u+ εϕ)− J (u)

ε

If the limit exists for all ϕ ∈ X, then J(u) is Gateaux differentiable at u.

Definition 2.2.2. (Stationary Point). Let J : U → R be a functional with solution

space U ⊂ X. For some ũ ∈ U , suppose J is Gateaux differentiable for all test functions

ϕ ∈ X. Then ũ ∈ U is said to be a stationary point of J if δJ(ũ) = 0 for all ϕ ∈ X.

Definition 2.2.3. (Local Minimiser). A functional J : U → R is said to have a

local minimiser at the point ũ if there exists some ε > 0 such that

J (ũ) ≤ J (u) , ∀u ∈ Bε (ũ) ,

with Bε(ũ) := {u ∈ U : ‖u− ũ‖ < ε}.

Definition 2.2.4. (Global Minimiser). A functional J : U → R is said to have a

global minimiser at the point ũ if

J (ũ) ≤ J (u) , ∀u ∈ U.

The equation δJ(u) = 0 is called the Euler-Lagrange equation for the minimisation

problem in (2.3). If J(u) is a convex functional, and U is a convex set, then every local

minimiser of J(u) is also a global minimiser.

In order to finalise this short section, we present an example of how to compute the

first variation of a functional of our interest.

Example 2.2.5. Consider the problem of finding the first variation of the functional

J (u) =

∫
Ω
|∇u| dxdy

defined on a domain Ω ⊂ R2 . We first introduce the small variation εϕ composed of

the parameter ε → 0 and the continuously differentiable function ϕ in Ω . Then we

compute,

d
dεJ (u+ εϕ)

∣∣
ε=0

=
d

dε

∫
Ω
|∇ (u+ εϕ)| dxdy

∣∣∣∣
ε=0

=

∫
Ω

∇ (u+ εϕ)

|∇ (u+ εϕ)|
· ∇ϕdxdy

∣∣∣∣
ε=0

=

∫
Ω

∇u
|∇u|

· ∇ϕdxdy.

Now taking v = ϕ and ω = ∇u/ |∇u| in Green’s first identity, i.e.∫
Ω

(w · ∇v + v∇ ·w) dx =

∫
∂Ω
vw · n ds

where ∂Ω is the boundary of Ω , ds indicates integration with respect to surface area on

∂Ω, and n is the unit outward normal vector for each point x ∈ Ω. We obtain

10



∫
Ω
∇v ·w dxdy =

∫
Ω

∇u
|∇u|

· ∇ϕdxdy

=

∫
∂Ω
ϕ
∇u
|∇u|

· n ds−
∫

Ω
∇ ·
(
∇u
|∇u|

)
ϕdxdy

we further require

d

dε
J (u+ εϕ)

∣∣∣∣
ε=0

= 0,

for all test function ϕ then the following partial differential equation known as the Euler

Lagrange equation must be satisfied:

∇ ·
(
∇u
|∇u|

)
= 0 in Ω

With Neumann boundary condition ∇u · n = 0 on ∂Ω.

2.3 Functions of Bounded Variation

In this section, we define the space of function of bounded variation (BV) which is an

important type of function to many variational methods in imaging. Details can be

found in [55, 56, 62, 80].

Let Ω be a bounded open subset of Rd and let u ∈ L1(Ω) . Define∫
Ω
|Du| dx = sup

V

{∫
Ω
u (x)∇ · ϕdx

}
where V is the set of test functions

V =
{
ϕ = (ϕ1, ϕ2, ..., ϕd) ∈ C1

0

(
Ω : Rd

)
: ‖ϕ(x)‖L∞(Ω) ≤ 1, ∀x ∈ Ω

}
the divergence

∇ · ϕ =
d∑
i=1

∂ϕi
∂xi

,

and C1
0 is the space of continuously differentiable functions with compact support in

Ω. As describe in [62] for a particular case u ∈ C1(Ω;Rd), integration by parts gives

∫
Ω
u∇ · ϕdx = −

∫
Ω

d∑
i=1

∂u

∂xi
ϕi dx

for every ϕ ∈ C1
0 (Ω;Rd), so that∫

Ω
|Du| dx =

∫
Ω
|∇u| dx

Definition 2.3.1. (Function of Bounded Variation). A function u ∈ L1(Ω) is

said to have bounded variation in Ω if
∫

Ω |Du| <∞. The notation BV (Ω) denotes the

space of all functions in L1(Ω) with bounded variation.

11



A basic property of BV functions is the coarea formula which provides a connection

between the total variation of a function and the perimeter of its level sets. For

u ∈ BV (Ω) defined in Ω we define the level set in Rd as

Eγ = {x ∈ Ω : u (x) ≤ γ} (2.5)

Definition 2.3.2. (Perimeter). The perimeter of Eγ ∈ Ω is defined as

Per (Eγ) =

∫
Ω

∣∣DχEγ ∣∣ = sup
V

{∫
Eγ

∇ · ϕdx

}
where χE is a characteristic or indicator function of the set E , defined as

χE =

{
1 if x ∈ E
0 if x ∈ Ω\E.

Definition 2.3.3. (Coarea formula). Let u = u(x) and f = f(x) be two scalar

functions defined on Rd . Assume that u is Lipschitz continuous and that for almost

every λ ∈ R , the level set L = {x ∈ Rd : u(x) = λ} is a smooth (n− 1)-dimensional

hypersurface in Rd . Suppose also that f is continuous and integrable. Then∫
Rd
|∇u| f dx =

∫ ∞
−∞

(∫
L
f ds

)
dλ.

For a particular case when f = 1 and the region of integration is a subsetΩ ⊂ Rd we get∫
Ω
|∇u| dx =

∫ ∞
−∞

(∫
L
ds

)
dλ =

∫ ∞
−∞

Per (L,Ω) dλ.

This shows that the total variation of a given function u is just the sum of every length

of all its λ-level sets.

2.4 Inverse Problem and Tikhonov Regularisation

An inverse problem is one where the target is to recover the model parameter from

some unknown observed data from a physical system. Mathematically, the inverse

problem can be defined as below.

Definition 2.4.1. (Forward and Inverse Problem). A forward (direct) problem is the

process of computing the data y from the parameter x using a measurement operator f .

The operator f maps the parameter in a function space X to the space of data Y . We

denote

y = f(x), for x ∈ X and y ∈ Y (2.6)

as the connection between the parameter x and the data y. An inverse problem is the

process to find the parameter x ∈ X from the information of the data y ∈ Y such that

(2.6) or an approximation of (2.6) holds.

12



A common consideration with the inverse problems is that they are often ill-posed.

According to the famous French mathematician, Hadamard [68] a problem is ill-posed

if one of the following conditions does not hold

• a solution exists

• the solution is unique

• the solution depends continuously on the data (i.e. a small change in the data

does not lead to a large change in the solution

and the problem is classified as well-posed if all conditions are satisfied.

Many problems in real life applications are ill-posed inverse problems. For example,

given two data sets P and Q , we may need to compute the value of R = P +Q which

is an example of a forward problem. The problem becomes an inverse problem if we

are asked to calculate the values of Pand Q given the value of R. Ill-posed problems

usually result from a lack of precise mathematical formulation and typically violate the

stability condition where small changes in the given data lead to large changes in the

solution [71]. To illustrate this, consider the following example.

Example 2.4.2. Given

A =

[
3 4

3 4 + ε

]
, y =

[
3

0

]
.

The forward problem is to compute K = K(y) = Ay, for ε = 0, which has solution

K = [9, 9]T . Meanwhile, the associated inverse problem is to compute y given this

K. However for ε = 0, A is not invertible. As a result, there is no solution to the

problem. If we change ε = 10−6, then A becomes invertible and has a unique solution

for y = [3, 0]T . Perturbing K slightly to K̂ = [9, 9− ε]T , the solution to the inverse

problem is ŷ = [13/3,−1]T which is considerably different from y since |y|2 = 9 and

|ŷ| = 178/9.

In 1963, the Russian mathematician Andrei N. Tikhonov [135] introduced the

foundations of the theory of ill-posed problem solutions and developed the concept

known as regularisation which transform an ill-posed problem into a well-posed problem.

Basically, a new constraint is introduced in the problem which enforces the solution to

belong to a specific set of solution.

Consider a given A : F (A) ⊆ X → Y operator between X and Y such that Au = b.

If the solution u does not satisfy the well-posed criteria, Tikhonov [135] proposed to

solve the following minimisation problem:

min
u
‖Au− b‖22 + α ‖Lu‖22 . (2.7)

Here, the first term is the data, fedility or fitting term, the second is the regularisation

term where L is a regularisation operator and α > 0 regularisation parameter which

determines the trade-off between regularisation and data fitting.
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2.5 Discretisation of Partial Differential Equations

A continuous model is often transferred to a discrete version through discretisation

mainly because the equation involved cannot be solved analytically or because only

discrete data is available. For image processing tasks, the domain Ω ⊂ R2 is normally

rectangular and the values of a given function are known at uniformly distributed

points in the domain. Therefore, the finite difference method is frequently used to

discretise the domain.

We proceed by considering a 2-D problem with domain Ω = (a, b) × (c, d) for

a, b, c, d ∈ R on which we impose a (nx + 1) × (ny + 1) Cartesian grid with spacing

hx = (b− a)/nx and hy = (d− c)/ny for the x and y direction respectively. We may

consider vertex-centred discretisation where points are placed on the vertices of the

grid mesh giving (nx + 1)× (ny + 1) grid points (xi, yj) located at

(xi, yj) = (a+ ihx, c+ jhy) , for 0 ≤ i ≤ nx and 0 ≤ j ≤ ny.

In a cell-centred discretisation, grid points are placed at the centre of the grid cells

giving nx × ny grid points (xi, yj) located at

(xi, yj) =

(
a+

2i− 1

2
hx, c+

2j − 1

2
hy

)
, for 1 ≤ i ≤ nx and 1 ≤ j ≤ ny.

Operators such as derivatives in the PDE can be approximated using the Taylor

expansions

u (x+ h, y) =
∞∑
i=0

hi

i!

∂if (x, y)

∂xi
and u (x− h, y) =

∞∑
i=0

(−1)
hi

i!

∂if (x, y)

∂xi
.

Then, the approximation of the derivative ∂f/∂u at the point (i, j) called forward

difference operator is given as

∇x+ (ui,j) ≈
u(x+ h)− u(x, y)

h
=
ui+1,j − ui,j

h
.

The backward difference operator is defined as

∇x− (ui,j) ≈
u(x, y)− u(x− h, y)

h
=
ui,j − ui−1,j

h

and the central difference operator can be given as

∇cx (ui,j) ≈
u(x+ h, y)− u(x− h, y)

2h
=
ui+1,j − ui−1,j

2h

where ui,j = u(xi, yj) is the value of u(x, y) at the point (i, j). The higher-order

derivatives can be approximated in a similar way. For instance, the second-order

approximation of ∂2u/∂x2 is defined as follows
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∆x (ui,j) = ∇x−
(
∇x+ (ui,j)

)
=
ui+1,j − ui,j + ui−1,j

h

Similar definitions can be given for partial derivatives with respect to y.

2.6 Image Representation

In this section, we look at some of the most frequent ways of representing images.

Computationally, a grey scale images is a 2-D array (matrix) U = [ui,j ]m×n. Each

entry of the array is called a pixel of the image and represents the level of brightness or

intensity at that point. These values will be referred to as intensity values. The values

typically either [0,255] or [0,1] depending upon if the image has been normalized or not,

respectively. For colour or multi-channel images, the images are represented as multi-

dimensional arrays U = [ui,j,k]m×n×p for an m× n pixels image. Here, p represents the

number of channels of the image. For example, if an image U representing RGB colour

scheme (Red, Green, Blue) than we have U = [ui,j,k]m×n×3. At an arbitrary pixel of the

image, the intensity value is a vector ui,j = (ui,j,1, ui,j,2, ui,j,3) where each of the entries

represent the intensity level at that pixel from each channels. In this thesis, however

we just consider grey scale images for the experimental works in coming chapters.

To represent a grey scaled image mathematically, we characterised the image by a

smooth function u = u(x, y) : Ω→ R whose domain is given by a subset Ω ⊂ R . Based

on this, images can be seen as the level sets or isophotes of the function u. For each

real value λ define the λ-level set of u as

γλ = {(x, y) ∈ Ω : u (x, y) = λ} (2.8)

Then, the classical level set representation of u is the one-parameter family of all the

level sets

Γu = {γλ : λ ∈ R} .

Figure 2.1 shows a grey scale image and some of its level set.

An image also can be represented as surface where the height is the grey scale

value. The representation is obtained by considering an image as the induced 3-

D surface or graph characterised by z = u(x, y) which defines the image surface

(x, y, u(x, y)). As the level set function φ(x, y, z) = u(x, y)− z, we see that its zero level

set {(x, y, z) : φ(x, y, z) = 0} corresponds to the surface z = u(x, y). In Figure 2.2 , we

show the surface representation of the image shown in Figure 2.1.

2.7 The Level Set Method

The level set method is a numerical technique devised by Osher and Sethian [107] for

computing and analysing the motion of an interface in two or three dimensions. This

method has been widely used in variety of problems including image segmentation,
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(a) (b)

Figure 2.1: (a) Original grey scale image of size 256× 256 with intensity values on the
interval [0,1]. (b) Level sets of the image in 2-D view.

(a) (b)

Figure 2.2: Two different views of the surface representation of the image in Figure 2.1
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(a) (b)

Figure 2.3: Illustration of the interface Γ using the level set method: (a) shows a level
set function φ(x) and its intersection with φ = 0, (b) shows the corresponding interface,
Γ implicitly represented by the zero level set of φ.

computational geometry, fluid dynamics flows, visualization, computer vision, control,

visibility, restoration and many others [89, 123, 124, 125]. In this section we provide

a brief overview of this method. We refer the reader to the original paper [107] and

other work [123, 124, 125] for further details.

For a given interface (curve) Γ ∈ Ω , the level set method amounts to implicitly

represent Γ with the zero level set of a Lipschitz function φ : Ω→ R such that
φ (x) > 0 inside Γ

φ (x) < 0 outside Γ

φ (x) = 0 on Γ.

By defining the interface implicitly, topological changes of Γ are dealt with automatically.

As the function φ evolves, the interface Γ can split or merge easily, as it is defined by

the zero level set of φ. The interface for a corresponding level set function is illustrated

in Figure 2.3.

As we are dealing with curve evolution, we will adjust the level set as a function of

time t denoted by: 
φ (x(t), t) > 0 inside Γ

φ (x(t), t) < 0 outside Γ

φ (x(t), t) = 0 on Γ.

Formally, we want to track the zero level set of φ that is φ (x(t), t) = 0 . That means

we need to derive the equation of motion of φ defined as

∂φ (x(t), t)

∂t
= 0.

Using chain rule we obtain

∂φ

∂x(t)

∂x (t)

∂t
+
∂φ

∂t
= 0

or in compact form,

∇φxt + φt = 0.
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The motion direction of the curve is normal, which is ∇φ
|∇φ| and there would also be a

force, F that moves the curve. Hence, the speed is given by xt = F ∇φ|∇φ| . The previous

motion equation can be written as:

∇φF ∇φ
|∇φ|

+ φt = 0

F |∇φ|+ φt = 0

φt = −F |∇φ|

The initialisation is given as φ(x, t = 0) = d(Γ0) = φ0 where d(·) is generally a signed

Euclidean distance function, whose zero level set is the initial contour Γ0. Large

variations in ∇φ for general function F might increase the numerical computation error.

Furthermore, as the interface evolves, φ generally drift away from its initialised level

set and the level set function φ becomes too steep or too flat [131]. Therefore, it is

common in practice to re-initialise the level set function as a signed distance function.

This can be achieved by solving the following PDE for φ

φt − sgn (φ) (1− |∇φ|) = 0

φ (x, 0) = φ0

(2.9)

where φ0 is the function which is supposed to be re-initialised. The procedure will

convert the level set function to the unit distance function. We refer the reader to the

work Sussman et al. [131] and the references therein, for further details.

2.8 Iterative Solutions to Equations

In this section, we discuss the methods to solve the problem that arise in later chapters.

These methods are divided into three classes, which require different techniques. The

first class is the basic iterative methods for solving linear equations. Here, we introduce

the Jacobi method, followed by the Gauss-Seidel method and Kaczmarz method. The

second class is iterative methods for nonlinear equations where we discuss Newton’s

method, gradient descent method, and additive operator splitting (AOS) method.

Finally, the third class is multiresolution methods where the methods under discussion

are multigrid method and multilevel method.

2.8.1 Basic Iterative Methods for Linear Systems

We introduce two well-known iterative methods for finding solutions to linear system

of equations

Ax = b (2.10)

where A is n× n matrix, b is an n× 1 vector and x is the n× 1 vector of unknowns

such that
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A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 , b =


b1

b2
...

bm

 , x =


x1

x2

...

xn

 .

For a square system of equations that is when the number of equations m is the same as

the number of variables n , it is possible to have a solution. Hence, the following we will

consider m = n. If A−1 exist, direct methods such as Gaussian Elimination can be used

however they can be computationally very expensive especially when dealing with real

application problems which require a lot of memory. Iterative methods such as Jacobi,

Gauss-Seidel, and Kaczmarz can be very useful for solving a general linear system in

(2.10) in terms of implementation and are computationally cheap. The process starts

with an initial approximation x(0) that generates a sequence of vectors
{
x(k)

}∞
k=0

which

gradually approximates the true solution x of the linear system (2.10). Such methods

involve iterations of the form

x(k) = Tx(k−1) + c, (2.11)

for each iteration step k = 1, 2, 3... . In this way the system Ax = b is converted

into an equivalent system in (2.11) for some fixed matrix T and a vector c, neither of

which is dependent on the iterative step k. How T and c are defined depends on the

technique used which we will now address.

The Jacobi Method

The Jacobi method is an iterative method which is simple to implement and often

forms the basis for other methods. Given a system of liner equations (2.10), the i th

equation is given by

n∑
j=1

ai,jxj = bi. (2.12)

Solving (2.12) now for xi, we get the equation

xi =
bi
ai,i

+
n∑

j=1,j 6=i

−ai,jxj
ai,i

. (2.13)

Then given all the components of x(k−1) for k ≥ 1, x
(k)
i is generalised by

x
(k)
i =

1

ai,i

bi +

n∑
j=1,j 6=i

−ai,jx(k−1)
j

 , for i = 1, 2, ..., n. (2.14)

This method also can be implemented using parallel computation for speed gain. We

may note that the computation of x
(k+1)
i requires the values of each element of x(k)

except itself whereas the Gauss-Seidel method requires the entry x
(k)
i with x

(k+1)
i as
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discussed below.

The Gauss-Seidel Method

Unlike the Jacobi method, Gauss-Seidel method uses the values of the current step

rather than the previous step, i.e. to calculate x
(k)
i , Gauss-Seidel uses x

(k)
i , ..., x

(k)
i−1

while Jacobi method uses x
(k−1)
i , ..., x

(k−1)
i−1 . This fact explains why the Gauss-Seidel

method yields a better approximation than Jacobi method. In this way, Gauss-Seidel

iterations can be written as

x
(k)
i =

1

ai,i

bi +

i−1∑
j=1

−ai,jx(k)
j +

n∑
j=i+1

−ai,jx(k−1)
j

 , for i = 1, 2, ..., n. (2.15)

From (2.15) we can easily notice that each new entry x
(k)
i in the Gauss-Seidel method is

very dependent on previously updated entries x
(k)
j for all j < i , meaning the ordering

of the equations is vital. As with Jacobi, this method also can be implemented in

parallel to speed up computation.

The Kaczmarz Method

The Kaczmarz method is a technique that solve the problem one row of A at a time.

In 2-D, each row of A can be thought of as defining a line given by Ax while in 3-D

Ax is a plane, and above that it is called hyperplane. Given an initial guess x0 = 0,

Kaczmarz’s algorithm steps through each row of A moving to the point on the Aix

hyperplane closet to the current estimate of x. If Ax = b has a unique solution, this

approach will converge.

For the implementation, consider the hyperplane defined by Ai+1x = bi+1. Because

the vector AT
i+1 is perpendicular to this hyperplane, the update to x(i) from the

constraint due to row i+ 1 of A will be proportional to AT
i+1 and the update is given

as

x(i+1) = x(i) + αAT
i+1. (2.16)

Using the fact that Ai+1x
(i+1) = bi+1 to solve for α, we obtain

Ai+1

(
x(i) + αAT

i+1

)
= bi+1

Ai+1x
(i) − bi+1 = −αAi+1A

T
i+1

α = −Ai+1x
(i) − bi+1

Ai+1AT
i+1

.

Thus the update formula is

x(i+1) = x(i) − Ai+1x
(i) − bi+1

Ai+1AT
i+1

AT
i+1.
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2.8.2 Iterative methods for Nonlinear Equations

We now consider the problem of finding solutions to systems of nonlinear equations.

Such equations arise in many variational imaging problems. Let say that we want to

solve the following nonlinear system
F1 (x1, x2, ..., xn) = 0

F2 (x1, x2, ..., xn) = 0
... = 0

Fn (x1, x2, ..., xn) = 0,

(2.17)

which may arise from discretisation of a nonlinear PDE or nonlinear optimisation

problem

min J (x1, x2, ..., xn) (2.18)

We can represent the system as F(x) = 0 where

F = (F1, F2, ..., Fn)T , x = (x1, x2, ..., xn)T , (2.19)

and Fi : D ⊂ Rd → R, i = 1, ..., n are nonlinear operators which are continuously

differentiable on Rd. We need to find x∗ ∈ Rd, a solution to the equation (2.17).

We begin by introducing the Newton method, before discussing the gradient descent

method and the AOS method.

The Newton Method

Let B denote the Jacobian matrix of F

Bi,j =
∂Fi(x)

∂xj

and assume that B is Lipschitz continuous. Given the initial approximation x(0) , the

method attempts to evaluate F(x) = 0 using the following recurrence relation

x(k) = x(k−1) −
(
B
(
x(k−1)

))−1
F
(
x(k−1)

)
. (2.20)

The aim here is to find successively closer approximation to the solution x∗ . Computing

the inverse of the Jacobian can however be a difficult task and can be avoided by

rewriting (2.20) in a linear form as

B
(
x(k−1)

)
r(k−1) = −F

(
x(k−1)

)
.

for the unknown r(k−1) and then setting x(k) = x(k−1) + r(k−1). Assuming that the

initial estimate is sufficiently close to the true solution, Newton’s method can offer fast

convergence.

The Gradient Descent Method
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Similar to Newton’s method, the descent method requires an initial approximation

x(0) ∈ Rd of the solution and then iteratively approximate the solution using the scheme

x(k) = x(k−1) − α(k−1)s(k−1), k = 1, 2, 3...

where the positive scalar α(k−1) is called the step length which is not fixed and may

take different values at each iteration, and s(k−1) is a pre-defined search direction which

we use to find the new iterate x(k). If the search direction is given as the opposite

direction to the gradient ∇F (x(k−1)), the descent method is called as Steepest Descent

(or Gradient Descent) method since the function F decreases fastest in this direction.

The iterative scheme of the gradient descent method is given as

x(k) = x(k−1) − α(k−1)∇F
(
x(k−1)

)
, k = 1, 2, 3...

For the descent type methods, it is expected that the function value is decreased with

each iteration, that is

F
(
x(k)

)
≤ F

(
x(k−1)

)
.

If we fix the step length to be equal to some time step ∆t, then we obtain the Time

Marching method. The iteration begins at time t = 0 and proceed in time until a

solution is obtained. The time step must be chosen sufficiently small so that the method

remains stable at each iteration which consequently increase the number of iterations

required for convergence to a steady state solution, and hence ∇F = 0. The time

marching scheme is given as follows

x(k) = x(k−1) − t∇F
(
x(k−1)

)
, k = 1, 2, 3...

Despite its limitations in computational performance, its reliability and ease of imple-

mentation has made the time marching method very popular in solving many variational

problem in image processing such as [34, 115].

The Additive Operator Splitting Method

While the explicit scheme such as time marching require very small time steps which

leads to poor efficiency, the Additive Operator splitting (AOS) method introduced by

[85, 140] is stable for larger time steps that result in improve computation time. The

scheme applies to the diffusion equation in the following form

ut (t,x) = f (u (t,x)) +∇ · (g∇u (t,x)) (2.21)

with initial and boundary condition

u (0,x) = u(0) (x) and
∂u

∂n
= 0 on Ω
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where g is the diffusivity function while f denotes a reaction term. Letting x =

(x1, ..., xn), we can rewrite (2.21) as

ut = f +

n∑
i=1

(guxi)xi = f + (gux1)x1 + ...+ (guxn)xn

In 1-D, the equation we consider is given as

ut = f (u) + (gux)x

After discretisation with respect to time, we get

uk+1 − uk

∆t
= f

(
uk
)

+
(
guk+1

x

)
x
.

Further discretisation with respect to space yields

uk+1−uk
∆t

= f
(
uki
)

+∇x
(
gki∇x

(
uk+1
i

))
= f

(
uki
)

+∇x
(
gki

1
h

(
uk+1
i+1/2 − u

k+1
i−1/2

))
= f

(
uki
)

+ 1
h∇x

(
gk
i+1/2

+gk
i−1/2

2

(
uk+1
i+1/2 − u

k+1
i−1/2

))
= f

(
uki
)

+ 1
2h2

(
gki+1 + gki

) (
uk+1
i+1 − u

k+1
i

)
− 1

2h2

(
gki + gki−1

) (
uk+1
i − uk+1

i−1

)
= f

(
uki
)

+ 1
2h2

(
gki+1 + gki

) (
uk+1
i+1 − u

k+1
i

)
+ 1

2h2

(
gki−1 + gki

) (
uk+1
i−1 − u

k+1
i

)
= f

(
uki
)

+ 1
2h2

∑
j∈Ψ(i)

(
gkj + gki

)(
uk+1
j − uk+1

i

)
(2.22)

where Ψ(i) = {i − 1, i + 1} is the set of neighbours of i. Equation (2.22) can be

rearranged as

uk+1
i − ∆t

2h2

∑
j∈Ψ(i)

(
gkj + gki

)(
uk+1
j − uk+1

i

)
= uki + ∆tf

(
uki

)
(2.23)

Since we have the following relation

∑
j∈Ψ(i)

(
gkj + gki

)(
uk+1
j − uk+1

i

)
=

 ∑
j∈Ψ(i)

(
gkj + gki

)(
uk+1
j

)− uk+1
i

∑
j∈Ψ(i)

(
gkj + gki

)

we can rewrite equation (2.23) in matrix form as

W kuk+1 = uk + ∆tfk, W k = I − ∆t

2h2
Ak (2.24)

where the matrix Ak =
[
aki,j

]
is defined as
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aki,j =


−
∑

j∈Ψ(i)

(
gkj + gki

)
if j = 1

gkj + gki if j ∈ Ψ(i)

0 otherwise.

Without loss of generality we drop the term f and this yields

uk+1 =

(
I − ∆t

2h2
Ak
)−1

uk. (2.25)

This tridiagonal system is solved using the Thomas Algorithm [141].

To demonstrate the reliability of the AOS, we will briefly discuss the established cri-

teria for nonlinear diffusion scale-space and the advantages of satisfying such conditions

[142, 140]. For a given discrete scheme of type

u0 = f (2.26)

uk+1 = Q(uk)uk, ∀k ∈ N0 (2.27)

the following criteria must hold:

(D1) Continuity in its argument:

Q ∈ C
(
RN ,RN×N

)
(D2) Symmetry:

qij = qji, ∀ i, j ∈ J

(D3) Unit row sum:

∑
j∈J

qij = 1, ∀ i ∈ J

(D4) Nonnegativity:

qij ≥ 0, ∀ i, j ∈ J

(D5) Positive diagonal:

qii ≥ 0, ∀ i ∈ J

(D6) Irreducibility: For ∀ i, j ∈ J there exist k0, ..., kr ∈ J with k0 = i, and kr = j such

that qkpkp+1 6=0 for p = 0, ..., r − 1.

In Weickert et al. [141], the AOS scheme is demonstrated to have fulfilled the criteria

for nonlinear diffusion scale-space above. This makes the scheme unconditionally stable

and it will not suffer from any time step size restriction.

24



The 2-D diffusion equation can be written in the form

ut (t,x) = f (u (t,x)) +
2∑
j=1

(
gj(u)uxj (t,x)

)
xj

(2.28)

with initial condition u(0,x) = u0(x) and boundary condition ∂u/∂n = 0 for x ∈ ∂Ω .

To discretise, let ∆t represent the step size. Then, the discrete time steps tk = k∆t, k ∈
N. We denote hι be the grid step size in the direction ι. Denoting uki = u(xi, tk) and

gki = g(u(xi, tk)). Then, the equation in discreet form is given as

uk+1
i − uki

∆t
=

2∑
ι=1

∑
j∈Ψι(i)

gkj + gki
2h2

ι

(
uk+1
j − uk+1

i

)
+ f

(
uki

)
.

Without loss of generality we drop the reaction term f and we have

uk+1 =

(
I −∆t

2∑
ι=1

Aι(u)

)−1

uk.

The AOS scheme proposes

uk+1 =
1

2

(
2∑
ι=1

(I − 2∆tAι)

)−1

uk,

solved efficiently using the Thomas algorithm [141].

Unlike the alternating implicit method (ADI) scheme, in which the subsystems

must be solved sequentially, the split equations can be solved concurrently in the AOS

scheme. In addition, the AOS method is well suited to be implemented in parallel

processors [144].

2.8.3 Multigrid method and Multilevel Optimisation Method

The multigrid method and multilevel optimisation method are developed using the

idea of hierarchy of discretisation where there is a pyramid of grids. The methods are

examples of a class of techniques called multiresolution methods which aim to accelerate

the convergence of a basic iterative method which efficient to handle problem with huge

data. The multigrid method is based on optimise-discretise scheme where it solves a

PDE that may arise from a variational problem numerically. In contrast, the multilevel

optimisation method is based on discretise-optimise scheme where minimisation of a

variational problem is solved directly without using PDE.

The Multigrid Method

This method was first introduced in the 1970s by Brandt [19]. It has two basic principles,

the error smoothing and coarsening principles. The relaxation or iterative techniques

discussed above have what is known as the smoothing effect on the error. These iterative

techniques reducing rapidly the high frequency components of the error of the solution

but may not be effective at reducing the low frequency component of the error. The
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(a) (b)

(c) (d)

Figure 2.4: Illustration of the standard coarsening strategy. (a) represents the fine
grid with 9× 9 discretisation points. The coarse grid in (b) is obtained doubling the
mesh size in the x1-direction while in (c), the coarse grid is obtained by doubling the
mesh size in the x2-direction. Finally, the coarse grid (d) is constructed using these
standard procedures.

coarsening principle states that smooth error term have a good approximation on a

coarse grid.

To illustrate precisely the main idea of multigrid methods, let us now focus on the

linear system Ahuh = fh resulting from an elliptic PDE on the fine grid Ωh with grid

spacing (h, k). Let υh be an approximation solution computed by performing a few

steps with a smoother on the fine grid problem This step is known as pre-smoothing

step. Then, the residual or defect equation is defined as

Aheh = fh −Ahυh = rh, (2.29)

where eh = uh − υh is the error of the solution. We will now construct a course grid

ΩH with grid spacing (H,K) for the grid Ωh. A typical standard coarsening is to

double the spacing i.e H = 2h, K = 2k . If Ωh has (n + 1) × (m + 1) grid points

including boundary then ΩH=2h will have(n/2 + 1)× (m/2 + 1) including the boundary

points. The coarse grid will be a subset of the fine grid. Figure 2.4 illustrates standard

coarsening for vertex-centred discretisation points [71].

Since the high frequency components of the error in pre-smoothing step have already

been reduced by the smoother, we can transfer the following residual equation to the
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(a) Injection operator (b) Full weighting operator

Figure 2.5: Illustration of restriction operators. (a) is the injection operator and (b) is
the full weighting operator for vertex-centred discretisation. The black points are the
coarse points. The points in circles are the active points used to compute the coarse
points for each operator.

coarse grid as follows

Aheh = rh → AHeH = IHh rh = rH . (2.30)

Here AH is assumed to be an appropriate approximation of Ah on the coarse grid and

IHh is the restriction operator i.e transfer operator from the fine to coarse grid defined

as

υH=2h = IH=2h
h υh. (2.31)

The most obvious restriction operator is called injection operator defined as

υH=2h
i,j = υh2i,2j (2.32)

which is simple and fast, however not robust as it simply copies υ2h from the values of

υh at the same point on the fine grid. This ignores the odd-numbered fine grid values

υh2i+1,2j+1. An alternative is a smoothing map, also known as a full weighting operator

defines as

υH=2h
i,j = 1

16 [υh2i−1,2j−1 + υh2i−1,2j+1 + υh2i+1,2j−1 + υh2i+1,2j+1+

2
(
υh2i,,2j−1 + υh2i,2j+1 + υh2i−1,2j + υh2i+1,2j

)
+ 4υh2i,2j ].

(2.33)

We illustrate how both restriction operators are performed in Figure 2.5.

After the residual equation system (2.30) on the coarse grid have been solved

exactly, the coarse grid correction eH is then interpolated back to the fine grid eh by

the interpolation operator IhH i.e eh = IhHeH . The most commonly used interpolation

or prolongation operator is the bilinear operator
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Figure 2.6: Illustration of bilinear operator from the coarse grid to the fine grid. The
coarse point in black are used to obtain all the nine fine points surrounding it.

υh = IhH=2hυH=2h

where

υh2i,2j = υ2h
i,j

υh2i+1,2j = 1
2

(
υ2h
i,j + υ2h

i+1,j

)
υh2i,2j+1 = 1

2

(
υ2h
i,j + υ2h

i,j+1

)
υh2i+1,2j+1 = 1

4

(
υ2h
i,j + υ2h

i+1,j + υ2h
i,j+1 + υ2h

i+1,j+1

)
.

The coarse grid point that coincides with the fine grid point is left unchanged, and the

surrounding fine grid points receive a contribution depending on the neighbourhood

relation. In addition, this operator is the adjoint operator to the full weighting operator.

We illustrate the bilinear interpolation operator in Figure 2.6.

Now, we can update the approximated solution υh of the original linear system on

the fine grid by υnewh = υh + eh . This step is called coarse-grid correction step. The

last step called post-smoothing step is to perform the smoother again to remove high

frequency part of the interpolated error. This procedure is similarly applied to the case

nonlinear PDE but with suitable nonlinear smoother like the ones discussed in Section

2.8.2.

The Multilevel Optimisation Method

In [33] Chan and Chen propose an alternative to multigrid PDE approach called

multilevel optimisation method which uses local optimisation and correction via coarse

grids. The method is applied to the discrete nondifferentiable functional of Total

Variation image denoising optimisation problem. A brief outline of the method is given

below.
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Figure 2.7: The illustration of Ck = Pk ĉ reproduced from [33].

Given an optimisation problem

min
u∈Rn×n

f (u) (2.34)

with the assumption of n = 2L and let the standard coarsening be used giving rise to

L+ 1 levels: k = 1 (finest), 2, ..., L, L+ 1 (coarsest). The dimension of level k is denoted

as τk × τk with τk = n/2k−1. Several steps of a local optimisation method are applied

to the local optimisation problem minui,jfi,j(ui,j) which results from freezing all non

(i, j) component of u at their current value. This step is either solved analytically (if

possible) or via iteration to generate an approximation of problem (2.34).

Assume that ũ ∈ Rn×n is the current approximation to (2.34). We wish to find the

best piecewise constant function C ∈ Rn×n so that it is the solution of the following:

min
c
f (ũ+ c) . (2.35)

The minimisation problem (2.35) is equivalent to the original problem (2.34) and it

is solved on coarse levels:

ĉ = arg min
c∈Rτk×τk

f (ũ+ Pkc) , Ck = Pk ĉ. (2.36)

Here, Pk : Rτk×τk → Rn×n is the interpolation operator, so Ck ∈ Rn×n. The illustration

of Ck = Pk ĉ is given in Figure 2.7.

Once ĉ is obtained after few iterations, ũ is updated by

unew = ũ+ Pk ĉ.

The method may get stuck to local minima due to non-differentiability of the energy

functional. The wrong solution is associated with flat patches. To overcome that

situation, Chan and Chen [33] have proposed the “patch detection” idea in the for-

mulation of the multilevel method for image denoising problems. The patch detection

idea searches the entire image for the possible patch size on the finest level after each

multilevel cycle and an extra coarse grid based on these patches are added and the

piecewise constant update is implemented as above.
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Chapter 3

Review of Variational Models in

Image Processing

3.1 Introduction

In this chapter we briefly review variational models for image denoising and image

segmentation, introducing relevant models of particular interest to our work in this

thesis. We begin with introducing variational models in image denoising in Section

3.2. A seminal approach to this imaging problem was introduced in 1992 by Rudin,

Osher, and Fatemi (ROF) [115]. This model that makes used the total variation (TV)

regularisation is important to our work, as it is closely related to many segmentation

models of our interest that also involve TV term. The segmentation models are discussed

in Section 3.3.

3.2 Variational Models for Image Denoising

Image denoising is a research topic that has drawn much attention within the last

decades for noise removal in signals and images. The noise in digital images is the

common cause of degradation to an image normally produced during image acquisition

such as using a scanner and digital camera [72]. The acquisition process which converts

an optical image into continuous electrical signal that is then sampled is the primary

source of noise [137]. Practically, it is almost impossible to remove noise totally without

distorting an image. However, it is imperative that noise is reduced to a certain

acceptable level for further analysis of the image.

There are two most common types of noise, Gaussian noise and salt-and-pepper

noise. Gaussian noise is additive noise, occurs due to electronic noise in the image

acquisition system, while the salt-and-pepper noise is may cause by malfunctioning

pixel elements in the camera sensors. Faulty memory locations or timing errors in the

digitisation process [137]. Figure 3.1 shows an image corrupted with Gaussian and

salt-and-pepper noise. Further details about types of noise can be found in [31] and

understanding this is vital to modelling suitable noise removal.
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(a) (b) (c)

Figure 3.1: (a) Original grayscale image. (b) Gaussian noise corrupted image. (c)
Salt-and-pepper noise corrupted image.

In variational framework, an edge preserving image denoising model with desirable

mathematical properties was introduced by Rudin, Osher, and Fatemi (ROF) in their

seminal work [115]. The model proposes to minimise the following functional

min
u

{
α

∫
Ω
|∇u| dxdy +

1

2
(u− z)2 dxdy

}
, (3.1)

Where the parameter α > 0 represents a trade-off between the quality of the solution

and the fit to the observed data z(x, y). The first term is the regularisation term using

the total variation of u(x, y) while the second term is a fidelity or data term to ensure

that the resulting denoised image u(x, y) will be close to the given image z(x, y). The

formulation (3.1) is a well-posed problem so existence and uniqueness of its minimiser

is guaranteed [27].

Minimisation of (3.1) is originally done using optimise-discretise scheme by solving

the associate Euler Lagrange equation, derived using calculus of variation as discussed

in previous chapter. The Euler Lagrange equation is given formally as follows

−α∇ ·
(
∇u
|∇u|

)
+ u− z = 0 in Ω, (3.2)

with Neumann boundary condition ∇u · n = 0 on ∂Ω.

Notice that for equation (3.2), singularity may exist when the nonlinear coefficient

|∇u| = 0. A typical remedy is to approximate minimisation problem in (3.1) by

min
u

{
α

∫
Ω

√
|∇u|+ β dxdy +

1

2
(u− z)2 dxdy

}
, (3.3)

for small parameter β > 0 . Hence, the associate Euler Lagrange for (3.3) is given as

−α∇ ·

(
∇u√
|∇u|+ β

)
+ u− z = 0 in Ω,

∂u
∂n = 0 on ∂Ω.

Another way to solve the problem in (3.1) is using discretise-optimise scheme as

done in [33] where the optimisation problem is solved directly without approximation.
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Of course, there exist many more solvers for the problem (3.1) in literature, for instance

see [35, 116, 117, 139, 28, 63] and references therein. The main drawback with the TV

model is that it transforms piecewise smooth function into piecewise constant functions.

This phenomenon is known as staircase effect. This makes denoised images look blocky.

Many effort has been made (see for instance [42, 91, 117] and the references therein)

to reduce the staircase effect in second order models numerically. Moreover, some

researchers have turned to higher order models trying to reduce the staircase problem

[86, 87, 149, 22].

