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Abstract 

Implantable medical devices are prone to bacterial and biofilm infection, which can 
lead to serious complications and fatalities in patients.  Bacterial resistance to current 
antibiotics and increasing emergence of healthcare associated infections drives the 
urgency to develop new antibacterials that do not induce bacterial resistance.   

In this study the surface chemistry and/or topography of medically relevant 
polymers, poly(ethylene terephthalate)  (PET), silicone elastomer (SE), polystyrene 
(PS), polycaprolactone (PCL), poly(methyl methacrylate) (PMMA) and 
polydimethylsiloxane (PDMS) were modified, in an attempt to fabricate synthetic 
polymers with antibacterial surfaces for use in medical implant applications.  Surfaces 
have been modified chemically to release nitric oxide (NO), a potent antibacterial 
agent.  Physical modifications have led to the fabrication of surfaces with micro-
/nanotopographical features that can inhibit bacterial adhesion. 

In Chapter 4, PET and SE were first aminosilanised to functionalise the surface with 
amines which facilitate the in situ formation of N-diazeniumdiolates; a class of NO 
donor that decompose under physiological conditions to release NO.  The modified 
polymers released low levels of NO, which prevented biofilm formation after 24 hrs.  

In Chapter 5, SE substrates were coated with xerogels.  Unlike in Chapter 4, N-
diazeniumdiolates were preformed before incorporation into the xerogel to increase 
NO storage and release.  The N-diazeniumdiolated xerogel coatings released high 
levels of NO, which resulted in the killing of planktonic (free-moving) bacteria after 
1, 4 and 24 hrs.  

In Chapter 6, PS/PCL, PS/PMMA and PCL/PMMA binary blends were spin coated to 
form polymer demixed films.  By varying the relative concentrations of the polymers 
in the binary blends, demixed films with island-, ribbon- and pit-like micro-
/nanotopographical surface structures were fabricated.  When surface structures 
were smaller than the diameter of the bacterial cell, a reduction in cell adhesion was 
observed; when the surface structures were comparable in size to the diameter of 
the bacterial cell no reduction in cell adhesion was observed.  

In Chapter 7, N-diazeniumdiolate groups were tethered in situ to PDMS replicas with 
structured microtopographies resulting in novel materials with both distinct surface 
microfeatures and NO releasing capabilities.  Bacterial cell adhesion was reduced on 
non-releasing structured PDMS compared to non-releasing flat PDMS after 24 hrs, 
but both surfaces were ineffective in killing bacteria.  After 24 hrs, novel dual-action 
NO-releasing structured PDMS surfaces were both bactericidal and reduced cell 
adhesion. 
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Nomenclature 

 

AFM Atomic force microscopy 

at. %                     Atomic % concentration   

BE Binding energy 

BTMOS Isobutyltrimethoxysilane 

CFU Colony forming unit 

d Day 

DET3 N-(3-trimethoxysilylpropyl)diethylenetriamine 

ECM  Extracellular matrix 

eV Electron volt 

f-PDMS Flat polydimethylsiloxane 

f-PDMSox Plasma treated flat polydimethylsiloxane 

FTIR Fourier-transform infrared spectroscopy 

hr Hour 

IR  Infrared 

Ka Acid dissociation constant 

KE  Kinetic energy 

LB Luria-Bertani 

LMW Low molecular weight 

min Minute 

MW Molecular weight 

NO Nitric oxide 

PBS Phosphate buffered saline 

PCL Polycaprolactone 

PDMS  Polydimethylsiloxane 

PET Polyethylene terephthalate 

PETox Plasma treated polyethylene terephthalate 

PMMA Poly(methyl methacrylate) 

PS Polystyrene 

PTMOS Trimethoxypropylsilane 
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PTMSPA N-(3-trimethoxysilylpropyl)aniline  

Ra Average roughness 

RNI Reactive nitrogen intermediate 

ROI Reactive oxygen intermediate 

Rq Root mean square roughness 

RSNO Nitrosothiol 

SE Silicone elastomer 

SEM Scanning electron microscopy 

SEox Plasma treated silicone elastomer 

s-PDMS Structured polydimethylsiloxane 

s-PDMSox Plasma treated structured polydimethylsiloxane 

UV-Vis Ultraviolet visible spectroscopy 

XPS X-ray photoelectron spectroscopy 
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Chapter 1: Introduction 
 

Since the revolutionary discovery of penicillin and its antibacterial properties by 

Alexander Fleming in 1928, antibiotics have been used with great success against 

bacterial infection.1  A golden era for the discovery of antibiotics between 1940 and 

1980 led to many classes reaching the commercial market.2  However, in more recent 

times the discovery and development of antibiotics has come to a standstill; the last 

class of antibiotics to be discovered was the diarylquinolines, in 1997.  Whilst 

antibiotics have been undoubtedly paramount to improved longevity and quality of 

life over the past century, the overuse and misuse of these drugs has led to the 

emergence of antibiotic resistance by bacteria (Figure 1.1).3   This has become a 

global concern as multi-drug resistant strains have evolved to render certain 

antibiotics completely obsolete. 

 

 

Figure 1.1: General scheme for antibiotic resistance of bacteria.  [Adapted from Ref. 

3] 

When antibiotics are administered, they are intended to kill large amounts of 

bacteria at the site of infection.  However, some bacterial cells may resist the killing 

and survive the treatment.  Antibiotics can also kill beneficial bacteria that contribute 

to protection from infection.  The resistant bacteria now have an environment in 

which they can grow and multiply without competition.   

Along with antibiotic resistance,  there is an increasing prevalence of health-care 

associated infections (HCAIs) with levels rising by 6.4 % and over 1 000 000 cases 
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reported each year in England.4  These infections lead to increased morbidity and 

mortality rates in patients and result in large financial burdens on healthcare 

services.   

As medicine and technology develops so does life expectancy and the prevalence of 

age-related diseases.  Due to this, implantable medical devices, such as: pacemakers, 

catheters and orthopaedic prostheses have become paramount in modern 

healthcare and are necessary for prolonging and improving the life of critically ill 

patients.  The increased use of such devices is not without significant problems; one 

being their susceptibility to bacterial adhesion and subsequent biofilm formation.5  

A biofilm is a species-specific or multi-species community of bacteria embedded 

within an extracellular matrix of polymers and polysaccharides (ECM).  This 

protective matrix, amongst a whole host of other resistance mechanisms can 

significantly reduce the efficacy of antibiotics.  Species such as Pseudomonas 

aeruginosa, Staphylococcus aureus and Staphylococcus epidermis have shown strong 

forces of adhesion to foreign bodies which is the first step in the formation of a 

biofilm.  It is estimated that over 80 % of microbial infections within the human body 

are the result of biofilm formation.6 

Of particular concern is P. aeruginosa, a Gram-negative species of bacteria commonly 

found in soil, water and plants.  It is an opportunistic pathogen that can cause both 

acute and chronic infection in humans, plants and animals.  The ubiquitous presence 

of P. aeruginosa at infection sites, its tendency to form biofilms and the increasing 

occurrence of multi-drug resistant strains have led to the World Health Organisation 

(WHO) classifying it as one of the top three pathogens in critical need of new 

antibiotic treatments.7 

As we enter what is termed the ‘resistance era’ by many in the field, the urgency for 

developing new alternatives to antibiotics with improved antibacterial performance 

and less susceptibility to antibiotic resistance and biofilm formation is an ever 

growing necessity.  In this body of work, the specific focus is in designing and 

engineering synthetic polymers with antibacterial surfaces for their potential use in 

medical implant applications. 
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1.1 Aims and Objectives 

When designing antibacterial surfaces there are three mechanisms to take into 

consideration: biocide leaching, contact killing and adhesion resistance.8  The 

strategies employed here will focus on developing surfaces that can resist adhesion 

and leach biocides, using both physical and chemical surface modifications.  The 

approach taken to modify surfaces chemically will involve tethering molecules onto 

the surface that can release nitric oxide (NO), a potent antibacterial agent; whilst the 

approach taken to modify materials physically, will involve using techniques that 

allow the formation of micro-/nanotopographical surface features.  

The key objectives of the study are as follows: 

1. Review the key principles of antibacterial surface design and apply them to 

modify medically relevant synthetic polymers. 

2. Adopt a chemical approach to fabricate synthetic polymers that release NO. 

3. Adopt a physical approach to fabricate synthetic polymers with micro-

/nanotopographical surface features. 