3.3 Variational Models for Image Segmentation

Image segmentation is defined as the process of dividing a digital image into multiple

regions (sets of pixels) of shared characteristics such as intensity, texture and colour, or

in other words it is a process to distinguish objects from the background [6, 31, 98].

This field has broad applications, for example; in computer vision, fingerprints or face

identification, computer graphic, astronomy and medical image processing. Image

segmentation can be classified into two approaches: the non-equation (non-variational)

approach and the variational or energy functional-based approach. The non-variational

approach such as thresholding techniques, region merging algorithms, the watershed

techniques and so on are considered as a simple way to segment an image. However,

they are not defined in rigorous mathematical framework compared to variational

approach, for more details see [127]. In variational approach, the minimiser of the

energy functional corresponds to a meaningful representation of the image. The main

target is to find a closed contour Γ that partitions a domain Ω ∈ R2 into subregions

Ωs, s = 1, 2, ..., N . In the following sections we introduce seminal works from the

subject that related to our work in this thesis.

3.3.1 Mumford-Shah Approach

Mumford and Shah [102] introduced a way to partition a given image z(x, y) by

piecewise smooth function. Let Ω be a bounded domain in Rn. The n-dimensional

Mumford-Shah functional can be defined as

FMS (u,Γ) = αHn−1 (Γ) + µ

∫
Ω

(u− z)2 dxdy +

∫
Ω\Γ
|∇u|2 dxdy, (3.4)

where α and µ are positive tuning parameter, Hn−1 is the (n−1)-dimensional Hausdorff

measure (that is, the usual (n−1)-dimensional Hausdorff measure is (n−1)-dimensional

area in case of subsets of regular hyper surfaces, and the most relevant case n = 2 is

the length). The functional consists a data term on u ∈ C1, forcing u to approximate z

and two regularity terms. The first regularity term imposes smoothness on u and the

other imposes regularity on Γ which requires the boundaries to be as short and smooth

as possible. Theoretical results on the existence and regularity of minimizers of (3.4)

can be found in [102]. A reduced case of the above model is obtained by assuming u
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as a piecewise constant function inside each connected region Ωi that is u = ci which

implies the average values of z in each region Ωi. Thus, the reduced (piecewise constant)

Mumford-Shah functional is given as

FMS2 (u,Γ) = α |Γ|+ µ
∑
i

∫
Ωi

(z − ci)2 dxdy. (3.5)

In practise, the functionals (3.4)and (3.5) are difficult to minimise because of the

unknown set Γ and also the functionals are nonconvex. A possible solution of these

problems will be addressed in Section 3.34.

3.3.2 Snake: Active Contour Model

Although the Mumford-Shah model (3.4) aims is to extract all significant parts in an

image, some specific parts of the image can be more important than others depending on

applications. For example, in medical imaging radiologist aims to analyse a particular

organ or tumor in human body. The active contour model introduced by Kass et.al in

[77] aims at detecting a particular object in an image based on image edge.

Let Ω be a bounded and open set in Rn, with ∂Ω its boundary. Let z be a given

image and denote C(s) : [0, 1] → Rn a piecewise C1([0, 1]) planar curve, represented

as C(s) = (x(s), y(s)) ∈ Ω, s ∈ [0, 1]. The snakes model amounts to minimise the

following energy functional

FKWT (C(s)) = α

∫ 1

0

∣∣∣∣∂C∂s
∣∣∣∣2ds+ β

∫ 1

0

∣∣∣∣∂2C

∂s2

∣∣∣∣2ds+λ ∫ 1

0
g(∇z (C))2ds. (3.6)

Here, α, β and λ are positive constant. The first term is the elasticity energy and

the second term is bending energy. Both energy terms is called internal energy and

responsible in determining the continuity and the smoothness of the curve. The third

term is the external energy and attracts the contours towards the edge of the object in

the image z. The function g(∇z)2 is an edge detector given by

g (∇z) =
1

1 + γ|∇ (z ∗Gσ)|2
, (3.7)

where γ is a positive constant. The function Gσ is the Gaussian smoothing function

with standard deviation σ and mean µ such that Gσ = 1
2πσ2 exp−|(x−µ)2+(y−µ)2|/2σ2

and

z ∗Gσ is a smooth version of z. For a given image z, its gradient i.e ∇z has high values

in the neighbourhood of each objects in the image due to intensity change. An example

of this edge function for a given image can be seen in Figure 3.2.

The equation (3.7) tells us that it takes a near zero value on the edge. Thus, the

minimisation of functional (3.6) will push the contour towards the edge. The associate

Euler Lagrange equation for (3.6) is given as

−α∂
2C

∂s2
+ β

∂4C

∂s4
+ λ∇g2 = 0. (3.8)
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(a) z(x, y) (b) g(x, y)

Figure 3.2: (a) is a given image z(x, y)and (b) is the edge detection function, g(x, y)
defined in equation (3.7).

The solution for (3.8) using finite difference is not unique and strongly dependent on

initialisation contour due to nonconvexity of functional (3.6) [77], hence it has local

minima. On top of that, it does not allow changes of topology as the initial and final

curve has the same topology, consequently this model is not possible to segment more

than one object in an image.

To overcome the limitation of the topology change, the level set method [106, 107,

124] can be used. As we will show in the following section, the curve C is implicitly

represented by a function of higher dimension φ, called the level set function. Therefore,

the curve evolution equation can be rewritten in a level set formulation.

3.3.3 Geodesic Active Contours

V. Casselles et al. [25] proposed a new and improved model based on Kass et al. [77]

called geodesic active contour model defined below

FGAC (C(s)) =

∫ L(c)

0
g (|∇z (C(s))|) ds, (3.9)

where L(C) is the Euclidean length of the curve C. The function g is the edge detecting

function defined in (3.7). The Euler-Lagrange equation of the functional and gradient

descent gives the following PDE

∂C

∂t
= gκn− (∇g · n) n, (3.10)

where κ is the Euclidean curvature and n is the unit normal vector. The equation

(3.10) shows how each point in the geodesic active contour should move in order to

decrease the length FGAC . The final solution that is the segmented object is then given

by the steady state solution of (3.10). In level set formulation, the evolution equation

is given as

∂φ

∂t
= |∇φ|

(
∇ ·
(
g
∇φ
|∇φ|

)
+ νg

)
, (3.11)
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where φ is a Lipschitz function representing C as a zero level set. The term ν g, v > 0

is added to increase the evolution speed and at the same time to ensure the curves is

attracted towards the object boundary.

Despite the success of Geodesic Active Contours in handling topological changes in

an image, it is limited in terms of applications in two senses. Firstly, the GAC model

rely on the edge function g which depends on the gradient of the image. This means

that images that either contains noise or have weak boundaries i.e not well defined

boundaries are not suitable for this model. If that is the case, the final contour may

segment the targeted object including the noise or may pass through the object with

weak boundaries [38]. If the image is too noisy one may set the smoothing Gaussian

in the edge detector function to be strong, however this can smooth the edges too.

Secondly, the GAC model is nonconvex and is therefore highly sensitive to initialisation.

In the next section, we introduced another active contour model which is independent

of edge function to stop the contour at edges.

3.3.4 Chan-Vese Model

Chan and Vese (CV) model [38] proposed a new energy based model for image seg-

mentation without the use of the image gradient as a stopping criterion, instead the

stopping function depends on Mumford-Shah functional [102]. This model also known

as known as Active Contour Without Edges [38] . The technique consider a special

case of the piecewise constant Mumford-Shah functional [102] where the functional is

restricted to only two phases, representing the foreground and the background of the

image z (x, y).

The assumption behind the model is that the observed image z is formed by two

regions of approximately piecewise constant intensities of distinct (unknown) intensity

values c1 and c2, separated by the curve or contour Γ. Let the object to be detected is

represented by the region with the value c1 inside the curve Γ whereas outside Γ, the

intensity of z is approximated with the value c2. Then, the Chan-Vese model minimises

the following variational formulation as follows

FCV (c1, c2,Γ) = µ · Length (Γ) + ν ·Area (inside (Γ))

+λ1

∫
inside(Γ)

(z − c1)2dxdy + λ2

∫
outside(Γ)

(z − c2)2dxdy
(3.12)

Here, the fixed parameters are µ ≥ 0, ν ≥ 0, λ1,λ2 > 0. In general, the area constraint

is ignored by letting ν = 0 and the parameter for the fitting terms are evenly balanced

i.e, λ1 = λ2. Then, the minimisation problem is given by

min
c1,c2,Γ

FCV (c1, c2,Γ) . (3.13)

In order to minimise (3.13), the author applied the level set method, where the unknown

curve Γ is represented by the zero level set of the Lipschitz function φ such that
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Γ = {(x, y) ∈ Ω : φ (x, y) = 0} ,
inside (Γ) = {(x, y) ∈ Ω : φ (x, y) > 0} ,
outside (Γ) = {(x, y) ∈ Ω : φ (x, y) < 0} .

Thus, the unknown lower dimensional variable curve Γ is replaced by another

unknown higher dimensional variable φ. To reformulate (3.12), they defined the

Heaviside function H and the Dirac delta function δ concentrated at 0, respectively by

H (x) =

{
1, if x ≥ 0

0, if x < 0
and δ (x) = H ′ (x) .

Expressing each term of the energy F in terms of φ give

Length (Γ) =

∫
Ω
|∇H (φ)| dxdy =

∫
Ω
δ (φ) |∇φ| dxdy,

Area (inside (Γ)) =

∫
Ω
H (φ) dxdy∫

inside(Γ)
(z − c1)2dxdy =

∫
Ω

(z − c1)2H (φ) dxdy∫
outside(Γ)

(z − c2)2dxdy =

∫
Ω

(z − c1)2 (1−H (φ)) dxdy.

In the level set formulation, equation (3.12) is rewritten in the following way

FCV (φ, c1, c2) = µ

∫
Ω
δ (φ) |∇φ| dxdy + v

∫
Ω
H (φ) dxdy

+λ1

∫
Ω

(z − c1)2H (φ) dxdy + λ2

∫
Ω

(z − c2)2 (1−H (φ)) dxdy.
(3.14)

In implementation of CV model, both H and δ functions shall be regularised because

H is not differentiable at 0. Both regularised functions are given as

Hε (x) =
1

2

(
1 +

2

π
arctan

(x
ε

))
and δε (x) = H ′ε (x) =

ε

π (ε2 + x2)
(3.15)

Then the regularised functional denoted FCVε by will be

FCVε (φ, c1, c2) = µ

∫
Ω
δε (φ) |∇φ| dxdy + v

∫
Ω
Hε (φ) dxdy

+λ1

∫
Ω

(z − c1)2Hε (φ) dxdy + λ2

∫
Ω

(z − c2)2 (1−Hε (φ)) dxdy.
(3.16)

with the new minimisation problem is given by

min
c1,c2,Γ

FCVε (c1, c2,Γ) . (3.17)

Keeping the level set function ϕ fixed and minimizing equation (3.16) with respect to
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c1 and c2, we have

c1(φ) =

∫
Ω z (x, y)Hε (φ) dxdy∫

Ω
Hε (φ) dxdy

, c2(φ) =

∫
Ω
z (x, y) (1−Hε (φ)) dxdy∫

Ω
(1−Hε (φ)) dxdy

(3.18)

After that, by fixing constants c1 and c2 and by first variations with respect to φ the

authors derive the following Euler Lagrange equation for φ:

 µδε (φ)∇ ·
(
∇φ
|∇φ|

)
− v − λ1δε (φ) (z − c1)2 + λ2δ (φ) (z − c2)2 = 0, in Ω

∂φ
∂~n = 0, on Ω

(3.19)

Details of the derivation of the Euler Lagrange equation and its solution using

gradient descent scheme are given in the original paper [38]. To prevent the level set

function φ becomes too steep or too flat, the re-initialise step of the level set function

as a signed distance function to its zero level set as discussed in Section 2.7 can be

done by solving the following PDE for φ

φt − sgn (φ) (1− |∇φ|) = 0

φ (x, 0) = φ0

(3.20)

The PDE is proposed by Sussman et. al [131] where φ0 is the function which is supposed

to be re-initialised and sgn(·) is a signed function. The solution of this equation, φ will

have the same zero level set as φ0 and away from this level set, |∇φ| will converge to

1, as it should be for a distance function. The numerical approximation for equation

(3.20) is given by

φn+1
i,j = φni,j −∆τsign (φ (x, y, t))G

(
φni,j
)

where G(φni,j) is defined by

G
(
φni,j
)

=



√
max

(
(a+)2, (b−)2

)
+ max

(
(c+)2, (d−)2

)
− 1, φ (xi, yj , t) > 0√

max
(

(a−)2, (b+)2
)

+ max
(

(c−)2, (d+)2
)
− 1, φ (xi, yj , t) < 0

0, otherwise

Here,
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a =

(
∆x
−φi,j

)
h

=
(φi,j − φi−1,j)

h

b =

(
∆x

+φi,j
)

h
=

(φi+1,j − φi,j)
h

c =

(
∆y
−φi,j

)
h

=
(φi,j − φi,j−1)

h

d =

(
∆y

+φi,j
)

h
=

(φi,j+1 − φi,j)
h

and a+ = max(a, 0), a− = min(a, 0), and so on.

We remark that because the energy functional of CV is nonconvex (allowing therefore

many local minima) the solution may depend on the initial curve in some cases. To

avoid this drawback new variational models and techniques have been proposed, which

we will overview in the following section.

3.3.5 Global Minimisation of the Active Contour Model

To overcome the presence of local minima and dependence of initialisation issue of

CV model [38] due to nonconvexity of the functional, Chan et al. [34] proposed an

algorithm to find the global minimisation of the model. First, we recall the Chan-Vese

model

min
φ,c1,c2

FCVε (φ, c1, c2) = µ

∫
Ω
δε (φ) |∇φ| dxdy + v

∫
Ω
Hε (φ) dxdy

+λ1

∫
Ω

(z − c1)2Hε (φ) dxdy + λ2

∫
Ω

(z − c2)2 (1−Hε (φ)) dxdy.
(3.21)

This minimisation problem is nonconvex due to the length term
∫

Ω |∇H(φ)| dxdy where

the minimisation is carried out over a nonconvex set of function [34]. The approximation

of the solution is obtained by a two step scheme where c1 and c2 are firstly computed

and the second step is to update the curve with the gradient descent equation

∂φ

∂t
= δε (φ)

[
∇ ·
(
∇φ
|∇φ|

)
− λr (x, y)

]
, (3.22)

where r(x, y) = (z − c1)2 − (z − c2)2. In [38], the CV algorithm used a noncompactly

supported, smooth approximation Hε of Heaviside function H. Thus the above gradient

descent equation (3.22) has the same stationary solution for

∂φ

∂t
= ∇ ·

(
∇φ
|∇φ|

)
− λr (x, y) . (3.23)

Consequently, the equation (3.23) is the gradient descent equation of the following

convex energy functional ∫
Ω
|∇φ| dxdy + λ

∫
Ω
r (x, y)φdxdy. (3.24)
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The functional (3.24) in general does not have a minimiser because it is homogeneous of

degree 1 in φ, unless the minimisation to φ is restricted such that 0 ≤ φ ≤ 1, ∀(x, y) ∈ Ω

; see [34] for more details. Thus, the following minimisation problem is considered

min
0≤φ≤1

FGCV (φ, c1, c2) ,

FGCV (φ, c1, c2) =

∫
Ω
|∇φ| dxdy + λ

∫
Ω
r (x, y)φdxdy.

(3.25)

With the restriction of 0 ≤ φ ≤ 1, ∀(x, y) ∈ Ω and following the work of Strang [130],

the minimisation (3.25) leads to the global minimiser from the following theorem:

Theorem 3.3.1. For any given fixed c1, c2 ∈ R , a global minimiser for FGCV (u, c1, c2)

can be found by carrying out the following convex minimisation

min
0≤u≤1

{∫
Ω
|∇u| dxdy + λ

∫
Ω
r (x, y)u dxdy

}
, (3.26)

and then setting
∑

= {x : u(x, y) ≥ µ}, µ ∈ [0, 1] .

In contrast to CV model, the theorem shows that the minimisation of (3.26) removes

the non-convex constraint of being binary and instead the minimisation is carried out

over functions that can take intermediate values. Chan et al. [34] further changed

the minimization (3.26) into an unconstrained minimisation problem according to the

following theorem:

Theorem 3.3.2. Let r(x, y) ∈ L∞(Ω), for any given fixed c1, c2 ∈ R and λ > 0. Then

the convex constrained minimisation (3.26) has the set of minimisers as the following

convex unconstrained minimisation problem, a global minimiser for FGCV (u, c1, c2) can

be found by carrying out the following convex minimisation

min
u

{∫
Ω
|∇u| dxdy + λ

∫
Ω
r (x, y)u dxdy + α

∫
Ω
ν (u) dxdy

}
, (3.27)

where ν(ζ) := max{0, 2 |ζ − 1/2| − 1}is an exact penalty function, provided that the

constant α > λ
2‖r(x, y)‖L∞(Ω).

The proof of the theorems and further details can be found in the paper [34]. The

associate Euler Lagrange equation is given by

∂φ

∂t
= ∇ ·

(
∇φ
|∇φ|

)
− λr (x, y)− αν ′ (φ) . (3.28)

3.3.6 Geodesic Aided CV Model

The Geodesic active contour [25] in Section 3.33 is formulated based on gradient to

detect object boundary in which only local information of boundary is used. For images

with fuzzy, discrete edges, and very noisy, it is difficult to get desirable result. As the

CV model [38] depends on the image information derived from homogenous regions,

it can overcome the limitation of Geodesic active contour. However, despite these

advantages, CV model has an unavoidable limitation. First, the formulation is restricted
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to only two phases; the object and the background, resulting in problems in detecting

more than two objects or multiple objects with complex background. Moreover, the

precise boundary usually cannot be obtained as the method is based on information

of homogeneous regions instead of local information. Due to these behaviour of both

models, L. Chen et al. [41] introduced a new method called Geodesic Aided CV Model

to address the above problems by combining Geodesic active contour and CV model in

the following formulation

∂φ

∂t
= |∇φ|

[
µ∇ ·

(
g
∇φ
|∇φ|

)
− λ1(z − c1)2 + λ2(z − c2)2

]
.

Since we have

∇ ·
(
g
∇φ
|∇φ|

)
= g∇ ·

(
∇φ
|∇φ|

)
+∇g · ∇φ

|∇φ|
,

after some manipulations and approximations, they solve the following PDE

∂φ

∂t
= g |∇φ|

[
µ∇ ·

(
∇φ
|∇φ|

)
− λ1(z − c1)2 + λ2(z − c2)2

]
+∇g · ∇z.

The first term on the right is called the region detector that combined the global

and local information of an image in order to obtain accurate boundaries. The second

term is called the local detector which attracts the evolving curve to the real boundary

of object [41]. They also extended their method to colour images.

3.3.7 Geometrical Constraint Segmentation Model

It is common that the image data is missing or of poor quality or two objects are very

close to each other. This result in difficulty to clearly identify the interface between

them. The additional geometrical constraint added to the formulation can help the

segmentation process. C. Gout et al. [65, 67] propose a new model for segmentation of

an image under geometrical constraints to detect special features in an image. Due to

this attribute, this model is considered as a selective segmentation model.

They have combined the Geodesic active contour model [25] with additional of

geometrical constraints that is a set of points near the boundary of targeted object.

Let z(x, y) be a given image defined on Ω . Let A = {(x∗i , y∗i ) ∈ Ω, 1 ≤ i ≤ n1} ⊂ Ω

be the set of n1 distinct points near the boundary of targeted object in z(x, y). The

objective is to determine an optimal contour Γ ⊂ Ω that best approaches the points

from the set A and at the same time detecting the desired object in an image. The

functions required to stop the evolving curve is the function g that is the edge detector

function as in (3.7) and the function d defined as

∀ (x, y) ∈ Ω, d (x, y) =

n1∏
i=1

(
1− e−

(x−x∗i )2

2σ2 e−
(y−y∗i )2

2σ2

)
. (3.29)

The function g is zero on edges in an image and is 1 in flat regions, while the

function d acts locally and will be approximately 0 in the neighbourhood of points of
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A. Then, a contour Γ is expected to stop at local minima which has d ≈ 0 or g ≈ 0

along it. The following functional is proposed

FGC (Γ) =

∫
Γ
d (x, y) g (|∇z (x, y)|) ds. (3.30)

The level set formulation is used in order to extend the domain of integral in (3.30) to

the whole image other than Γ. Hence, Γ is considered as the zero level set of φ i.e

Γ = {(x, y) ∈ Ω : φ (x, y) = 0} ,

with φ < 0 inside Γ and φ > 0 outside Γ. Then, (3.30) is transformed into level sets

formulation as follows

FGC (φ) =

∫
Ω
d (x, y) g (|∇z (x, y)|) |∇H (φ(x, y))| dxdy. (3.31)

Here H is the Heaviside function and

∫
Ω
|∇H(φ)| dxdy is the length of Γ. Thus we

have the following minimisation problem

min
φ(x,y)

FGC (φ(x, y)) . (3.32)

In practice, the regularised version of Heaviside function, Hε is used because the original

Heaviside function is nondifferentiable at 0. Thus the following minimisation problem

is considered

min
φ(x,y)

FGCε (φ(x, y)) , (3.33)

where

FGCε (φ) =

∫
Ω
d (x, y) g (|∇z (x, y)|) |∇Hε (φ(x, y))| dxdy. (3.34)

The following Euler Lagrange equation is derived and solved using AOS method

−δε (φ(x, y))∇ ·
(
d (x, y) g (|∇z (x, y)|) ∇φ(x, y)

|∇φ(x, y)|

)
= 0. (3.35)

3.4 Summary

In this chapter we mainly reviewed variational models for image segmentations. We

first discussed the seminal work of ROF model [115] in image denoising mainly because

the ROF model [115] provides the basis for the variational formulation of segmentation

models of our particular interest in this study. The ROF model used the total variation

(TV) regularisation in its formulation. Due to the effectiveness of TV regularisation, it is

widely used in the formulation of image segmentation models where we have introduced

seven image segmentation models in variational framework that related to our work;

Mumford-Shah model [102], Snake model [77], Geodesic Active Contour [25] , Chan and
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Vese model [38], global minimisation model [34], Geodesic Aided CV Model [41], and

lastly the selective segmentation model namely Geometrical Constraint Segmentation

Model [65, 67]. All the segmentation models are initially solved in optimise-discretise

scheme where the associate PDE (Euler Lagrange equations) derived from the objective

functionals are solved. This motivates us to develop an alternative numerical technique

in discretise-optimise scheme in the next chapter where the objective functional is

directly solved.
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Chapter 4

An Optimisation based

Multilevel Algorithm for

Variational Image Segmentation

Models

In this chapter we propose an optimisation based multilevel algorithm for efficiently

solving a class of selective segmentation models. In level set function formulation, our

first variant of the proposed multilevel algorithm has the expected optimal O(N logN)

efficiency for an image of size n× n with N = n2. However, modified localised models

are proposed to exploit the local nature of segmentation contours and consequently

our second variant after modification is up to practically super-optimal efficiency of

O(
√
N logN). Numerical results show that good segmentation quality is obtained and

excellent efficiency is observed in reducing the computational time.

4.1 Introduction

In the previous chapters we mentioned different techniques developed for image segmen-

tation such as statistical methods [45, 44, 58], wavelet techniques [90], histogram analysis

and thresholding [88, 121], variational edge detection active contours [77, 25, 123, 7]

and region-based active contours [143, 102, 18, 1, 69, 16, 126, 38]

Segmentation models described above are for global segmentation due to the fact

that all features or objects in an image are to be segmented. This chapter is concerned

with another type of image segmentation models, namely selective segmentation. They

are defined as the process of extracting one object of interest in an image based on some

known geometric constraints [65, 111, 129]. Two effective models are Badshah-Chen

[12] and Rada-Chen [111] which used a mixture of edge-based and region-based ideas

in addition to imposing constraints. The additive operator splitting (AOS) method

(suitable for images of moderate size, faster than gradient type methods) was proposed

for such models. However, to process images of large size, urgent need exists in
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developing fast multilevel methods.

Both the multilevel and multigrid methods are developed using the idea of hierarchy

of discretisations. However, a multilevel method is based on discretise-optimise scheme

(algebraic) where minimisation of a variational problem is solved directly without using

a partial differential equation (PDE). In contrast, a multigrid method is based on

optimise-discretise scheme (geometric) where it solves a PDE numerically. The two

methods are inter-connected since both can have geometric interpretations and use

similar inter-level information transfers.

The latter multigrid methods have been used to solve a few variational image

segmentation models in the level set formulation. For geodesic active contours models,

linear multigrid methods have been developed [78, 108, 109]. In 2008, Badshah and

Chen [10] have successfully implemented a multigrid method to solve the Chan-Vese

nonlinear elliptical partial differential equation. In 2009, Badshah and Chen [11] also

have developed two multigrid algorithms for modelling variational multiphase image

segmentation. While the practical performance of these methods is good, however,

they are sensitive to parameters and hence not effective, mainly due to non-smooth

coefficients which lead to smoothers not having an acceptable smoothing rate (which in

turn are due to jumps or edges that separate segmented domains). Therefore the above

multigrid methods behave like the cascadic multigrids [100] where only one multigrid

cycle is needed.

Here we pursue the former type of optimisation based multilevel methods, based on

a discretise-optimise scheme where the minimisation is solved directly (without using

PDEs). The idea has been applied to other image problems in denoising and debluring

[33, 29, 30], not yet to selective segmentation problems. However, the method is found

to get stuck to local minima due to non-differentiability of the energy functional. To

overcome that situation, Chan and Chen [33] have proposed the “patch detection”

idea in the formulation of the multilevel method which is efficient for image denoising

problems. However, as image size increases, the method can be slow because of the

patch detection idea searches the entire image for the possible patch size on the finest

level after each multilevel cycle.

In this work, we will consider a differentiable form of variational image segmentation

models and develop the multilevel algorithm for the resulting models without using a

“patch detection” idea. We are not aware of any similar work on multilevel algorithms

for selective segmentation models in the level set formulation. The key finding is that

the resulting multilevel algorithm converges, while not very sensitive to parameter

choices, unlike geometric multigrid methods [11] which are known to have problems in

convergence.

The rest of the chapter is organised in the following way. In Section 4.2, we briefly

review two selective segmentation models which are Badshah-Chen model [12] and

Rada-Chen model [111]. In Section 4.3, we present an optimisation based multilevel

algorithm for the selective segmentation models. In Section 4.4, we propose localised

segmentation models and further present multilevel methods for solving them in Section

44



4.5. In Section 4.6, we give some experimental results to test the presented algorithms.

We compare the new methods to the previously fast methods from the literature namely

the AOS method for Badshah-Chen [12] and Rada-Chen [111] models (since multigrid

methods are not yet developed for these models). However, a multiscale AOS method

(for Badshah-Chen [12] and Rada-Chen [111] models) based on the pyramid idea is

implemented and included in the comparison.

The main idea of this chapter has been published by me as the main author together

with my supervisor Prof. Ke Chen as the co-author in [73]. The multilevel algorithm

and the multiscale AOS method for the selective segmentation models were developed

and implemented in MATLAB by the author. The localised segmentation models were

derived by the author. The multilevel algorithm for the localised models was jointly

developed by us while the algorithm was implemented in MATLAB by the author.

4.2 Review of three existing models

In this section we will first briefly introduce the global segmentation model [38] because

it provides the foundation for the selective segmentation models as well as a method

for minimising the associated functional, details can be found in Chapter 3. Next, we

will discuss two selective segmentation models by Badshah-Chen [12] and Rada-Chen

[111] before we address the efficiency issue for these models.

4.2.1 The Chan-Vese model

The Chan and Vese (CV) model [38] considers a special case of the piecewise constant

Mumford-Shah functional [102] where it is restricted to only two phases (i.e. constants),

representing the foreground and the background of the given image z (x, y).

Assume that z is formed by two regions of approximately piecewise constant

intensities of distinct (unknown) values c1 and c2 , separated by some (unknown) curve

or contour Γ. Let the object to be detected be represented by the region Ω1 with

the value c1 inside the curve Γ whereas outside Γ, in Ω2 = Ω\Ω1, the intensity of z

is approximated with the value c2. Then, with Ω = Ω1 ∪ Ω2, the Chan-Vese model

minimises the following functional

min
Γ,c1,c2

FCV (Γ, c1, c2) = µ length (Γ) + λ1

∫
Ω1

(z − c1)2dxdy

+λ2

∫
Ω2

(z − c2)2dxdy.
(4.1)

Here, the constants c1 and c2 are viewed as the average values of z inside and outside

the variable contour Γ. The fixed parameters µ, λ1, and λ2 are non-negative but to

be specified. In order to minimise equation (4.1), they applied the level set method

[38], where the unknown curve Γ is represented by the zero level set of the Lipschitz
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function such that

Γ = {(x, y) ∈ Ω : φ (x, y) = 0} ,
Ω1 = inside (Γ) = {(x, y) ∈ Ω : φ (x, y) > 0} ,
Ω2 = outside (Γ) = {(x, y) ∈ Ω : φ (x, y) < 0} .

To simplify the notation, denote the regularised versions of the Heaviside function

and the Dirac delta function, respectively, by

H (φ (x, y)) =
1

2

(
1 +

2

π
arctan

(
φ

ε

))
and δ (φ (x, y)) =

ε

π (ε2 + φ2)
.

Thus equation (4.1) becomes

min
φ,c1,c2

FCV (φ, c1, c2) = µ

∫
Ω
|∇H (φ)| dxdy + λ1

∫
Ω

(z − c1)2H (φ) dxdy

+λ2

∫
Ω

(z − c2)2 (1−H (φ)) dxdy.
(4.2)

Keeping the level set function φ fixed and minimising (4.2) with respect to c1 and

c2, we have

c1(φ) =

∫
Ω z (x, y)H (φ) dxdy∫

ΩH (φ) dxdy
, c2(φ) =

∫
Ω z (x, y) (1−H (φ)) dxdy∫

Ω (1−H (φ)) dxdy
. (4.3)

After that, by fixing constants c1 and c2 in FCV (φ, c1, c2), first variation with respect

to φ yields the following Euler-Lagrange equation: µδ (φ)∇ ·
(
∇φ
|∇φ|

)
− λ1δ (φ) (z − c1)2 + λ2δ (φ) (z − c2)2 = 0, in Ω

δ(φ)
|∇φ|

∂u
∂~n = 0, on ∂Ω.

(4.4)

Notice that the nonlinear coefficient in equation (4.4) may have a zero denominator,

so the equation is not defined in such cases. A commonly-adopted idea to deal with

|∇φ| = 0 was to introduce a small positive parameter β to (4.2) and (4.4), so the new

Euler Lagrange equation becomes µδ (φ)∇ ·
(

∇φ√
|∇φ|2+β

)
− λ1δ (φ) (z − c1)2 + λ2δ (φ) (z − c2)2 = 0, in Ω

δ(φ)
|∇φ|

∂u
∂~n = 0, on ∂Ω.

where corresponds to minimise the following differentiable energy function, instead of

(4.2)

min
φ,c1,c2

FCV (φ, c1, c2) = µ

∫
Ω

√
|∇H (φ)|2 + β dxdy

+λ1

∫
Ω

(z − c1)2H (φ) dxdy + λ2

∫
Ω

(z − c2)2 (1−H (φ)) dxdy.
(4.5)
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4.2.2 The Badshah-Chen model

The selective segmentation model by Badshah-Chen (BC) [12] combines the Geo-

metric Constraint model of Gout et al [65, 67] (reviewed in Chapter 3) with in-

tensity fitting terms of Chan-Vese [38]. For image z (x, y) with a marker set A =

{wi = (x∗i , y
∗
i ) ∈ Ω, 1 ≤ i ≤ n1} ⊂ Ω of n1 geometrical points on or near the target

object [111, 152], the selective segmentation idea tries to detect the boundary of a

single object among all homogeneity intensity objects in Ω closest to A; here n1 ≥ 3.

The geometrical points in A define an initial polygonal contour and guide its evolution

towards Γ [152].

The BC minimisation equation [12] is given by

min
Γ,c1,c2

FBC (Γ, c1, c2) = µ

∫
Γ
d (x, y) g (|∇z (x, y)|) dxdy

+λ1

∫
inside(Γ)

(z − c1)2 dxdy + λ2

∫
outside(Γ)

(z − c2)2 dxdy.
(4.6)

In this model, the function g (|∇z|) = 1
1+η|∇z(x,y)|2 is an edge detector which helps to

stop the evolving curve on the edge of the targeted object. The strength of detection is

adjusted by a parameter η. The function g (|∇z|) is constructed to take small values

near to 0 near object edges and large values near to 1 in flat regions. The d (x, y) is a

marker distance function which is close to 0 when approaching the points from marker

set, given as:

d (x, y) = distance ((x, y) ,A) =

n1∏
i=1

(
1− e−

(x−x∗i )2

2κ2 − e−
(y−y∗i )2

2κ2

)
, ∀ (x, y) ∈ Ω

where κ is a positive constant. Alternative distance functions d (x, y) are also possible

[111, 152]. Using a level set formulation, the functional (4.6) becomes

min
φ,c1,c2

FBC (φ, c1, c2) = µ

∫
Ω
d (x, y)g (|∇z (x, y)|) |∇H (φ)| dxdy

+λ1

∫
Ω

(z − c1)2H (φ) dxdy + λ2

∫
Ω

(z − c2)2 (1−H (φ)) dxdy.
(4.7)

Keeping the level set function φ fixed and minimising (4.6) with respect to c1 and c2,

we have

c1(φ) =

∫
Ω z (x, y)H (φ) dxdy∫

ΩH (φ) dxdy
, c2(φ) =

∫
Ω z (x, y) (1−H (φ)) dxdy∫

Ω (1−H (φ)) dxdy

Finally keeping constants c1 and c2 fixed in FBC (φ, c1, c2) , and the following Euler-

Lagrange equation for φ is derived:
µδ (φ)∇ · dg

(
∇φ√
|∇φ|2+β

)
− λ1δ (φ) (z − c1)2

+λ2δ (φ) (z − c2)2 = 0,

in Ω

dg δ(φ)
|∇φ|

∂u
∂~n = 0, on Ω

(4.8)
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The small positive parameter β is introduced to avoid singularities in (4.8) which

corresponds to minimise the following differentiable form of the BC model in replace of

(4.7)

min
φ,c1,c2

FBC (φ, c1, c2) = µ

∫
Ω
G(x, y)

√
|∇H (φ)|2 + β dxdy

+λ1

∫
Ω

(z − c1)2H (φ) dxdy + λ2

∫
Ω

(z − c2)2 (1−H (φ)) dxdy
(4.9)

where G = d(x, y)g(x, y).

4.2.3 The Rada-Chen model

The Rada-Chen (RC) model [111] imposes a further constraint on Ω1 to ensure that

its area is closest to the internal area defined by the marker set. From the polygon

formed by the geometrical points in the set A, denote by A1 and A2 respectively the

area inside and outside the polygon. They compute A1 and A2 to approximate the

area of the object they try to capture. The RC model also incorporates the similar

edge detection function as in the BC model into the regularisation term. The energy

minimisation problem is given by

min
Γ,c1,c2

FRC (Γ, c1, c2) = µ

∫
Γ
g (|∇z (x, y)|) dxdy + λ1

∫
Ω1

(z − c1)2dxdy

+λ2

∫
Ω2

(z − c2)2dxdy + ν

(∫
Ω1

dxdy −A1

)2

+ ν

(∫
Ω2

dxdy −A2

)2

.
(4.10)

Rewriting (4.10) in level-set formulation as in (4.2), we arrived at the following

Euler-Lagrange equation for φ:

µδ (φ)∇ · g
(

∇φ√
|∇φ|2+β

)
− λ1δ (φ) (z − c1)2

+λ2δ (φ) (z − c2)2 − νδ (φ)[(∫
Ω
H (φ) dxdy −A1

)
−
(∫

Ω
(1−H (φ)) dxdy −A2

)]
= 0,

in Ω

dg δ(φ)
|∇φ|

∂u
∂~n = 0, on Ω

(4.11)

As with the BC model, in the actual implementation of the RC model, the small

positive parameter β is introduced to avoid singularities in (4.11) where corresponds to

minimise the following differentiable form of the RC model

min
φ,c1,c2

FRC (φ, c1, c2) = µ

∫
Ω
g (|∇z (x, y)|)

√
|∇H (φ)|2 + β dxdy +

λ1

∫
Ω

(z − c1)2H (φ) dxdy + λ2

∫
Ω

(z − c2)2 (1−H (φ)) dxdy +

ν

(∫
Ω
H (φ) dxdy −A1

)2

+ ν

(∫
Ω

(1−H (φ)) dxdy −A2

)2

.

(4.12)

We will use the term BC0 and RCO to refer the AOS algorithm previously used

to solve BC model and RC model in [12] and [111] respectively.

Of course, it is known that such AOS method is not designed for processing large
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image. To assist AOS, a pyramid method can be used. The basic idea in a pyramid

method is, in the process of curve evolution, the pyramid scheme is used to decompose

an image into different scale images and then coarse segmentation is performed on the

coarse-scale image using the AOS method instead of directly using the original-size

image. Then, the segmentation result is interpolated and adopted as an initial contour

for the fine-scale image, thus gradually optimising the contour and reaching the final

segmentation result. We refer the pyramid method for BC and RC models as BCP

and RCP respectively.

The above forms of variational models, the BC model (4.9), the RC model (4.12)

respectively, will be conveniently solved by our new proposed multilevel scheme shortly.

The BC0, RCO, BCP, and RCP will be used as comparison methods to our method

in segmenting large images.

As remarked before, the reason for seeking alternative optimisation based multilevel

methods instead of applying a geometric multigrid method is that there are no effective

smoothers for the latter case and consequently there exist no converging multigrid

methods for the Euler-lagrange equations for our variational models.

4.3 An O(N logN) optimisation based multilevel algorithm

The main objective of this section is to present the first version of our multilevel

formulation for two selective segmentation models: the BC model [12] and the RC

model [111]. This section provides the foundation for the development of our main

multilevel algorithm for the localised versions of these models. For simplicity for a

given image of size n× n, we shall assume n = 2L. The standard coarsening defines

L + 1 levels: k = 1 (finest) , 2, ..., L, L + 1 (coarsest) such that level k has τk × τk
“superpixels” with each “superpixel” having pixels bk × bk, where τk = n/2k−1 and

bk = 2k−1. Figure 4.2(a-e) show the case of L = 4, n = 24 for an 16× 16 image with 5

levels: level 1 has each pixel of the default size of 1× 1 while the coarsest level 5 has a

single superpixel of size 16× 16. If n 6= 2L, the multilevel method can still be developed

with some coarse level superpixels of square shapes and the rest of rectangular shapes.

4.3.1 Multilevel algorithm for the BC model

Our goal is to solve (4.9), i.e. the BC model [12] , using a multilevel method in a

discretise-optimise scheme.

Before we proceed further, one may question how to discretise the total variation

(TV) term in the form

TV (u) =

∫
Ω

|∇u| dxdy

TV is most often discretised by
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TVd (u) =
n−1∑
i=1

n−1∑
j=1

√(
∇+
x u
)2
i,j

+
(
∇+
y u
)2
i,j

=
n−1∑
i=1

n−1∑
j=1

√
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2

There are other ways to define discrete TV by finite difference, but the above form is

the simplest one according to [97]. Furthermore, central differences are undesirable for

TV discretisation (in a discretise-optimise approach) because they miss thin structure

[59] as the central differences at (i, j) does not depend on ui,j :

TVd (u) =

n−1∑
i=1

n−1∑
j=1

√[(
∇+
x u
)
/2 +

(
∇−x u

)
/2
]2

+
[(
∇+
y u
)
/2 +

(
∇−y u

)
/2
]2

=
n−1∑
i=1

n−1∑
j=1

√
[(ui+1,j − ui−1,j) /2]2 + [(ui,j+1 − ui,j−1) /2]2.

To avoid the problem, one sided difference can be used. More discussion on discretising

TV can be found in [59] and [97] and the references therein.