4. Combine the two approaches to develop materials with micro-

/nanotopographical surface features that release NO.  

5. Quantify NO release and payload from NO-releasing surfaces and explore 

synthetic and parametric changes that can impact them.  

6. Assess the antibacterial performance of the synthetic polymer materials in terms 

of anti-adhesion (biofilm prevention) and bactericidal ability.  

7. Determine how NO release concentration effects the antibacterial mechanism 

of the surface.  

8. Investigate bacterial cell-surface interactions and determine how micro-

/nanotopographical surface features control cell adhesion. 
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The structure of this thesis follows the progression of the development of synthetic 

polymers with antibacterial surfaces, utilising a diverse range of fabrication 

techniques, with the aim of delivering all the objectives outlined above.  As such the 

subsequent chapters are ordered as follows: 

 Chapter 2: Literature Review 

 Chapter 3: Materials and Methods 

 Chapter 4: Covalently bound N-diazeniumdiolates to Polymeric Substrates 

for the Prevention of Biofilm Formation 

 Chapter 5: Nitric Oxide-releasing Xerogels as Antibacterial Coatings 

 Chapter 6: Polymer Demixed Films with Micro-/nanopatterned Surface 

Topographies to Control Bacterial Response 

 Chapter 7: Conclusions and Recommendations for Future Studies 

1.2 Publications 

Some of the results of the research presented in Chapter 4 have been published in 

the following peer-reviewed paper: 

 G. Fleming, J. Aveyard, J. L. Fothergill, F. McBride, R. Raval and R. A. D’Sa, 

Polymers, 2017, 9, 601.  

A copy of this paper has been enclosed at the end of this thesis. 
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Chapter 2: Literature Review 

2.1 Implantable Medical Devices 

Medical devices can be defined as implantable if they are incorporated into the 

human body to act as part or whole of a biological structure.9, 10  As the population 

grows and the average life span increases so does the occurrence of age-related 

disease and the need to develop new technologies with prolonged life spans.  From 

bone cements and hormonal implants, to motion preservation devices and 

intraocular lenses; applications of implantable medical devices stretch across the 

whole human body.10  Some of the more common examples of their uses are 

presented in Figure 2.1.  

 

Figure 2.1: Applications of implantable medical devices within the human body. 

Materials used for implantable medical devices can generally be divided into three 

categories: metals, ceramics and polymers.  Metallic implantable devices are 

extensively used as total joint replacements for hips, knees, elbows, shoulders etc;  

they also find use as fracture plates and dentistry castings.11  Whilst metals are most 

commonly used for load-bearing implants, ceramics do not have a sufficient fracture 
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toughness for such applications.  Due to their similar properties to bone, the most 

common use of ceramics is to replace/fix hard connective tissue.  Ceramics are often 

used in restorative dentistry, such as crowns and dentures.12  The use of polymeric 

implants will be discussed in Section 2.1.1. 

2.1.1 Polymeric Implants 
The versatility of polymers has led to their favourability over materials like metals 

and ceramics for use as biomaterials.  Polymers are generally classified into two 

groups: naturally occurring and synthetic polymers.  Natural polymers, such as: 

collagen, dextran, gelatin and chitosan are innately biocompatible but can suffer 

disadvantages due to the possibility of microbial contamination.13  Batch-to-batch 

variation can also occur due to the variation of naturally derived sources (organisms). 

Synthetic polymers are more commonly employed as implants due to their ease and 

reproducibility in production, their availability and their versatility.  The applications 

of some common synthetic polymers have been outlined in Table 2.1. 

Table 2.1: Summary of the applications of some synthetic polymers as implantable 
devices.  

Polymer Applications References 

Polyurethanes Catheters, drug delivery systems, 

prosthesis, vascular grafts. 

14-16 

Poly(vinyl chloride) Blood bags, tubing. 10 

Poly(methyl methacrylate) Dental implants, bone cements, 

intraocular lenses. 

17-19 

Polycaprolactone Orthopaedic coatings, sutures, 

drug delivery systems. 

20-22 

Poly(ethylene terephthalate) Surgical mesh, sutures, vascular 

grafts/prosthesis. 

21, 23, 24 

Polydimethylsiloxane/ 

Silicone elastomers 

Shunts, plastic surgery implants, 

pacemakers, catheters, 

orthopaedics. 

25-27 
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2.2 Implant-associated Biofilm Infections 

Both Gram-positive and Gram-negative bacteria have been shown to inhabit and 

infect an implant site through biofilm formation.28  The most common causative 

Gram-positive species include Staphylococcus epidermis and Staphylococcus aureus; 

whilst multi-drug resistant Pseudomonas aeruginosa and Escherichia coli are 

amongst the Gram-negative strains that have also been implicated.28  Some of the 

more common implants sites prone to biofilm infection and the causative bacterial 

species are outlined in Table 2.2. 

Table 2.2: Common bacteria involved in biofilm formation at implant sites.   

Medical Implant Biofilm-forming Bacteria Reference 

Central venous catheters P. aeruginosa, S. epidermis, S. aureus, 

Klebsiella pneumoniae, Enterococcus 

faecalis. 

29, 30 

Urinary catheters P. aeruginosa, S. epidermis, K. 

pneumoniae, E. faecalis, P. mirabilis 

31 

Cardiac pace makers S. aureus, S. epidermis.  32 

Endotracheal tubes P. aeruginosa, S. aureus, E. faecalis 33 

Contact lenses P. aeruginosa 34 

Orthopaedic implants P. aeruginosa, S. epidermis, S. aureus, P. 

mirabilis, E. coli, Streptococci, 

Enterococci 

35, 36 

  

As seen from the table above biofilm infections are found ubiquitously at medical 

implant sites.  The major issue with biofilm infections is their ability to tolerate 

antibacterial agents compared to their planktonic (free-moving) counterparts.  

Anwar et al. reported that a dose of tobramycin able to reduce P. aeruginosa 

planktonic cell counts by > 8-log, only reduced biofilm cell counts by 2-log.37  It was 

estimated that complete eradication of mature biofilms (≈7 days old), would require 

around 5000 times the minimal bactericidal concentration (MBC).37, 38  The sections 
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below outline the life-cycle of a biofilm and the mechanisms that cause them to resist 

antibacterial agents so effectively.      

2.2.1 Biofilm Formation 
When a device is implanted into the body there is a risk of bacterial infection.  It is 

believed that contamination occurs with a small cohort of external micro-organisms 

transferring onto the medical device during implantation.39  These are often 

transferred from the skin of the patient/clinical staff, surgical equipment or 

contaminated disinfectants.6, 39  The inoculated bacteria irreversibly attach to the 

surface of the device by secreting an extracellular matrix of polymers and 

polysaccharides (ECM).  The ECM encases the cells to form a bacterial mass known 

as a biofilm, which continues to grow and mature.  After time, detachment occurs in 

which planktonic bacteria are released which can further recolonise and repeat the 

process again.  This can lead to a spread of infection throughout the body, which had 

originated at one initial site.  The five main stages of biofilm formation are outlined 

in Figure 2.2.40 

 

Figure 2.2: The five stages of biofilm formation: (1) Reversible attachment of 

planktonic bacterial cells.  (2) Secretion of ECM results in irreversible attachment.  (3) 

Early development of biofilm architecture.  (4) Maturation of biofilm.  (5) Motile 

planktonic cells dispersed from biofilm to repeat process.  (Planktonic cells are 

orange and biofilm-associated cells purple).  [Image adapted from Ref. 40]  
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2.2.2 Mechanisms of Antibiotic Resistance in Biofilms 
The behaviour of biofilm-associated cells is very different to that of planktonic cells.  

Cells within a biofilm community are less susceptible to antimicrobial agents, like 

antibiotics and antibodies, than planktonic cells.  There are a number of proposed 

mechanisms for the resistance exhibited by biofilms, which have been outlined in 

Figure 2.3 

 