Using the above information, the discretised version of (4.9) is given by:

min
φ,c1,c2

FBC (φ, c1, c2) ≡ min
φ,c1,c2

F aBC (φ1,1, φ2,1, . . . , φi−1,j , φi,j , φi+1,j , . . . , φn,n, c1, c2)

= µ̄
n−1∑
i=1

n−1∑
j=1

Gi,j

√
(Hi,j −Hi,j+1)2 + (Hi,j −Hi+1,j)

2 + β

+ λ1

n∑
i=1

n∑
j=1

(zi,j − c1)2Hi,j + λ2

n∑
i=1

n∑
j=1

(zi,j − c2)2 (1−Hi,j)

(4.13)

where φ denotes a row vector, µ̄ =
µ

h
, , c1 =

n∑
i=1

n∑
j=1

zi,jHi,j

/ n∑
i=1

n∑
j=1

Hi,j , Gi,j =

G(xi, yj), c2 =
n∑

i,j=1
zi,j (1−Hi,j)

/ n∑
i,j=1

(1−Hi,j) and Hi,j = 1
2 + 1

π arctan
(φi,j

ε

)
.

As a prelude to multilevel methods, consider the minimisation of (4.13) by the

coordinate descent method on the finest level 1:


Given φ(0) =

(
φ

(0)
i,j

)
with m = 0,

Solve φ
(m+1)
i,j = arg min

φi,j∈R
F locBC (φi,j , c1, c2) for i, j = 1, 2, ...n,

Repeat the above steps with m = m+ 1 until stopped.

(4.14)

Here equation (4.14) is obtained by expanding and simplifying the main model in (4.13)
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i.e.

F locBC(φi,j , c1, c2)

≡ F aBC
(
φ

(m)
1,1 , φ

(m)
2,1 , . . . , φ

(m)
i−1,j , φi,j , φ

(m)
i+1,j , . . . , φ

(m)
n,n , c1, c2

)
− F (m)

BC

= µ̄

[
Gi,j

√(
Hi,j −H(m)

i+1,j

)2
+
(
Hi,j −H(m)

i,j+1

)2
+ β

+Gi−1,j

√(
Hi,j −H(m)

i−1,j

)2
+
(
H

(m)
i−1,j −H

(m)
i−1,j+1

)2
+ β

+Gi,j−1

√(
Hi,j −H(m)

i,j−1

)2
+
(
H

(m)
i,j−1 −H

(m)
i+1,j−1

)2
+ β

]
+ λ1(zi,j − c1)2Hi,j + λ2(zi,j − c2)2 (1−Hi,j)

with Neumann’s boundary condition, where F
(m)
BC denotes the sum of all terms in F aBC

that do not involve φi,j . Minimisation of c1, c2 follows as before. Clearly one seems

that this is a coordinate descent method. As such the method will exhibit a functional

decay property F aBC(φ(m+1)) ≤ F aBC(φ(m)) from one substep to the next. It should be

remarked that the formulation in (4.14) is based on the work in [24, 33].

Using (4.14), we illustrate the interaction of φi,j with its neighboring pixel on the

finest level 1 in Figure 4.1. We will use this basic structure to develop a multilevel

method.

Figure 4.1: The interaction of φi,j at a central pixel (i, j) with neighboring pixels

on the finest level 1. Clearly only 3 terms (pixels) are involved with φi,j (through

regularisation).

The one-dimensional problem from (4.14) may be solved by any suitable optimisation

method – here from φ(m) → φ→ φ(m+1), we solve its first order condition

µ̄Gi,j

(
2Hi,j−H

(m)
i+1,j−H

(m)
i,j+1

)
H′i,j√(

Hi,j−H
(m)
i+1,j

)2
+
(
Hi,j−H

(m)
i,j+1

)2
+β

+
µ̄Gi−1,j

(
Hi,j−H

(m)
i−1,j

)
H′i,j√(

Hi,j−H
(m)
i−1,j

)2
+
(
H

(m)
i−1,j−H

(m)
i−1,j+1

)2
+β

+
µ̄Gi,j−1

(
Hi,j−H

(m)
i,j−1

)
H′i,j√(

Hi,j−H
(m)
i,j−1

)2
+
(
H

(m)
i,j−1−H

(m)
i+1,j−1

)2
+β

+H ′i,j

(
λ1(zi,j − c1)2 − λ2(zi,j − c2)2

)
= 0
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As an example, if using the Newton iterations, one gets the form

φnewi,j = φoldi,j − T old/Bold (4.15)

where

T old =
µ̄Gi,j

(
2Hold

i,j −H
(m)
i+1,j−H

(m)
i,j+1

)
H′oldi,j

D +
µ̄Gi−1,j

(
Hold
i,j −H

(m)
i−1,j

)
H′oldi,j

E

+
µ̄Gi,j−1

(
Hold
i,j −H

(m)
i,j−1

)
H′oldi,j

F +H ′oldi,j

(
λ1(zi,j − c1)2 − λ2(zi,j − c2)2

)

Bold =
µ̄Gi−1,j

(
Hold
i,j −H

(m)
i−1,j

)
H′′oldi,j+(H′oldi,j)

2

E −
µ̄Gi−1,j

(
Hold
i,j −H

(m)
i−1,j

)2
(H′oldi,j)

2

E3

+
µ̄Gi,j

(
2Hold

i,j −H
(m)
i+1,j−H

(m)
i,j+1

)
H′′oldi,j+2(H′oldi,j)

2

D −
µ̄Gi,j

(
2Hold

i,j −H
(m)
i+1,j−H

(m)
i,j+1

)2
(H′oldi,j)

2

D3

+
µ̄Gi,j−1

(
Hold
i,j −H

(m)
i,j−1

)
H′′oldi,j+(H′oldi,j)

2

F −
µ̄Gi,j−1

(
Hold
i,j −H

(m)
i,j−1

)2
(H′oldi,j)

2

F 3

+
(
λ1(zi,j − c1)2 − λ2(zi,j − c2)2

)
H ′′oldi,j

and

D =

√(
Hold
i,j −H

(m)
i+1,j

)2
+
(
Hold
i,j −H

(m)
i,j+1

)2
+ β

E =

√(
Hold
i,j −H

(m)
i−1,j

)2
+
(
H

(m)
i−1,j −H

(m)
i−1,j+1

)2
+ β

F =

√(
Hold
i,j −H

(m)
i,j−1

)2
+
(
H

(m)
i,j−1 −H

(m)
i+1,j−1

)2
+ β

To develop a multilevel method of this coordinate descent method, we may interpret

solving (4.14) for a new iterate φ
(m+1)
i,j as looking for the best update (on an old iterate

φ
(m)
i,j ; here a scalar constant) that minimises the local merit functional F locBC (φi,j , c1, c2).

On level 1 the local minimisation for c takes the form

F locBC (φi,j , c1, c2) = F locBC

(
φ

(m)
i,j + c, c1, c2

)
.

Hence, we may rewrite (4.14) in an equivalent form:



Given φ(0) =
(
φ

(0)
i,j

)
with m = 0,

Solve ĉ = arg min
c∈R

F locBC

(
φ

(m)
i,j + c, c1, c2

)
for i, j = 1, 2, ...n,

Update φ
(m+1)
i,j = φ

(m)
i,j + ĉ,

Repeat the above steps with m = m+ 1 until stopped.

(4.16)

Now consider how the update is done on a general level k = 2, . . . , L+ 1. Similarly

to k = 1, we derive the simplified formulation for each of the τk × τk subproblems,

in a block of pixels bk × bk e.g. the multilevel method for k=2 is to look for the

best correction constant to update this block so that the underlying merit functional,

relating to all four pixels (see Figure 4.2(b)), achieves a local minimum.

For levels k = 1, ..., 5, Figure 4.2 illustrates the multilevel partition of an image of
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size 16× 16 pixels from (a) the finest level (level 1) until (e) the coarsest level (level 5).

(a) Level 1: τ2
1 = 162 variables (b) Level 2: τ2

2 = 82 variables

(c) Level 3: τ2
3 = 42 variables (d) Level 4: τ2

4 = 22 variables

(e) Level 5: τ2
5 = 1 variable

(f) Level 3 block with b23 = 16

pixels but only 12 effective terms

in local minimization F locBC

Figure 4.2: Illustration of multilevel coarsening. Partitions (a)-(e): the red “×” shows

image pixels, while blue • illustrates the variable c. (f) shows on coarse level 3 the

difference of inner and boundary pixels interacting with neighboring pixels •. The

middle boxes � indicate the inner pixels which do not involve c, others boundary pixels

denoted by symbols C, B, ∆, ∇ involve c as in (4.16) via F locBC .

Observe that bkτk = n on level k, where τk is the number of boxes and bk is the block

size. So from Figure 1(a), b1 = 1 and τ1 = n = 16. On other levels k = 2, 3, 4 and 5, we

see that block size bk = 2k−1 and τk = 2L+1−k since n = 2L. Based on Figure 4.1, we

illustrate a box � interacting with neighboring pixels • in level 3. In addition, Figure
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4.2 (f) illustrates that fact that variation by ci,j inside an active block only involves its

boundary of precisely 4bk − 4 pixels, not all b2k pixels, in that box, denoted by symbols

C, B, ∆, ∇. This is important in efficient implementation.

With the above information, we are now ready to formulate the multilevel approach

for general level k. Let’s set the following: b = 2k−1, k1 = (i− 1) b + 1, k2 = ib,

`1 = (j − 1) b+ 1, `2 = jb, and c = (ci,j) . Then, the computational stencil involving c

on level k can be shown as follows

(4.17)

The illustration shown above is consistent with Figure 4.2 (f) and the key point is

that interior pixels (non-boundary pixels) do not involve ci,j in the formulation’s first

nonlinear term. This is because the finite differences are not changed at interior pixels

by the same update as in√(
φ̃k,l + ci,j − φ̃k+1,l − ci,j

)2
+
(
φ̃k,l + ci,j − φ̃k,l+1 − ci,j

)2
+ β

=

√(
φ̃k,l − φ̃k+1,l

)2
+
(
φ̃k,l − φ̃k,l+1

)2
+ β.

Then, as a local minimisation for c, the problem (4.16) is equivalent to minimise the

following

FBC1 (ci,j) =µ̄

`2∑
`=`1

Gk1−1,`

√[
ci,j −

(
φ̃k1−1,` − φ̃k1,`

)]2
+
(
φ̃k1−1,` − φ̃k1−1,`+1

)2
+ β

+ µ̄

k2−1∑
k=k1

Gk,`2

√[
ci,j −

(
φ̃k,`2+1 − φ̃k,`2

)]2
+
(
φ̃k,`2 − φ̃k+1,`2

)2
+ β

+ µ̄Gk2,`2

√[
ci,j −

(
φ̃k2,`2+1 − φ̃k2,`2

)]2
+
[
ci,j −

(
φ̃k2+1,`2 − φ̃k2,`2

)]2
+ β

+ µ̄

`2−1∑
`=`1

Gk2,`

√[
ci,j −

(
φ̃k2+1,` − φ̃k2,`

)]2
+
(
φ̃k2,` − φ̃k2,`+1

)2
+ β

+ µ̄

k2∑
k=k1

Gk,`1−1

√[
ci,j −

(
φ̃k,`1−1 − φ̃k,`1

)]2
+
(
φ̃k,`1−1 − φ̃k+1,`1−1

)2
+ β

+ λ2

k2∑
k=k1

`2∑
`=`1

(
1−H

(
φ̃k,` + ci,j

))(
zk,` − c2

)2
+ λ1

k2∑
k=k1

`2∑
`=`1

(
H
(
φ̃k,` + ci,j

))(
zk,` − c1

)2
. (4.18)
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For the third term, we may note

√
(c− a)2 + (c− b)2 + β =

√
2

(
c− a+ b

2

)2

+ 2

(
a− b

2

)2

+ β

.

Further we conclude that the local minimisation problem for block (i, j) on level k

with respect to ci,j amounts to minimise the following equivalent functional

FBC1 (ci,j) =µ̄

`2∑
`=`1

Gk1−1,`

√
(ci,j − hk1−1,`)2 + υ2

k1−1,` + β

+ µ̄

k2−1∑
k=k1

Gk,`2

√(
ci,j − υk,`2

)2
+ h2

k,`2
+ β

+ µ̄

`2−1∑
`=`1

Gk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β

+ µ̄

k2∑
k=k1

Gk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+ µ̄
√

2Gk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+
β

2

+ λ1

k2∑
k=k1

`2∑
`=`1

H(φ̃k,` + ci,j)(zk,` − c1)2

+ λ2

k2∑
k=k1

`2∑
`=`1

(
1−H(φ̃k,` + ci,j)

)
(zk,` − c2)2 (4.19)

where we have used the following notation (which will be used later also):

hk,` = φ̃k+1,` − φ̃k,`, υk,` = φ̃k,`+1 − φ̃k,`, υk2,`2 = φ̃k2,`2+1 − φ̃k2,`2 ,
hk2,`2 = φ̃k2+1,`2 − φ̃k2,`2 , ῡk2,`2 =

υk2,`2+hk2,`2
2 , h̄k2,`2 =

υk2,`2−hk2,`2
2 ,

hk1−1,` = φ̃k1,` − φ̃k1−1,`, υk1−1,` = φ̃k1−1,`+1 − φ̃k1−1,`, υk,`2 = φ̃k,`2+1 − φ̃k,`2 ,
hk,`2 = φ̃k+1,`2 − φ̃k,`2 , hk2,` = φ̃k2+1,` − φ̃k2,`, υk2,` = φ̃k2,`+1 − φ̃k2,`,
υk,`1−1 = φ̃k,`1 − φ̃k,`1−1, hk,`1−1 = φ̃k+1,`1−1 − φ̃k,`1−1.

On the coarsest level, we look for a single constant update for the current approxi-

mation φ̃ that is FBC1

(
φ̃+ c

)
,

min
c
FBC1(φ̃+ c) = µ̄

n−1∑
i=1

n−1∑
j=1

Gi,j

√
(φ̃i,j + c− φ̃i,j+1 − c)

2
+ (φ̃i,j + c− φ̃i+1,j − c)

2
+ β

+λ1

n∑
i=1

n∑
j=1

H(φ̃i,j + c)(zi,j − c1)2+λ2

n∑
i=1

n∑
j=1

(
1−H(φ̃k,` + ci,j)

)
(zi,j − c1)2
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which is equivalent to

min
c
F̂BC1(φ̃+ c) = λ1

n∑
i=1

n∑
j=1

H(φ̃i,j + c)(zi,j − c1)2

+λ2

n∑
i=1

n∑
j=1

(
1−H(φ̃k,` + ci,j)

)
(zi,j − c1)2.

(4.20)

The solutions of the above local minimisation problems, solved using a Newton

method as in (4.15) or a fixed point method for t iterations (inner iteration), defines the

updated solution φ̃ = φ̃+Qkc. Here Qk is the interpolation operator distributing ci,j

to the corresponding bk × bk block on level k as illustrated in (4.17). Then we obtain a

multilevel method if we cycle through all levels and all blocks on each level until the

solution converges to the prescribe tolerance, tol or reach the prescribe maximum cycle

(outer iteration).

So finally our implementation of the proposed multilevel method is then summarised

in Algorithm 1. Here Steps 2− 3 simply update φ̃ from the finest to the coarsest level

Algorithm 1 BC1 – Multilevel algorithm for the BC model

Given z, an initial guess φ̃ and the stop tolerance tol with L+ 1 levels,

1) Iteration starts with φold = φ̃ (φ̃ contains the initial guess before the first iteration
and the updated solution at all later iterations)

2) Smooth for t iterations the approximation on the finest level k = 1 that is solve
minφi,j F

loc
BC(φi,j , c1, c2) or (4.14) for i, j = 1, 2, ...n

3) Iterate for t times on each coarse level k = 2, 3, ...L, L+ 1 :
I If k ≤ L, compute the minimiser c of (4.19) or solve minci,j FBC1(ci,j);

I If k = L+ 1, solve (4.20) or minc F̂BC1(φ̃+ c) on the coarsest level.
Add the correction φ̃ = φ̃+Qkc where Qk is the interpolation operator distributing
ci,j to the corresponding bk × bk block on level k as illustrated in (4.17).

4) Return to Step 1 unless
‖φ̃−φold‖2
‖φ̃‖

2

< tol or until the prescribed maximum of cycles

is reached. Otherwise exit with φ = φ̃.

k = 1, 2, . . . , L, L+ 1 so they might be viewed as a single step. We will use the term

BC1 to refer the multilevel Algorithm 1.

In this algorithm, we recommend that we start updating our multilevel algorithm

in a fast manner is to adjust the fine structure before the coarse level. We found in

a separate experiment that if we adjust the coarse structure before the fine level, the

convergence is slower.
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4.3.2 Multilevel algorithm for the RC model

Generalisation of the above algorithm to other models is much similar. For the RC

model, the discretised version of in (4.12) takes the following form

min
φ,c1,c2

FRC (φ, c1, c2)

= µ̄
n−1∑
i=1

n−1∑
j=1

gi,j

√
(Hi,j −Hi,j+1)2 + (Hi,j −Hi+1,j)

2 + β

λ1

n∑
i=1

n∑
j=1

(zi,j − c1)2Hi,j + λ2

n∑
i=1

n∑
j=1

(zi,j − c2)2 (1−Hi,j)

+ν
(
−A1 +

n∑
i=1

n∑
j=1

Hi,j

)2
+ ν
(
−A2 +

n∑
i=1

n∑
j=1

(
1−Hi,j

))2
.

(4.21)

Consider the minimisation of (4.21) by the coordinate descent method on the finest

level 1:


Given φ(0) =

(
φ

(0)
i,j

)
with m = 0,

Solve φ
(m+1)
i,j = arg min

φi,j∈R
F locRC (φi,j , c1, c2) for i, j = 1, 2, ...n,

Repeat the above steps with m = m+ 1 until stopped.

(4.22)

Here,

F locRC (φi,j , c1, c2) =FRC − F0 =

µ̄

[
gi,j

√
(Hi,j −H(m)

i+1,j)
2

+ (Hi,j −H(m)
i,j+1)

2
+ β

+ gi−1,j

√
(Hi,j −H(m)

i−1,j)
2

+ (H
(m)
i−1,j −H

(m)
i−1,j+1)

2
+ β

+ gi,j−1

√
(Hi,j −H(m)

i,j−1)
2

+ (H
(m)
i,j−1 −H

(m)
i+1,j−1)

2
+ β

]
+ λ1(zi,j − c1)2Hi,j + λ2(zi,j − c2)2(1−Hi,j)

+ ν(Hi,j −A1)2 + ν((1−Hi,j)−A2)2.

The term F0 refers to a collection of all terms that are not dependent on φi,j . For φi,j

at the boundary, Neumann’s condition is used. In order to introduce the multilevel

algorithm we first rewrite (4.22) in an equivalent form:

ĉ = arg min
c∈R

F locRC

(
φ

(m)
i,j + c, c1, c2

)
, φ

(m+1)
i,j = φ

(m)
i,j + ĉ for i, j = 1, 2, ..., n. (4.23)
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Similar to BC1, we arrive at the following local functional for ĉ on a general level:

FRC1 (ci,j) =µ̄

`2∑
`=`1

gk1−1,`

√
(ci,j − hk1−1,`)

2 + υ2
k1−1,` + β

+ ν

k2∑
k=k1

`2∑
`=`1

(−A1 +H(φ̃k,` + ci,j))
2

+ µ̄

`2−1∑
`=`1

gk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β

+ µ̄

k2∑
k=k1

gk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+ µ̄
√

2gk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+
β

2

+ λ1

k2∑
k=k1

`2∑
`=`1

H(φ̃k,` + ci,j)(zk,` − c1)2

+ λ2

k2∑
k=k1

`2∑
`=`1

(1−H(φ̃k,` + ci,j))(zk,` − c2)2

+ µ̄

k2−1∑
k=k1

gk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+ ν

k2∑
k=k1

`2∑
`=`1

(−A2 + (1−H(φ̃k,` + ci,j)))
2
. (4.24)

A single constant update on the current φ̃ on the coarsest level is given by solving

min
c
F̂RC1(φ̃+ c) = λ1

n∑
i=1

n∑
j=1

H(φ̃i,j + c)(zi,j − c1)2 + ν
n∑
i=1

n∑
j=1

(
−A1 +H(φ̃i,j + c)

)2

+ λ2

n∑
i=1

n∑
j=1

(
1−H(φ̃i,j + c)

)
(zi,j − c2)2

+ ν

n∑
i=1

n∑
j=1

(
−A2 +

(
1−H(φ̃i,j + c)

))2
. (4.25)

Our implementation of the proposed multilevel method is then summarised in Algorithm

2 which will be referred to as RC1.

Before we conclude this section, we give a brief convergence analysis of BC1 and

RC1. Let N = n2 be the total number of pixels (unknowns). First, we compute the

number of floating point operations (flops) for BC1 for level k as follows:
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Algorithm 2 RC1 – Multilevel algorithm for the RC model

Given z, an initial guess φ̃ and the stop tolerance tol with L+ 1 levels,

1) Iteration starts with φold = φ̃ (φ̃ contains the initial guess before the first iteration
and the updated solution at all later iterations)

2) Smooth for t iterations the approximation on the finest level 1 i.e. solve
minφi,j F

loc
RC(φi,j , c1, c2) or (4.22) for i, j = 1, 2, ...n

3) Iterate for t times on each coarse level k = 2, 3, ...L, L+ 1 :
I If k ≤ L, compute the minimiser c of (4.24) or solve minci,j FRC1(ci,j);

I If k = L+ 1, solve (4.25) or minc F̂RC1(φ̃+ c) on the coarsest level .
Add the correction φ̃ = φ̃+Qkc where Qk is the interpolation operator distributing
ci,j to the corresponding bk × bk block on level k as illustrated in (4.17).

4) Return to Step 1 unless
‖φ̃−φold‖2
‖φ̃‖

2

< tol or until the prescribed maximum of cycles

is reached. Otherwise exit with φ = φ̃.

Quantities Flop counts for BC1

h, υ 4bkτ
2
k

λ1 term 2N

λ2 term 2N
s smoothing

steps
38bkτ

2
k s

Then, the flop counts for all level is ξBC1 =
L+1∑
k=1

(
4N + 4bkτ

2
k + 38bkτ

2
k s
)

where

k = 1 (finest) and k = L+ 1 (coarsest). Next, we compute the upper bound for BC1

as follows:

ξBC1 = 4(L+ 1)N +

L+1∑
k=1

(
4N

bk
+

38Ns

bk

)
= 4(L+ 1)N + (4 + 38s)N

L∑
k=0

(
1

2k

)
< 4N log n+ 12N + 76Ns ≈ O (N logN)

Similarly, the flops for RC1 is given as

Quantities Flop counts for RC1

h, υ 4bkτ
2
k

λ1 term 2N

λ2 term 2N

v term 4N
s smoothing

steps
31bkτ

2
k s

Hence, the total flop counts for RC1 is ξRC1 =
L+1∑
k=1

(
8N + 4bkτ

2
k + 31bkτ

2
k s
)
. This

gives the upper bound for RC1 as
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Figure 4.3: New modelling setup: replacement of domain Ω1 by a smaller domain Ωγ .

ξRC1 = 8(L+ 1)N +

L+1∑
k=1

(
4N

bk
+

31Ns

bk

)
= 8(L+ 1)N + (4 + 31s)N

L∑
k=0

(
1

2k

)
< 8N log n+ 16N + 62Ns ≈ O (N logN)

One can observe that both BC1 and RC1 are of the optimal complexity O(N logN)

expected of a multilevel method and ξRC1 > ξBC1 .

It may be remarked that both algorithms BC1 and RC1 are easily paralellisable

and hence there is much potential to explore parallel efficiency. However below we

consider how to improve the sequence efficiency in a simple and yet effective manner.

4.4 The new localised models

The complexity of the above presented algorithms is O(N logN) per cycle through all

levels, for an image sized n×n with N = n2. As this is optimal, for most problems, there

is no need to consider further reduction for many problems e.g. for image denoising.

However, segmentation is a special problem because evolution of level set functions φ is

always local in selective segmentation. Below we turn this locality into reformulations

and explore further reduction of the O(N logN) complexity, consequently achieving

the super-optimal efficiency.

Motivated by developing faster solution algorithms than Algorithms 1-2 and by

methods using narrow band region-based active contours, localised models amenable to

fast solution are proposed in this section respectively for the BC model [12] and the

RC model [111] . It is followed by developing the corresponding multilevel algorithms

to solve them. As expected, the complexity of the new models will be directly linked

to the length of segmented objects at each iteration; at the discrete level, this length is

usually O(
√
N). Our use of narrow band regions is fundamentally different from active

contours in that we apply the idea to a model, not just to a numerical procedure.

The key notation used below is the following, as shown in Figure 4.3. Given a level
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set function φ (intended to represent Ω1), a local function b defined by

b (φ (x, y) , γ) = H (φ (x, y) + γ) (1−H(φ(x, y)− γ)) (4.26)

characterises the narrow band region domain Ωγ = Ω1 (γ) ∪ Γ ∪ Ω2 (γ) surrounding

the boundary Γ, with Ω1 (γ) and Ω2 (γ) denoting the γ band inside and outside region

from Γ respectively. Similar notation is also used by [96, 152]. Note b = 1 inside Ωγ

and 0 outside, and similarly b (φ (x, y) , γ)H (φ) = 1 inside Ω1 (γ) and 0 outside i.e.

b (φ (x, y) , γ) (1−H (φ)) = 1 inside Ω2 (γ) and 0 outside. Further after discretisation,

we define the notation for the set falling into the γ-band where b = 1:

B(φ) =
{

(i, j)
∣∣ − γ ≤ φi,j ≤ γ i.e. φ (x, y) + γ > 0 and φ(x, y)− γ < 0

}
. (4.27)

We propose a localised version of the BC model [12] by the following

min
Γ,c1,c2

{
FBL (Γ, c1, c2) = µ

∫
Γ
dgds+ F γBL (Γ, c1, c2)

}
(4.28)

where the refinement is seen in

F γBL (Γ, c1, c2) = λ1

∫
Ω1(γ)

(z − c1)2dxdy + λ2

∫
Ω2(γ)

(z − c2)2dxdy.

In level set formation,

min
φ,c1,c2

FBL (φ, c1, c2) = µ

∫
Ω
dg

√
|∇H (φ)|2 + β dxdy + λ1

∫
Ω

(z − c1)2b (φ, γ)H (φ) dxdy

+λ2

∫
Ω

(z − c2)2b (φ, γ) (1−H (φ)) dxdy. (4.29)

Next, we propose a localised RC model of the form

min
φ,c1,c2

FRL (φ, c1, c2) = µ

∫
Ω
g (|∇z (x, y)|)

√
|∇H (φ)|2 + β dxdy +

λ1

∫
Ω

(z − c1)2 b (φ, γ)H (φ) dxdy + λ2

∫
Ω

(z − c2)2 b (φ, γ) (1−H (φ)) dxdy

+ν
(∫

Ω
b (φ, γ)H (φ) dxdy −A1

)2
+ ν
(∫

Ω
b (φ, γ) (1−H (φ)) dxdy −A2

)2
.

(4.30)

4.5 Multilevel algorithms for localised segmentation mod-

els

We now show how to adapt the above Algorithms 1-2 to the new formulations (4.29)

and (4.30).
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Multilevel algorithm for the localised BC model. Discretise functional (4.29)

as

FBL (φ, c1, c2) = µ̄
n−1∑
i=1

n−1∑
j=1

Gi,j

√
(Hi,j −Hi,j+1)2 + (Hi,j −Hi+1,j)

2 + β

+λ1

n∑
i=1

n∑
j=1

(zi,j − c1)2Hi,jbi,j

+λ2

n∑
i=1

n∑
j=1

(zi,j − c2)2 (1−Hi,j) bi,j

(4.31)

where G = dg, Gi,j = G(xi, yj), (i, j) ∈ B(φ). Minimisation of (4.31) by the coordinate

descent method on the finest level 1 leads to the following local minimisation for only

(i, j) ∈ B(φ(m)):

F locBL(φi,j , c1, c2) =µ̄

[
Gi,j

√
(Hi,j −H(m)

i+1,j)
2

+ (Hi,j −H(m)
i,j+1)

2
+ β

+Gi−1,j

√
(Hi,j −H(m)

i−1,j)
2

+ (H
(m)
i−1,j −H

(m)
i−1,j+1)

2
+ β

+Gi,j−1

√
(Hi,j −H(m)

i,j−1)
2

+ (H
(m)
i,j−1 −H

(m)
i+1,j−1)

2
+ β

]
+ λ1(zi,j − c1)2Hi,jbi,j + λ2(zi,j − c2)2 (1−Hi,j) bi,j (4.32)

where bi,j = 1 if (i, j) ∈ B(φ(m)) else bi,j = 0.

Further, the multilevel method for the localised BC model (4.29) at a general level

for updating block [k1, k2]× [`1, `2] amounts to minimise the following local functional

FBC2 (ci,j) =µ̄

`2∑
`=`1

Gk1−1,`

√
(ci,j − hk1−1,`)

2 + υ2
k1−1,` + β

+µ̄

k2−1∑
k=k1

Gk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+µ̄

`2−1∑
`=`1

Gk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β

+µ̄

k2∑
k=k1

Gk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+µ̄
√

2Gk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+ β/2

+ λ1

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

H(φ̃k,` + ci,j)(zk,` − c1)2b(φ̃k,` + ci,j , γ)

+λ2

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

(
1−H(φ̃k,` + ci,j)

)
(zk,` − c2)2b(φ̃k,` + ci,j , γ)

(4.33)

62



Algorithm 3 BC2 – Multilevel algorithm for the new local BC model

• Input γ and the other quantities as in Algorithm 1
• Apply Algorithm 1 to new functionals from replacing

min
φi,j

F locBC(φi,j , c1, c2) on the finest level by min
φi,j

F locBL(φi,j , c1, c2)

min
ci,j

FBC1(ci,j) on coarse levels by min
ci,j

FBC2(ci,j)

All other steps are identical.

similar to Algorithm 1, where (i, j) ∈ B(φ̃). The difference is that φ̃ := φ̃+ ci,j only

needs updating if the set [k1, k2]× [`1, `2] ∩ B(φ̃) is non-empty. We will use the term

BC2 to refer the multilevel Algorithm 3.

Multilevel algorithm for the localised RC model. Functional (4.30) is dis-

cretised as

FRL (φ, c1, c2) = µ̄

n−1∑
i=1

n−1∑
j=1

gi,j

√
(Hi,j −Hi,j+1)2 + (Hi,j −Hi+1,j)

2 + β

+λ1

n∑
i=1

n∑
j=1

(zi,j − c1)2Hi,jbi,j + λ2

n∑
i=1

n∑
j=1

(zi,j − c2)2 (1−Hi,j) bi,j

+ν
(
−A1 +

n∑
i=1

n∑
j=1

Hi,jbi,j

)2
+ ν
(
−A2 +

n∑
i=1

n∑
j=1

(1−Hi,j) bi,j

)2
.

(4.34)

Further at a general level, whenever a block [k1, k2]× [`1, `2] overlaps with B(φ̃) (i.e.
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Algorithm 4 RC2 – Multilevel algorithm for the new and local RC model

• Input γ and the other quantities as in Algorithm 2
• Apply Algorithm 2 to new functionals from replacing

min
φi,j

F locRC(φi,j , c1, c2) on the finest level by min
φi,j

F locRL(φi,j , c1, c2)

min
ci,j

FRC1(ci,j) on coarse levels by min
ci,j

FRC2(ci,j)

All other steps are identical.

the set [k1, k2]× [`1, `2] ∩B(φ̃) is non-empty), the multilevel method minimises

FRC2(ci,j) =µ̄

`2∑
`=`1

gk1−1,`

√
(ci,j − hk1−1,`)

2 + υ2
k1−1,` + β

+ µ̄

k2−1∑
k=k1

gk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+ µ̄

`2−1∑
`=`1

gk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β

+ µ̄
√

2gk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+
β

2

+ µ̄

k2∑
k=k1

gk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+ λ1

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

b
(
φ̃k,` + ci,j , γ

)
H(φ̃k,` + ci,j) (zk,` − c1)2

+ λ2

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

(
1−H(φ̃k,` + ci,j)

)
b
(
φ̃k,` + ci,j , γ

)
(zk,` − c2)2

+ ν

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

(
−A1 + b

(
φ̃k,` + ci,j , γ

)
H
(
φ̃k,` + ci,j

))2

+ ν

k2∑
k=k1

`2∑
`=`1

∣∣∣∣
(k,`)∈B(φ̃)

(
−A2 +

(
1−H

(
φ̃k,` + ci,j

))
b
(
φ̃k,` + ci,j , γ

))2

(4.35)

and then updates φ̃ by φ̃+ ci,j . We will refer this Algorithm 4 as RC2.

For a single object extraction, Algorithms 3 - 4 have a complexity of O(γn logN) =

O(
√
N logN) where logN refers to the number of levels. However they are only

applicable to our selective models; for global models such as the CV model, the band

idea promotes local minimisers and is hence not useful.
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4.6 Numerical experiments

In order to demonstrate the strengths and limitations of the proposed multilevel

method for both the original and the localised segmentation models, we performed

several experiments. The main algorithms to be compared are

Name Algorithm Description

BC0 Old : The AOS algorithm [12] for the original BC model [12].

BCP Old : The Pyramid scheme for BC0.

BC1 New : The multilevel Algorithm 1 for the BC model.

BC2 New : The multilevel Algorithm 3 for the localised BC model.

RC0 Old : The AOS algorithm [111] for the original RC model [111].

RCP Old : The Pyramid scheme for RC0.

RC1 New : The multilevel Algorithm 2 for the RC model.

RC2 New : The multilevel Algorithm 4 for the localised RC model.

Our aims of the tests are

i) to verify numerically the efficiency as n increases – is an algorithm faster or slower

than or of the same magnitude as O(N logN) where N = n2;

ii) to compare the quality, we use the so-called the Jaccard similarity coefficient (JSC)

and Dice similarity coefficient (DSC):

JSC =
|Sn ∩ S∗|
|Sn ∪ S∗|

, DSC =
2 |Sn ∩ S∗|
|Sn|+ |S∗|

where Sn is the set of the segmented domain Ω1 and S∗ is the true set of Ω1. The

similarity functions return values in the range [0, 1]. The value 1 indicates perfect

segmentation quality while the value 0 indicates poor quality.

The test images used in this paper are listed in Figure 4.4. They are four images

used which include 3 real medical images and 1 synthetic image. The synthetic image is

created manually in Matlab in binary format so that the true set solution S∗ is known

to aid computing JSC and DSC. The markers set also are shown in Figure 4.4. The

initial contour is defined by the markers set. We remark that for an image of size n× n
the number of unknowns is N = n2 which means that for n = 256, 512, 1024, 2048,

the respective number of unknowns is N = 65536, 262144, 1048576, 4194304; we are

solving large scale problems. Our algorithms are implemented in MATLAB R2017a on

a computer with Intel Core i7 processor, CPU 3.60GHz, 16 GB RAM CPU. All the

programs are stopped when tol = 10−4 or when the maximum number of iterations,

maxit = 1500 is reached.

4.6.1 Comparison of BC2 with BC0, BC1, and BCP

In the following experiments, we take the parameters λ1 = λ2 = 1, α = 0.01, β = 10−4

and κ = 4. Through the experiments it was observed that the parameters ε and η can

be in a range between ε = 1/n to 1 and η = 10−3 and 102.
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Problem 1 Problem 2

Problem 3 Problem 4

Figure 4.4: Test images with the markers set.

Table 4.1: Comparison of computation time (in seconds) of BC1 with BC2 for Problems 1-3.
Note BC2 is about 2 times faster than BC1.

Problem BC1 BC2
1 12.1 8.4
2 11.7 6.8
3 11.9 9.3

First, we compare BC1 and BC2 using test Problems 1-3. All the images are of size

256× 256. We take µ̄ = 0.05n2 (Problem 1) and µ̄ = 0.1n2 (Problems 2− 3). For BC2,

γ is between 30 to 100.

By visual evaluation, Figure 4.5(a) and 4.5(b) show the successful selective segmen-

tation results by BC1 and BC2 respectively for capturing one object in Problems 1-3.

We see that that the results from BC1 are quite similar to BC2. The times needed by

BC1 and BC2 to complete the selective segmentation task are tabulated in Table 4.1

where we can observe that BC2 is about 2 times faster than BC1.

Second, against BC2, we test BC0 that is based on additive operator splitting

(AOS) [12], the pyramid scheme BCP based on BC0 and BC1. For this purpose, we

segment Problem 1 with different resolutions using µ = µ̄ = 0.05n2. The segmentation

results for image size 1024× 1024 are shown in Figure 4.6 and the results for all sizes

in terms of quality and computation time needed to complete the segmentation tasks

are presented in Table 4.2. Columns 5 (ratios of the CPU times) show that BC0, BCP,

and BC1 are of complexity O(N logN) while BC2 of the ‘super’-optimal efficiency

O(
√
N logN).
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BC1 BC2

BC1 BC2

(a) BC1 (b) BC2

Figure 4.5: Segmentation of Problems 1-3: Column (a) BC1 and (b) BC2.

BC0 BCP

BC1 BC2

Figure 4.6: Segmentation of Problem 1 of size 1024× 1024 for BC0, BCP, BC1, and
BC2.
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Table 4.2: Comparison of computation time (in seconds) and segmentation quality
of BC0, BCP, and BC1 with our BC2 for Problem 1. The ratio close to 4.4 for time
indicates O(N logN) speed while a ratio of 2.2 indicates O(

√
N logN) “super-optimal”

speed, where the number of unknowns N = n2. Here and later, ‘**’ means taking too
long to run (> 24 hours).

Algorithm Size n× n
Number of
iteration
(outer)

Time
tn

tn
tn−1 JSC DSC

256× 256 1293 227.8 1.0 1.0

BC0 512× 512 1276 898.5 3.9 1.0 1.0
1024× 1024 1234 4095.5 4.6 1.0 1.0
2048× 2048 ** ** - - -

256× 256 4 61.0 1.0 1.0

BCP 512× 512 2 180.0 3.0 1.0 1.0
1024× 1024 2 812.3 4.5 1.0 1.0
2048× 2048 2 3994.0 4.9 1.0 1.0
256× 256 2 11.6 1.0 1.0

BC1 512× 512 2 43.7 3.8 1.0 1.0
1024× 1024 2 173.2 4.0 1.0 1.0
2048× 2048 2 736.9 4.3 1.0 1.0
256× 256 2 10.5 1.0 1.0

BC2 512× 512 2 21.6 2.1 1.0 1.0
1024× 1024 2 42.5 2.0 1.0 1.0
2048× 2048 2 80.5 1.9 1.0 1.0

Clearly BC0 (the AOS method for the BC model ) provides an effective acceleration

for images of moderate size n ≤ 256. Significant improvement can be seen by BCP

which shows that the pyramid method together with AOS is better than BC0. However,

we can see that our BC1 and BC2 are faster than BC0 and BCP, while BC2 is faster

than the other 3 algorithms. The computation time differences between BC2 with

other 3 algorithms become significant as the image size increases to n ≥ 512. The BC0

result with “ ** ” indicates that a very long time is taken to complete the segmentation

task (> 24 hours). One can see for example BC0 needs almost 100 times more time

compared to BC2 to complete segmentation in case of 1024× 1024. We also see that

all algorithms provide high segmentation quality, from JSC and DSC values.

4.6.2 Comparison of RC2 with RC0, RC1, and RCP

In the following experiments, we fixed the parameters λ1 = λ2 = 1, α = 0.01 and

β = 10−4. Through the experiments it was observed that the parameters ν, ε and η

can be in a range between ν = 0.001 to 0.01 ε = 1/n to 1 and η = 10−3 to 10−2.

We first compare RC1 and RC2 using Problems 1-3. All the images are of size

256× 256. We take µ̄ = 0.05n2 (Problem 1) and µ = µ̄ = 0.1n2 (Problems 2-3). For

RC2, γ is between 30 to 100. Figure 4.7(a) and 4.7(b) show the successful selective

segmentation results of RC1 and RC2 respectively for capturing one object for Problems

1-3.
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Table 4.3: Comparison of computation time (in seconds) and segmentation quality of
RC0, RCP, and RC1 with RC2 for Problem 1. Again, the ratio close to 4.4 for time
indicates O(N logN) speed while a ratio of 2.2 indicates O(

√
N logN) “super-optimal”

speed, where the number of unknowns N = n2.

Algorithm Size n× n
Number of
iteration
(outer)

Time
tn

tn
tn−1 JSC DSC

256× 256 1500 260.5 1.0 1.0

RC0 512× 512 1385 975.0 3.7 1.0 1.0
1024× 1024 1404 4735.0 4.9 1.0 1.0
2048× 2048 ** ** - - -

256× 256 4 62.5 1.0 1.0

RCP 512× 512 2 187.2 3.0 1.0 1.0
1024× 1024 2 822.3 4.4 1.0 1.0
2048× 2048 2 3996.3 4.9 1.0 1.0
256× 256 2 13.0 1.0 1.0

RC1 512× 512 2 48.4 3.7 1.0 1.0
1024× 1024 2 189.9 3.9 1.0 1.0
2048× 2048 2 819.0 4.3 1.0 1.0
256× 256 2 11.5 1.0 1.0

RC2 512× 512 2 24.0 2.1 1.0 1.0
1024× 1024 2 46.9 2.0 1.0 1.0
2048× 2048 2 87.6 1.9 1.0 1.0

We then compare RC2 with RC0, RCP, and RC1 using Problem 1. Here µ = µ̄ =

0.05n2 for all algorithms. The segmentation results for image size 1024× 1024 shown

in Figure 4.8 and the quality measures and the computation time presented in Table

4.3 show that RC2 can be 100 times faster than RC0, 17 times faster than RCP and 4

times faster than RC1 for the case of 1024 × 1024: In particular, ratios of the CPU

times verify that RC0, RCP, and RC1 are of complexity O(N logN) while RC2 of

the ‘super’-optimal efficiency O(
√
N logN). Furthermore, the RC0 result with “ ** ”

indicates that too much time is taken to complete the segmentation task (> 24 hours).

The high values of JSC and DSC show that RC0, RCP, RC1, and RC2 provide high

segmentation quality.

For the benefit of readers, in Figure 4.9, we demonstrate a convergent plot based

on Tables 4.2 and 4.3 of our proposed multilevel based models (BC2 and RC2) in

segmenting Problem 1 of size 2048 × 2048. One can see that the models are fast,

converging to tol in 2 iterations that is before the prescribed maxit.

Furthermore, we have extended the number of iterations for BC2 and RC2 up to 6

iterations and plot the residual history in the same Figure 4.9. We can observe that

BC2 and RC2 keep converging.

4.6.3 Sensitivity tests on the algorithmic parameters

Sensitivity is a major issue that has to be addressed and tested below. We shall pay

particular attention to the regularising parameter β that was known to be sensitive to
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RC1 RC2

RC1 RC2

(a) RC1 (b) RC2

Figure 4.7: Segmentation of Problems 1-3. (a) and (b) show the segmentation using
RC1 and RC2 respectively.

RC0 RCP

RC1 RC2

Figure 4.8: Segmentation of Problem 1 of size 1024× 1024 for RC0, RCP, RC1, and
RC2. For the same segmentation result, RC2 can be 100 times faster than RC0, 17
times faster than RCP and 4 times faster than RC1; see Table 4.3.

70



Table 4.4: Dependence of BC2 and RC2 on t for heart shape in Problem 1 (Figure
4.4).

Algorithm
t : inner

itera-
tion

Number
of

iteration
(outer)

CPU JSC DSC

1 2 8.1 1.0 1.0

BC2 2 6 22.4 1.0 1.0
3 7 26.7 0.9 1.0

1 2 8.8 1.0 1.0

RC2 2 9 35.3 0.9 1.0
3 7 28.7 0.9 1.0

convergence of a geometric multigrid method [10]; it turns out that our Algorithms 1-4

are more advantageous as they are not very sensitive to β.

Tests on parameter t. The inner iteration t indicates the number of iterations

needed to solve the minimisation problem in each level. We test several numbers of t

required by BC2 and RC2 to segment heart shape in Problem 1 and record the outer

iteration needed to achieve tol, the CPU time and the quality of segmentation. The

results are tabulated in Table 4.4.

We can see that BC2 and RC2 work in efficiently and effectively using only 1 inner

iteration i.e t = 1. As we increase t, the quality of segmentation for BC2 and RC2

reduce and need more CPU time and outer iteration as well.

Tests on parameter γ. The band width parameter γ is an important parameter

to be tested. Its size determines how local the resulting segmentation will be. Below

we will demonstrate the effect of applying different values of γ to BC2 and RC2. We

aim to segment an organ in Problem 4 by for BC2 and RC2 with varying γ and the

results are presented in Figure 4.10. Columns 2 and 3 of Figure 4.10 show the results

using 3 γ values (more spread out) for BC2 and RC2. Clearly, unless the value is too

small (that results in an incorrect segmentation), in general, both BC2 and RC2 are

not much sensitive to γ choice.

Tests on parameter β. Finally, we examine the sensitivity of BC2 and RC2 on this

important parameter β. 7 different β are tested: β = 1, 10−1, 10−2, 10−4, 10−6, 10−8

and 10−10 in segmenting the heart shape in Problem 1. For a quantitative analysis, we

evaluate the energy value FBL (φ, c1, c2) in equation (4.31), FRL (φ, c1, c2) in equation

(4.34) and the indexes JSC and DSC. The values of FBL (φ, c1, c2), FRL (φ, c1, c2), JSC

and DSC are tabulated in Table 4.5. One can see that as β decreases, the functional

FBL (φ, c1, c2) and FRL (φ, c1, c2) gets closer to each other. The segmentation quality

measured by JSC and DSC increases as β decreases. This finding shows that BC2 and

RC2 are only sensitive to (unrealistic) large β but less to a very small β. In separate

experiments, we found that BC2 and RC2 algorithms are not much sensitive to η, α, ε,

and ν (involve in RC2 only), although there exist choices what give the optimal quality

of segmentation.
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Figure 4.9: The number of iterations needed by BC2 and RC2 to achieve a set tol
(residual) in segmenting an image of size 2048× 2048. With tol = 10−4, BC2 and RC2
need 2 iterations. The extension up to 6 iterations shows that residuals of BC2 and
RC2 keep reducing.

(a) BC2 γ=1 (d) RC2 γ=1

(b) BC2 γ = 7 (e) RC2 γ = 7

(c) BC2 γ = 100 (f) RC2 γ = 100

Figure 4.10: Dependence of algorithms BC2, RC2 on parameter γ for Problem 4.
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Table 4.5: Dependence of our new BC2 and RC2 on β for heart shape in Problem 1
(Figure 4.4).

β BC2 RC2
FBL (φ, c1, c2) JSC DSC FRL (φ, c1, c2) JSC DSC

1 2.461759e+09 0.6 0.7 5.177135e+10 0.6 0.7
10-1 2.258762e+09 0.9 1.0 5.168056e+10 0.9 1.0
10-2 2.197002e+09 1.0 1.0 5.164663e+10 1.0 1.0
10-4 2.178939e+09 1.0 1.0 5.163375e+10 1.0 1.0
10-6 2.177950e+09 1.0 1.0 5.163266e+10 1.0 1.0
10-8 2.176280e+09 1.0 1.0 5.163252e+10 1.0 1.0
10-10 2.175254e+09 1.0 1.0 5.163243e+10 1.0 1.0

4.7 Summary

In this chapter, we presented an optimisation based multilevel method to solve two

variational and selective segmentation models (BC and RC), though the idea is applicable

to other global and variational models. Firstly, we presented 2 algorithms (BC1, RC1)

for solving the respective models with each algorithm having the expected optimal

complexity of O(N logN) for segmentation of an image of size n × n or N = n2

unknowns (pixels). These algorithms can be adapted to solve other segmentation

models. Secondly, we reformulated the models so that they became localised versions

that operate within a banded region of an active level set contour, and consequently

obtained 2 further algorithms (BC2, RC2) with each algorithm having the ‘super’-

optimal complexity of approximately O(
√
N logN) depending on the objects to be

segmented. These algorithms are only applicable to our selective segmentation models.

Numerical experiments have verified the complexity claims, and comparisons with

related algorithms (BC0, BCP, RC0, RCP for the standard models) show that the new

algorithms are many times faster than BC0, BCP, RC0, RCP, in achieving comparable

quality of segmentation. All the aboves models are nonconvex. In the next chapter, we

will address convexified selective variational models and explore their advantages.
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Chapter 5

A Reformulated Convex and

Selective Variational Image

Segmentation Model and its Fast

Multilevel Algorithm

In the previous chapter, we have proposed a fast solver for a class of selective models.

However, they would find local minimisers (sensitive to initialisation) because nonconvex

minimisation functionals are involved. Recently, Spencer-Chen [129] has successfully

proposed a convex selective variational image segmentation model (named CDSS),

allowing a global minimiser to be found independently of initialisation. However, their

algorithm is sensitive to the regularisation parameter µ and the area parameter θ

due to nonlinearity in the functional and additionally it is only effective for images of

moderate size. In this chapter, a stabilised variant of CDSS model through primal-dual

formulation is proposed and an optimisation based multilevel algorithm for the new

model is introduced. Numerical results show that the new model is less sensitive to

parameter µ and θ compared to the original CDSS model and the multilevel algorithm

produces quality segmentation in optimal computational time.

5.1 Introduction

Selective image segmentation aims to extract one object of interest in an image based

on some additional information of geometric constraints [65, 111, 129]. This task cannot

be achieved by global segmentation. Some effective models are Badshah-Chen [12]

and Rada-Chen [111] which used a mixed edge based and region based ideas, and area

constraints. Both models are nonconvex. A nonconvex selective variational image

segmentation model, though effective in capturing a local minimiser, is sensitive to

initialisation where the segmentation result relies heavily on user input.

While the above selective segmentation models are formulated based on geometric

constraints in [65, 67], there are another way of defining the geometric constraints that
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can be found in [103] where geometric points outside and inside a targeted object are

given. Their model make use the Split Bregman method to speed up convergence.

Although our paper based on geometric constraint defining in [65, 67], later, we shall

compare our work with [103]. We called their model as NCZZ model.

In 2015, Spencer-Chen [129, 128] has successfully designed a Convex Distance

Selective Segmentation model (named as CDSS). This variational model allows a global

minimiser to be found independently of initialisation, given knowledge of c1, c2. The

CDSS model [129] is challenging to solve due to its penalty function ν (u) being highly

nonlinear. Consequently, the standard addition operator splitting method (AOS) is not

adequate. An enhanced version of the AOS scheme was proposed in [129] by taking the

approximation of ν ′ (u) which based on its linear part [129, 128]. Another factor that

affects the [129] model is how to choose the combination values of the regularisation

parameters µ and θ (other parameters can be fixed as suggested by [129, 128]). For a

simple (synthetic) image, it is easy to get a suitable combination of parameter µ and θ

which gives a good segmentation result. However, for other real life images, it is not

trivial to determine a suitable combination of µ and θ simultaneously; our experiments

show that high segmentation accuracy is given by the model in a small range of µ and

θ and consequently the model is not ready for general use. Of course, it is known that

an AOS method is not designed for processing large images.

We remark that a most recent convex selective variational image segmentation was

introduced by Liu et al. [83]. in 2018. The work is based on [12, 23, 111]. We named

their model as CMT model. Although our work is based on [129, 128], we shall compare

our work with CMT model [83] later.

This chapter investigates both the robust modeling and fast solution issues by

making two contributions. Firstly, we propose a better model than CDSS. In looking

for possible improvement on the selective model CDSS, we are inspired by several

works [20, 8, 9, 26, 35, 24] on non-selective segmentation. The key idea that we will

employ in our new model is the primal-dual formulation which allows us to “ignore”

the penalty function ν (u), otherwise creating problems of parameter sensitivity. We

remark that similar use of the primal-dual idea can be found in D. Chen et al. [40] to

solve a variant of Mumford-Shah model which handles the segmentation of medical

images with intensity inhomogeneities and also in Moreno et al. [99] for solving a four

phase model for segmentation of brain MRI images by active contours. Secondly, we

propose a fast optimisation based multilevel method for solving the new model, which

is applicable to the original CDSS [129], in order to achieve fast convergence especially

for images with large size. We will consider the differentiable form of variational image

segmentation models and develop the multilevel algorithm for the resulting models

without using a “patch detection” idea. We are not aware of similar work done for

segmentation models in the variational convex formulation.

The rest of this chapter is organised in the following way. In Section 5.2, we first

briefly review the convex selective segmentation models. These models are NCZZ

model [103], CDSS model [129], and CMT model [83]. In Section 5.3, we give our
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new primal-dual formulation of the CDSS model and in Section 5.4 we present the

optimisation based multilevel algorithm. We proposed a new variant of the multilevel

algorithm in Section 5.5 and discuss their convergence in Section 5.6. In Section 5.7 we

give some experimental results before concluding in Section 5.8.

The work presented in this chapter has been published by me as the main author

together with my supervisor Prof. Ke Chen as the co-author in [74]. The new

primal-dual formulation and its multilevel algorithm were developed and implemented

in MATLAB by the author. The new variant of the multilevel algorithm and its

convergence were jointly developed by us while the algorithm was implemented in

MATLAB by the author.

5.2 Convex selective segmentation models

As discussed, there exist many variational segmentation models in the literature

on global segmentation and few on selective image segmentation models in convex

formulation. For the latter, we will review three segmentation models below that are

directly related to this work.

5.2.1 NCZZ model

This interactive selective segmentation model is proposed by Nguyen et al. [103]. Given

an image z = z(x, y), this model has the energy functional

FNCZZ (φ) = µ

∫
Ω
g (|∇z(x, y)|) |∇φ| dΩ

+

∫
Ω
α (PB(x, y)− PF (x, y)) + (1− α) (1− 2P (x, y))φdΩ,

(5.1)

where PB and PF are the normalized log-likelihoods that the pixel (x, y) is in the

foreground and background respectively. The function P (x, y) is the probability that

pixel (x, y) belongs to the foreground and α, φ ∈ [0, 1]. In this model g(s) = 1
1+γs2

is an

edge detector function which helps to stop the evolving curve on the edge of the objects

in an image. The strength of detection is adjusted by parameter γ. Another type of

edge detector function considered is g(s) = βgc + (1 − β)ge where gc and ge are the

results of applying the edge detection to PF and the original image, respectively and

β ∈ [0, 1]. This model is good for many examples, see [111, 103], however fails when

the boundary of the targeted object is non-smooth or has fine structure. As explained

by the authors, these limitations of the model lie in its underlying assumption that

the shape of the object is smooth and can be well described by the weighted shortest

boundary length. In addition, the model is essentially a hard segmentation method

where a pixel is assigned to exactly one class [103].
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5.2.2 CMT model

Recently, a selective convex model was introduced by Liu et al. [83] which applies a

weighting to the data fitting terms. The functional is given by

FCMT (u) =

∫
Ω
|∇u| dΩ +

∫
Ω
|∇u|2 dΩ +

∫
Ω
ω2(x, y)|z − u|2 dΩ. (5.2)

Here, ω(x, y) = 1− d(x, y)g(|∇z|) where d(x, y) is a distance function from marker set

A. This model is based on Mumford-Shah model [102] and contains two stages. The

first stage is to obtain a smooth approximation related to the Mumford-Shah model.

The second stage is to use this smooth approximation and perform a thresholding

procedure to obtain the object of interest.

5.2.3 Convex Distance Selective Segmentation model

Assume that an image z = z (x, y) comprises of two regions of approximately piecewise

constant intensities of distinct values (unknown) c1 and c2, separated by some (unknown)

curve or contour Γ. Let the object to be detected be represented by the region Ω1

with the value c1 inside the curve Γ whereas outside Γ, in Ω2 = Ω\Ω1, the intensity of

z is approximated with value c2. In a level set formulation, the unknown curve Γ is

represented by the zero level set of the Lipschitz function such that

Γ = {(x, y) ∈ Ω : φ (x, y) = 0} ,
Ω1 = inside (Γ) = {(x, y) ∈ Ω : φ (x, y) > 0} ,
Ω2 = outside (Γ) = {(x, y) ∈ Ω : φ (x, y) < 0} .

Let n1 geometric constraints be given by a marker set

A = {wi = (x∗i , y
∗
i ) ∈ Ω, 1 ≤ i ≤ n1} ⊂ Ω

where each point is near the object boundary Γ, not necessarily on it [111, 152]. The

selective segmentation idea tries to detect the boundary of a single object among all

homogeneity intensity objects in Ω close to A; here n1 (≥ 3). The geometrical points in

A define an initial polygonal contour and guide its evolution towards Γ [152].

The Distance Selective Segmentation (DSS) model [129] was proposed by Spencer

and Chen [129] in 2015. The formulation is based on the special case of the piecewise

constant Mumford-Shah functional [102] where it is restricted to only two phase (i.e.

constants), representing the foreground and the background of the given image z (x, y).

Using the set A, construct a polygon Q that connects up the markers. Denote the

function Pd (x, y) as the Euclidean distance of each point (x, y) ∈ Ω from its nearest

point (xp, yp) ∈ Q:

Pd (x, y) =

√
(x− xp)2 + (y − yp)2 = min

q∈Q
‖(x, y)− (xq, yq)‖
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and denote the regularised versions of a Heaviside function by

Hε (φ (x, y)) =
1

2

(
1 +

2

π
arctan

(
φ

ε

))
.

Then the DSS in a level set formulation is to minimise a cost function defined as follows

min
φ,c1,c2

D (φ, c1, c2) = µ

∫
Ω
g (|∇z|) |∇Hε(φ)| dΩ +

∫
Ω
Hε (φ) (z − c1)2dΩ

+

∫
Ω

(1−Hε (φ)) (z − c2)2dΩ + θ

∫
Ω
Hε (φ)Pd dΩ

(5.3)

where µ and θ are nonnegative parameters. The addition of new distance fitting term

is weighted by the area parameter θ. Here, if the parameter θ is too strong the final

result will just be the polygon P which is undesirable.

The above model from (5.3) was relaxed to obtain a constrained Convex Distance

Selective Segmentation (CDSS) model [129]. This was to make sure that the initialisation

can be flexible. The CDSS was obtained by relaxing Hε → u ∈ [0, 1] to give:

min
0≤u≤1

CDSS (u, c1, c2) = µ

∫
Ω
|∇u|gdΩ +

∫
Ω
ru dΩ + θ

∫
Ω
Pdu dΩ (5.4)

and further an unconstrained minimisation problem:

min
u
CDSS (u, c1, c2) = µ

∫
Ω
|∇u|g dΩ +

∫
Ω
ru dΩ + θ

∫
Ω
Pdu dΩ + α

∫
Ω
ν (u) dΩ

(5.5)

where r = (c1 − z)2−(c2 − z)2 and |∇u|g = g (|∇z|) |∇u|, ν (u) = max
{

0, 2
∣∣u− 1

2

∣∣− 1
}

is an exact (non-smooth) penalty term, provided that α > 1
2‖r + θPd‖L∞ (see also

[34]). For fixed c1, c2, µ, θ, and κ ∈ [0, 1], the minimiser u of (5.4) is guaranteed to be

a global minimiser defining the object by
∑

= {(x, y) : u (x, y) ≥ κ} [129, 34, 20]. The

parameter κ is a threshold value and usually κ = 0.5.

In order to compute the associated Euler Lagrange equation for u they introduce

the regularised version of ν (u):

ν (u) =

[√
(2u− 1)2 + ε− 1

]
H
(√

(2u− 1)2 + ε− 1
)
, H (x) =

1

2
+

1

π
arctan

(x
ε

)
.

Consequently, the Euler Lagrange equation for u in equation (5.5) is the following

µ∇
(
g
∇u
|∇u|

)
+ f = 0, in Ω,

∂u

∂~n
= 0, on ∂Ω (5.6)

where f = −r − θPd − αν ′ (u). When u is fixed, the intensity values c1, c2 are updated

by

c1(u) =

∫
Ω uz dΩ∫
Ω u dΩ

, c2(u) =

∫
Ω (1− u) z dΩ∫
Ω (1− u) dΩ

.

Notice that the nonlinear coefficient of equation (5.6) may have a zero denominator
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where the equation is not defined. A commonly adopted idea to deal with this is to

introduce a positive parameter β to (5.6), so the new Euler Lagrange equation becomes

µ∇

g ∇u√
|∇u|2 + β

+ f = 0, in Ω;
∂u

∂~n
= 0, on ∂Ω

which corresponds to minimise the following differentiable form of (5.5)

min
u
CDSS (u, c1, c2) = µ

∫
Ω
g

√
|∇u|2 + β dΩ+

∫
Ω
ru dΩ+θ

∫
Ω
Pdu dΩ+α

∫
Ω
ν (u) dΩ.

(5.7)

According to [129, 128], the standard AOS which generally assumes f is not

dependent on u is not adequate to solve the model. This mainly because the term

ν ′ (u) in f does depend on u, which can lead to stability restriction on time step

size t. Moreover, the shape of ν ′ (u) means that changes in f between iterations are

problematic near u = 0 and u = 1, as small changes in u produce large changes in f .

In order to tackle the problem, they proposed a modified version of AOS algorithm to

solve the model by taking the approximation of ν ′ (u) which based on its linear part.

A successful segmentation result can be obtained depending on suitable combination

of parameter µ, θ and the set of marker points defined by a user. For a simple image

such as synthetic images, this task of parameters selection is easy and one can get a

good segmentation result. However, for real life images, it is non-trivial to determine

a suitable combination of parameters µ and θ. It becomes more challenging if a

model is sensitive to µ and θ where only a small range of the values work to give

high segmentation quality. Hence, a more robust model that is less dependent on the

parameters needs to be developed. In addition, to process images of large size, fast

iterative solvers need to be developed as well. This paper is motivated by these two

problems.

We refer to the CDSS model solved using the modified AOS as SC0.

5.3 A reformulated CDSS model

We now present our work on a reformulation of the CDSS model in the primal-dual

framework which allows us to “ignore” the penalty function ν (u), otherwise creating

problems of parameter sensitivity. We remark that similar use of the primal-dual idea

can be found in [40] and [99]. To see more background of this framework, refer to

the convex regularisation approach by Bresson et al. [20], Chambolle [26], and others

[8, 9, 35, 24].

Our starting point is to rewrite (5.5) as follows:

min
u,w

J (u,w) = µ

∫
Ω
|∇u|gdΩ +

∫
Ω
rw dΩ + θ

∫
Ω
Pdw dΩ

+α

∫
Ω
ν (w) dΩ +

1

2ρ

∫
Ω

(u− w)2 dΩ
(5.8)
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where w is the new and dual variable, the right-most term enforces w ≈ u for sufficiently

small ρ > 0 and |∇u|g = g (|∇z|) |∇u| . One can observe that if w = u, the dual

formulation is reduced to the original CDSS model [129].

After introducing the term (u− w)2, it is important to note that convexity still holds

with respect to u and w (otherwise finding the global minimum cannot be guaranteed).

This can be shown below. Write the functional (5.8) as the sum of two terms:

J (u,w) = S (u,w) +Q (u,w) , S (u,w) =

∫
Ω

1

2ρ
(u− w)2dΩ, TVg (u) =

∫
Ω
|∇u|g dΩ

Q (u,w) = TVg (u) +

∫
Ω

(r + θPd)wdΩ + α

∫
Ω
ν (w) dΩ.

For the functional Q (u,w), we can show that the weighted total variation term TVg (u)

is convex below. The remaining two terms (depending on w only) are known to be

convex from [129, 128]. By definition of convex functions, showing that the weighted

total variation is a convex can be done directly. Let u1 6= u2 be two functions and

ϕ ∈ [0, 1]. Then

TVg (ϕu1 + (1− ϕ)u2) =

∫
Ω
|∇ (ϕu1 + (1− ϕ)u2)|g dΩ

=

∫
Ω
|ϕ∇u1 + (1− ϕ)∇u2|g dΩ

≤ ϕ
∫

Ω
|∇u1|g dΩ + (1− ϕ)

∫
Ω
|∇u2|g dΩ

= ϕTVg (u1) + (1− ϕ)TVg (u2).

Similarly, for the functional S (u,w), let u,w : Ω ⊆ R2 → R and u1 6= u2 6= u3 6= u4.

Then

S [ϕ (u1, u2) + (1− ϕ) (u3, u4)] = S [ϕu1 + (1− ϕ)u3, ϕu2 + (1− ϕ)u4]

=

∫
Ω

[ϕu1 + (1− ϕ)u3 − ϕu2 − (1− ϕ)u4]2dΩ

=

∫
Ω

[ϕ (u1 − u2) + (1− φ) (u3 − u4)]2dΩ

≤ ϕ
∫
Ω

(u1 − u2)2dΩ + (1− ϕ)

∫
Ω

(u3 − u4)2dΩ

= ϕS (u1, u2) + (1− ϕ)S (u3, u4) .

Alternatively, the Hessian
[
(u− w)2

]
=

(
2 −2

−2 2

)
. Clearly the principal minors

are ∆1 = 2, ∆2 = 0 which indicates that the Hessian[(u− w)2] is positive semidefi-

nite and so S (u,w) is convex.

As the sum of two convex functions Q,S is also convex, thus J (u,w) is convex.

Using the property that J is differentiable, consequently, the unique minimiser can

be computed by minimising J with respect to u and w separately, iterating the process

until convergence [20, 26]. Thus, the following minimisation problems are considered:

i). when w is given: min
u

J1 (u,w) = µ

∫
Ω
|∇u|gdΩ +

1

2ρ

∫
Ω

(u− w)2dΩ;
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ii). when u is given: min
w

J2 (u,w) =

∫
Ω
rwdΩ + θ

∫
Ω
PdwdΩ + α

∫
Ω
ν (w) dΩ +

1

2ρ

∫
Ω

(u− w)2 dΩ.

Next consider how to simplify J2 further and drop its α term. To this end, we make

use of the following proposition:

Proposition 5.3.1. The solution of minw J2 is given by:

w = min {max {u(x)− ρr − ρθPd, 0} , 1} . (5.9)

Proof : Assume that α has been chosen large enough compared to ‖f‖L∞ so that

the exact penalty formulation holds. We now consider the w-minimisation of the form

min
w

∫
Ω

(
αν (w) + 1

2ρ(u− w)2 + wF (x)
)
dΩ, where the function F is independent of w.

We use the claim made by [20].

Claim [20]: If u (x) ∈ [0, 1] for all x, then so is w (x) after the w-minimisation.

Conversely, if w (x) ∈ [0, 1] for all x, then so is u (x) after the u-minimisation.

This claim allows us to “ignore” the ν (w) terms: on one hand, its presence in

the energy is equivalent to cutting off w (x) at 0 and 1. On the other hand, if

w (x) ∈ [0, 1], then the above w-minimisation can be written in this equivalence form:

min
w∈[0,1]

∫
Ω

(
1
2ρ(u− w)2 + wF (x)

)
dΩ. Consequently, the point-wise optimal w (x) is

found as 1
ρ (u− w) = F (x) ⇒ w = u − ρF (x). Thus the w-minimisation can be

achieved through the following update:

w = min {max {u (x)− ρF (x) , 0} , 1}. For minw J2, let F (x) = r + θPd. Hence, we

deduce the result for w. �

Therefore, our new model is defined as

min
u,w∈[0,1]

J (u,w) = µ

∫
Ω
|∇u|gdΩ +

∫
Ω
rw dΩ + θ

∫
Ω
Pdw dΩ +

1

2ρ

∫
Ω

(u− w)2 dΩ.

In alternating minimisation form, the new formulation is equivalent to solve the following

min
u

J1 (u,w) = µ

∫
Ω
|∇u|gdΩ +

1

2ρ

∫
Ω

(u− w)2dΩ, (5.10)

min
w∈[0,1]

J2 (u,w) =

∫
Ω
rw dΩ + θ

∫
Ω
Pdw dΩ +

1

2ρ

∫
Ω

(u− w)2 dΩ. (5.11)

Notice that the term ν (w) is dropped in (5.11) and the explicit solution is given in

(5.9) that is hopefully the new resulting model becomes less sensitive to parameter’s

choice. Now it only remains to discuss how to solve (5.10).

5.4 An optimisation based multilevel algorithm

This section presents our multilevel formulation for two convex models: first the CDSS

model (5.7) (for later use in comparisons) and then our newly proposed primal-dual

81



model in (5.10)-(5.11).

For simplicity, we shall assume n = 2L for a given image z of size n × n. The

standard coarsening defines L+ 1 levels: k = 1 (finest) , 2, ..., L, L+ 1 (coarsest) such

that level k has τk × τk “superpixels” with each “superpixels” having pixels bk × bk
where τk = n/2k−1 and bk = 2k−1. See Figure 4.2(a-e) of Chapter 4 for the details

illustration.

5.4.1 A multilevel algorithm for CDSS

Our goal is to solve (5.7) using a multilevel method in discretise-optimise scheme

without approximation of ν ′ (u). The finite difference method is used to discretise (5.7)

as done in related works [24, 33]. The discretised version of (5.7) is given by

min
u
CDSS (u, c1, c2) ≡ min

u
CDSSa (u1,1, u2,1, ..., ui−1,j , ui,j , ui+1,j , ..., un,n, c1, c2)

= µ̄
n−1∑
i=1

n−1∑
j=1

gi,j

√
(ui,j − ui,j+1)2 + (ui,j − ui+1,j)

2 + β

(5.12)

+

n∑
i=1

n∑
j=1

(
(c1 − zi,j)2 − (c2 − zi,j)2

)
ui,j + θ

n∑
i=1

n∑
j=1

Pdi,jui,j + α

n∑
i=1

n∑
j=1

νi,j

where µ̄ = µ
h , c1 =

n∑
i=1

n∑
j=1

zi,jui,j
/ n∑
i=1

n∑
j=1

ui,j , c2 =
n∑
i=1

n∑
j=1

zi,j (1− ui,j)
/ n∑
i=1

n∑
j=1

(1− ui,j),

νi,j =

[√
(2ui,j − 1)2 + ε− 1

](1

2
+

1

π
arctan

√
(2ui,j − 1)2 + ε− 1

ε

)
,

gi,j = g(xi, yj) and Pdi,j = (xi, yj).

Here u denotes a row vector.

As a prelude to multilevel methods, minimise (5.12) by a coordinate descent method

(also known as relaxation algorithm) on the finest level 1:


Given u(0) =

(
u

(0)
i,j

)
with m = 0,

Solve u
(m+1)
i,j = arg min

ui,j∈R
CDSSloc (ui,j , c1, c2) for i, j = 1, 2, ...n,

Repeat the above steps with m = m+ 1 until stopped.

(5.13)

Here equation (5.13) is simply obtained by expanding and simplifying the main model
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in (5.12) i.e.

CDSSloc (ui,j , c1, c2)

≡ CDSSa
(
u

(m)
1,1 , u

(m)
2,1 , ..., u

(m)
i−1,j , ui,j , u

(m)
i+1,j , ..., u

(m)
m,n, c1, c2

)
− CDSS(m)

= µ̄

[
gi,j

√(
ui,j − u(m)

i+1,j

)2
+
(
ui,j − u(m)

i,j+1

)2
+ β

+gi−1,j

√(
ui,j − u(m)

i−1,j

)2
+
(
u

(m)
i−1,j − u

(m)
i−1,j+1

)2
+ β

+gi,j−1

√(
ui,j − u(m)

i,j−1

)2
+
(
u

(m)
i,j−1 − u

(m)
i+1,j−1

)2
+ β

]
+ ui,j

(
(c1 − zi,j)2 − (c2 − zi,j)2

)
+ θPdi,jui,j + α (νi,j)

with Neumann’s boundary condition applied where CDSS(m) denotes the sum of all

terms in CDSSa that do not involve ui,j . Clearly one seems that this is a coordinate

descent method. It should be remarked that the formulation in (5.13) is based on the

work in [24] and [33].

The Newton method is used to solve the one-dimensional problem from (5.13) by

iterating u(m) → u→ u(m+1):

µ̄gi,j
2ui,j−u

(m)
i+1,j−u

(m)
i,j+1√(

ui,j−u
(m)
i+1,j

)2
+
(
ui,j−u

(m)
i,j+1

)2
+β

+ µ̄gi−1,j
ui,j−u

(m)
i−1,j√(

ui,j−u
(m)
i−1,j

)2
+
(
u
(m)
i−1,j−u

(m)
i−1,j+1

)2
+β

+µ̄gi,j−1
ui,j−u

(m)
i,j−1√(

ui,j−u
(m)
i,j−1

)2
+
(
u
(m)
i,j−1−u

(m)
i+1,j−1

)2
+β

+
(

(c1 − zi,j)2 − (c2 − zi,j)2
)

+θPdi,j + ανi,j
′ = 0

giving rise to the form

unewi,j = uoldi,j − T old/Bold (5.14)

where

T old =
(µ̄gi,j)(2u

old
i,j −u

(m)
i+1,j−u

(m)
i,j+1)√(

uoldi,j −u
(m)
i+1,j

)2
+
(
uoldi,j −u

(m)
i,j+1

)2
+β

+
(µ̄gi−1,j)(u

old
i,j −u

(m)
i−1,j)√(

uoldi,j −u
(m)
i−1,j

)2
+
(
u
(m)
i−1,j−u

(m)
i−1,j+1

)2
+β

+
(µ̄gi,j−1)(uoldi,j −u

(m)
i,j−1)√(

uoldi,j −u
(m)
i,j−1

)2
+
(
u
(m)
i,j−1−u

(m)
i+1,j−1

)2
+β

+
(

(c1 − zi,j)2 − (c2 − zi,j)2
)

+θPdi,j + ανi,j
′ (old)

Bold =
2µ̄gi,j√(

uoldi,j −u
(m)
i+1,j

)2
+
(
uoldi,j −u

(m)
i,j+1

)2
+β

−
µ̄gi,j

(
2uoldi,j −u

(m)
i+1,j−u

(m)
i,j+1

)2√((
uoldi,j −u

(m)
i+1,j

)2
+
(
uoldi,j −u

(m)
i,j+1

)2
+β

) 3
2

+
µ̄gi−1,j√(

uoldi,j −u
(m)
i−1,j

)2
+
(
u
(m)
i−1,j−u

(m)
i−1,j+1

)2
+β

−
µ̄gi−1,j

(
uoldi,j −u

(m)
i−1,j

)2√((
uoldi,j −u

(m)
i−1,j

)2
+
(
u
(m)
i−1,j−u

(m)
i−1,j+1

)2
+β

) 3
2

+
µ̄gi,j−1√(

uoldi,j −u
(m)
i,j−1

)2
+
(
u
(m)
i,j−1−u

(m)
i+1,j−1

)2
+β

−
µ̄gi,j−1

(
uoldi,j −u

(m)
i,j−1

)2√((
uoldi,j −u

(m)
i,j−1

)2
+
(
u
(m)
i,j−1−u

(m)
i+1,j−1

)2
+β

) 3
2

+ανi,j
′′ (old).
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To develop a multilevel method for this coordinate descent method, we interpret

solving (5.13) as looking for the best correction constant ĉ at the current approximation

u
(m)
i,j on level 1 (the finest level) that minimises for c i.e.

min
ui,j∈R

CDSSloc (ui,j , c1, c2) = min
c∈R

CDSSloc
(
u

(m)
i,j + c, c1, c2

)
.

Hence, we may rewrite (5.13) in an equivalent form:



Given u(0) =
(
u

(0)
i,j

)
with m = 0,

Solve ĉ = arg min
c∈R

CDSSloc
(
u

(m)
i,j + c, c1, c2

)
for i, j = 1, 2, ...n,

Update u
(m+1)
i,j = u

(m)
i,j + ĉ,

Repeat the above steps with m = m+ 1 until stopped.

(5.15)

Let’s set the following: b = 2k−1, k1 = (i− 1) b + 1, k2 = ib, `1 = (j − 1) b + 1,

`2 = jb, and c = (ci,j) . Denoted the current ũ then, the computational stencil involving

c on level k can be shown as follows

(5.16)

The illustration shown above is consistent with Figure 4.2 (f) and the key point is

that interior pixels do not involve ci,j in the formulation’s first nonlinear term. This is

because the finite differences are not changed at interior pixels by the same update as

in √
(ũk,l + ci,j − ũk+1,l − ci,j)2 + (ũk,l + ci,j − ũk,l+1 − ci,j)2 + β

=
√

(ũk,l − ũk+1,l)
2 + (ũk,l − ũk,l+1)2 + β.
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Then, minimising for c, the problem (5.15) is equivalent to minimise the following

FSC1 (ci,j) = µ̄

`2∑
`=`1

gk1−1,`

√
[ci,j − (ũk1−1,` − ũk1,`)]

2 + (ũk1−1,` − ũk1−1,`+1)2 + β

+µ̄

k2−1∑
k=k1

gk,`2

√
[ci,j − (ũk,`2+1 − ũk,`2)]2 + (ũk,`2 − ũk+1,`2)2 + β

+µ̄gk2,`2

√
[ci,j − (ũk2,`2+1 − ũk2,`2)]2 + [ci,j − (ũk2+1,`2 − ũk2,`2)]2 + β

+µ̄

`2−1∑
`=`1

gk2,`

√
[ci,j − (ũk2+1,` − ũk2,`)]

2 + (ũk2,` − ũk2,`+1)2 + β

+µ̄

k2∑
k=k1

gk,`1−1

√
[ci,j − (ũk,`1−1 − ũk,`1)]2 + (ũk,`1−1 − ũk+1,`1−1)2 + β

+

k2∑
k=k1

`2∑
`=`1

(ũk,` + ci,j)
(

(c1 − zk,`)2 − (c2 − zk,`)2
)

+θ

k2∑
k=k1

`2∑
`=`1

(ũk,` + ci,j)Pdk,` + α

k2∑
k=k1

`2∑
`=`1

ν (ũk,` + ci,j)

(5.17)

where the third term may be simplified using (c− a)2 + (c− b)2 + β = 2
(
c− a+b

2

)2
+

2
(
a−b

2

)2
+ β. Further the local minimisation problem for block (i, j) on level k with

respect to ci,j amounts to minimising the following equivalent functional

FSC1 (ci,j) = µ̄

`2∑
`=`1

gk1−1,`

√
(ci,j − hk1−1,`)

2 + υ2
k1−1,` + β

+µ̄

k2−1∑
k=k1

gk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+µ̄

`2−1∑
`=`1

gk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β

+µ̄

k2∑
k=k1

gk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+µ̄
√

2gk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+
β

2

+

k2∑
k=k1

`2∑
`=`1

(ci,j)
(

(c1 − zk,`)2 − (c2 − zk,`)2
)

+θ

k2∑
k=k1

`2∑
`=`1

(ũk,` + ci,j)Pdk,` + α

k2∑
k=k1

`2∑
`=`1

ν (ũk,` + ci,j)

(5.18)
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where we have used the following notation (which will be used later also):

hk,` = ũk+1,` − ũk,`, υk,` = ũk,`+1 − ũk,`, υk2,`2 = ũk2,`2+1 − ũk2,`2 ,
hk2,`2 = ũk2+1,`2 − ũk2,`2 , ῡk2,`2 =

υk2,`2+hk2,`2
2 , h̄k2,`2 =

υk2,`2−hk2,`2
2 ,

hk1−1,` = ũk1,` − ũk1−1,`, υk1−1,` = ũk1−1,`+1 − ũk1−1,`, υk,`2 = ũk,`2+1 − ũk,`2 ,
hk,`2 = ũk+1,`2 − ũk,`2 , hk2,` = ũk2+1,` − ũk2,`, υk2,` = ũk2,`+1 − ũk2,`,
υk,`1−1 = ũk,`1 − ũk,`1−1, hk,`1−1 = ũk+1,`1−1 − ũk,`1−1.

(5.19)

For solution on the coarsest level, we look for a single constant update for the

current approximation ũ that is

min
c
{FSC1 (ũ+ c) =

n∑
i=1

n∑
j=1

(ũi,j + c)
(

(c1 − zi,j)2 − (c2 − zi,j)2
)

+µ̄

n−1∑
i=1

n−1∑
j=1

gi,j

√
(ũi,j + c− ũi,j+1 − c)2 + (ũi,j + c− ũi+1,j − c)2 + β

+θ

n∑
i=1

n∑
j=1

Pdi,j (ũi,j + c) + α

n∑
i=1

n∑
j=1

ν (ũi,j + c)}

which is equivalent to

min {
c

FSC1 (ũ+ c) =
n∑
i=1

n∑
j=1

(ũi,j + c)
(

(c1 − zi,j)2 − (c2 − zi,j)2
)

+θ

n∑
i=1

n∑
j=1

Pdi,j (ũi,j + c) + α

n∑
i=1

n∑
j=1

ν (ũi,j + c)}.
(5.20)

The solutions of the above local minimisation problems, solved using a Newton

method as in (5.14) or a fixed point method for t iterations (inner iteration), defines

the update solution u = u+Qkc where Qk is the interpolation operator distributing ci,j

to the corresponding bk × bk block on level k as illustrated in (5.16). Then we obtain

a multilevel method if we cycle through all levels and all blocks on each level until

the relative error in two consecutive cycles (outer iteration) is smaller than tol or the

maximum number of cycle, maxit is reached.