Figure 2.3: An overview of biofilm resistance mechanisms 

The first is the ‘barrier’ mechanism which is due to the physical presence of the ECM 

leading to slow or incomplete penetration of antibiotics and other antimicrobial 

substances into the biofilm.41  The ECM may also bind to antimicrobials like 

superoxides, charged metals or bleach, neutralising or diluting them to sub-lethal 

concentrations before penetration.5  It is thought that other potentially detrimental, 

external stimuli such as UV light and dehydration may also be unable to affect cells 

due to the matrix.5 

There are many antibiotics that are able to penetrate the ECM, yet even when this is 

the case biofilm cells can remain unaffected.  One particular example of ‘non-barrier’ 

mechanisms of resistance has been demonstrated using Klebsiella pneumoniae.42  
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Stewart et al. demonstrated the ability of two antibiotics, ampicillin and 

ciprofloxacin, to penetrate into K. pneumoniae biofilms.43, 44  It was shown that slow-

growing stationary phase bacteria with limited access to nutrients within the biofilm 

were less susceptible to these antibiotics than planktonic bacteria growing at quicker 

rates.  All antibiotics require some degree of cellular activity.  For instance β-lactams 

effectively kill rapidly dividing Gram-positive bacteria by interrupting cell-wall 

synthesis.  It is hypothesised therefore that dormant cells starved of nutrients in a 

stationary phase within the biofilm may be less susceptible to antibiotics due to 

reduced cellular activity. 

Another theory to antibiotic resistance in biofilms is the presence of ‘persister’ cells 

(not mutants).  These are randomly formed phenotypic variants within a microbial 

population.  Lewis et al. showed that both Pseudomonas aeruginosa biofilm and 

stationary-phase planktonic cells actually had similar resistance to antibiotics, largely 

dependent on the presence of persister cells.45  Leibler et al. later determined that 

the inherent heterogeneity of bacterial populations led to the phenotypic switching 

of normally growing cells to dormant persister cells with reduced growth rates and 

increased resistance to antibiotics.46 

Other mechanisms include the prevalence of efflux pumps in the biofilm, which 

regulate the internal cell environment by removing toxic substances, like 

antibiotics.47  These are particularly apparent in Gram-negative species.  In addition 

to this gene transfer between conjugated cells may lead to the acquisition of 

resistance traits in diverse biofilm populations.48 
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2.3 Strategies for Antibacterial Surface Design 

When considering the design of antibacterial surfaces, the complex behaviour of 

bacterial populations and the broad range of surface properties can be 

overwhelming.  Through years of research the development of three main design 

strategies has progressed (Figure 2.4).8 

 

 

Figure 2.4: Three main strategies for antibacterial surface design: Contact killing, 

biocide leaching and adhesion resistance. 

The first strategy is the use of biocide leaching.  This approach involves the 

release/diffusion of cytotoxic compounds from the surface of a material that can 

cause cell death to adhered or nearby bacteria.  This method of design originates 

back to ancient times when silver was used in the fabrication of drinking vessels.  

Biocide leaching can be advantageous due to the controlled release of antibacterials 

or antibiotics but care should be taken to ensure the leaching compounds do not 

have adverse effects towards mammalian tissue.  

The second approach is to design surfaces that can kill bacteria through contact.  This 

method primarily focusses on designing a surface conjugated with antibiotic 

functional groups that cause the death of adhered bacterial cells.  Examples of these 

include: positively charged phosphonium salts,49 guanidine polymers50 and 

quaternary ammonium salts51 which are thought to be able penetrate/disrupt the 

cell membrane and induce cell death.  The discovery of bactericidal nanopillars of the 

cicada wing,52  has also led to a non-classical, non-chemical design of nanopatterned 

surfaces that are inspired by nature with contact killing ability.53 
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The final design approach involves fabricating surfaces that are resistant to adhesion.  

The fabrication of superhydrophobic materials has been one way to achieve this by 

preventing aqueous suspensions of bacteria coming into contact with the surface.54  

Minimising the area available for cell-surface interactions through topographical 

modifications is another way to minimise cell adhesion.52, 55 

2.4 Nitric Oxide 

Nitric oxide (NO) first came to the attention of the biomedical community in the late 

1980s when Furchgott,56  Ignarro57 and Murad58 independently determined it to be 

the endothelium-derived relaxing factor (EDRF); a chemical responsible for 

vasodilation and regulation of blood pressure.  This finding led to the inception of 

much focussed research into NO and its ubiquitous physiological presence.  A 

summary of the roles NO plays in various physiological systems has been outlined in 

Table 2.3. 

 Table 2.3: Summary of the role of nitric oxide in different physiological systems. 