Finally our proposed multilevel method for CDSS is summarised in Algorithm 5.

We will use the term SC1 to refer this multilevel Algorithm 5.

In order to get fast convergence, it is recommended to start updating our multilevel

algorithm from the fine level to the coarse level. In a separate experiment we found

that if we adjust the coarse structure before the fine level, the convergence is slower.

In addition, we recommend the value of inner iteration t = 1 is used to update the

algorithm in a fast manner.
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Algorithm 5 SC1 – Multilevel algorithm for the CDSS model

Given z, an initial guess u, the stop tolerance (tol), and maximum multilevel cycle
(maxit) with L+ 1 levels,

1) Set ũ = u.

2) Smooth for t iteration the approximation on the finest level 1 that is solve (5.13)
for i, j = 1, 2, ...n

3) Iterate for t times on each coarse level k = 2, 3, ...L, L+ 1 :
> If k ≤ L, compute the minimiser c of (5.18)
> Solve (5.20) on the coarsest level k = L+ 1
> Add the correction u = u+Qkc where Qk is the interpolation operator distributing
ci,j to the corresponding bk × bk block on level k as illustrated in (5.16).

4) Check for convergence using the above criteria. If not satisfied, return to Step 1.
Otherwise exit with solution u = ũ.

5.4.2 A multilevel algorithm for the proposed model

We now consider our main model as expressed by (5.10)–(5.11). Minimisations of J is

with respect to u in (5.10) and w in (5.11) respectively. The solution of (5.11) can be

obtained analytically following Proposition 5.3.1. It remains to develop a multilevel

algorithm to solve (5.10).

Similar to the last subsection, the discretised form of the functional J1 (u,w) of

problem (5.10) is as follows:

min
u
J1 (u,w) , (5.21)

where

J1 (u,w) = µ̄
n−1∑
i=1

n−1∑
j=1

gi,j

√
(ui,j − ui,j+1)2 + (ui,j − ui+1,j)

2 + β+
1

2ρ

n∑
i=1

n∑
j=1

(ui,j − wi,j)2

(5.22)

Clearly this is a much simpler functional than the CDSS model (5.12) so the method

can be similarly developed.

Consider the minimisation of (5.22) by the coordinate descent method on the finest

level 1:


Given u(0) =

(
u

(0)
i,j

)
with m = 0,

Solve u
(m+1)
i,j = arg min

ui,j∈R
J loc1 (ui,j , c1, c2) for i, j = 1, 2, ...n,

Repeat the above steps with m = m+ 1 until stopped.

(5.23)
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where,

J loc1 (ui,j , c1, c2) = J1 − J0 = µ̄gi,j

√(
ui,j − u(m)

i+1,j

)2
+
(
ui,j − u(m)

i,j+1

)2
+ β

+µ̄gi−1,j

√(
ui,j − u(m)

i−1,j

)2
+
(
u

(m)
i−1,j − u

(m)
i−1,j+1

)2
+ β

+µ̄gi,j−1

√(
ui,j − u(m)

i,j−1

)2
+
(
u

(m)
i,j−1 − u

(m)
i+1,j−1

)2
+ β

+ 1
2ρ(ui,j − wi,j)2.

The term J0 refers to a collection of all terms that are not dependent on ui,j . For ui,j

at the boundary, Neumann’s condition is used. Note that each subproblem in (5.23) is

only one dimensional, which is the key to the efficiency of our new method.

To introduce the multilevel algorithm, it is of interest to rewrite (5.23) in an

equivalent form:

ĉ = arg min
c∈R

J loc1

(
u

(m)
i,j + c, c1, c2

)
, u

(m+1)
i,j = u

(m)
i,j + ĉ for i, j = 1, 2, ..., n. (5.24)

Using the stencil in (5.16), the problem (5.24) is equivalent to minimise the following

F2 (ci,j) = µ̄

`2∑
`=`1

gk1,`

√
[ci,j − (ũk1−1,` − ũk1,`)]

2 + (ũk1−1,` − ũk1−1,`+1)2 + β

+µ̄

k2−1∑
k=k1

gk,`2

√
[ci,j − (ũk,`2+1 − ũk,`2)]2 + (ũk,`2 − ũk+1,`2)2 + β

+µ̄gk2,`2

√
[ci,j − (ũk2,`2+1 − ũk2,`2)]2 + [ci,j − (ũk2+1,`2 − ũk2,`2)]2 + β

+µ̄

`2−1∑
`=`1

gk2,`

√
[ci,j − (ũk2+1,` − ũk2,`)]

2 + (ũk2,` − ũk2,`+1)2 + β

+µ̄

k2∑
k=k1

gk,`1−1

√
[ci,j − (ũk,`1−1 − ũk,`1)]2 + (ũk,`1−1 − ũk+1,`1−1)2 + β

+
1

2ρ

k2∑
k=k1

`2∑
`=`1

(uk,` + ci,j − wk,`)2.

(5.25)
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After some algebraic manipulation to simplify (5.25), we arrive at the following

F2 (ci,j) = µ̄

`2∑
`=`1

gk1−1,`

√
(ci,j − hk1−1,`)

2 + υ2
k1−1,` + β

+µ̄

k2−1∑
k=k1

gk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+µ̄

`2−1∑
`=`1

gk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β

+µ̄

k2∑
k=k1

gk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+µ̄
√

2gk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+
β

2

+
1

2ρ

k2∑
k=k1

`2∑
`=`1

(uk,` + ci,j − wk,`)2.

(5.26)

On the coarsest level (L+ 1), a single constant update for the current ũ is given as

min {
c

F2 (ũ+ c) =
1

2ρ

n∑
i=1

n∑
j=1

(ui,j + c− wi,j)2} (5.27)

which has a simple and explicit solution.

Then, we obtain a multilevel method if we cycle through all levels and all blocks on

each level. The process is stopped if the relative error in two consecutive cycles (outer

iteration) is smaller than tol or the maximum number of cycle, maxit is reached.

The overall procedure to solve the new primal-dual model is given in Algorithm 6.

We will use the term SC2 to refer this algorithm to solve the proposed model expressed

in (5.10) and (5.11).

Again, in order to update the algorithm in a fast manner, we recommend to adjust

the fine level before the coarse level and to use the inner iteration t = 1.

5.5 A new variant of the multilevel algorithm SC2

Our above proposed method defines a sequence of search directions based in a multilevel

setting for an optimisation problem. We now modify it so that the new algorithm has

a formal decaying property.

Denote the functional in (5.22) by g(u) : Rn2 → R and represent each subproblem

by

c∗ = argmin
c∈R

g(u` + cp`), u`+1 = u` + c∗p`, p` = ẽ`(mod K)+1, ` = 0, 1, 2, . . .

where K =
∑L

k=0
n2

4k
= (4n2 − 1)/3 is the total number of search directions across all

levels 1, 2, . . . , L+ 1 for this unconstrained optimisation problem. We first investigate
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Algorithm 6 SC2 – Algorithm to solve the new primal-dual model

Given image z, an initial guess u, the stop tolerance (tol), and maximum multilevel
cycle (maxit) with L+ 1 levels. Set w = u,

1) Solve (5.10) to update u using the following steps:

i). Set ũ = u.

ii). Smooth for t iteration the approximation on the finest level 1 that is solve
(5.23) for i, j = 1, 2, ...n

iii). Iterate for t times on each coarse level k = 2, 3, ...L, L+ 1 :
> If k ≤ L, compute the minimiser c of (5.26)
> Solve (5.27) on the coarsest level k = L+ 1
> Add the correction u = u + Qkc where Qk is the interpolation operator
distributing ci,j to the corresponding b × b block on level k as illustrated in
(5.16).

2) Solve (5.11) to update w:

i). Set w̃ = w.

ii). Compute w using the formula (5.9).

3) Check for convergence using the above criteria. If not satisfied, return to Step 1.
Otherwise exit with solution u = ũ and w = w̃

these search directions {ẽ} and see that, noting bk = 2k−1, τ = n/bk,

level k = 1, ẽj = ej , j = 1, 2, ..., n2

level k = 2, ẽn
2+j = esj + esj+1 + esj+n + esj+n+1 j = 1, 2, ..., n

2

4

sj = bk

[
j−1
τk

]
n+

(
j − τ

[
j−1
τk

]
− 1
)
bk + 1;

level k = 3, ẽn
2+n2

4
+j =

3∑̀
=0

3∑
m=0

esj+`n+m, j = 1, 2, ..., n
2

42

sj = bk

[
j−1
τk

]
n+

(
j − τ

[
j−1
τk

]
− 1
)
bk + 1;

...
...

...

level k = L+ 1 ẽK =
n−1∑̀
=0

n−1∑
m=0

esj+`n+m =
n2∑̀
=1

e`, j = n2

4L
= 1

sj = bk

[
j−1
τk

]
n+

(
j − τ

[
j−1
τk

]
− 1
)
bk + 1 = 1;

where ej denotes the j-th unit (coordinate) vector in Rn2
, and on a general level k, with

τk×τk pixels, the j−th index corresponds to position (j−τk[(j−1)/τk], [(j−1)/τk]+1)

which is, on level 1, the global position ([(j− 1)/τk]bk + 1, (j− τk[(j− 1)/τk]− 1)bk + 1)

which defines the sum of unit vectors in a bk × bk block – see Figure 4.2(a-e). Clearly

the sequence {p`} is essentially periodic (finitely many) and free-steering (spanning

Rn2
) [105].

Recall that a sequence {u`} is strongly downward (decaying) with respect to g(u)

i.e.

g(u`) ≥ g(v`) ≥ g(u`+1), v` = (1− t)u` + tu`+1 ∈ D0, ∀ t ∈ [0, 1]. (5.28)
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This property is much stronger than the usual decaying property g(u`) ≥ g(u`+1) which

is automatically satisfied by our Algorithm SC2.

By [105, Thm 14.2.7], to ensure the minimising sequence {u`} to be strongly

downward, we modify the subproblem min J loc1 (u` + cp`, c1, c2) to the following

u`+1 = u` + c∗q`, c∗ = argmin{c ≥ 0 | ∇JT q` = 0}, ` ≥ 0 (5.29)

where the `-th search direction is modified to

q` =

{
p`, if ∇JT p` ≤ 0,

−p`, if ∇JT p` > 0.

Here the equation ∇JT q` = 0 for c and the local minimising subproblem (5.24) i.e.

minc J
loc
1 (ûi,j + c, c1, c2) are equivalent. Now the new modification is to enforce c ≥ 0

and the sequence {q`} is still essentially periodic.

We shall call the modified algorithm SC2M.

5.6 Convergence and complexity analysis

Proving convergence of the above algorithms SC1-SC2 for

min
u∈R

g(u)

would be a challenging task unless we make a much stronger assumption of uniform

convexity for the minimising functional g. However it turns out that we can prove the

convergence of SC2M for solving problem (5.22) without such an assumption. For

theoretical purpose, we assume that the underlying functional g = g(u) is hemivariate

i.e. g(u+ t(v − u)) = g(u) for t in [0, 1] and u 6= v.

To prove convergence of SC2M, we need to show that these 5 sufficient conditions

are met

i) g(u) is continuously differentiable in D0 = [0, 1]n
2 ⊂ Rn2

;

ii) the sequence {q`} is uniformly linearly independent;

iii) the sequence {u`} is strongly downward (decaying) with respect to g(u);

iv) lim
`→∞

g′(u`)q`/‖q`‖ = 0,

v) the set S = {u ∈ D0 | g′(u) = 0} is non-empty.

Here g′(u) = (∇g(u))T . Then we have the convergence of {u`} to a critical point u∗

[105, Thm 14.1.4]

lim
`→∞

inf
u∈S
‖u` − u∗‖ = 0.

We now verify these conditions. Firstly condition i) is evident if β 6= 0 and condition

ii) also holds since ‘essentially periodic’ implies ‘uniformly linearly independent’ [105,
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§14.6.3]. Condition v) requires an assumption of existence of stationary points for

g(u). Below we focus on verifying iii)-iv). From [105, Thm 14.2.7], the construction

of {u`} via (6.25) ensures that the sequence {u`} is strongly downward and further

lim`→∞ g
′(u`)q`/‖q`‖ = 0. Hence conditions iii)-iv) are satisfied.

Note condition iii) and the assumption of g(u) being hemivariate imply that

lim`→∞ ‖u`+1 − u`‖ = 0 from [105, Thm 14.1.3]. Further condition iv) and the fact

lim`→∞ ‖u`+1 − u`‖ = 0 lead to the result lim`→∞ g
′(u`) = 0. Finally by [105, Thm

14.1.4], the condition lim`→∞ g
′(u`) = 0 implies lim`→∞ infu∈S ‖u` − u∗‖ = 0. Hence

the convergence is proved.

Next, we will give the complexity analysis of our SC1, SC2 and SC2M. Let N = n2

be the total number of pixels (unknowns). First, we compute the number of floating

point operations (flops) for SC1 for level k as follows:

Quantities Flop counts for SC1

h, υ 4bkτ
2
k

θ term 2N

data term 2N

α term 2N
ssmoothing

steps
38bkτ

2
k s

Then, the flop counts for all level is WSC1 =
L+1∑
k=1

(
6N + 4bkτ

2
k + 38bkτ

2
k s
)

where

k = 1 (finest) and k = L + 1 (coarsest). Noting bk = 2k−1, τk = n/bk, N = n2, we

compute the upper bound for SC1 as follows:

WSC1 = 6(L+ 1)N +

L+1∑
k=1

(
4N

bk
+

38Ns

bk

)
= 6(L+ 1)N + (4 + 38s)N

L∑
k=0

(
1

2k

)
< 6N log n+ 14N + 76Ns ≈ O (N logN)

Similarly, the flops for SC2 is given as

Quantities Flop counts for SC2

h, υ 4bkτ
2
k

ρterm 2N

w term 6N
ssmoothing

steps
31bkτ

2
k s

Hence, the total flop counts for SC2 is WSC2 = 6N +
L+1∑
k=1

(
2N + 4bkτ

2
k + 31bkτ

2
k s
)
.

This gives the upper bound for SC2 as

WSC2 = 6N + 2(L+ 1)N +
L+1∑
k=1

(
4N

bk
+

31Ns

bk

)
= 6N + 2(L+ 1)N + (4 + 31s)N

L∑
k=0

(
1
2k

)
< 2N log n+ 16N + 62Ns ≈ O (N logN)
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Finally, the approximate cost of an extra operation ∇JT q` in SC2M is 2N that

results to the total flop counts for SC2M as WSC2M = 6N+
L+1∑
k=1

(
4N + 4bkτ

2
k + 31bkτ

2
k s
)
.

This gives the upper bound for SC2M as

WSC2M = 6N + 4(L+ 1)N +

L+1∑
k=1

(
4N

bk
+

31Ns

bk

)
= 6N + 4(L+ 1)N + (4 + 31s)N

L∑
k=0

(
1
2k

)
< 4N log n+ 18N + 62Ns ≈ O (N logN)

One can observe that both SC1, SC2 and SC2M are of the optimal complexity

O(N logN) expected of a multilevel method and WSC1 > WSC2M > WSC2.

5.7 Numerical experiments

This section will demonstrate the performance of the developed multilevel methods

through several experiments. The algorithms to be compared are:

Name Algorithm Description

CMT Old :
The selective segmentation model proposed by Liu et al. [83]

solved by a multilevel algorithm.

NCZZ Old :
The interactive image segmentation model proposed by

Nguyen et al. [103] solved by a Split Bregman method.

BC Old :
The selective segmentation model proposed by Badshah and

Chen [12] solved by an AOS algorithm.

RC Old :
The selective segmentation model proposed by Rada and

Chen [111] solved by an AOS algorithm.

SC0 Old : The modified AOS algorithm [129] for the CDSS model [129].

SC1 New : The multilevel Algorithm 5 for the CDSS model [129].

SC2 New :
The multilevel Algorithm 6 for the new primal-dual model

(5.10)–(5.11).

SC2M New : The modified multilevel algorithm for SC2.

There are five sets of tests carried out. In the first set, we will choose the best

multilevel algorithm among SC1, SC2 and SC2M by comparing their segmentation

performances in terms of CPU time (in seconds) and quality. The segmentation quality

is measured based on the Jaccard similarity coefficient (JSC):

JSC =
|Sn ∩ S∗|
|Sn ∪ S∗|

where Sn is the set of the segmented domain u and S∗ is the true set of u (which is only

easy to obtain for simple images). The similarity functions return values in the range

[0, 1]. The value 1 indicates perfect segmentation quality while the value 0 indicates

poor quality.

In the second set, we will perform the speed, quality, and parameter sensitivity

test for the chosen multilevel algorithm (from set 1) and compare its performance with
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Problem 1 Problem 2 Problem 3 Problem 4

Problem 5 Problem 6 Problem 7 Problem 8

Figure 5.1: Segmentation test images and markers.

SC0. In the third, fourth, and fifth set, we will perform the segmentation quality

comparison of the chosen multilevel algorithm (from set 1) with CMT model [83], NCZZ

model [103], and BC model [12] and RC model [111] respectively.

The test images used in this paper are listed in Figure 5.1. We remark that Problems

1-2 are obtained from the Berkeley segmentation dataset and benchmark [92], while

Problems 3-4 are obtain from database provided by [47]. All algorithms are implemented

in MATLAB R2017a on a computer with Intel Core i7 processor, CPU 3.60GHz, 16

GB RAM CPU.

As a general guide to choose suitable parameters for different images, our experi-

mental results recommend the following. The parameters µ̄ = µ can be between 10−5

and 5× 105, β = 10−4, ρ in between 10−5 and 10−1, and γ in between 1/2552 and 10.

Tuning the parameter θ depends on the targeted object. If the object is too close to a

nearby boundary then θ should be large. Segmenting a clearly separated object in an

image needs just a small θ.

5.7.1 Test Set 1: Comparison of SC1, SC2, and SC2M

In the first experiment, we compare the segmentation speed and quality for SC1, SC2

and SC2M using test Problem 1-4 with size of 128×128. Here, we take µ̄ = 1, β = 10−4,

ρ = 10−3, θ = 1000 (Problem 1-3), θ = 2000 (Problem 4), ε = 0.12, γ = 10, tol = 10−2

and maxit = 104.

Figure 5.2 shows successful selective segmentation results by SC1, SC2 and SC2M

for Problem 4. The segmentation quality for all algorithms is the same (JSC=0.96).

However, SC2 performs faster (4.9 seconds) than SC1 (10.5 seconds) and SC2M (6.3

seconds).

The remaining results are tabulated in Table 5.1. We can see for all four test
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Table 5.1: Test Set 1 – Comparison of computation time (in seconds) and segmentation quality
of SC1, SC2, and SC2M for Problem 1- 4. Clearly, for all four test problems, SC2 gives the
highest accuracy and performs fast segmentation process compared to SC1 and SC2M.

Algorithm Problem Iteration
CPU time

(s)
JSC

1 6 7.0 0.82

SC1 2 12 20.0 0.82

3 15 24.4 0.91

4 6 10.5 0.96

1 5 5.9 0.82

SC2 2 8 8.7 0.82

3 4 4.9 0.91

4 4 4.9 0.96

1 5 7.9 0.79

SC2M 2 8 11.7 0.82

3 5 7.9 0.85

4 4 6.3 0.96

problems, SC2 gives the highest accuracy and performs the fastest compared to SC1

and SC2M.

Next, we test the performance of all the multilevel algorithms to segment Problem 5

in different resolutions. We take µ̄ = 1, β = 10−4, ρ = 10−5, θ = 5000, ε = 0.12, γ = 10,

tol = 10−3 and maxit = 104. The segmentation results for image size 1024× 1024 are

shown in Figure 5.3. The CPU times needed by SC2 to complete the segmentation

of image size 1024 × 1024 is 413.2s while SC1 and SC2M need 690.6s and 636.1s

respectively which implies that SC2 can be 277s faster than SC1 and 222s faster than

SC2M. All the algorithms reach equal quality of segmentation.

The remaining result in terms of quality and CPU time are tabulated in Table 5.2.

Column 6 (ratios of the CPU times) shows that SC1, SC2 and SC2M are of complexity

O (N logN). Again, we can see that for all image sizes, all algorithms have equal

quality but SC2 is faster than other algorithms.

To illustrate the convergence of our multilvel algorithms, we plot in Figure 5.4 the

residuals of SC1, SC2 and SC2M in segmenting Problem 5 for size 128× 128 based on

Table 5.2. There we extend the iterations up to 10. As we can see, the residuals of

the algorithms keep reducing. The residuals for SC2 and SC2M decrease more rapidly

than SC1.

Based on the experiments above, we observe that SC2 performs faster than the

other two multilevel algorithms. In addition, for all problems tested, SC2 gives the

higher segmentation quality than SC1 and SC2M. Therefore in practice, we recommend

SC2 as the better multilevel algorithm for our convex selective segmentation method.

5.7.2 Test Set 2: Comparison of SC2 with SC0

The second set starts with the speed and quality comparison of SC2 with SC0 in

segmenting Problem 5 with multiple resolutions. We take µ̄ = µ = 1, β = 10−4,
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SC1 SC2 SC2M

Figure 5.2: Test Set 1 – Segmentation of Problem 4 using our multilevel algorithms SC1, SC2,
and SC2M with same quality (JSC=0.96) achieved. However, SC2 performs faster (4.9 seconds)
compared to SC1 (10.5 seconds) and SC2M (6.3 seconds).

SC1 SC2 SC2M

Figure 5.3: Test Set 1 – Segmentation of Problem 5 of size 1024x1024 for SC1, SC2, and
SC2M. SC2 can be 277 seconds faster than SC1 and 222 seconds faster than SC2M : see Table
5.2. All algorithms give similar segmentation quality.

Table 5.2: Test Set 1 – Comparison of computation time (in seconds) and segmentation quality
of SC1, SC2 and SC2M for Problem 5. The time ratio, tn/tn−1 close to 4.4 indicates O(N logN)
speed. Clearly, all algorithms have similar quality but SC2 is faster than SC1 and SC2M for all
image sizes.

Algorithm
Size

N = n× n
Unknowns

N
Iteration

Time,

tn

tn
tn−1

JSC

128× 128 16384 6 10.6 1.0

SC1 256× 256 65536 7 43.5 4.1 1.0

512× 512 262144 7 173.7 4.0 1.0

1024× 1024 1048576 7 690.6 4.0 1.0

128× 128 16384 8 8.7 1.0

SC2 256× 256 65536 7 23.7 2.7 1.0

512× 512 262144 8 103.9 4.4 1.0

1024× 1024 1048576 8 413.2 4.0 1.0

128× 128 16384 8 11.6 1.0

SC2M 256× 256 65536 7 36.5 3.1 1.0

512× 512 262144 8 156.7 4.3 1.0

1024× 1024 1048576 8 636.1 4.1 1.0
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SC1 SC2 SC2M

Figure 5.4: Test Set 1 – The residual plots for SC1, SC2, and SC2M to illustrate the convergence
of the algorithms. The extension up to 10 iterations shows that the residual of the algorithms
keep reducing. The residual for SC2 and SC2M decrease rapidly compared to SC1.

Table 5.3: Test Set 2 – Comparison of computation time (in seconds) and segmentation quality
of SC0 and SC2 for Problem 5 with different resolutions. Again, the time ratio, tn/tn−1 ≈ 4.4
indicates O(N logN) speed since NL = n2L = (2L)2 = 4L and kNL logNL/(kNL−1 logNL−1) =
4L/(L− 1) ≈ 4.4. Clearly, all algorithms have similar quality but SC2 is faster than SC0 for all
image sizes. Here, (**) means taking too long to run. For image size 512× 512, SC2 performs
33 times faster than SC0.

Algorithm
Size

N = n× n
Time,

tn

tn
tn−1

JSC

128× 128 243.5 1.0

SC0 256× 256 872.7 3.6 1.0

512× 512 3803.1 4.4 1.0

1024× 1024 ** ** **

128× 128 8.6 1.0

SC2 256× 256 27.2 3.2 1.0

512× 512 112.0 4.1 1.0

1024× 1024 453.6 4.1 1.0

ρ = 10−5, θ = 5000, ε = 0.01, γ = 10, tol = 10−6 and maxit = 5000.

The segmentation results are tabulated in Table 5.3. The ratios of the CPU times

in column 4 show that SC0 and SC1 are of complexity O(N logN). The symbols (**)

indicates that too much time is taken to complete the segmentation task. For all image

sizes, SC0 and SC2 give the same high quality.

Next, we shall test parameter sensitivity for our recommended SC2. We focus on

three important parameters: the regularisation parameter µ, the regularising parameter

β and the area parameter θ. The SC2 results are compared with SC0.

Test on parameter µ. The regularisation parameter µ in a segmentation model

not only controls a balance of the terms but also implicitly defines the minimal diameter

of detected objects among a possibly noisy background [152]. Here, we test sensitivity

of SC2 for different regularisation parameters µ in segmenting an object in Problem 6

and compare with SC0 in terms of segmentation quality. We set β = 10−4, ρ = 10−5,

ε = 0.01, γ = 1/2552, θ = 5000, tol = 10−5 and maxit = 104.
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(a) (b)

Figure 5.5: Test Set 2 – The segmentation accuracy for SC0 and SC2 in segmenting Problem
6 using different values of parameter µ in (a) and parameter θ in (b). The results demonstrate
that SC2 is successful for a much larger range for both parameters.

Table 5.4: Test Set 2 – Dependence of our SC2 on β for segmenting Problem 6 in Figure 4.4.

β JSC Energy

1 0.95 -5.342264e+06

10−1 0.95 -5.341634e+06

10−5 0.95 -5.342115e+06

10−10 0.95 -5.342146e+06

10−15 0.95 -5.342102e+06

Figure 5.5a shows the value of JSC for SC0 and SC2 respectively for different values

of µ. Clearly, SC2 is successful for larger range of µ than SC0. This finding implies

that SC2 is less dependent to parameter µ than SC0.

Test on area parameter θ. As a final comparison of SC0 and SC2, we will test

how the area parameter θ effects the segmentation quality of SC0 and SC2. For this

comparison, we use Problem 6 and set µ̄ = µ = 100, β = 10−4, ρ = 10−3, ε = 0.01,

γ = 1/2552, tol = 10−5 and maxit = 104. Figure 5.5b shows the value of JSC for SC0

and SC2 respectively for different values of θ. We observe that SC2 is successful for a

larger range of θ than SC0. This finding implies that SC2 is less sensitive to parameter

θ than SC0.

Test on parameter β. Finally, we examine the sensitivity of our proposed SC2 on

parameter β. The parameter β is used to avoid singularity or to ensure the original cost

function is differentiable and it should be as small as possible (close to 0) so that the

modified cost function (having β) in (5.22) is close to the original cost function in (5.10).

We have chosen to segment an object (organ) in Problem 6. Six different values of

β are tested: β = 1, 10−1, 10−5, 10−10, and 10−15. Here, µ̄ = 100, ρ = 10−3,

θ = 5500, γ = 1/2552, tol = 10−3 and maxit = 104. For quantitative analysis, we

compute the energy value in equation (5.10) (that has no β) and the JSC value. Both

values are tabulated in Table 5.4. One can see that as β decreases, the energy value

gets closer to each other. The segmentation quality measured by JSC values remain

the same as β decreases. This result indicates that SC2 is not very sensitive to β.
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5.7.3 Test Set 3: Comparison of SC2 with CMT model [83]

The CMT and SC2 models contain two stages. The first stage is to get an approximation

solution aided by the markers set. The second stage is to use the approximation

solution and perform a thresholding procedure to obtain the object of interest in binary

representation. In this test set 3, we investigate how the number of markers and

threshold values will effect the segmentation quality for CMT model [83] and our SC2.

For this purpose, we use the test Problem 4. We set µ̄ = 10−5, β = 10−4, ρ = 20,

θ = 3.5, γ = 20, tol = 10−3 and maxit = 104. The first row in Figure 5.6 shows the

Problem 4 with different number of markers. There are 4 markers in (a1), 6 markers in

(b1) and 9 markers used in (c1). The results given by CMT and SC2 using the markers

with different threshold value are plotted respectively in the second row.

We observe that CMT performs well only when the number of markers used is large

while our SC2 is less sensitive to the number of markers used. In addition, it is clearly

shown that the range of threshold values that work for SC2 is wider than CMT.

To explain this, we can see the formulation of CMT and SC2 models. In one hand,

the minimisation of functional (5.2) of CMT model in the first stage gives a piecewise

smooth intensities approximation of the targeted object. As result, a suitable range

of threshold value in the second stage can be small. One can increase the number of

markers used in CMT model to get a good approximation, hence increase the suitable

range of the threshold value. On the other hand, the formulation of SC2 in (5.10)

and (5.11) assumes that an image comprises of two regions of approximately piecewise

constant intensities of distinct values c1 and c2, separated by some contour Γ. The

object to be detected (foreground) is represented by the the value c1 and the value

c2 represents the background. This assumption allows a wide suitable range of the

threshold value for SC2 and less marker set is needed compared to CMT model.

We remark that another possible comparison is to compute the area under the

curves (a2), (b2), and (c2). The higher the area under the curve, the less dependent

the method towards number of markers.

5.7.4 Test Set 4: Comparison of SC2 with NCZZ model [103]

The NCZZ model uses two types of markers to label foreground and background region

while SC2 uses only one marker set to label foreground region. To avoid bias, we ensure

that the foreground markers for both models are placed inside or as near as possible

to the targeted object while the background marker for NCZZ is placed outside the

targeted object. For almost all of the test images in Figure 5.1, we see that the NCZZ

model [103] gives same satisfactory results as our SC2. For brevity, we will not show too

many cases where both models give satisfactory results; Figure 5.7 shows the successful

segmentation of an organ in Problem 7 of size 256 × 256 by NCZZ model. The markers

used to label foreground region (red) and background region (blue) for the NCZZ model

[103] are shown in Figure 5.7(a) and a markers set used to label foreground for SC2 is

shown in Figure 5.1. Successful segmentation results (zoom in) by NCZZ model [103]

and our SC2 for Problem 7 are shown in Figure 5.7(b) and 5.7(c) respectively using
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 5.6: Test Set 3 – Comparison of SC2 with CMT model [83]. First row shows different
numbers of markers used for Problem 4. Second row demonstrates the respective results (a2),
(b2) and (c2) for (a1), (b1) and (c1) with different threshold values. Clearly, CMT performs
well only when the number of markers used is large while our SC2 seems less sensitive to the
number of markers used. Furthermore, the range of threshold value that works for SC2 is wider
than CMT.

the following parameters; µ̄ = 0.01, β = 10−4, ρ = 10−3, θ = 3000, γ = 10, tol = 10−2

and maxit = 104. However, we can observe that our SC2 gives more details of features

inside the organ compare to NCZZ model. This extra information may be beneficial to

the medical practitioners for further diagnostic process.

However, according to the authors [103], the model unable to segment semi-

transparent boundaries and sophisticated shapes (such as bush branches or hair in a

clean way due to its underlying assumption that the shape of the object is smooth

and can be well described by the weighted shortest boundary length and as a hard

segmentation, a pixel is assigned to only one class [103]. In Figure 5.8, we demonstrate

the limitation of NCZZ model using Problems 1 and 8. The set of parameters are

µ̄ = 0.01, β = 10−4, ρ = 10−3, θ = 2000 (Figure 5.8(a)), θ = 400 (Figure 5.8(d)),

γ = 10, tol = 10−2 and maxit = 104. The markers used to label foreground region

(red) and background region (blue) for the NCZZ model [103] for Problem 1 and 8 are

shown in Figure 5.8(a) and 5.8(d), respectively. A markers set used in SC2 to label

foreground of Problem 1 and 8 are shown in Figure 5.1.

Zoomed segmentation results in Figure 5.8(b) and (e) demonstrate the limitation of

NCZZ model [103]. As comparison, our SC2 gives cleaner segmentation as illustrated

in Figure 5.8(c) and (f) for the same problems. We remark that SC2 is also a hard

segmentation method, however the Euclidean distance from polygon region, Q used in

the formulation of SC2 is helpful to provide a good estimation as the function allows

the solution to be constrained by values associated with Q, associated with the marker

set A.
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(a) (b) NCZZ (c) SC2

Figure 5.7: Problem 7 in Test Set 4 – Two types of markers used to label foreground region
(red) and background region (blue) for NCZZ model [103] in (a). Successful segmentation result
(zoom in): (b) by NCZZ model [103] and (c) by our SC2 (only using foreground markers).

(a) (b) NCZZ (c) SC2

(d) (e) NCZZ (f) SC2

Figure 5.8: Problems 1,8 in Test Set 4 – (a) and (d) show the foreground markers (red) and
background markers (blue) for NCZZ model [103]. Zoomed segmentation results in (b) and (e)
demonstrate the limitation of NCZZ model [103] that is unable to segment semi-transparent
boundaries and sophisticated shapes (such as bush branches or hair as explained in [103]) in a
clean way. Our SC2 gives cleaner segmentation for the same problems as illustrated in (c) and
(f).
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(a) Initialisation 1 (b) Initialisation 2

(c) BC model (d) RC model (e) SC2

(f) BC model (g) RC model (h) SC2

Figure 5.9: Test Set 5 – Performance comparison of BC, RC and SC2 models using 2 different
initialisations. With Initialisation 1 in (a), the segmentation results for BC, RC, and SC2
models are illustrated on second row (c-e) respectively. With Initialisation 2 in (b), the results
are shown on third row (f-h). Clearly, SC2 gives a consistent segmentation result indicating
that our SC2 is independent of initialisations while BC and RC are sensitive to initialisations
due to different results obtained.

5.7.5 Test Set 5: Comparison of SC2 with BC [12] and RC [111]

Finally, we compare the performance of SC2 with two non-convex models namely BC

model [12] and RC model [111] for different initialisations in segmenting Problem 3.

We set µ̄ = 128 × 128 × 0.05, β = 10−4, ρ = 10−4, θ = 1000, γ = 5, tol = 10−4 and

maxit = 104. Figures 5.9(a) and 5.9(b) show two different initialisations with fixed

markers.

The second row shows the results for all three models using the first initialisation

in (a) and the third row using the second initialisation in (b). It can be seen that

under different initialisations, our SC2 will result in the same, consistent segmentation

curves (hence independent of initialisations) showing the advantage of a convex model.

However, the segmentation results for BC and RC models are heavily dependent on

the initialisation; a well known drawback of non-convex models. In addition, the

segmentation result of non-convex models is not guaranteed to be a global solution.
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5.8 Summary

In this chapter, we presented a new primal-dual formulation for CDSS model [129] and

proposed an optimisation based multilevel algorithm SC2 to solve the new formulation.

In order to get a stronger decaying property than SC2, a new variant of SC2 named as

SC2M is proposed. We also have developed a multilevel algorithm for the original CDSS

model [129] called as SC1. In Test Set 1 of the experiment, we found that all the

multilevel algorithms having the expected optimal complexity O(N logN). However,

SC2 converges faster than SC1 and SC2M. In addition, for all tested images, SC2

gives high accuracy compared to SC1 and SC2M. Practically, we recommended SC2

as the better multilevel algorithm for convex and selective segmentation method. In

Test Set 2, we have performed the speed and quality comparisons of SC2 with SC0.

Results show that SC2 performs much faster compared to SC0. Both algorithms deliver

same high quality for the tested problem. We also have run the sensitivity test for our

recommended algorithm SC2 towards parameters µ and θ. Comparison of SC2 with SC0

shows that SC2 is less sensitive to the regularisation parameters µ and θ. Moreover, SC2

also less sensitive for parameter β. In Test Set 3, we compare the segmentation quality

of SC2 with a recent model namely CMT. The result demonstrates that SC2 perform

better than CMT even for few markers. Moreover, the range of threshold value works for

SC2 is wider than CMT. In Test Set 4, the segmentation quality of SC2 is compared

with NCZZ model. For the tested problem, it is clearly that SC2 is successfully reduce

the difficulty of NCZZ model that is unable to segment semi-transparent boundaries

and sophisticated shapes. The final Test Set 5 demonstrate the advantage of SC2

being a convex model (independent of initialisation) compare to two non convex models

(BC and RC). We will extend SC2 to 3D formulation and develop an optimisation

based multilevel algorithm in 3-D framework in the next chapter.
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Chapter 6

A Three-dimensional Convex and

Selective Variational Image

Segmentation Model and Its Fast

Algorithms

This chapter presents a new three-dimensional (3-D) convex selective segmentation

model. In order to process 3-D images of large size associated with high resolution,

an optimisation based multilevel algorithm in 3-D framework are proposed. This will

be an extension of the 2-D model and 2-D multilevel algorithm already discussed in

Chapter 5. Numerical tests show that the proposed model is effective and the algorithm

is efficient in locally segmenting 3-D complex image structures.

6.1 Introduction

Various models, algorithms and techniques in 2-D may be generalised to the 3-D case,

e.g. methods based on 2-D level set active contours may be generalised to 3-D level set

active surfaces [39, 146, 151]. These methods have been widely used and successful for

many applications where all features (objects) in a given image have to be segmented.

However, as shown in Chapter 4 and 5 there are some other applications where the

selection of one feature among many is required. This kind of problem leads to a new

and challenging task of selective segmentation. Many application fields such as medical

imaging, geological surveying and computational fluid dynamics can greatly benefit

from 3-D selective segmentation, however there exist only a few works for selective

segmentation in 3-D.

Some effective selective segmentation 3-D models are 3-D version of [12] that

is implemented in [113] and 3-D selective model by [113]. A recent 3-D work by

[150] applied the narrow band idea of [96] into [152]. All the 3-D models mentioned

are non-convex. A 3-D non-convex selective variational image segmentation model,

though effective in capturing a local minimiser, is sensitive to initialisation where the
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segmentation result relies heavily on user input.

A recent 2-D convex selective models is introduced by [129] named CDSS, allowing

a global minimiser to be found independently of initialisation. However, the model

is sensitive to regularisation and area parameters. A stabilised version of the model

named SC2 that is less sensitive to the parameters is introduced in [74]. In this chapter

we will generalise the 2-D SC2 model [74] into 3-D formulation.

Another class of fast algorithm in 2-D framework is called Chambolle’s projection

algorithm [26]. This popular algorithm is considered as powerful [33] and fast method

[20, 26, 40]. This is mainly because the algorithm able to solve the original convex

variational functional (non-differentiable) without introducing parameter β (to avoid

singularity). In 2-D global and convex variational image segmentation problem, the

algorithm is used by D. Chen et al. [40] to solve a variant of Mumford-Shah model

which handles the segmentation of medical images with intensity inhomogeneities and

also in Moreno et al. [99] for solving a four phase model for segmentation of brain MRI

images by active contours.

We will solve the new 3-D formulation of the SC2 model [74] using a new developed

3-D multilevel algorithm. Besides, we will apply Chambolle’s projection algorithm in

3-D framework to solve the 3-D model.

The rest of the chapter is organised as follows. We shall first review some 3-D

selective segmentation models in Section 6.2. Then in Section 6.3 we develop a 3-D

formulation of SC2 model [74]. In Section 6.4, we present the 3-D optimisation based

multilevel algorithm to solve the 3-D version of SC2 model. To speed up the convergence,

we proposed a new localised version of 3-D SC2 model and solved using multilevel

algorithm in Section 6.5. New variants of multilevel algorithms are presented in Section

6.6 and we discuss their convergence in Section 6.7. Section 6.8 shows experimental

results. The last Section 6.9 concludes the chapter.

6.2 Review of existing 3-D segmentation models

In this section we will first introduce the extension of 2-D global segmentation model

[38] into 3-D version by [151, 113] because it provides the foundation for the selective

segmentation models as well as a method for minimising the associated functional.

Next, we will discuss a recent 3-D selective segmentation models by Zhang-Chen [150]

before we address the non convexity issue for these models.

6.2.1 The 3-D Chan-Vese model

The Chan and Vese (CV) model [38] considers a special case of the piecewise constant

Mumford-Shah functional [102] where it is restricted to only two phases (i.e. constants),

representing the foreground and the background of the given image z (x, y). We now

review the CV model [38] in the 3-D framework.

Let x = (x, y, z), hence define a given 3-D grey level image as z (x) : Ω ⊂ R3 → R.

Assume that the 3-D image z is composed by two 3-D regions of approximately
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piecewise constant intensities of distinct (unknown) values c1 and c2 , separated by

some (unknown) 2-D surface Γ. Let the object to be detected be represented by the 3-D

region Ω1 with the value c1 inside the 2-D surface Γ whereas outside Γ, in Ω2 = Ω\Ω1,

the intensity of z is approximated with the value c2. Then, with Ω = Ω1 ∪ Ω2, the

Chan-Vese model minimises the following functional

min
Γ,c1,c2

F 3D
CV (Γ, c1, c2) = µ surface area (Γ) + λ1

∫
Ω1

(z(x)− c1)2dx

+λ2

∫
Ω2

(z(x)− c2)2dx.
(6.1)

Here, the constants c1 and c2 are viewed as the average intensities values of z inside

and outside the Γ. The fixed parameters µ, λ1, and λ2 are non-negative but need to

be specified. In order to minimise equation (6.1), the level set method [38] is applied,

where the unknown surface Γ is represented by the zero level set of the Lipschitz

function such that

Γ = {(x, y, z) ∈ Ω : φ (x, y, z) = 0} ,
Ω1 = inside (Γ) = {(x, y, z) ∈ Ω : φ (x, y, z) > 0} ,
Ω2 = outside (Γ) = {(x, y, z) ∈ Ω : φ (x, y, z) < 0} .

To simplify the notation, denote the regularised versions of the Heaviside function

and the Dirac delta function, respectively, by

H (φ (x, y, z)) =
1

2

(
1 +

2

π
arctan

(
φ

ε

))
and δ (φ (x, y, z)) =

ε

π (ε2 + φ2)
.

Thus equation (6.1) becomes

min
φ,c1,c2

F 3D
CV (φ, c1, c2) = µ

∫
Ω
|∇H (φ)| dx + λ1

∫
Ω

(z(x)− c1)2H (φ) dx

+λ2

∫
Ω

(z(x)− c2)2 (1−H (φ)) dx.
(6.2)

Keeping the level set function φ fixed and minimising (6.2) with respect to c1 and

c2, we have

c1(φ) =

∫
Ω z (x)H (φ) dx∫

ΩH (φ) dx
, c2(φ) =

∫
Ω z (x) (1−H (φ)) dx∫

Ω (1−H (φ)) dx
. (6.3)

After that, by fixing constants c1 and c2 in F 3D
CV (φ, c1, c2), first variation with respect

to φ yields the following Euler-Lagrange equation: µδ (φ)∇ ·
(
∇φ
|∇φ|

)
− λ1δ (φ) (z − c1)2 + λ2δ (φ) (z − c2)2 = 0, in Ω

δ(φ)
|∇φ|

∂u
∂~n = 0, on ∂Ω.

(6.4)

Notice that the nonlinear coefficient in equation (6.4) may have a zero denominator,

so the equation is not defined in such cases. A commonly-adopted idea to deal with
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|∇φ| = 0 was to introduce a small positive parameter β to (6.2) and (6.4), so the new

Euler Lagrange equation becomes µδ (φ)∇ ·
(

∇φ√
|∇φ|2+β

)
− λ1δ (φ) (z − c1)2 + λ2δ (φ) (z − c2)2 = 0, in Ω

δ(φ)
|∇φ|

∂u
∂~n = 0, on ∂Ω.

where corresponds to minimising the following differentiable energy function, instead of

(6.2)

min
φ,c1,c2

F 3D
CV (φ, c1, c2) = µ

∫
Ω

√
|∇H (φ)|2 + β dx

+λ1

∫
Ω

(z − c1)2H (φ) dx + λ2

∫
Ω

(z − c2)2 (1−H (φ)) dx.
(6.5)

It should be remarked that applying a global segmentation model first and selecting

an object next amount provide an alternative to selective segmentation. However this

approach would require a secondary binary segmentation and is not reliable because the

first round of segmentation cannot guarantee to isolate the interested object often due to

non-convexity of models. Thus, urgent need exist in developing selective segmentation

model.

6.2.2 The 3-D Zhang-Chen-Gould model

The 3-D selective segmentation model by Zhang-Chen-Gould (3DZCG) [150] improves

the selective model [12] which combines the edge based model of [65, 67] with intensity

fitting term similar to 3-D CV [39]. On 3-D image z (x) defined on the cubic domain Ω,

the selective segmentation idea can be described as the detection of the boundary of a

single target object among all homogeneity intensity object that are defined in a closed

domain to the geometrical points in a set A = {wi = (x∗i , y
∗
i , z
∗
i ) ∈ Ω, 1 ≤ i ≤ n1} ⊂ Ω,

consisting of n1 (≥ 3) points on or near the target object [12]. The marker set or the

geometrical points in the set A can be used to define an initial solution and to guide

its evolution towards Γ. The 3DZCG model takes the form

min
Γ,c1,c2

{E (Γ, c1, c2) = µEG (Γ) + EF (Γ, c1, c2)} (6.6)

where EG (Γ) =
∫

ΓG (x) ds with G (x) = g (x) d (x). Here the function g (x) =
1

1+q|∇z(x)|2 is an edge detector function which helps to stop the evolving curve on the

edge of the targeted object in an image. The strength of detection is adjusted by a

parameter q. The function g (x) is constructed to take small values near to 0 near

object edge and large values near to 1 in flat region. The function d (x) is a marker

distance function, which is close to 0 when approaching the points from marker set A

given as:

d (x) = distance ((x) ,A) =

n1∏
i=1

(
1− e−

(x−∗i )2

2κ2

)
, ∀ (x) ∈ Ω
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where κ is a positive constant. Alternative distance functions d (x) are also possible

[150]. The new local fitting energy EF (Γ, c1, c2) is

{
λ1

∫
Ωin(Γ)

b1 (φ (x) , γin) (z (x)− c1)2dx + λ2

∫
Ωout(Γ)

b2 (φ (x) , γout) (z (x)− c2)2dx

}

Where b1 (φ (x) , γin) = B (φ (x) , γin, 0) and b2 (φ (x) , γout) = B (φ (x) , 0, γout) with

B (φ (x) , γin, γout) = H (φ (x) + γin) (1−H (φ (x)− γout)) (6.7)

characterizes the domain Ωγin,γout = {x ∈ Ω : −γin ≤ φ (x) ≤ γout} = Ωγin (Γ)∪Γ∪
Ωγout (Γ) which is a narrow band region surrounding the local boundary Γ. They assume

that φ is negative inside Γ and positive outside it. Using the level set formulation, the

model is rewritten as:

min
φ,c1,c2

µ

∫
Ω
G (x) |∇H (φ)| dx + λ1

∫
Ω

(z − c1)2b1 (φ (x) , γin) (1−H (φ)) dx

+λ2

∫
Ω

(z − c2)2b2 (φ (x) , γout)H (φ) dx (6.8)

Note that b1 (φ (x) , γin) (1−H (φ)) = B (φ (x) , γin, 0) and b2 (φ (x) , γout) (H (φ)) =

B (φ (x) , 0, γout). Keeping the level set function φ fixed and minimising (6.8) with

respect to c1 and c2, we have

c1(φ) =

∫
Ω z (x) (1−H (φ)) b1 dx∫

Ω (1−H (φ)) b1 dx
, c2(φ) =

∫
Ω z (x)H (φ) b2 dx∫

ΩH (φ) b2 dx

Finally keeping constants c1 and c2fixed yields the following Euler-Lagrange equation

 µδ∇ ·G
(
∇φ
|∇φ|

)
− λ1

[
b1δ − (1−H)∂b1∂φ

]
(z − c1)2 + λ2

[
b2δ +H ∂b2

∂φ

]
(z − c2)2 = 0, inΩ

G δ
|∇φ|

∂φ
∂~n = 0, on Ω

The above PDE is solved numerically by a multigrid method.

6.3 A 3-D convex and selective segmentation model

Recently, we have developed a new stabilised version of 2-D convex selective segmenta-

tion model [129] through primal-dual formulation called SC2 [74].

First, using the set A, construct a polygon Q that connects up the markers. Denote

the function Pd (x) as the Euclidean distance of each point (x) ∈ Ω from its nearest

point (xp, yp, zp) ∈ Q:

Pd (x) =

√
(x− xp)2 + (y − yp)2 + (z − zp)2 = min

q∈Q
‖(x, y, z)− (xq, yq, zq).‖
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The 3-D version of SC2 has the following form:

min
u,w∈[0,1]

J (u,w) =

∫
Ω
|∇u|gdx +

∫
Ω
rw dx + θ

∫
Ω
Pdw dx +

1

2ρ

∫
Ω

(u− w)2 dx.

(6.9)

Here, w is the new and dual variable, the right-most term enforces w ≈ u for

sufficiently small ρ > 0, r = (c1 − z)2 − (c2 − z)2 and |∇u|g = g (|∇z|) |∇u| . The

similar edge detector function in [12, 150] is also used in the formulation to assist

stopping the evolving curve on the edge of the object in an image. The area parameter

θ is used to control the strength of the new addition distance fitting term. This means

that if the parameter θ is too strong the final result will just be the polygon Q and if it

is too weak the final result is potentially includes the nearby object.

The unique minimiser of J can be computed by minimising J with respect to u and

w separately, iterating the process until convergence as done in [26, 20]. In alternating

minimisation form, the new formulation of (6.9) is equivalent to solve the following

functional

min
u

J1 (u,w) =

∫
Ω
|∇u|gdx +

1

2ρ

∫
Ω

(u− w)2dx, (6.10)

min
w∈[0,1]

J2 (u,w) =

∫
Ω
rw dx + θ

∫
Ω
Pdw dx +

1

2ρ

∫
Ω

(u− w)2 dx. (6.11)

The explicit solution of (6.11) is given as

w = min {max {u(x)− ρr − ρθPd, 0} , 1} . (6.12)

Now it only remains to discuss how to solve (6.10).

6.4 3-D optimisation based multilevel algorithm

This section presents our 3-D multilevel formulation to solve (6.10). For simplicity,

we shall assume n = 2L for a given image z of size N = n × n × n. The standard

coarsening defines L+ 1 levels: s = 1 (finest) , 2, ..., L, L+ 1 (coarsest) such that level

s has τs× τs× τs “superpixels” with each “superpixels” having pixels bs× bs× bs where

τs = n/2s−1 and bs = 2s−1 . If n 6= 2L, the multilevel method can still be developed

with some coarse level superpixels of cube shapes and the rest of cuboid shapes.

We now consider our main model as expressed by (6.10)–(6.11). Minimisation of J

is with respect to u in (6.10) and w in (6.11) respectively. The solution of (6.11) can

be obtained analytically following equation 6.12. It remains to develop a multilevel

algorithm to solve (6.10) in discretise-optimise scheme. The finite difference method is

used to discretise (6.10) as done in related works [24, 33]. The discretised version of
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(6.10) is given by

min
u
J1 (u) ≡ min

u
Ja1 (u1,1,1, u2,1,1, ..., ui−1,j,k, ui,j,k, ui+1,j,k, ..., un,n,n)

=
n−1∑
i=1

n−1∑
j=1

n−1∑
k=1

gi,j,k

√
(ui,j,k − ui,j+1,k)

2 + (ui,j,k − ui+1,j,k)
2 + (ui,j,k − ui,j,k+1)2 + β

+
1

2ρ

n∑
i=1

n∑
j=1

n∑
k=1

(ui,j,k − wi,j,k)2

(6.13)

where gi,j,k = g(xi, yj , zj). Here u denotes a row vector.

As a prelude to multilevel methods, minimise (6.13) by a coordinate descent method

(also known as relaxation algorithm) on the finest level 1:


Given u(0) =

(
u

(0)
i,j,k

)
with m = 0,

Solve u
(m+1)
i,j,k = arg min

ui,j,k∈R
J loc1 (ui,j , c1, c2) for i, j, k = 1, 2, ...n,

Repeat the above steps with m = m+ 1 until stopped.

(6.14)

The equation (6.14) is obtained by expanding and simplifying the main model in (6.13)

i.e.

J loc1 (ui,j,k)

≡ J loc1

(
u

(m)
1,1,1, u

(m)
2,1,1, ..., u

(m)
i−1,j,k, ui,j,k, u

(m)
i+1,j,k, ..., u

(m)
n,n,n

)
− J (m)

1

= gi,j,k

√(
ui,j,k − u

(m)
i+1,j,k

)2
+
(
ui,j,k − u

(m)
i,j+1,k

)2
+
(
ui,j,k − u

(m)
i,j,k+1

)2
+ β

+gi−1,j,k

√(
ui,j,k − u

(m)
i−1,j,k

)2
+
(
u

(m)
i−1,j,k − u

(m)
i−1,j+1,k

)2
+
(
u

(m)
i−1,j,k − u

(m)
i−1,j,k+1

)2
+ β

+gi,j−1,k

√(
ui,j,k − u

(m)
i,j−1,k

)2
+
(
u

(m)
i,j−1,k − u

(m)
i+1,j−1,k

)2
+
(
u

(m)
i,j−1,k − u

(m)
i,j−1,k+1

)2
+ β

+gi,j,k−1

√(
ui,j,k − u

(m)
i,j,k−1

)2
+
(
u

(m)
i,j,k−1 − u

(m)
i+1,j,k−1

)2
+
(
u

(m)
i,j,k−1 − u

(m)
i,j+1,k−1

)2
+ β

+ 1
2ρ(ui,j,k − wi,j,k)2.

with Neumann’s boundary condition applied where J
(m)
1 denotes the sum of all terms

in Ja1 that do not involve ui,j,k. Clearly one seems that this is a coordinate descent

method.

The Newton method is used to solve the one-dimensional problem from (6.14) by
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iterating u(m) → u→ u(m+1):

gi,j,k

(
2ui,j,k−u

(m)
i+1,j,k−u

(m)
i,j+1,k−u

(m)
i,j,k+1

)
√(

ui,j,k−u
(m)
i+1,j,k

)2
+
(
ui,j,k−u

(m)
i,j+1,k

)2
+
(
ui,j,k−u

(m)
i,j,k+1

)2
+β

+
gi−1,j,k

(
ui,j,k−u

(m)
i−1,j,k

)
√(

ui,j,k−u
(m)
i−1,j,k

)2
+
(
ui−1,j,k−u

(m)
i−1,j+1,k

)2
+
(
ui−1,j,k−u

(m)
i−1,j,k+1

)2
+β

+
gi,j−1,k

(
ui,j,k−u

(m)
i,j−1,k

)
√(

ui,j,k−u
(m)
i,j−1,k

)2
+
(
ui,j−1,k−u

(m)
i+1,j−1,k

)2
+
(
ui,j−1,k−u

(m)
i,j−1,k+1

)2
+β

+
gi,j,k−1

(
ui,j,k−u

(m)
i,j,k−1

)
√(

ui,j,k−u
(m)
i,j,k−1

)2
+
(
ui,j,k−1−u

(m)
i+1,j,k−1

)2
+
(
ui,j,k−1−u

(m)
i,j+1,k−1

)2
+β

+ 1
ρ(ui,j,k − wi,j,k) = 0

giving rise to the form

unewi,j,k = uoldi,j,k − T old/Bold (6.15)

where

T old =
gi,j,k

(
2uoldi,j,k−u

(m)
i+1,j,k−u

(m)
i,j+1,k−u

(m)
i,j,k+1

)
√(

uoldi,j,k−u
(m)
i+1,j,k

)2
+
(
uoldi,j,k−u

(m)
i,j+1,k

)2
+
(
uoldi,j,k−u

(m)
i,j,k+1

)2
+β

+
gi−1,j,k

(
uoldi,j,k−u

(m)
i−1,j,k

)
√(

uoldi,j,k−u
(m)
i−1,j,k

)2
+
(
u
(m)
i−1,j,k−u

(m)
i−1,j+1,k

)2
+
(
u
(m)
i−1,j,k−u

(m)
i−1,j,k+1

)2
+β

+
gi,j−1,k

(
uoldi,j,k−u

(m)
i,j−1,k

)
√(

uoldi,j,k−u
(m)
i,j−1,k

)2
+
(
u
(m)
i,j−1,k−u

(m)
i+1,j−1,k

)2
+
(
u
(m)
i,j−1,k−u

(m)
i,j−1,k+1

)2
+β

+
gi,j,k−1

(
uoldi,j,k−u

(m)
i,j,k−1

)
√(

uoldi,j,k−u
(m)
i,j,k−1

)2
+
(
u
(m)
i,j,k−1−u

(m)
i+1,j,k−1

)2
+
(
u
(m)
i,j,k−1−u

(m)
i,j+1,k−1

)2
+β

+ 1
ρ(ui,j,k − wi,j,k)
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Bold =
2gi,j,k√(

uoldi,j,k−u
(m)
i+1,j,k

)2
+
(
uoldi,j,k−u

(m)
i,j+1,k

)2
+
(
uoldi,j,k−u

(m)
i,j,k+1

)2
+β

−
gi,j,k

(
2uoldi,j,k−u

(m)
i+1,j,k−u

(m)
i,j+1,k−u

(m)
i,j,k+1

)2√((
uoldi,j,k−u

(m)
i+1,j,k

)2
+
(
uoldi,j,k−u

(m)
i,j+1,k

)2
+
(
uoldi,j,k−u

(m)
i,j,k+1

)2
+β

) 3
2

+
gi−1,j,k√(

uoldi,j,k−u
(m)
i−1,j,k

)2
+
(
u
(m)
i−1,j,k−u

(m)
i−1,j+1,k

)2
+
(
u
(m)
i−1,j,k−u

(m)
i−1,j,k+1

)2
+β

−
gi−1,j,k

(
uoldi,j,k−u

(m)
i−1,j,k

)2√((
uoldi,j,k−u

(m)
i−1,j,k

)2
+
(
u
(m)
i−1,j,k−u

(m)
i−1,j+1,k

)2
+
(
u
(m)
i−1,j,k−u

(m)
i−1,j,k+1

)2
+β

) 3
2

+
gi,j−1,k√(

uoldi,j,k−u
(m)
i,j−1,k

)2
+
(
u
(m)
i,j−1,k−u

(m)
i+1,j−1,k

)2
+
(
u
(m)
i,j−1,k−u

(m)
i,j−1,k+1

)2
+β

−
gi,j−1,k

(
uoldi,j,k−u

(m)
i,j−1,k

)2√((
uoldi,j,k−u

(m)
i,j−1,k

)2
+
(
u
(m)
i,j−1,k−u

(m)
i+1,j−1,k

)2
+
(
u
(m)
i,j−1,k−u

(m)
i,j−1,k+1

)2
+β

) 3
2

+
gi,j,k−1√(

uoldi,j,k−u
(m)
i,j,k−1

)2
+
(
u
(m)
i,j,k−1−u

(m)
i+1,j,k−1

)2
+
(
u
(m)
i,j,k−1−u

(m)
i,j+1,k−1

)2
+β

−
gi,j,k−1

(
uoldi,j,k−u

(m)
i,j,k−1

)2√((
uoldi,j,k−u

(m)
i,j,k−1

)2
+
(
u
(m)
i,j,k−1−u

(m)
i+1,j,k−1

)2
+
(
u
(m)
i,j,k−1−u

(m)
i,j+1,k−1

)2
+β

) 3
2

+ 1
ρ .

To solve this coordinate descent method using multilevel method, we interpret

solving (6.14) as looking for the best correction constant ĉ at the current approximation

u
(m)
i,j,k on level 1 (the finest level) that minimises for c i.e.

min
ui,j,k∈R

J loc1 (ui,j,k) = min
c∈R

J loc1

(
u

(m)
i,j,k + c

)
.

Hence, we may rewrite (6.14) in an equivalent form:



Given u(0) =
(
u

(0)
i,j,k

)
with m = 0,

Solve ĉ = arg min
c∈R

J loc1

(
u

(m)
i,j,k + c, c1, c2

)
for i, j = 1, 2, ...n,

Update u
(m+1)
i,j,k = u

(m)
i,j,k + ĉ,

Repeat the above steps with m = m+ 1 until stopped.

(6.16)

The remaining task is to derive the simplified formulation for each of the subproblems

associated with these blocks on level s. Figure 6.1 illustrates multilevel method for

level 3 of image size 16× 16× 16. (a) shows one of τ3
3 = 43 superpixel in level 3. Each

superpixel contains b33 = 43 pixels. (b) represents the top surface of (a). Using equation

(6.13), the interaction of a pixel with neighbouring pixel (red •) is illustrate in (c). (d)

shows the interaction of pixels in (b) based on equation (6.13) and (c).

We set the following: b = 2s−1, k1 = (i− 1) b+1, k2 = ib, `1 = (j − 1) b+1, `2 = jb,

m1 = (k − 1) b+ 1, m2 = kb, and c = (ci,j,k) . Denoted the current solution ũ then, a
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(a) (b)

(c) (d)

Figure 6.1: Illustration of level 3 for image size 16 × 16 × 16. (a) shows one of τ33 = 43

superpixel in level 3. Each superpixel contains b33 = 43 pixels. (b) represents the top surface of
(a). Using equation (6.13), the interaction of a pixel with neighbouring pixel (red •) is illustrate
in (c). (d) shows the interaction of pixels in (b) based on equation (6.13) and (c).
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general computational stencil involving c on level s can be illustrated as follows

(6.17)

Then, minimising for c, the problem 6.16 is equivalent to minimise the following

F3DSC2(ci,j,k) =
k2−1∑
k=k1

gk,`2,m1

√
T1 + β +

`2−1∑
k=`1

gk2,`,m1

√
T2 + β + gk2,`2,m1

√
T3 + β

+
`2−1∑
`=`1

gk1,`,m2

√
T4 + β +

k2−1∑
k=k1

gk,`2,m2

√
T5 + β + gk2,`2,m2

√
T6 + β

+
`2−1∑
`=`1

gk2,`,m2

√
T7 + β +

k2−1∑
k=k1

gk,`1,m2

√
T8 + β +

m2−1∑
m=m1+1

gk1,`2,m
√
T9 + β

+
m2−1∑

m=m1+1
gk2,`2,m

√
T10 + β +

m2−1∑
m=m1+1

gk2,`1,m
√
T11 + β

+
k2−1∑

k=k1+1

`2−1∑
`=`1+1

gk,`,m2

√
T12 + β +

`2−1∑
`=`1+1

m2−1∑
m=m1+1

gk2,`,m
√
T13 + β

+
k2−1∑

k=k1+1

m2−1∑
m=m1+1

gk,`2,m
√
T14 + β +

k2∑
k=k1

`2∑
`=`1

gk,`,m1−1

√
T15 + β

+
`2∑
`=`1

m2∑
m=m1

gk1−1,`,m

√
T16 + β +

k2∑
k=k1

m2∑
m=m1

gk,`1−1,m

√
T17 + β

+ 1
2ρ

k2∑
k=k1

`2∑
`=`1

m2∑
m=m1

(uk,`,m + ci,j,k − wk,`,m)2.

(6.18)

where
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T1 = (ũk,`2,m1 + ci,j,k − ũk,`2+1,m1)2 + (ũk,`2,m1 − ũk+1,`2,m1)2

+(ũk,`2,m1 − ũk,`2,m1+1)2

T2 = (ũk2,`,m1 + ci,j,k − ũk2+1,`,m1)2 + (ũk2,`,m1 − ũk2,`+1,m1)2

+(ũk2,`,m1 − ũk2,`,m1+1)2

T3 = (ũk2,`2,m1 + ci,j,k − ũk2+1,`2,m1)2 + (ũk2,`2,m1 + ci,j,k − ũk2,`2+1,m1)2

+(ũk2,`2,m1 − ũk2,`2,m1+1)2

T4 = (ũk1,`,m2 + ci,j,k − ũk1,`,m2+1)2 + (ũk1,`,m2 − ũk1+1,`,m2)2

+(ũk1,`,m2 − ũk1,`+1,m2)2

T5 = (ũk,`2,m2 + ci,j,k − ũk,`2+1,m2)2 + (ũk,`2,m2 + ci,j,k − ũk,`2,m2+1)2

+(ũk,`2,m2 − ũk+1,`2,m2)2

T6 = (ũk2,`2,m2 + ci,j,k − ũk2+1,`2,m2)2 + (ũk2,`2,m2 + ci,j,k − ũk2,`2+1,m2)2

+(ũk2,`2,m2 + ci,j,k − ũk2,`2,m2+1)2

T7 = (ũk2,`,m2 + ci,j,k − ũk2,`,m2+1)2 + (ũk2,`,m2 + ci,j,k − ũk2+1,`,m2)2

+(ũk2,`,m2 − ũk2,`+1,m2)2

T8 = (ũk,`1,m2 + ci,j,k − ũk,`1,m2+1)2 + (ũk,`1,m2 − ũk,`1+1,m2)2

+(ũk,`1,m2 − ũk+1,`1,m2)2

T9 = (ũk1,`2,m + ci,j,k − ũk1,`2+1,m)2 + (ũk1,`2,m − ũk1,`2,m+1)2

+(ũk1,`2,m − ũk1+1,`2,m)2

T10 = (ũk2,`2,m + ci,j,k − ũk2+1,`2,m)2 + (ũk2,`2,m + ci,j,k − ũk2,`2+1,m)2

+(ũk2,`2,m − ũk2,`2,m+1)2

T11 = (ũk2,`1,m + ci,j,k − ũk2+1,`1,m)2 + (ũk2,`1,m − ũk2,`1+1,m)2

+(ũk2,`1,m − ũk2,`1,m+1)2

T12 = (ũk,`,m2 + ci,j,k − ũk,`,m2+1)2 + (ũk,`,m2 − ũk+1,`,m2)2

+(ũk,`,m2 − ũk,`+1,m2)2

T13 = (ũk2,`,m + ci,j,k − ũk2+1,`,m)2 + (ũk2,`,m − ũk2,`+1,m)2

+(ũk2,`,m − ũk2,`,m+1)2

T14 = (ũk,`2,m + ci,j,k − ũk,`2+1,m)2 + (ũk,`2,m − ũk+1,`2,m)2

+(ũk,`2,m − ũk,`2,m+1)2

T15 = (ũk,`,m1 + ci,j,k − ũk,`,m1−1)2 + (ũk,`,m1−1 − ũk+1,`,m1−1)2

+(ũk,`,m1−1 − ũk,`+1,m1−1)2

T16 = (ũk1,`,m + ci,j,k − ũk1−1,`,m)2 + (ũk1−1,`,m − ũk1−1,`+1,m)2

+(ũk1−1,`,m − ũk1−1,`,m+1)2

T17 = (ũk,`1,m + ci,j,k − ũk,`1−1+1,m)2 + (ũk,`1−1,m − ũk,`1−1,m+1)2

+(ũk,`1−1,m − ũk+1,`1−1,m)2

On the coarsest level (L+ 1), a single constant update for the current ũ is given as

min {
c

F3DSC2 (ũ+ c) =
1

2ρ

n∑
i=1

n∑
j=1

n∑
k=1

(ui,j,k + c− wi,j,k)2} (6.19)

which has a simple and explicit solution.

The solutions of the above local minimisation problems, solved using a Newton
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method as in (6.15) or a fixed point method for t iterations (inner iteration), defines

the update solution u = u+Qsc where Qs is the interpolation operator distributing

ci,j,k to the corresponding bs × bs × bs block on level s as illustrated in (6.17). Then we

obtain a multilevel method if we cycle through all levels and all blocks on each level

until max
(
‖ũ−u‖2
‖ũ‖2

,
‖w̃−w‖2
‖w̃‖2

)
< tol or the maximum number of cycle, maxit is reached.

Finally our proposed multilevel method for 3-D SC2 is summarized in Algorithm 7.

We will use the term 3DSC2 to refer this 3-D multilevel Algorithm 7.

Algorithm 7 3DSC2 – Algorithm to solve the new primal-dual model

Given image z, an initial guess u , the stop tolerance (tol), and maximum multilevel
cycle (maxit) with L+ 1 levels. Set w = u ,

1) Solve (6.10) to update u using the following steps:

i). Set ũ = u.

ii). Smooth for t iteration the approximation on the finest level 1 that is solve
(6.14) for i, j, k = 1, 2, ...n

iii). Iterate for t times on each coarse level s = 2, 3, ...L, L+ 1 :
> If s ≤ L, compute the minimiser c of (6.18)
> Solve (6.19) on the coarsest level s = L+ 1
> Add the correction u = u + Qsc where Qs is the interpolation operator
distributing ci,j to the corresponding bs × bs × bs block on level s as illustrated
in (6.17).

2) Solve (6.11) to update w:

i). Set w̃ = w.

ii). Compute w using the formula (6.12).

3) Check for convergence using the above criteria. If not satisfied, return to Step 1.
Otherwise exit with solution u = ũ and w = w̃

We recommended to start updating our multilevel algorithm from the fine level to

the coarse level in order to get fast convergence. In a separate experiment we found

that if we adjust the coarse structure before the fine level, the convergence is slower.

In addition, the value of inner iteration t = 1 is recommended to update the algorithm

in a fast manner.

6.5 A new localised model

Solution of (6.10) and (6.11) can be expensive in the whole 3-D domain Ω. Here, we

introduce our approach for reducing the computation time for the type of problem.

Given a level-set function φ, local functions b1 and b2 defined by

b1(φ(x), γ) = 1−H (φ(x)− γ)

b2(φ(x), γ) = H (φ(x) + γ)
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characterizes the domain of narrow band region Ωγ = Ω1(γ) ∪ Γ ∪ Ω2(γ) around the

2-D surface Γ where we assume φ is positive inside the surface Γ and negative outside

it. Here, Ω1(γ) and Ω2(γ) represents the γ-band region inside and outside of the

surface Γ respectively. Inside the domain Ωγ , the value of b1 = b2 = 1 while outside

Ωγ , b1 = b2 = 0. Similarly, b1H(φ) = 1 inside Ω1(γ) and 0 outside and we have

b1(1−H(φ)) = 1 inside Ω2(γ) and 0 outside.

We first modified the fitting term of our 3-D SC2 model as follows∫
Ω1

(z − c1)2 dx→
∫

Ω
(z − c1)2b1(φ, γ)H(φ) dx∫

Ω2

(z − c1)2 dx→
∫

Ω
(z − c2)2b2(φ, γ)(1−H(φ)) dx

This notation is almost similar to [152, 150] except for each integral in level set

above, our approach use only two heaviside functions, H(φ) while there are three

H(φ) used in [152, 150]. Consequently, our formulation is less complex than [152, 150].

Next, the term H(φ) ∈ {0, 1} is relaxed to u ∈ [0, 1] as used in [34]. As a common

practice in image segmentation, the final solution u(x) defining the targeted object by∑
= {(x) : u(x) ≥ η} and usually η = 0.5. With the above connection, we set φ = u−η.

Consequently, the local functions b1 and b2 are defined by

b1(u(x), γ) = 1−H (u(x)− η − γ)

b2(u(x), γ) = H (u(x)− η + γ)

Using the above information, the new localised version of 3D-SC2 model is defined

below

min
u,w∈[01]

JL(u,w) =

∫
Ω
|∇u|gdx +

∫
Ω

(z − c1)2wb1 dx + θ

∫
Ω
Pdwdx

+

∫
Ω

(z − c2)2(1− w)b2 dx +
1

2ρ

∫
Ω

(u− w)2dx
(6.20)

Minimisation with respect to u and w yields the following functional

min
u
JL1(u,w) =

∫
Ω
|∇u|gdx +

∫
Ω

(z − c1)2wb1 dx +
1

2ρ

∫
Ω

(u− w)2dx

+

∫
Ω

(z − c2)2(1− w)b2 dx
(6.21)

min
w∈[01]

JL2(u,w) =

∫
Ω

(z − c1)2wb1 dx +

∫
Ω

(z − c2)2(1− w)b2 dx

+ θ

∫
Ω
Pdwdx +

1

2ρ

∫
Ω

(u− w)2dx
(6.22)
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For (6.22), the explicit solution is given as

w = min
{

max
{
u−

(
(z − c1)2b1 − (z − c2)2b2

)
ρ− ρθPd, 0

}
, 1
}

(6.23)

In order to apply multilevel algorithm to solve (6.21), we introduce (after discreti-

sation) the notation for the set falling into the γ-band where b1 = b2 = 1 :

D(u) = {(i, j, k) |−γ ≤ ui,j,k ≤ γ }

All the steps to solve (6.21) using multilevel algorithm are identical except u =

u + ci,j,k only needs an updated if the set [k1, k2] × [`1, `2] × [m1,m2] ∩D(u) is non-

empty. We will call 3DSC3 to refer the multilevel algorithm to solve localised version

of 3D-SC2 model.

6.6 New variant of the multilevel algorithms 3DSC2 and

3DSC3

Our above proposed method for an optimisation problem defines a sequence of search

directions based in a multilevel setting . In this section,we modify it so that the new

algorithm has a formal decaying property.

Denote the functional in (6.13) by g(u) : Rn3 → R and represent each subproblem

by

c∗ = arg min
c∈R

g(u` + cp`), u`+1 = u` + c∗p`, p` = ẽ`(mod K)+1, ` = 0, 1, 2, . . .

where ẽ and K will be defined below, mod(·) denotes modulo operator. Noting that

bs = 2s−1 and τs = n/bs .

Now we investigate the search direction {ẽ};
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level 1 : 1× 1 block′s index (i, j, k), 1 ≤ i, j, k ≤ n
ẽf = ef , f = 1, 2, ...n3

level 2 : 21 × 21 block′s indices (k1 : k2, `1 : `2,m1 : m2), 1 ≤ i, j, k ≤ τ2

ẽK0+(k−1)τ22 +(j−1)τ2+i =

k2∑
i1=k1

`2∑
j1=`1

m2∑
q1=m1

en2(q1−1)+n(j1−1)+i1

k1 = 21(i− 1) + 1, k2 = 21i; `1 = 21(j − 1) + 1, `2 = 21j;

m1 = 21(k − 1) + 1, m2 = 21k

level 3 : 22 × 22 block′s indices (k1 : k2, `1 : `2,m1 : m2), 1 ≤ i, j, k ≤ τ3

ẽK0+K1+(k−1)τ23 +(j−1)τ3+i =

k2∑
i1=k1

`2∑
j1=`1

m2∑
q1=m1

en2(q1−1)+n(j1−1)+i1

k1 = 22(i− 1) + 1, k2 = 22i; `1 = 22(j − 1) + 1, `2 = 22j;

m1 = 22(k − 1) + 1, m2 = 22k
...

level L+ 1 : 2L × 2L block′s indices (1 : n, 1 : n, 1 : n)

ẽK =
n∑

i1=1

n∑
j1=1

n∑
q1=1

en2(q1−1)+n(j1−1)+i1 =
n3∑
V=1

eV

where eι ∈ n3
is the ι-th unit (coordinate) vector,

K =
L∑

Y=0

KY =
L∑

Y=0

τ2
Y

=
L∑

Y=0

n3

8Y
=

8n3 − 1

7

Here K represents the total number of search direction across all levels 1, 2, ...L, L+1

for this unconstrained type optimisation problem. As shown above, the sequence {p`}
is clearly essentially periodic (finitely many) and free-steering (spanning Rn3

) [105].

Recall that a sequence {u`} is strongly downward (decaying) with respect to g(u)

i.e.

g(u`) ≥ g(v`) ≥ g(u`+1), v` = (1− t)u` + tu`+1 ∈ D0, ∀ t ∈ [0, 1]. (6.24)

This property is much stronger than the usual decaying property g(u`) ≥ g(u`+1) which

is automatically satisfied by our Algorithm 3DSC2 and 3DSC3.

By [105, Thm 14.2.7], to ensure the minimising sequence {u`} to be strongly

downward, we modify the subproblem min J loc1 (u` + cp`) to the following

u`+1 = u` + c∗q`, c∗ = arg min{c ≥ 0 | ∇JT q` = 0}, ` ≥ 0 (6.25)
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where the `-th search direction is modified to

q` =

{
p`, if ∇JT p` ≤ 0,

−p`, if ∇JT p` > 0.

Here the equation ∇JT q` = 0 for c and the local minimising subproblem (6.16) that is

minc J
loc
1 (ûi,j + c) are equivalent. Now the new modification is to enforce c ≥ 0 and

the sequence {q`} is still essentially periodic.

We shall call the modified algorithm 3DSC2 and 3DSC3 as 3DSC2M and

3DSC3M respectively.

6.7 Convergence and complexity analysis

The convergence of the algorithms 3DSC2-3DSC3 for

min
u∈R

g(u)

is challenging to prove unless a stronger assumption of uniform convexity for the

minimisation of functional g is made. However there is another approach to prove

the convergence of 3DSC2M-3DSC3M for solving problem (6.13) without such an

assumption. We first assume the functional g = g(u) is hemivariate i.e. g(u+t(v−u)) =

g(u) for t in [0, 1] and u 6= v (for theoretical purpose).

There are five sufficient conditions that must be met in order to prove the convergence

of 3DSC2M-3DSC3M,

i) g(u) is continuously differentiable in D0 = [0, 1]n
3 ⊂ Rn3

;

ii) the sequence {q`} is uniformly linearly independent;

iii) the sequence {u`} is strongly downward (decaying) with respect to g(u);

iv) lim
`→∞

g′(u`)q`/‖q`‖ = 0,

v) the set S = {u ∈ D0 | g′(u) = 0} is non-empty.

Here g′(u) = (∇g(u))T . Then we have the convergence of {u`} to a critical point u∗

[105, Thm 14.1.4]

lim
`→∞

inf
u∈S
‖u` − u∗‖ = 0.

The condition i) is met since we set β 6= 0 and condition ii) also holds since

‘essentially periodic’ implies ‘uniformly linearly independent’ [105, §14.6.3]. We make

an assumption of existence of stationary points for g(u) to verify condition v). Next,

we now focus on verifying condition iii)-iv). From [105, Thm 14.2.7], the construction

of {u`} via (6.25) ensures that the sequence {u`} is strongly downward and further

lim`→∞ g
′(u`)q`/‖q`‖ = 0. Hence conditions iii)-iv) are satisfied.
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Note condition iii) and the assumption of g(u) being hemivariate imply lim`→∞ ‖u`+1−
u`‖ = 0 from [105, Thm 14.1.3]. Further condition iv) and the fact lim`→∞ ‖u`+1−u`‖ =

0 lead to the result lim`→∞ g
′(u`) = 0.

Finally by [105, Thm 14.1.4], the condition lim`→∞ g
′(u`) = 0 implies lim`→∞ infu∈S ‖u`−

u∗‖ = 0. Hence the convergence is proved.

Next, we will give the complexity analysis of our 3DSC2, 3DSC3, 3DSC2M and

3DSC3M. Let N = n3 be the total number of pixels (unknowns). First, we compute

the number of floating point operations (flops) for 3DSC2 for level s as follows:

Quantities Flop counts for 3DSC2

ρ term 2N

w term 6N
s smoothing

steps
125bsτ

3
s r

Then, the flop counts for all level is W3DSC2 = 6N +
L+1∑
s=1

(
2N + 125bsτ

3
s r
)

where

s = 1 (finest) and s = L + 1 (coarsest). Noting bs = 2s−1, τs = n/bs, N = n3, we

compute the upper bound for 3DSC2 as follows:

W3DSC2 = 6N + 2(L+ 1)N +
L+1∑
s=1

(
125Nr

bs

)
= 6N + 2(L+ 1)N + (125r)N

L∑
s=0

(
1

2s

)
< 2N log n+ 8N + 250Nr ≈ O (N logN)

The complexity of the new 3DSC3 is directly linked to the length of the segmented

objects at each iteration; at the discrete level, this length is usually O
(

3
√
N
)

. Similarly

the upper bound for 3DSC3 is computed as follows:

W3DSC3 = 6 3
√
N + 2(L+ 1) 3

√
N +

L+1∑
s=1

(
135r 3

√
N

bs

)
= 6

3
√
N + 2(L+ 1)

3
√
N

+(135r) 3
√
N

L∑
s=0

(
1
2s

)
< 2 3
√
N log n+ 8 3

√
N + 270r 3

√
N ≈ O

(
3
√
N logN

)
The approximate cost of an extra operation ∇JT q` in 3DSC2M and 3DSC3M

is 2N that results to the total flop counts for 3DSC2M as W3DSC2M = 6N +
L+1∑
s=1

(
4N + 125bsτ

3
s r
)
. This gives the upper bound for 3DSC2M as

W3DSC2M = 6N + 4(L+ 1)N +
L+1∑
s=1

(
125Nr

bs

)
= 6N + 4(L+ 1)N+

(125r)N
L∑
s=0

(
1
2s

)
< 4N log n+ 10N + 250Nr ≈ O (N logN) .
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Finally, for 3DSC3M, the upper bound for 3DSC3M is computed as follows:

W3DSC3M = 6 3
√
N + 4(L+ 1) 3

√
N +

L+1∑
s=1

(
135r 3

√
N

bs

)
= 6

3
√
N + 4(L+ 1)

3
√
N

+(135r) 3
√
N

L∑
s=0

(
1
2s

)
< 2 3
√
N log n+ 10 3

√
N + 270r 3

√
N ≈ O

(
3
√
N logN

)
One can observe that 3DSC2, 3DSC3, 3DSC2M and 3DSC3M are of the

optimal complexity expected of a multilevel method and W3DSC3 < W3DSC3M <

W3DSC2 < W3DSC2M .