Physiological System Roles of Nitric Oxide Reference 

Immune system  Antimicrobial activity. 
 Anti-tumour activity. 
 Anti-inflammatory effect. 
 Immunoregulation. 
 Modulates production and function of 

cytokines and growth hormones. 

59-67 

Respiratory system  Modulates airway smooth muscle 
relaxation (bronchodilation). 

 Mediates fetal lung development. 
 Transcriptional regulation in the lung. 
 Stimulates airway submucosal gland 

secretion. 

68-76 

Cardiovascular system  Regulates vascular tone. 
 Regulates cardiac contractility.  
 Anti-thrombotic effect. 
 Regulates leukocyte adhesion.  

77-84 

Central nervous system  Neurotransmission 
 Regulates cell signalling events 
 Neuroprotection  
 Neurosecretion 

85-89 

Reproductive System  Regulates penile erection 
 Regulates ovarian function 

90-93 
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2.4.1 Endogenous NO Formation 
Endogenous NO is primarily biosynthesised through the oxidation of L-arginine to 

citrulline, catalysed by nitric oxide synthase (NOS) proteins.94  The NOS enzymes 

facilitate a complex two-step reaction, as displayed in Figure 2.5, which utilises 

NADPH and molecular oxygen as co-factors.   

 

Figure 2.5: Simplified reaction scheme of the endogenous production of NO through 

NOS-catalysed oxidation of L-arginine [Figure adapted from Ref. 94].  

There are three distinct isoforms of NOS produced by different genes, with different 

catalytic properties, found at different physiological sites: neuronal (nNOS), inducible 

(iNOS) and endothelial (eNOS).95  nNOS and eNOS are considered constitutive and 

NO production is activated and regulated by the concentration of calcium bound to 

calmodulin.96  iNOS proteins are induced by inflammatory mediators to produce 

higher concentrations of NO for a prolonged time.96  Whilst constitutively expressed 

NOS proteins primarily produce NO for signalling purposes, the NO produced by iNOS 

is predominantly focussed on immune defense, in roles such as: mediation of 

inflammation,97 tumourcidal  activity98 and control of intracellular bacteria (eg. 

Mycobacterium tuberculosis).99 
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2.4.2 Antibacterial Behaviour of NO  
NO displays antimicrobial properties against a wide range of microbes, such as: 

bacteria,100-104 fungi,105-108 parasites109-113 and viruses.114-116  There are a number of 

plausible mechanisms for the antibacterial behaviour of NO.  The reaction of NO with 

reactive oxygen intermediates (ROIs), such as superoxide (O2
-) and molecular oxygen 

(O2), leads to formation of antimicrobial agents, as displayed in Figure 2.6.  

 

Figure 2.6: Formation of NO-derived reactive oxygen intermediates (ROIs) and 

reactive nitrogen intermediates (RNIs).  ONOO- - peroxynitrite, NO2
● – nitrogen 

dioxide, GSNO – S-nitrosoglutathione, N2O4 – dinitrogen tetroxide, N2O3 – dinitrogen 

trioxide, RSNO – S-nitrosothiol.  

The formation of these ROIs and reactive nitrogen intermediates (RNIs) such as 

peroxynitrite (OONO-), nitrogen dioxide (NO2
●), dinitrogen tetroxide (N2O4), 

dinitrogen trioxide (N2O3), S-nitrosothiol (RSNO), a whole host of reactive oxidants 

and NO itself primarily target DNA, leading to deamination, strand breaks and 

oxidative damage.117  Furthermore, through nitrosation of important amino acids by 

OONO- and oxidation by OONO- and NO2
●, certain proteins can become 

inactivated.118  The inactivation of metabolic enzymes through the NO-induced 

nitrosylation of free thiol groups has also been shown to occur.119  Other mechanisms 
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concerning specific bacteria have been reported: De Groote and Fang120 found 

various protein targets of RNIs in Salmonella typhimurium, whilst Morris and Hansen 

observed an S-nitrosothiol-mediated bacteriostatic effect on outgrowing spores of 

Bacillus cereus.100  

2.5 Nitric Oxide Donors 

Compounds that have the ability to generate NO through decomposition, oxidation 

or reduction are known as NO-donors.  The variation in properties seen between 

classes of NO donors is vast and structural variations lead to large differences in the 