6.8 Numerical experiment

This section will demonstrate the performance of the developed multilevel methods

through several experiments. The algorithms to be compared are:

Name Algorithm Description

3DSC2 New :
The 3-D multilevel Algorithm 7 for the 3-D version

of SC2 model

3DSC3 New :
The multilevel algorithm for localised version of

3DSC2.
3DSC2M New : The modified multilevel algorithm for 3DSC2

3DSC3M New : The modified multilevel algorithm for 3DSC3.

3DCHB Old :
The 3-D Chambolle’s Algorithm for the 3-D version

of SC2 model, see Appendix A.

3DZCG Old : The 3-D selective segmentation model by [150].

There are four sets of tests carried out. In the first set, we will compare the

performance of algorithm 3DSC2, 3DSC3, 3DSC2M, and 3DSC3M in segmenting 3-D

artificial geometrical image with some noise added in different resolutions. We record

their segmentation performances in terms of CPU time (in seconds) and quality. The

segmentation quality is measured based on the Jaccard similarity coefficient (JSC):

JSC =
|Sn ∩ S∗|
|Sn ∪ S∗|

where Sn is the set of the segmented domain u and S∗ is the true set of u (which is only

easy to obtain for simple images). The similarity functions return values in the range

[0, 1]. The value 1 indicates perfect segmentation quality while the value 0 indicates

poor quality.

Our second test are conducted on segmenting harder and more challenging 3-D

medical data using 3DSC2, 3DSC3, 3DSC2M, and 3DSC3M. We will choose the best

multilevel algorithm based on the tests in first set and second set. The choosen

multilevel algorithm will be compared with 3DCHB (see Appendix A) and 3DZCG

[150] in the third and fourth set respectively.

Figure 6.2(a) shows the image used in test set 1, 6.2(b) and (c) are for test set 2

while 6.2(d) is used for test 3. The images in Figure 6.7(a) and (b) are used in test
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(a) (b)

(c) (d)

Figure 6.2: (a) is an image used in test set 1, (b) and (c) for test set 2 and (d) for test set 3.
Markers set are in red and the green polyhedral surface constructed based on the position of
markers set are the initial solution.

set 4. The images in Figure 6.2 are of interest because they involve both real medical

and synthetic images. The markers set are in red and the green polyhedral surface

constructed based on the position of markers set are the initial solution. In case for

an object that is difficult to be distinguished from the background, the idea of using

the edge detector before segmentation process can be used to determine the suitable

position of markers and initialisation. The targeted objects used in 6.2(b) and (c)

have small separation gap, however the objects are still can be distinguished from

the background. The location of markers and initialisations for the objects in Figure

6.2(a) and (d) are easy to determine as they are synthetic images. Thus, the idea of

applying edge detector before segmentation process is not implemented in this chapter.

In addition, we have added the edge detection function in our formulation which help

to stop the evolving curve on the edge of the object. All algorithms are implemented

in MATLAB R2017a on a computer with Intel Core i7 processor, CPU 3.60GHz, 16

GB RAM CPU.

In the following experiment, we used parameter β = 10−4, ρ in between 7× 10−4

and 10−3, γ in between 1 and 10, ε in between 1/n2 and 0.01, q in between 1 and 10

and maxit = 8000 to get a successful segmentation result. Tuning the parameter θ

depends on the targeted object. If the object is too close to a nearby boundary then θ

should be large. Segmenting a clearly separated object in an image needs just a small
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Table 6.1: Test Set 1–Comparison of computation time (in seconds) of 3DSC2, 3DSC3,
3DSC2M, and 3DSC3M for image Figure 6.2(a) with different resolutions. Again, the time
ratio, tn/tn−1 close to 8.8 indicates O(N logN) speed while the ratio 2.2 indicates O( 3

√
N logN)

speed for that particular test image. All algorithms successfully segmenting the image with
additional noise but 3DSC3 is up to 23.3, 29.5 and 1.5 times faster than 3DSC2, 3DSC2M and
3DSC3M respectively.

Algorithm
Size

N = n3 JSC
Time,

tn

tn
tn−1

323 1.0 17.2
3DSC2 643 1.0 67.2 3.9

1283 1.0 481.5 7.2

2563 1.0 3690.6 7.8

323 1.0 15.3
3DSC3 643 1.0 39.1 2.6

1283 1.0 70.8 1.8

2563 1.0 158.2 2.2

323 1.0 24.3
3DSC2M 643 1.0 84.7 3.5

1283 1.0 565.1 6.7

2563 1.0 4668.5 8.3

323 1.0 28.3
3DSC3M 643 1.0 61.7 2.2

1283 1.0 108.5 1.8

2563 1.0 234.9 2.2

θ.

6.8.1 Test Set 1: Segmentation on artificial geometrical objects.

In the first experiment, we compare the performance of 3DSC2, 3DSC3, 3DSC2M,

and 3DSC3M in segmenting problem in Figure 6.2(a) with multiple resolutions. The

problem is an artificial geometric constraint with some noise added. Here, we take

tol = 10−2 and θ = 30/(n× 10−4).

The first column of Figure 6.3 shows successful results from 3DSC2, 3DSC3,

3DSC2M, and 3DSC3M for image size 128× 128× 128. The second and third columns

show the respective slice representation given by each algorithm. The CPU time needed

for our algorithm 3DSC3 is 68.3s ( 1.1 min) which is about 5, 6.5 and 1.3 times faster

than 3DSC2, 3DSC2M and 3DSC3M respectively. The segmentation results for other

images size are tabulated in Table 6.1. The ratios of the CPU times in column 5,

tn/tn−1 close to 8.8 indicates that 3DSC2 and 3DSC2M are of complexity O (N logN)

while the the ratio 2.2 illustrates the complexity of O
(

3
√
N logN

)
for both 3DSC3 and

3DSC3M for the particular test image. In addition, 3DSC3 is up to 23.3, 29.5 and 1.5

times faster than 3DSC2, 3DSC2M and 3DSC3M respectively. All algorithms give high

segmentation accuracy, indicated by JSC values.

To illustrate the convergence of our multilvel algorithms, we plot the residual of

3DSC2, 3DSC3, 3DSC2M, and 3DSC3M in segmenting image in Figure 6.2(a) for size
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3DSC2 3DSC2 Slice 51 3DSC2 Slice 74

3DSC3 3DSC3 Slice 51 3DSC3 Slice 74

3DSC2M 3DSC2M Slice 51 3DSC2M Slice 74

3DSC3M 3DSC3M Slice 51 3DSC3M Slice 74

Figure 6.3: Test Set 1 –Successful results from 3DSC2, 3DSC3, 3DSC2M, and 3DSC3M for
image size 128×128×128 in the first column. The second and third columns show the respective
slice representation given by each algorithm. The CPU time needed for our algorithm 3DSC3
is 70.8s ( 1.2 min) which is about 6.8, 8.0 and 1.5 times faster than 3DSC2, 3DSC2M and
3DSC3M respectively .
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3DSC2 3DSC2M

3DSC3 3DSC3M

Figure 6.4: Test Set 1–The residual plots for 3DSC2, 3DSC3, 3DSC2M, and 3DSC3M to
illustrate the convergence of the algorithms. The extension up to 10 iterations shows that the
residual of the algorithms keep reducing.

64× 64× 64 based on Table 6.1. The plots are shown in Figure 6.4. In Figure 6.4, we

extend the iteration up to 10 iterations. As we can see, the residual of the algorithms

keep reducing.

6.8.2 Test Set 2: Segmentation on real medical data

Next, we test 3DSC2, 3DSC3, 3DSC2M, and 3DSC3M in segmenting medical data in

Figure 6.2(b) (blood vessel) and 6.2(c) (kidney). We take θ = 11200 for Figure 6.2(b)

and θ = 7000 for Figure 6.2(c). Both images are size of 128× 128× 128. The programs

stop when tol = 10−2. We tabulate the CPU time needed to segment both problems in

Table 6.2.

Clearly, 3DSC3 is faster than 3DSC2, 3DSC2M and 3DSC3M. By visual evaluation,

Figure 6.5 shows the successful result form 3DSC3 in segmenting both medical images.

Figure 6.5(a) and 6.5(b) show the 3-D plots of objects extracted from Figure 6.2(b)
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Table 6.2: Test Set 2–The computation time (in seconds) of 3DSC2, 3DSC3, 3DSC2M, and
3DSC3M for segmenting Problem in Figure 6.2(b) (blood vessel) and Figure 6.2(c)(kidney).
Notice that 3DSC3 is faster than other algorithms.

Algorithm Figure 6.2(b) Figure 6.2(c)

3DSC2 560.1 682.2

3DSC3 265.3 373.6

3DSC2M 702.0 855.3

3DSC3M 396.2 520.7

Table 6.3: Test Set 3–Comparison of computation time (in seconds) of 3DCHB with 3DSC3
for Problem in Figure 6.2(d) for different stopping accuracy. Note 3DSC3 can be up to 56 times
faster than 3DCHB for tol = 10−9.

Algorithm
Stopping
Accuracy

CPU
Time

JSC

10−1 8.9 1.0

3DSC3 10−3 10.3 1.0

10−6 11.8 1.0

10−9 13.5 1.0

10−1 12.1 1.0

3DCHB 10−3 99.2 1.0

10−6 103.7 1.0

10−9 757.8 1.0

(blood vessel) and 6.2(c) (kidney) respectively. The slice representation of the extracted

object is shown in the second and third columns. Here, we can observed that the

targeted object has a small separation gap and has a complex shape especially for

kidney case. Notice that all algorithms required more CPU time to segment the larger

organ (kidney) compare to the small targeted object (blood vessel).

Based on the experiments in Test Set 1 and Test Set 2, we observe that 3DSC3

performs faster than the 3DSC2, 3DSC2M, and 3DSC3M. Therefore, in practice we

recommend 3DSC3 as the better multilevel algorithm for our selective segmentation

model.

6.8.3 Test Set 3: Comparison of 3DSC3 with 3DCHB

In this second last experiment, we compare the 3DCHB with 3DSC3 in segmenting

an object in Figure 6.2(d) of size 256× 256× 256. Here, we used θ = 70/(256× 10−4)

and vary the stopping accuracy, that is tol = 10−1, 10−3, 10−6 and 10−9. The CPU

time is recorded for each degree of accuracy. Table 6.3 show the CPU time taken by

both algorithms in segmenting the image. One can observe that 3DCHB is almost has

similar efficiency with 3DSC3 for tol = 10−1. However, as the stopping accuracy is

getting smaller, the efficiency of 3DSC3 is better than 3DCHB. This implies that the

convergence of 3DCHB is more slower than 3DSC3 when degree of stopping accuracy

used is smaller. We visualize the segmentation output from both algorithms using

tol = 10−6 in Figure 6.6.
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1(a) 2(a)

(a) 3(a) 4(a)

1(b) 2(b)

(b) 3(b) 4(b)

Figure 6.5: Test Set 2–Sucessful segmentation result for 3DSC3 in segmenting medical images.
Figure 6.5(a) and 6.5(b) show the 3-D plots of objects extracted from Figure 6.2(b) (blood
vessel) and 6.2(c) (kidney) respectively. The figures 1(a)-4(a) and the figures 1(b)-4(b) show
the slice representation of the blood vessel and kidney, respectively.

3DCHB 3DSC3

Figure 6.6: Test Set 3–Segmentation of image in Figure 6.2(d) by 3DCHB and 3DSC3 using
tol = 10−6. 3DSC3 is about 9 times faster than 3DCHB (see Table 6.3).
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Initialisation 3DZCG [150] 3DSC2M

(a) 1(a) 2(a)

(b) 1(b) 2(b)

Figure 6.7: Test Set 4–Segmentation performance of 3DZCG and 3DSC3 using 2 different
initializations. With initialisation 1 in (a), the segmentation results for 3DZCG and 3DSC3 are
illustrated in 1(a) and 2(a) respectively. With initialisation 2 in (b), the segmentation results
for 3DZCG and 3DSC3 are illustrated in 1(b) and 2(b) respectively. Clearly, 3DSC3 gives a
consistent segmentation result indicating that our 3DSC2M is less dependent on initialisation
while 3DZCG is sensitive to initialisation as indicated by different results obtained.

6.8.4 Test Set 4: Comparison of 3DSC3 with 3DZCG [150]

Finally, we compare the performance of our 3DSC3 with 3DZCG [150] in segmenting

MRI medical data that contains breast disease using different initialisation. Here,

tol = 10−2 and θ = 104. Figure 6.7(a) shows the data with initial solution is constructed

based on the location of marker points while Figure 6.7(b) shows the initial solution is

located slightly away from the marker. Figure 6.7 1(a) and 2(a) illustrate the successful

result by 3DZCG and 3DSC3 respectively using initial solution in Figure 6.7(a). For the

second initialisation in 6.7(b), our 3DSC3 gives a consistent segmentation curve as shown

in Figure 6.7 2(b), showing the advantages of our model. However, the segmentation

results of 3DZCG are inconsistent which implies that 3DZCG is heavily dependent on

the initilization due to highly non-convex terms involve in the minimisation problem.

6.9 Summary

In this chapter, we have successfully developed a 3-D convex and selective segmentation

model and solved using a new 3-D optimisation based multilevel algorithm called 3DSC2.

Using the local property of a targeted object in an image, we modified the 3DSC2

algorithm and name it as 3DSC3. In order to get a stronger decaying property, new

variant for 3DSC2 and 3DSC3 are proposed, called 3DSC2M and 3DSC3M, respectively.

Experiments carried out both on artificial geometric images and medical images show
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that 3DSC3 performs much faster than 3DSC2, 3DSC2M and 3DSC3M. We also applied

Chambolle’s projection algorithm to solve our 3-D segmentation model and name it as

3DCHB. Comparison of 3DSC3 with 3DCHB shows that for smaller stopping accuracy

value, 3DSC3 performs much faster than 3DCHB. The comparison of 3DSC3 with a

recent 3-D selective segmentation model called 3DZCG is also conducted. Results show

that 3DSC3 is consistent with different initial solution (less dependent of initialisation)

compare to 3DZCG which is sensitive to initial solution. In next work, we will develop

a new formulation for higher order selective segmentation model as well as developing

multilevel algorithm to solve the model.
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Chapter 7

Euler’s Elastica based Selective

Segmentation Model and Its Fast

Algorithm

In this chapter, we propose two new selective segmentation models called ES1 and ES2

that apply the Euler’s elastica energy term as boundary regularisation. The energy

term provides curvature information of a level curve in an image that may effect the

final segmentation boundary. The ES1 model uses relaxed binary curve representation

to compute the curvature while ES2 applies level set of continuous signed distance

function curve representation to calculate curvature. The minimisation of the objective

functions are challenging to solve due to nonsmooth, nonconvex, nonlinear and involves

higher order derivatives. We propose a simple and efficient way to solve the Euler’s

elastica optimisation problems by treating both models as a weighted total variation

type selective segmentation problem and we propose multilevel algorithms to solve

them. Experimental results show that the ES2 performs better than ES1. Numerical

test on ES2 also demonstrated that the model give a satisfactory result especially in

segmenting an object with missing or incomplete boundary when compared to other

existing models.

7.1 Introduction

One of the most important global image segmentation models is Mumford-Shah model

[102], where all features in an image are required to be segmented. The model aims to

find a piecewise smooth function which approximates a given image. The methodology

has brought forth numerous variational models in many topics of image processing,

including segmentation, denoising, and inpainting. An interesting case of the Mumford-

Shah’s model is the Chan-Vese’s model [38]. The Chan-Vese’s model [38] approximates

a given image using binary piecewise constant representation via level set functions.

Chan-Vese model [38] has proved to be an effective global segmentation model in many

applications which aim to segment all features in a given image. It also has been
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modified in a variety of contexts [37, 82, 138].

The task of segmenting a particular object in an images known as selective segmen-

tation model, is a new subject developed in recent years and not yet been widely studied.

As mentioned in the previous chapters, there have been a few variational selective

segmentation methods [2, 103, 15, 12, 64, 65, 66, 67, 114, 110, 111, 112, 113, 83, 129, 74].

In summary, Gout-Guyader- Vese [65, 64, 67] firstly proposed an edge-based method

for modelling selective segmentation. Later, it was improved by a mixed edge-based

and region-based selective model by Badshah-Chen [12]. In literature, there were other

approaches such as Random Walks [66], Geodesic [15] and GrabCut [114] that uses the

distributions probability, edge-based function or graph-cut theory respectively. Nguyen

et al. [103] improved these models by introducing an interactive image segmentation

algorithm that is less sensitive to the user inputs and sensitivity to small variations that

is able to produce an accurate boundary with a small amount of user interaction. This

robust method is considered as the state-of-the-art method for selective segmentation,

but with a limitation in segmenting semi-transparent boundaries [103]. The later work

by Rada-Chen [110] in formulating dual level set model in 2-D framework as well

as in 3-D [113] framework has shown to give satisfactory results for cases where the

other methods would produce spurious objects (i.e. fail the selection) in some hard

cases where the objects are near to each other or the intensity difference is small. The

drawback of the Rada-Chen model [110] is that it is slow to implement, hence they

improved the model by introducing one level set formulation in [111]. For the case in

dealing with selecting an object with irregular and oscillatory object boundaries, they

proposed a variational model for selective image segmentation of features with infinite

perimeter [112].

The works of Rada-Chen in [110, 111, 112, 113] are all in non-convex environment,

hence sensitive to initial solution. In 2015, Spencer and Chen [129] proposed a convex

selective model that more robust in locating initial solution. Recently in 2018, Liu et al.

[83] proposed a new convex selective segmentation model based on the work [12] and

[102]. In Chapter 5 and [74], we have reformulate the Spencer and Chen [129] model

called SC2, so that it is less sensitive to parameters and has cheaper computational cost

compared to [129]. The SC2 is also more robust compared to [83] in terms of number

of markers used. Moreover, SC2 is able to reduce the limitation of the state-of-the-art

model of [103].

The above mentioned selective segmentation models are all grey intensity based

models where the segmentation result heavily relies on grey intensity values of the

given image. However, due to the complexity of real images, the targeted objects might

be occluded by other ones or some parts of them may not be distinguished from the

background by the contrast. For example, in medical image analysis, target organs may

be blended with other ones, and some parts of them may be occluded by other organs

or even missing due to imaging conditions. Therefore, those grey intensity selective

based segmentation models might not be well suited to segment those goal objects from

given images.
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To overcome this issue, one possible way is to incorporate shapes of those targeted

objects into the segmentation procedure. Extensive work has also focused on this

research topic-segmentation using prior shape knowledge [32, 43, 46, 81, 128]. Another

possible way is to overcome this issue is to impose curvature constraints on the

segmentation contours to restore those boundaries that are missing or not well defined

by the grey intensity gradient of the images. This type of segmentation approach makes

use of Euler’s elastica energy term in the formulation. It can interpolate the missing

boundaries automatically without using prior shape knowledge.

A regular 2-D curve C is said to be Euler’s elastica if it is the equilibrium curve of

the elasticity energy functional

E (C) =

∫
C

(
a+ bκ2

)
ds (7.1)

where ds represents the arc length of the curve C, κ (s) the scalar curvature C at point

s and a, b are two positive constant parameters. By setting b = 0, the energy functional

E(C) measures the total length of the curve. If a = 0, the E(C) measures the total

curvature of the curve.

It was first introduced by Euler in 1744 in studying the physics of thin rods [84].

Euler’s elastica energy minimisation model has a long history in image processing. Some

of the works using equation (7.1) include segmentation of objects with different depth

[53, 104, 155, 134], region-segmentation [156, 51, 119, 120, 132, 14], illusory contour

[95, 75, 154, 76] and image denoising and inpainting problems [17, 27, 36, 52, 54, 3, 4,

93, 94, 13, 101, 120, 133, 145, 148, 147, 21].

Let u(x) denotes the gray level of an image u at point x . The level lines are defined

as boundaries of upper level sets, define at each gray level q by Xq = {x, u(x) ≥ q}.
The Euler’s elastica of all level curves of u(x) can be expressed as∫ Q

q=0

∫
Xq :u=q

(
a+ bκ2

)
dsdq (7.2)

where Q is the maximum value of u. Furthermore, in terms of function u , the curvature

κ can be expressed as

κ(u) = ∇ ·
(
∇u
|∇u|

)
(7.3)

as shown in [13]. Therefore, we can express (7.2) more simply as

E (u) =

∫
Ω

(
a+ b

(
∇ · ∇u
|∇u|

)2
)
|∇u| dx (7.4)

(see [13, 148] and the reference therein). Fuctional (7.4) represents the Euler’s elastica

energy of all level curves of u defined on the domain Ω.

For the Chan-Vese type Euler’s elastica energy models [156, 132, 14], equation (7.4)

is used as the regulariser. The modification allows the models to connect broken or

missing part of objects. In addition, it can capture objects of large size while ignoring

the objects of small size in a given image. Moreover, the models also less sensitive to
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image with intensity inhomogenity compare to the original Chan-Vese model [38]. Note

that, if b = 0, (7.4) is reduced to TV regulariser.

The segmentation models above ([156, 132, 14]) are global segmentation. Although

they have ability to capture object of large size and ignoring the ones with smaller size,

the selective segmentation model is still need to be developed in case if the targeted

object (foreground) in the given image is smaller than the others (background). To

this end, in this chapter, we will develop two new selective segmentation model called

ES1 and ES2 that employ Euler’s elastica in (7.4) as a new regularisation.

The minimisation of the resulting objective functions for both ES1 and ES2 are

challenging to solve due to nonsmooth, nonconvex, nonlinear and involves higher-order

derivatives. We will show a simple and efficient way to solve the Euler’s elastica selective

segmentation problems by treating the problems as a weighted total variation type

selective segmentation problems, inspired by the related work in [132, 148, 14]. We

solved the models using optimisation-based multilevel algorithm developed in Chapter

4 and 5.

We conclude the introduction part with the organisation of this chapter. In Section

7.2 we first review the global Chan-Vese Euler’s elastica-based segmentation models. We

propose two new formulations of selective segmentation models based on Euler’s elastica

energy called ES1 and ES2 in Section 7.3. Then, we develop the multilevel algorithms to

solve both models in Section 7.4. Section 7.5 presents numerical experiments conducted

to determine the better selective segmentation model. Then, the chosen model is

compared with other models. We conclude this chapter in Section 7.6.

7.2 Review on Euler’s elastica based Chan-Vese’s global

segmentation model

Recall from Section 3.34 that the Chan-Vese model [38] is written as

min
φ,c1,c2

FCV (φ, c1, c2) ,

FCV (φ, c1, c2) = µ

∫
Ω
|∇H(φ)| dΩ + λ1

∫
Ω

(z − c1)2H(φ) dΩ

+λ2

∫
Ω

(z − c2)2(1−H(φ)) dΩ

(7.5)

Here, the level set function φ is defined as a signed distance function from the unknown

segmentation boundary Γ where outside Γ the sign of φ is negative while inside Γ

the sign of φ is positive. The zero level set function φ is used to represent Γ that is

Γ = {(x, y) ∈ Ω : φ(x, y) = 0}. The function H(φ) is the Heaviside function of φ , the

constants c1 and c2 are viewed as the average values of a given image z inside and outside

the unknown curve Γ. The fixed parameters µ , λ1 , and λ2 are positive parameters.

The Chan-Vese model [38] has proved to be an effective global segmentation model. As

discussed in Chapter 3, the model also has been modified in variety of context such as

multiphase segmentation [138], vector-valued image segmentation [37], and selective

image segmentation [12, 111].
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However, the length regularisation term is insufficient to segment an image with

missing or broken boundary. In 2003, Zhu et al. [156] proposed to modify the Chan-Vese

model [38] by employing Euler’s elastica energy term as

min
φ,c1,c2

ECV E (φ, c1, c2) ,

ECV E (φ, c1, c2) =

∫
Ω

(
a+ b

∣∣∣∣∇ · ∇φ|∇φ|
∣∣∣∣2
)
|∇H(φ)| dΩ + λ1

∫
Ω

(z − c1)2H(φ) dΩ

+λ2

∫
Ω

(z − c2)2(1−H(φ)) dΩ

(7.6)

where a and b are positive parameters. The parameter a controls the length term and

b controls the curvature of the segmentation boundary. Here, the length term of the

Chan-Vese model [38] is still needed to avoid excessive segmentation contours.

To reduce the complexity of the model (7.6), Zhu et al [156] relaxed the model as

done in [34] and proposed to solve

min
u∈[0,1]

ECV E (u, c1, c2) ,

ECV E (u, c1, c2) =

∫
Ω

(
a+ b

∣∣∣∣∇ · ∇u|∇u|
∣∣∣∣2
)
|∇u| dΩ + λ1

∫
Ω

(z − c1)2u dΩ

+λ2

∫
Ω

(z − c2)2(1− u) dΩ

(7.7)

Experiments showed that the model [156], solved using Augmented Lagrangian

Method (ALM) is able to connect broken parts of objects to form meaningful objects.

In addition, the model can capture objects of large size while ignoring the ones of small

size [156]. Note that the work from [156] employ the L2-Euler’s elastica energy. There

is also work from [14] that employ the L1-Euler’s elastica energy for image segmentation

and the comparisons are made in [70].

Due to difficulty in solving Euler’s elastica energy related models that involve

highly nonlinear and higher order terms, Tai and Duan [132] proposed to combine both

functionals (7.6) and (7.7) and produced the following model

min
u,φ

EM (u, φ, c1, c2) ,

EM (u, φ, c1, c2) =

∫
Ω
g(φ) |∇u| dΩ + λ1

∫
Ω

(z − c1)2u dΩ

+λ2

∫
Ω

(z − c2)2(1− u) dΩ

(7.8)

under constraint:

u = H(φ),
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with

g(φ) = a+ b

∣∣∣∣∇ · ∇φ|∇φ|
∣∣∣∣2 . (7.9)

The functional (7.8) is viewed as a weighted total variation type which is more easy

and efficient to solve compared to functionals (7.6) and (7.7) [132]. Here, the binary

function u is used to express the length term and the signed distance function (SDF)

φ to compute the curvature values. By representing a curve using the SDF function

φ, the geometric features of the curve such as normal and curvature can be computed

more naturally than the relaxed binary representation used in (7.6) [132].

The minimisation of (7.8) involves two unknowns u and φ. Hence, the alternating

minimisation procedure is done to solve it. First, φ is fixed and solution for u is obtained

by minimising the following functional

u = arg min
u∈{0,1}

∫
Ω
g(φ) |∇u| dΩ + λ1

∫
Ω

(z − c1)2u dΩ

+λ2

∫
Ω

(z − c2)2(1− u) dΩ.

(7.10)

The functional (7.10) is relaxed following the idea by Chan et al in [34] and it is

equivalent to the following problem:

u = arg min
u∈[0,1]

∫
Ω
g(φ) |∇u| dΩ + λ1

∫
Ω

(z − c1)2u dΩ

+λ2

∫
Ω

(z − c2)2(1− u) dΩ

(7.11)

in the sense that a threshold of a solution u in (7.11) by a value η ∈ (0, 1) (usually

η = 0.5) gives a minimiser for (7.10). They adopted the Split Bregman method

[63, 48, 49, 50] to solve (7.11).

After u is obtained, then u is fixed to solve for φ from

u = H(φ).

Given a binary function u, there is a unique SDF of φ satisfying the above relation that

is denoted by

φ = SDF (u) (7.12)

as shown by [132]. The function φ in (7.12) is iteratively solved by re-distance process

using the fast sweep method [136, 153] to the η-level set of u. Fast marching methods

[122, 123] are also suggested to solve (7.12). The alternating minimisation procedure

above is done until convergence of the system achieved. The efficiency and effectiveness

of the proposed approach are validated through extensive experiments done.

In the same paper, Tai and Duan [132] also minimised the Euler’s elastica based

image inpainting model, and illusory shape reconstruction model by simplifying the

problem as a weighted TV based model. Papers in other image processing applications
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from [148] and [13] also used the similar idea which simplifies the Euler’elastica based

image registration model and Euler’elastica based image denoising model into a weighted

TV-type registration model and denoising model, respectively.

7.3 Euler’s elastica based selective segmentation model

Selective image segmentation can be defined as the task of extracting one object of

interest in an image based on some additional information of geometric constraints.

The segmentation models that we have reviewed in the previous section [156, 132, 14]

are for global segmentation due to the fact that all features or objects in an image are

to be segmented. Although they have the ability to segment an object of large size and

ignore the other objects of smaller size in a given image, the selective segmentation

model is still need to be developed in case the targeted object in a given image is

smaller than the other objects.

The selective segmentation models of [12, 111, 129] based Chan-Vese have proven

to be effective. As these models are based on Chan-Vese formulation [38] that heavily

relies on grey intensity values of a given image and length regularisation term, they are

not well suited to segment images with incomplete boundary or object that might be

occluded by other objects. To perform the job, we will proposed two new formulations

of selective segmentation models that employ Euler’s elastica energy and we will call

them ES1 and ES2. This energy gives information about the image curvature which is

hope that both ES1 and ES2 can accomplish the task.

As in Chapters 4 and 5, let n1 geometric constraints be given by a marker set

A = {wi = (x∗i , y
∗
i ) ∈ Ω, 1 ≤ i ≤ n1} ⊂ Ω

where each point is near the object boundary Γ, not necessarily on it [111, 152]. The

selective segmentation idea tries to detect the boundary of a single object among

all homogeneity intensity objects in image domain Ω close to A; here n1 (≥ 3). The

geometrical points in A define an initial polygonal contour and guide its evolution

towards Γ [152].

Using the set A, construct a polygon Q that connects up the markers. Denote the

function Pd (x, y) (as used in [129]) the normalized Euclidean distance of each point

(x, y) ∈ Ω from its nearest point (xp, yp) ∈ Q:

Pd (x, y) =
P0 (x, y)

‖P0‖L∞
, P0 (x, y) =

√
(x− xp)2 + (y − yp)2 = min

q∈Q
‖(x, y)− (xq, yq)‖.
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Then the ES1 formulation minimising a cost function defined as follows

min
u∈[0,1]

ES1 (u) ,

ES1 (u) =

∫
Ω

(
a+ b

∣∣∣∣∇ · ∇u|∇u|
∣∣∣∣2
)
|∇u| dΩ + λ1

∫
Ω

(z − c1)2u dΩ

+λ2

∫
Ω

(z − c2)2(1− u) dΩ + θ

∫
Ω
Pdu dΩ

(7.13)

Note that if θ = 0, (7.13) reduces to (7.7) of [156]. The functional (7.13) which

involves Euler’s elastica energy term is challenging to solve due to nonconvexity,

nonlinearity and involves higher order derivatives. As explored in some applications

previously mentioned such as [132, 13, 148], it is often more efficient to consider

computing the curvature term separately from an optimisation functional. Motivating

from the work in [132, 13, 148], the curvature term in (7.13) is computed separately

and we solve the Euler’s elastica selective segmentation model (7.13) as a weighted

TV based optimisation model and proposed to solve the unconstraint minimisation as

follows

min
u
ES1 (u) ,

ES1 (u) =

∫
Ω
V (κ) |∇u| dΩ + λ1

∫
Ω

(z − c1)2u dΩ + λ2

∫
Ω

(z − c2)2(1− u) dΩ

+θ

∫
Ω
Pdu dΩ + α

∫
Ω
ν(u) dΩ

(7.14)

with

V (κ) = a+ b|κ|2,

κ(u) = ∇ · ∇(u)

|∇(u)|
(7.15)

The term ν(u) in (7.14) enforces the solution u to be constrained in [0, 1]. One may

consider using the formula for ν(u) as in [129]. However, it increases the computational

complexity of the model. We propose to use splitting or alternating minimisation

approach idea as used in Chapter 5. Now, by introducing an artificial variable w, (7.14)

takes the following form

min
u,w

ES1 (u,w) ,

ES1 (u,w) =

∫
Ω
V (κ) |∇u| dΩ + λ1

∫
Ω

(z − c1)2w dΩ + λ2

∫
Ω

(z − c2)2(1− w) dΩ

+θ

∫
Ω
Pdw dΩ + α

∫
Ω
ν(w) dΩ +

1

2ρ

∫
Ω

(u− w)2dΩ

(7.16)

The right-most term in (7.16) enforces w ≈ u for sufficiently small ρ > 0 as used in

[20, 40, 99]. The minimisation problem (7.16) now has two unknowns and we shall use
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an alternating minimisation-like procedure to solve it. First, we fix w and solve the

following functional

min
u
ES11a (u,w) ,

ES11a (u,w) =

∫
Ω
V (κ) |∇u| dΩ+

1

2ρ

∫
Ω

(u− w)2dΩ.
(7.17)

We propose to solve (7.17) using optimisation based multilevel algorithm that we

developed in Chapters 4 and 5. The implementation details are discussed in the next

section.

Then u is fixed to solve

min
w∈[0,1]

ES11b (u,w) ,

ES11b (u,w) = λ1

∫
Ω

(z − c1)2w dΩ + λ2

∫
Ω

(z − c2)2(1− w) dΩ

+θ

∫
Ω
Pdw dΩ +

1

2ρ

∫
Ω

(u− w)2dΩ.

(7.18)

Functional (7.18) can be solved directly and the analytical solution is defined as

w = min{max{u− ρ(λ1(z − c1)2 − λ2(z − c2)2)− ρθPd, 0}, 1}. (7.19)

After u and w are updated from (7.17) and (7.19) respectively, we go back to update

V (κ) from (7.15) again. This procedure is repeated until convergence is achieved. As a

common practice, the final segmented image is defined by Σ = {(x, y) : u(x, y) ≥ η}
where the threshold value η ∈ (0, 1), usually η = 0.5.

The ES1 model above uses the relaxed binary curve representation to compute

curvature. Another approach to evaluate curvature is to use the level set of continuous

SDF. Let φ to be the SDF, the formulation of our second selective segmentation based

Euler’s elastica called ES2 is given as

min
u∈{0,1},φ

ES2 (u, φ) ,

ES2 (u) =

∫
Ω

(
a+ b

∣∣∣∣∇ · ∇φ|∇φ|
∣∣∣∣2
)
|∇u| dΩ + λ1

∫
Ω

(z − c1)2u dΩ

+λ2

∫
Ω

(z − c2)2(1− u) dΩ + θ

∫
Ω
Pdu dΩ

(7.20)

under constraint:

u = H(φ).

We remark that if θ = 0, the ES2 reduces to the model of [132]. To solve ES2, we shall

try to use similar ideas as were used for ES1 where the curvature term in (7.20) is

computed separately and we solve the Euler’s elastica selective segmentation model
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(7.20) as a weighted TV based optimisation model and proposed to solve

min
u∈{0,1},φ

ES2 (u, φ) ,

ES2 (u) =

∫
Ω
S(κ) |∇u| dΩ + λ1

∫
Ω

(z − c1)2u dΩ + θ

∫
Ω
Pdu dΩ

+λ2

∫
Ω

(z − c2)2(1− u) dΩ

(7.21)

such that u = H(φ) with

S(κ) = a+ b|κ|2,

κ(φ) = ∇ · ∇(φ)

|∇(φ)|
.

(7.22)

Following further the work of [132], alternating minimisation procedure to solve (7.21)

is used. Let us denote r = (z − c1)2 − (z − c2)2.

Firstly, we fix φ in (7.21) and solve

min
u∈{0,1}

{
ES2 (u, φ) =

∫
Ω
S (κ) |∇u| dΩ +

∫
Ω
ru dΩ + θ

∫
Ω
Pdu dΩ.

}
(7.23)

It is known from [34] that functional (7.23) is equivalent to the following problem

min
u∈[0,1]

{
ES2 (u, φ) =

∫
Ω
S (κ) |∇u| dΩ +

∫
Ω
ru dΩ + θ

∫
Ω
Pdu dΩ

}
(7.24)

where a threshold of a solution (7.24) by a value η ∈ (0, 1) gives a minimiser for (7.23).

That means the segmented image is defined by Σ = {(x, y) : u(x, y) ≥ η}. Like ES1, we

change (7.24) in unconstrained form and introduce an auxiliary variable w as follows

min
u,w

ES2 (u,w, φ)

ES2 (u,w, φ) =

∫
Ω
S (κ) |∇u| dΩ +

∫
Ω
rw dΩ + θ

∫
Ω
Pdw dΩ

+α

∫
Ω
ν(w) dΩ +

1

2ρ

∫
Ω

(u− w)2 dΩ

(7.25)

To solve (7.25), we fix w and solve

min
u

{
ES22a (u,w, φ) =

∫
Ω
S (κ) |∇u| dΩ+

1

2ρ

∫
Ω

(u− w)2 dΩ

}
(7.26)

using multilevel algorithm that will be discussed in next section. Then, we fix u and

solve

min
w∈[0,1]

{
ES22b (u,w, φ) =

∫
Ω
rw dΩ + θ

∫
Ω
Pdw dΩ +

1

2ρ

∫
Ω

(u− w)2 dΩ

}
(7.27)

140



which has an analytical solution as follows

w = min{max{u− ρr − ρθPd, 0}, 1}. (7.28)

Secondly, we fix u in (7.21) to solve for φ. Following the work from [132], φ is

updated using

φ = SDF (u) . (7.29)

The solution for (7.29) is computed using any reinitialisation procedure. In this work

we employ Sussman method [131] as discussed in Section 3.34 of Chapter 3. The

reinitialisation of φ done in (7.29) to be the SDF of η-level set u obtained from (7.26)

prevents the level set function of φ from becoming too “flat” which causes inaccuracy

in computing the curvature term.

After the solutions u, w, and φ are updated from (7.26), (7.28), and (7.29) respec-

tively, we go back to update S(κ) in (7.22). This iteration is repeated until the system

converges.

7.4 Minimisation using optimisation based multilevel al-

gorithm

An optimisation based multilevel method is based on a discretise-optimise scheme where

minimisation is solved directly (without using PDEs). This method is an alternative

to multigrid method where the multigrid method is based on an optimise-discretise

scheme which solve the resulting Euler Lagrange PDE derived from the variational

problem. The original multilevel method applied to image denoising [33] used the

“patch detection” idea. However, as image size increases, the method can be slow

because of the patch detection idea searches the entire image for the possible patch

size on the finest level after each multilevel cycle [73].

This section proposes to develop a multilevel algorithm without the “patch detection”

idea for our new Euler’s elastica based selective segmentation models: first the ES1

model described in (7.14) and then the ES2 model in (7.21).

As detailed in Chapter 4 and 5, we shall assume n = 2L for a given image z of size

n × n. The standard coarsening defines L + 1 levels: k = 1 (finest) , 2, ..., L, L + 1

(coarsest) such that level k has τk × τk “superpixels” with each “superpixels” having

pixels bk × bk where τk = n/2k−1 and bk = 2k−1, see Figure 4.2 in Chapter 4.

7.4.1 Computation of V (κ(u)) and S(κ(φ)) terms in discrete form

The terms V (κ(u)) in (7.15) and S(κ(φ)) in (7.22) contain a curvature, κ. We first

show the computation of κ(u) in (7.15) of ES1 in discrete form. Let Ω = {(i, j)| 1 ≤
i ≤ n, 1 ≤ j ≤ n} be the discretised image domain and each point (i, j) correspond to a

pixel point of the image. The discrete gradient ∇u =
(
uxi,j , u

y
i,j

)
is given by the central

difference scheme
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uxi,j =


(ui+1,j − ui−1,j)/2 if 1 < i < n

u2,j − u1,j if i = 1

un,j − un−1,j if i = n

uyi,j =


(ui,j+1 − ui,j−1)/2 if 1 < j < n

ui,2 − ui,1 if j = 1

ui,n − ui,n−1 if j = n.

We thus give the discretisation of κ(u) in (7.15) of ES1 by

κi,j(ui,j) =

 uxi,j√(
uxi,j

)2
+
(
uyi,j

)2
+ ε


x

+

 uyi,j√(
uxi,j

)2
+
(
uyi,j

)2
+ ε


y

.

Consequently, the term V (κ(u)) in (7.15) is compute in discrete form as follow

Vi,j(κi,j(ui,j)) = a+ b|κi,j(ui,j)|2 (7.30)

Similarly, the discretisation of κ(φ) in (7.22) of ES2 is defined by

κi,j(φi,j) =

 φxi,j√(
φxi,j

)2
+
(
φyi,j

)2
+ ε


x

+

 φyi,j√(
φxi,j

)2
+
(
φyi,j

)2
+ ε


y

.

Hence, the computation of S(κ(φ)) in (7.22) in discrete form is given as

Si,j(κi,j(φi,j)) = a+ b|κi,j(φi,j)|2 (7.31)

where ε > 0 is a relatively small value based on machine epsilon is added to make the

problem well-posed, i.e., to avoid division by zero in the evaluation of curvature.

7.4.2 A multilevel algorithm for ES1

The minimiser for the proposed ES1 model in (7.14) shall be found by iterating (7.17),

(7.18), and (7.15) until the system converges. Note that, the solution of (7.18) is

obtained analytically following (7.19) while (7.15) (equivalent to (7.30)) is updated by

the most recent update of u from (7.17). Now, it remains for us to develop a multilevel

algorithm to solve (7.17).

Firstly, we discretise the functional ES11a (u,w) of problem (7.17) as follows:

min
u
ES11a (u, V, w) ≡ min

u
ES11a

α (u1,1, u2,1, ..., ui−1,j , ui,j , ui+1,j , ..., un,n, V, w)

=

n∑
i=1

n∑
j=1

Vi,j

√
(ui,j − ui,j+1)2 + (ui,j − ui+1,j)

2 + β +
1

2ρ

n∑
i=1

n∑
j=1

(ui,j − wi,j)2

(7.32)
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Consider the local minimisation of (7.32) by the coordinate descent method on the

finest level 1:


Given u(0) =

(
u

(0)
i,j

)
with m = 0,

Solve u
(m+1)
i,j = arg min

ui,j∈R
ES11a

loc (u, V, w) for i, j = 1, 2, ...n,

Repeat the above steps with m = m+ 1 until stopped.

(7.33)

where

ES1a
loc ≡ ES11a

α − ES11a
ᾱ

= Vi,j

√(
ui,j − u(m)

i+1,j

)2
+
(
ui,j − u(m)

i,j+1

)2
+ β

+Vi−1,j

√(
ui,j − u(m)

i−1,j

)2
+
(
u

(m)
i−1,j − u

(m)
i−1,j+1

)2
+ β

+Vi,j−1

√(
ui,j − u(m)

i,j−1

)2
+
(
u

(m)
i,j−1 − u

(m)
i+1,j−1

)2
+ β

+ 1
2ρ(ui,j − wi,j)2.

The terms ES11a
ᾱ refers to a collection of all terms that are not dependent on ui,j . For ui,j

at the boundary (the total variation term), Neumann’s condition is used. Minimisation

of ES11a
loc in (7.33) is achieved using Newton method by iterating u(m) → u→ u(m+1) :

Vi,j

(
2ui,j−u

(m)
i+1,j−u

(m)
i,j+1

)
√(

ui,j−u
(m)
i+1,j

)2
+
(
ui,j−u

(m)
i,j+1

)2
+β

+
Vi−1,j

(
ui,j−u

(m)
i−1,j

)
√(

ui,j−u
(m)
i−1,j

)2
+
(
u
(m)
i−1,j−u

(m)
i−1,j+1

)2
+β

+
Vi,j−1

(
ui,j−u

(m)
i,j−1

)
√(

ui,j−u
(m)
i,j−1

)2
+
(
u
(m)
i,j−1−u

(m)
i+1,j−1

)2
+β

+ 1
ρ (ui,j − wi,j) = 0

giving rise to the form

unewi,j = uoldi,j − T old/Bold (7.34)

where

T old =
Vi,j

(
2uoldi,j −u

(m)
i+1,j−u

(m)
i,j+1

)
√(

uoldi,j −u
(m)
i+1,j

)2
+
(
uoldi,j −u

(m)
i,j+1

)2
+β

+
Vi−1,j

(
uoldi,j −u

(m)
i−1,j

)
√(

uoldi,j −u
(m)
i−1,j

)2
+
(
u
(m)
i−1,j−u

(m)
i−1,j+1

)2
+β

+
Vi,j−1

(
uoldi,j −u

(m)
i,j−1

)
√(

uoldi,j −u
(m)
i,j−1

)2
+
(
u
(m)
i,j−1−u

(m)
i+1,j−1

)2
+β

+ 1
ρ

(
uoldi,j − wi,j

)
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Bold =
2Vi,j√(

uoldi,j −u
(m)
i+1,j

)2
+
(
uoldi,j −u

(m)
i,j+1

)2
+β

−
Vi,j

(
2uoldi,j −u

(m)
i+1,j−u

(m)
i,j+1

)2√((
uoldi,j −u

(m)
i+1,j

)2
+
(
uoldi,j −u

(m)
i,j+1

)2
+β

) 3
2

+
Vi−1,j√(

uoldi,j −u
(m)
i−1,j

)2
+
(
u
(m)
i−1,j−u

(m)
i−1,j+1

)2
+β

−
Vi−1,j

(
uoldi,j −u

(m)
i−1,j

)2√((
uoldi,j −u

(m)
i−1,j

)2
+
(
u
(m)
i−1,j−u

(m)
i−1,j+1

)2
+β

) 3
2

+
Vi,j−1√(

uoldi,j −u
(m)
i,j−1

)2
+
(
u
(m)
i,j−1−u

(m)
i+1,j−1

)2
+β

−
Vi,j−1

(
uoldi,j −u

(m)
i,j−1

)2√((
uoldi,j −u

(m)
i,j−1

)2
+
(
u
(m)
i,j−1−u

(m)
i+1,j−1

)2
+β

) 3
2

+1
ρ .

To introduce the multilevel algorithm, it is of interest to rewrite (7.33) in an

equivalent form:

Given u(0) =
(
u

(0)
i,j

)
with m = 0,

Solve ĉ = arg min
ui,j∈R

ES11a
loc

(
u

(m)
i,j + c, V, w

)
,

Update u
(m+1)
i,j = u

(m)
i,j + ĉ,

Repeat the above steps with m = m+ 1 until stopped.

(7.35)

The problem in (7.35) can be interpreted as finding the best correction constant ĉ at

the current approximate u
(m)
i,j on level 1 (the finest level).

As detailed in Chapters 4 and 5, to formulate the multilevel approach for general

level k, we set the following: b = 2k−1, k1 = (i− 1) b + 1, k2 = ib, `1 = (j − 1) b + 1,

`2 = jb, and c = (ci,j). Denoted the current ũ, the minimisation of c in problem (7.35)

is equivalent to minimise the following

FES1 (ci,j) =

`2∑
`=`1

Vk1,`

√
[ci,j − (ũk1−1,` − ũk1,`)]

2 + (ũk1−1,` − ũk1−1,`+1)2 + β

+

k2−1∑
k=k1

Vk,`2

√
[ci,j − (ũk,`2+1 − ũk,`2)]2 + (ũk,`2 − ũk+1,`2)2 + β

+Vk2,`2

√
[ci,j − (ũk2,`2+1 − ũk2,`2)]2 + [ci,j − (ũk2+1,`2 − ũk2,`2)]2 + β

+

`2−1∑
`=`1

Vk2,`

√
[ci,j − (ũk2+1,` − ũk2,`)]

2 + (ũk2,` − ũk2,`+1)2 + β

+

k2∑
k=k1

Vk,`1−1

√
[ci,j − (ũk,`1−1 − ũk,`1)]2 + (ũk,`1−1 − ũk+1,`1−1)2 + β

+
1

2ρ

k2∑
k=k1

`2∑
`=`1

(uk,` + ci,j − wk,`)2.

(7.36)
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which can be simplified further using (5.19) as

FES1 (ci,j) =

`2∑
`=`1

Vk1−1,`

√
(ci,j − hk1−1,`)

2 + υ2
k1−1,` + β

+

k2−1∑
k=k1

Vk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+

`2−1∑
`=`1

Vk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β

+

k2∑
k=k1

Vk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+
√

2Vk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+
β

2

+
1

2ρ

k2∑
k=k1

`2∑
`=`1

(uk,` + ci,j − wk,`)2.

(7.37)

On the coarsest level (L+ 1), a single constant update for the current ũ is given as

min {
c

FES1 (ũ+ c) =
1

2ρ

n∑
i=1

n∑
j=1

(ui,j + c− wi,j)2} (7.38)

which has a simple and explicit solution.

Then, we obtain a multilevel method if we cycle through all levels and all blocks on

each level. The overall procedure to solve our first model ES1 is given in Algorithm 8.

Again, in order to update the algorithm in a fast manner, we recommend to adjust the

fine level before the coarse level and to use the inner iteration t = 1.

7.4.3 A multilevel algorithm for ES2

We now consider our model ES2 as expressed by (7.21). The minimiser is obtained

by minimisation of ES2 with respect to u in (7.26) and w in (7.27) respectively. The

solution of (7.27) can be obtained analytically following (7.29). After the solution of

u and w are obtained, we update φ in (7.29) by reinitilisation procedure solved using

Sussman method [131]. Lastly, we update S(κ) using (7.31) (equivalent to (7.22)).

The iteration is done until convergence achieved. Now, we discuss how to develop a

multilevel algorithm to solve (7.26).

The discretised form of the functional ES22a (u,w) of problem (7.26) is as follows:

min
u
ES22a (u, S,w) ≡ min

u
ES22a

α (u1,1, u2,1, ..., ui−1,j , ui,j , ui+1,j , ..., un,n, S, w)

=
n∑
i=1

n∑
j=1

Si,j

√
(ui,j − ui,j+1)2 + (ui,j − ui+1,j)

2 + β +
1

2ρ

n∑
i=1

n∑
j=1

(ui,j − wi,j)2

(7.39)

Consider the local minimisation of (7.39) by the coordinate descent method on the
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Algorithm 8 ES1 – Algorithm to solve the new ES1 model

Given image z, an initial guess u = ũ, an initial guess w = w̃, the stop tolerance (tol),
and maximum multilevel cycle (maxit) with L+ 1 levels. Compute V , c1, and c2.

1) Solve (7.17) to update u using the following steps:

i). Set u0 = ũ.

ii). Smooth for t iteration the approximation on the finest level 1 that is solve
(7.33) for i, j = 1, 2, ...n

iii). On each coarse level k = 2, 3, ...L, L+ 1 :
> If k ≤ L, compute the minimiser c of (7.36)
> Solve (7.37) on the coarsest level k = L+ 1
> Update u = ũ+Qkc where Qk is the interpolation operator distributing ci,j
to the corresponding b× b block on level k as illustrated in (5.16) of Chapter 5.

2) Solve (7.18) to update w:

i). Set w0 = w̃.

ii). Compute w using the formula (7.19).

3) Update V using (7.30)

4) If max
(
‖u−u0‖
‖u0‖ , ‖w−w0‖

‖w0‖

)
< tol or maxit is reached, stop the cycle or return to Step

1 with ũ = u and w̃ = w.

finest level 1:


Given u(0) =

(
u

(0)
i,j

)
with m = 0,

Solve u
(m+1)
i,j = arg min

ui,j∈R
ES22a

loc (u, S,w) for i, j = 1, 2, ...n,

Repeat the above steps with m = m+ 1 until stopped.

(7.40)

where

ES2a
loc ≡ ES22a

α − ES22a
ᾱ

= Si,j

√(
ui,j − u(m)

i+1,j

)2
+
(
ui,j − u(m)

i,j+1

)2
+ β

+Si−1,j

√(
ui,j − u(m)

i−1,j

)2
+
(
u

(m)
i−1,j − u

(m)
i−1,j+1

)2
+ β

+Si,j−1

√(
ui,j − u(m)

i,j−1

)2
+
(
u

(m)
i,j−1 − u

(m)
i+1,j−1

)2
+ β

+ 1
2ρ(ui,j − wi,j)2.

The terms ES22a
ᾱ refers to a collection of all terms that are not dependent on ui,j .

For ui,j at the boundary (the total variation term), Neumann’s condition is used.

Minimisation of ES22a
loc in (7.40) is achieved using Newton method as similarly done in

solving ES1.

To introduce the multilevel algorithm, it is of interest to rewrite (7.40) in an
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equivalent form:

Given u(0) =
(
u

(0)
i,j

)
with m = 0,

Solve ĉ = arg min
ui,j∈R

ES22a
loc

(
u

(m)
i,j + c, S, w

)
,

Update u
(m+1)
i,j = u

(m)
i,j + ĉ,

Repeat the above steps with m = m+ 1 until stopped.

(7.41)

The problem in (7.41) can be interpreted as finding the best correction constant ĉ at

the current approximate u
(m)
i,j on level 1 (the finest level).

For general level k, the minimisation of c in problem (7.41) is equivalent to minimise

the following

FES2 (ci,j) =

`2∑
`=`1

Sk1,`

√
[ci,j − (ũk1−1,` − ũk1,`)]

2 + (ũk1−1,` − ũk1−1,`+1)2 + β

+

k2−1∑
k=k1

Sk,`2

√
[ci,j − (ũk,`2+1 − ũk,`2)]2 + (ũk,`2 − ũk+1,`2)2 + β

+Sk2,`2

√
[ci,j − (ũk2,`2+1 − ũk2,`2)]2 + [ci,j − (ũk2+1,`2 − ũk2,`2)]2 + β

+

`2−1∑
`=`1

Sk2,`

√
[ci,j − (ũk2+1,` − ũk2,`)]

2 + (ũk2,` − ũk2,`+1)2 + β

+

k2∑
k=k1

Sk,`1−1

√
[ci,j − (ũk,`1−1 − ũk,`1)]2 + (ũk,`1−1 − ũk+1,`1−1)2 + β

+
1

2ρ

k2∑
k=k1

`2∑
`=`1

(uk,` + ci,j − wk,`)2.

(7.42)

Using (5.19), the functional (7.42) can be simplified further as

FES2 (ci,j) =

`2∑
`=`1

Sk1−1,`

√
(ci,j − hk1−1,`)

2 + υ2
k1−1,` + β

+

k2−1∑
k=k1

Sk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+

`2−1∑
`=`1

Sk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β

+

k2∑
k=k1

Sk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+
√

2Sk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+
β

2

+
1

2ρ

k2∑
k=k1

`2∑
`=`1

(uk,` + ci,j − wk,`)2.

(7.43)
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On the coarsest level (L+ 1), a single constant update for the current ũ is given as

min {
c

FES2 (ũ+ c) =
1

2ρ

n∑
i=1

n∑
j=1

(ui,j + c− wi,j)2} (7.44)

which has a simple and explicit solution.

The overall procedure to solve our second model ES2 is given in Algorithm 9.

Algorithm 9 ES2 – Algorithm to solve the new ES2 model

Given image z, an initial guess u = ũ, an initial guess w = w̃, the stop tolerance (tol),
and maximum multilevel cycle (maxit) with L+ 1 levels. Compute φ, S, c1, and c2.

1) Solve (7.26) to update u using the following steps:

i). Set u0 = ũ.

ii). Smooth for t iteration the approximation on the finest level 1 that is solve
(7.40) for i, j = 1, 2, ...n

iii). On each coarse level k = 2, 3, ...L, L+ 1 :
> If k ≤ L, compute the minimiser c of (7.42)
> Solve (7.43) on the coarsest level k = L+ 1
> Update u = ũ+Qkc where Qk is the interpolation operator distributing ci,j
to the corresponding b× b block on level k as illustrated in (5.16) of Chapter 5.

2) Solve (7.27) to update w:

i). Set w0 = w̃.

ii). Compute w using the formula (7.28).

3) Reinitialise φ of (7.29).

4) Update S via (7.31).

5) If max
(
‖u−u0‖
‖u0‖ , ‖w−w0‖

‖w0‖

)
< tol or maxit is reached, stop the cycle or return to Step

1 with ũ = u and w̃ = w.

7.5 Numerical experiment

In this section, we provide several numerical experiments conducted to show the

performance of the proposed algorithms, ES1 and ES2. There are 6 sets of tests carried

out. In the first set, we will compare the performance of ES1 and ES2 and chose the

best method. The chosen method will be compared with other variational segmentation

models. The models are:
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Name Description

SC1 :

A selective segmentation model by Spencer and Chen [129]

that is solved using multilevel algorithm developed in

Chapter 5 and [74].

SC2 :

A reformulated model of SC1, solved using multilevel

algorithm developed in Chapter 5 and reported in [74]. We

compare ES with SC1 and SC2 in the second set of the

tests.

CMT :

In the third set, we compare ES with the latest selective

segmentation model by Liu et al [83], called CMT model. We

solve the model using multilevel algorithm.

NCZZ :

A state-of-the-art interactive selective segmentation model by

Nguyen et al, called NCZZ [103], solved using Split Bregman

method. The comparison of ES with NCZZ is done in the

fourth set of the tests.

JX :

A global segmentation model based on Euler’s elastica energy

by X.C.Tai & J.Duan [133], solved using Split Bregman

method. We named the model as JX and compare with ES in

the fifth set of tests.

In the final test (test six), we perform the speed test of the chosen method with an

image of different resolutions.

We provide a general guide to choose suitable parameters used in ES1 and ES2 for

different images based on our experimental result as follows: parameters λ1 = λ2 =

1,ρ = 10−3, and β = 10−4 are fixed throughout the experiments unless stated otherwise.

Parameter a ensures the final segmentation curve is smooth and the suitable range for

a is 500 ≤ a ≤ 900 . Parameters b gives more curvature information and connect the

broken image boundary. A good range for b is 900 ≤ b ≤ 1500. Parameter θ takes large

value if the targeted object is too close a nearby object and small θ for well separated

object. The standard image size used is 128× 128, otherwise if another size is used it

will be stated. All algorithms are implemented using MATLAB R2018a on a computer

with Intel Core i7 processor, CPU 3.60GHz, 16 GB RAM CPU. The algorithms are

stopped when maxit = 300 or tol = 10−2.

7.5.1 Test Set 1: Comparison of ES1 and ES2

In this test, we consider a synthetic image with different markers set used. The first

marker set is shown in Figure 7.1(a) and 7.1(d) shows the second markers set. The

final segmentation results by ES1 and ES2 using the markers in 7.1(a) are illustrated

in 7.1(b) and 7.1(c) respectively. To complete the segmentation task, ES1 needs 11.5s

while ES2 needs 7.6 seconds. The accuracy given by the Jaccard similarity coefficient

(JSC) value is the same, that is JSC=0.84. Next, we segment the targeted object using

the second markers set in 7.1(d). Figures 7.1(e) and 7.1(f) demonstrate the results by

ES1 and ES2 respectively. ES1 needs 23.1 seconds with JSC=0.82 while ES2 needs 7.6

seconds with accuracy, JSC=0.86. Clearly, ES2 is faster than ES1 for both markers set.

On top of that, ES2 gives a better final segmentation results compared to ES1. This
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(a) (b) ES1 (c) ES2

(d) (e) ES1 (f) ES2

Figure 7.1: Test Set 1—Figure (a) and (d) show the same targeted object with different
markers set used. Images (b) and (c) demonstrate the result of ES1 and ES2 respectively using
markers in (a). ES1 needs 11.5 seconds while ES2 needs 7.6 seconds with the same accuracy,
JSC=0.84. Images (e) and (f) illustrate the result of ES1 and ES2 respectively using markers
in (d). ES1 needs 23.1 seconds with JSC=0.82 while ES2 needs 7.6 seconds with accuracy,
JSC=0.86. Here, a = θ = 500 and b = 900.

implies that ES2 is less dependent to the markers set used. Based on these findings,

ES2 is a better algorithm than to ES1. We also plot the initial and final distance

function φ of equation (7.29) as shown in Figure 7.2 for both marker sets used. The

distance function remain a smooth SDF, consequently help in computing an accurate

curvature value of a curve. This preservation is important for the success of ES2.

To see how the Euler’s elastica affects the final segmentation results of ES2, we fix all

other parameters while only varying the curvature parameter b. For this illustration, we

use ES2 to segment a real medical image as shown in Figure 7.3(a). The targeted organ

occupied with inhomogeneous intensity is marked by the markers. Images 7.3(b) and

7.3(c) show the effect of the curvature parameter b = 1 and b = 900 respectively. With

the aid of the Euler’s elastica, one can observed that we able to produce a satisfactory

segmentation result for such image for a suitable value of b. As our model formulation

is based on the the two-phase (piecewise constant) intensity based segmentation models

in [38, 129, 74], notice that, for small value of b = 1, all the final segmentation curves

inherit the limitation characteristics of the two-phase segmentation models which are

unable to restore the broken image boundary and have difficulty in segmenting an

image with inhomogeneous of intensity. We show the comparison with other selective

segmentation models in the next test set.

7.5.2 Test Set 2: Comparison with SC1 and SC2 models

The aim of this test is to show clearly the comparison of ES2 with other close related

two-phase intensity based selective segmentation models namely SC1 and SC2. The
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(a) (b)

(c) (d)

Figure 7.2: Test Set 1—(a) and (c) show the initial distance function φ of ES2 in equation
(7.29), computed from the corresponding contour generated by the first marker set in 7.1(a)
and second markers set in 7.1(d) respectively. Images (b) and (d) illustrate the final distance
function φ , calculated from the final contour of ES2 in 7.1(c) and 7.1(f) respectively. The color
bar indicates the value range of φ.

(a) (b) b = 1 (c) b = 900

Figure 7.3: Test Set 1— Images (b) and (c) show the effect of the curvature parameter b = 1
and b = 900 respectively for real medical image in (a) with intensity inhomogenity. Here, ES2
reads a = 500 and θ = 1500.
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SC1 and SC2 models were reported in the Chapter 5 and in [74]. Figure 7.4(a) and

7.4(b) show the targeted objects with markers used. The image 7.4(a) is the synthetic

image with damaged boundary while 7.4(b) is the cap of a mushroom with intensity

inhomogenity. Images 7.4(d), 7.4(g), and 7.4(j) demonstrate the segmentation results

of the targeted object in 7.4(a) for SC1, SC2, and ES2 respectively, while images 7.4(e),

7.4(h), and 7.4(k) illustrate the segmentation results of the targeted object 7.4(b) for

SC1, SC2, and ES2 respectively.

For completeness, we provide in 7.4(c) and 7.4(f) the result of SC1 in segmenting

objects in Figure 7.1(a) and 7.3(a) used in test set 1 respectively, while in 7.4(i) and

7.4(l) we demonstrate the results of using SC2 in segmenting objects in Figure 7.1(a)

and 7.3(a) of test set 1 respectively. Obviously, SC1 and SC2 are unable to recover the

missing boundary of the circle object of images in Figure 7.1(a) and Figure 7.4(a). In

addition, SC1 and SC2 also unable to give a good result in segmenting the organ used in

Figure 7.3(a) and the cap of the mushroom in 7.4(b) due to intensity inhomogenity of the

image. In contrast, the new ES2 which has the additional image curvature information

able to fill in the gap of the circle object of image 7.4(a) and give satisfactory result in

segmenting the mushroom’s cap.

7.5.3 Test Set 3: Comparison with CMT model [83]

In the third experiment, we compare ES2 with the latest selective segmentation model

by Liu et al [83], called CMT model. The CMT model is formulated based on the

famous Mumford and Shah global segmentation model [102], that assumes piecewise

smooth variation of the intensities in an image, suitable for segmentation of images

having intensity inhomogeneity. Figure 7.5(a) shows the targeted object with markers

used. The final segmentation results by CMT [83] and ES2 are demonstrated in 7.5(b)

and 7.5(c) respectively. For completeness, in 7.5(d) we show the result of CMT [83]

in segmenting object of Figure 7.3(a) with intensity inhomogenity as used in test set

1. Observed that the CMT model [83] able to deal with image with inhomogenious

intensity, the advantage evidence of using piecewise smooth formulation. However it’s

limitation is that it is unable to segment an object with missing boundary and the

model basically needs more number of markers to get a better segmentation results as

reported in [74]. For the given synthetic problem in Figure 7.5(a), our ES2 is able to

recover the missing boundary.

7.5.4 Test Set 4: Comparison with NCZZ model [103]

In this set, we compare ES2 with the state-of-the-art interactive selective segmentation

model by Nguyen et al, called NCZZ [103]. The model is well-known for its robustness

in selecting a feature in an image in an interactive way. We acknowledge that the NCZZ

model [103] gives satisfactory result in segmenting object with intensity inhomogeneity

in Figure 7.3(a) and Figure 7.4(b). For briefness, we will not show the results that

both models (NCZZ [103] and ES2) give satisfactory results. This test set will show the

performance of NCZZ [103] and ES2 in segmenting object with incomplete boundary.
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(a) (b) (c) SC1

(d) SC1 (e) SC1 (f) SC1

(g) SC2 (h) SC2 (i) SC2

(j) ES2 (k) ES2 (l) SC2

Figure 7.4: Test Set 2—Images (a) and (b) show the targeted objects with markers used.
Images (d), (g), and (j) demonstrate the segmentation results of object (a) for SC1, SC2, and
ES2 respectively. We used b = 900, a and θ equal 500. Images (e), (h), and (k) illustrate the
segmentation results of the targeted object (b) that is the cap of the mushroom for SC1, SC2,
and ES2 respectively using λ1 = 0.3, a = 900, b = 1500 and θ = 3500. For completeness, in (c)
and (f) we show the result of SC1 in segmenting objects in Figure 7.1(a) and 7.3(a) used in test
set 1 respectively, while in (i) and (l) show the result of using SC2 in segmenting objects in
Fugure 7.1(a) and 7.3(a) of test set 1 respectively.
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(a) (b)

(c) (d)

Figure 7.5: Test Set 3—Image (a) shows the targeted object with markers used. Images (b) and
(c) demonstrate the segmentation results of CMT [83] and ES respectively. For completeness,
in (d) we show the result of CMT [83] in segmenting object of Figure 7.3(a) with intensity
inhomogenity as used in test set 1. Here, we used a = 900, b = θ = 500.

Figure 7.6(a) and 7.6(b) show the targeted object with markers used for NCZZ model

[103] and ES2 respectively. The targeted object is to segment the hat of the kid.

However, the hat is partially occluded by the kid. Notice that the NCZZ [103] used

both foreground (red) and background (blue) markers while our ES2 just used the

forground markers information. The final segmentation result for NCZZ [103] is

demonstrated in 7.6(c) while the result of ES2 in binary form is shown in 7.6(d),

see also Figure 7.8(b) for the generated segmentation curve by ES2. With only the

boundary length regularity information, NCZZ model [103] able to partially segments

the hat. In contrast to NCZZ [103], our new model ES2 gives the “prediction” of the

occuled part of the hat, closer to the disocclusion of human perception due to the

additional curvature regularity information in the ES2 formulation. We remark that the

performance of ES2 in segmenting the ellipse shape hat is better than its performance

in segmenting ellipse object in Figure 7.1c and 7.1f. This is due to the different position

and number of markers set used. Notice that ES2 uses more markers in Figure 7.6b

compare to Figure 7.1c and 7.1f. In general, the performance of ES2 is better when

more markers are used and the position of markers are placed near or on the targeted

object. For a hard problem, for example an object with many incomplete boundaries,

it is difficult to determine the position of markers and ES2 may gives unsatisfactory

result. To overcome this limitation, one can consider to apply prior shape knowledge

idea [32, 43, 46, 81, 128] in the formulation of ES2 and this is worth exploring.
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(a) (b)

(c) (d)

Figure 7.6: Test Set 4—Images (a) and (b) show the targeted object with markers used for
NCZZ model [103] and ES2 respectively. Image (c) demonstrate the segmentation result of
NCZZ [103] and in (d) we show the result of ES2 respectively. Here, we used a = 500, b = 900,
θ = 3000 and λ1 = 0.01.

7.5.5 Test Set 5: Comparison with JX model [132]

We remark that our formulation for selective segmentation model ES2 is based on the

formulation of global segmentation model by Tai and Duan [132]. We named the model

as JX. Both ES and JX [132] models used Euler’s elastica energy. We compare the

performance of JX [132] with ES2 in the test set 5 as follows. First, we segment a

single targeted object as marked in each Figure 7.1(a), Figure 7.4(a) and Figure 7.4(a)

using JX model [132]. The JX model [132] gives the same segmentation result as in

7.7(a) for that segmentation task. This is an expected result because the JX model

[132] is not design to select one feature assign by user, except if the targeted object

is relatively larger in size compare to other objects appear in a given image. This is

a special advantage of JX model [132] where it is able to capture object of large size

while “ignoring’ the ones of small size [132]. We validate this attribute by a task in

segmenting a relatively small incomplete rectangle shape object as marked in 7.7(b).

The result is demonstrated in 7.7(c). One can see that the JX model [132] unable to

segment the targeted rectangular shape, but it segments a relatively large object that is

the incomplete circle object in the image and ignored smaller objects. The satisfactory

result delivers by ES2 as shown in 7.7(d). The ES2 also able to segment the largest

object (the incomplete circle) in the image. The result is demonstrated in 7.7(f) using

markers set in 7.7(e).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.7: Test Set 5—The JX model [132] gives the same segmentation result as in (a) for
the task to segment an object in Figure 7.1(a), Figure 7.4(a) and Figure 7.5(a). Image (b)
shows the targeted object with marker to be segmented by JX model [132] and ES2. Images (c)
and (d) display the result of JX model [132] and ES2 respectively in segmenting image in (b).
For completeness of experiment, (f) demonstrates the result of ES2 in segmenting object in
(e), the markers are marked by the green boxes. Here, the ES2 reads a = 900, b = 1500. The
parameter θ = 500 for (b) and θ = 800 for (e) with image of size 256× 256.
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Table 7.1: Test Set 6—CPU time (in seconds) of ES2 in segmenting object in Figure 7.6(b)
with different resolutions. The time ratio, close to 4.4 indicates O(N logN) optimal speed.

Size CPU Time
tn
tn−1

64× 64 4.3
128× 128 9.2 2.1
256× 256 29.8 3.2
512× 512 96.7 3.2

7.5.6 Test Set 6: Speed and Convergence of ES2

In the final test, we perform the speed test of ES2 in segmenting the targeted object

used in Figure 7.6(b) with different image resolutions. All the CPU time (in seconds)

are recorded in Table 7.1. Notice that, the ratio of the CPU time in the last column

illustrates the optimal complexity of O(N logN) for multilevel algorithm to solve our

model for the image. For the visual quality purpose, the final segmentation curve using

image of size 64 × 64 is demonstrated in Figure 7.8(a) while 7.8(b) is the result for

image size of 128 × 128. Images 7.8(c) and 7.8(d) show the results using image size

256 × 256 and 512 × 512 respectively. In addition, to illustrate the convergence of

our multilevel algorithm numerically, we give an example of residual curve for ES2 in

segmenting image of size 64 × 64 to reach tol = eps as shown in 7.8(e). Here, eps is

relatively small based on a machine epsilon that is, eps ≈ 2.2204× 10−16.

7.6 Summary

In this chapter, we have presented two Euler’s elastica based selective segmentation

models called ES1 and ES2. The ES1 model uses the relaxed binary curve representation

to compute curvature while ES2 uses the level set of continuous SDF to compute

curvature. Comparison carried out between ES1 and ES2 show that ES2 gives more

accurate and fast result than ES1. This implies that curve representation using level

set of continuous SDF allows to calculate the geometric features of a curve such as

normal and curvature more accurate than relaxed binary representation. Consequently,

we have chosen ES2 to compare with other related models namely SC1 and SC2. The

result indicate that ES2 aided with curvature information is more robust in segmenting

object with intensity inhomogenity and abject with incomplete boundary. In the next

experiment, we compare ES2 with a new published model in 2018 called CMT by

[83]. Result show that both model able to segment object with intensity inhomogenity.

However, CMT model [83] unable to restore the missing boundary of targeted object.

We also compare ES2 with state-of-the-art interactive selective segmentation model

called NCZZ model [103] and the result demonstrated that both models successful in

segmenting object with intensity inhomogenity but for object with broken boundary,

the NCZZ model [103] unable to give satisfactory result. We also compared ES2 with

JX model [132]. In the case where the targeted object is larger than the surrounding

object, both JX model [132] and ES2 deliver satisfactory result. When the targeted
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(a) 64× 64 (b) 128× 128

(c) 256× 256 (d) 512× 512

(e) Residual Curve of (a) to reach tol = eps

Figure 7.8: Test Set 6—Final segmentation curve of ES2 in segmenting targeted object in
Figure 7.6(b) with different resolution: Images (a) is size of 64×64, (b) 128×128, (c) 256×256,
and (d) 512× 512. See Table 1 for the CPU time. The residual curve for image size 64× 64 to
reach tol = eps is shown in (e). Here, eps is relatively small based on a machine epsilon that is,
eps ≈ 2.2204× 10−16.
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object is smaller than other objects, JX model [132] is unable to segment the object.

In final experiment, we demonstrated that the ES2 model solved using developed

multilevel algorithm yields optimum speed of O(N logN).
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Chapter 8

Conclusion and Future Work

This thesis presented new algorithms for solving selective segmentation models. There

are four classes of variational segmentation models solved using the optimisation based

multilevel algorithm; the nonconvex models, convex models, 3-D convex models, and

higher order (Euler’s Elastica) models.

8.1 Conclusion

In Chapter 4, we first developed a multilevel algorithm for class of nonconvex selective

segmentation models; Badshah-Chen [12] and Rada-Chen [111] model with each algo-

rithm reach the expected optimal computation of O(N logN) complexity for image of

size n× n = N . The models were further modified to be the localised version of the

original models. This modification allows our multilevel algorithm to compute only

within a banded region of an active level set contour and consequently each algorithm

having the improve complexity of approximately O(
√
N logN).

A second class to consider is convex variational selective segmentation model. There

is a way to improve the existence model [129] so that it becomes computationally

less expensive and less sensitive to parameters and we discussed the process through

primal-dual framework in Chapter 5. We developed multilevel algorithms to solve both

the original and the modified model. Experimental results confirmed that the modified

model solved using multilevel algorithm is faster and less sensitive to parameters

compared to the original model. In order to get a stronger decaying property, a

new variant of multilevel algorithm for the modified model was proposed and its

convergence was proved. Experiment shows that all the multilevel algorithms reach

optimal O(N logN) complexity.

Next, we developed a new 3-D convex selective segmentation model and 3-D

multilevel algorithm in Chapter 6. We also proposed the localised version of the model

in order to speed up the computation time. To prove the convergence, we proposed

the new variant of multilevel algorithm to solve both the new model and its localised

version. Numerical tests show that the proposed models are effective and the multilevel

algorithm is efficient in locally segmenting 3-D complex image structures.

Finally, we proposed two new higher order selective segmentation models that apply
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Euler’s Elastica energy term as boundary regularisation which allow the models to

restore those boundaries that are missing or not well defined by the grey intensity images.

These models are difficult to solve directly, hence we proposed to treat the models as

weighted TV type selective segmentation models and developed multilevel algorithms

to solve them. Numerical results demonstrated that the models give satisfactory results

to restore the missing object’s boundary compared to existing models. Furthermore,

the model which used level set information to compute the curvature performed better

than the model that used binary relaxation concept in computing the curvature.

8.2 Future Work

There are many different future directions that can be taken from the work presented

in this thesis. We mention some of them here:

• All the works in this thesis are based on two-phase selective segmentation problems

aided by a foreground marker set . The extension works are to formulate multi-

phase selective model with two set of markers that represent foreground and

background of the targeted object. In addition, develop multilevel algorithm to

solve it would be interesting to explore.

• The Euler’s Elastica based selective model gave us a promising result in a 2-D

setting. Possible future research is to extend the model in 3-D framework, that

could be solved using 3-D multilevel algorithm.

• The development of multilevel algorithm for other imaging problem such as

image inpainting and image registration still has not been done and this is worth

exploring.

• Another possible future direction is to develop a multilevel algorithm to solve

joint selective image segmentation and image registration.

• We will develop other possible smoothers that can be used in the multilevel

framework.

• Another interesting future research is to work on modelling selective segmentation

model in machine learning framework.
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Appendix A

A 3-D Chambolle’s projection

algorithm for the proposed 3-D

SC2 model

Another class of fast algorithm is called Chambolle’s projection algorithm [26]. This

popular algorithm is considered as a powerful method [33] and a fast method [20, 26, 40].

Here, we propose to extend the Chambolle’s projection algorithm [26] into 3-D framework

to solve our 3-D selective and convex variational image segmentation problem in (6.10).

Again, note that the problem in (6.11) is explicitly solved using 6.12. To develop 3-D

Chambolle’s method, first define the gradient operator:

(∇u)i,j,k =
(

(∇u)1
i,j,k , (∇u)2

i,j,k , (∇u)3
i,j,k

)

(∇u)1
i,j,k =

{
ui+1,j,k − ui,j,k if i < N

0 if i = N

(∇u)2
i,j,k =

{
ui,j+1,k − ui,j,k if j < N

0 if j = N

(∇u)3
i,j,k =

{
ui,j,k+1 − ui,j,k if k < N

0 if k = N.

The divergence operator:
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(∇ · p)i,j,k =


p1
i,j,k − p1

i−1,j,k if 1 < i < N

p1
i,j,k if i = 1

−p1
i−1,j,k if i = N

+


p2
i,j,k − p2

i,j−1,k if 1 < j < N

p2
i,j,k if j = 1

−p2
i,j−1,k if j = N

+


p3
i,j,k − p3

i,j,k−1 if 1 < k < N

p3
i,j,k if k = 1

−p3
i,j,k−1 if k = N.

We proceed exactly as in [26, 20]. As shown in [26, 20], equation (6.10) can be

written with the dual variable p = (p1, p2):

min
u

max
|p|≤g

∫
Ω

u∇ · p +
1

2ρ
(u− w)2dx. (A.1)

One can now switch the min and max to obtain the equivalent

max
|p|≤g

min
u

∫
Ω

u∇ · p +
1

2ρ
(u− w)2dx. (A.2)

The inner minimization in ((A.2)) is point-wise in u. Carrying it out gives:

∇ · p+
1

ρ
(u− w) = 0⇒ u = w − ρ∇ · p. (A.3)

Substituting the expression ((A.3)) for minimal u into the max−min problem ((A.2))

gives

max
|p|≤g

∫
Ω

(w − ρ∇ · p)∇ · p+
ρ

2
(∇ · p)2dx. (A.4)

Simplifying a bit:

max
|p|≤g

∫
Ω

w∇ · p− ρ

2
(∇ · p)2dx. (A.5)

Variation of energy in (A.5) with respect to the vector field p give:∫
Ω

(−∇w + ρ∇(∇ · p)) · δp dx. (A.6)

Along with the point-wise constraint |p|2 − g2 ≤ 0 , one gets the optimality condition:

−∇ (ρ∇ · p− w) + ψ (x) p = 0. (A.7)

Where the Lagrange multiplier ψ (x) ≥ 0 for all x. As Chambolle shows in [26], it can

be determined and eliminated as follows: if the constraint is not active at a point x,
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that is if |p (x)|2 < g2 (x), then ψ (x) = 0. Otherwise, if the constraint is active at a

point x, that is, if |p (x)|2 = g2 (x), then

|∇ (ρ∇ · p− w)|2 − ψ2g2 (x) = 0 (A.8)

which leads to the conclusion that in either case, the value of ψ (x) is given by:

ψ =
1

g (x)
|∇ (ρ∇ · p− w)| . (A.9)

Substituting (A.9) into (A.7) gives:

−∇ (ρ∇ · p− w) +
1

g (x)
|∇ (ρ∇ · p− w)| p = 0. (A.10)

We can use a semi-implicit gradient descent algorithm, as proposed by Chambolle in

[26], to solve (A.10) as

pn+1 =
pn + δt∇ (∇ · pn − w/ρ)

1 + δt
g(x) |∇ (∇ · pn − w/ρ)|

. (A.11)

We call the 3-D Chambolle’s projection algorithm [26] to solve our 3-D convex and

selective segmentation problem as 3DCHB.
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