NO release kinetics.  Some NO donors can decompose spontaneously in the presence 

of light or heat, whilst other more stable donors need a metal ion catalyst or oxidant 

to release NO.  NO release from some donors is pH dependent, whilst from others it 

is dependent on the addition of a certain chemical, such as a thiol.  The sections 

below aim to summarise an extensive catalogue of literature regarding the many 

classes of NO-donor.121 

2.5.1 Organic Nitrates 
Organic nitrates (RONO2) can be synthesised simply by esterification of alcohols or 

nucleophilic substitution between alkyl halides and silver nitrate (AgNO3), as shown 

in Scheme 2.1.121, 122 

 

Scheme 2.1: Formation of organic nitrates can occur through esterification of 

alcohols or nucleophilic substitution of silver nitrate with alkyl halides. 

One particularly desirable property of the organic nitrates is their longevity.  Due to 

their low solubility in water, these compounds are stable for years in weakly acidic 

and neutral aqueous solution.  There are also less desirable properties: when used 

therapeutically, prolonged exposure to organic nitrates causes the build-up of a 

nitrate tolerance in patients, leading to undesirable increased dosage quantities.121  

Furthermore, although no studies have yet to fully define the mechanism of 
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endogenous NO release from organic nitrates, either an enzymatic or non-enzymatic 

(cellular thiol-involving) mechanism, both involving a three-electron reduction is 

thought most likely to be involved.123  This leads to a further disadvantage when 

assessing organic nitrates in vitro, as the need for specific enzymes and/or thiol 

groups can lead to unpredictable NO release rates. 

2.5.2 Organic Nitrites 
RONOs are synthesised by reacting alcohol with nitrosating agents,124 such as nitrosyl 

chloride (ClNO) or nitrosonium salts (NO+BF4
-) or gaseous NO (in air),125 as shown in 

Scheme 2.2. 

 

Scheme 2.2: Formation of organic nitrites can occur through reactions between 

alcohols and nitrosating agents or between alcohols and gaseous NO in the presence 

of air.124, 125  

The release of NO from organic nitrites requires a one-electron reduction.  There are 

many studies that have shown the endogenous NO release mechanism to be enzyme-

catalysed: The metabolism of alkyl nitrites with glutathione (GSH) is catalysed by 

glutathione-S-transferase (GST) enzymes in cell membranes,126 whilst Doel et al. 

proved that under anaerobic conditions xanthine oxidase (XO) enzymes can act as 

catalysts in the reduction of organic nitrites.127 Unlike the organic nitrates mentioned 

previously, when used therapeutically no patient tolerance is observed towards 

organic nitrites.128, 129  

2.5.3 Metal-nitrosyl Complexes 
NO as a ligand, has a strong affinity for metal ion centres; in many endogenous 

processes primary targets for NO are the metal centres of proteins.130  The primary 

mediator for the vast physiological activity of NO is soluble guanylyl cyclase (sGC), a 

protein containing a ferrous heme domain.  NO binds to the heme to form a 5-

coordinate metal-nitrosyl (M-NO) complex.131, 132  



17 
 

    
 

Whilst the formation of these compounds is a necessary process in human 

physiology, the M-NO complexes can also act as NO donors.  The NO release of metal-

nitrosyl complexes is most commonly through photochemical reactions.133  One of 

the most common metal-nitrosyl complexes is sodium nitroprusside (SNP) (Figure 

2.7). 

 

         Figure 2.7: Sodium nitroprusside (SNP) 

2.5.4 Nitrosothiols (RSNOs) 
Long before the benefits of NO as a therapeutic agent were realised, nitrosothiols 

(RSNOs) were first synthesised by Tasker et al. in 1909.134 The nitrosothiol class can 

be identified by a consecutive S-N=O bonding system: examples of more common 

RSNOs are displayed in Figure 2.8. 

 

Figure 2.8: Some examples of nitrosothiols. 
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The simplest, most convenient route to the formation of RSNOs is through the 

nitrosation of thiols (RSH) by nitrous acid (HNO2) in aqueous solvents,135 shown in 

the equation below. 

 

Whilst HNO2 is most commonly used, any carrier of NO+ could theoretically be used 

in the synthetic process.  Reaction of RSH with NO can also take place to form RSNOs 

in the presence of trace O2.136 

The decomposition of RSNOs to release NO can occur through a whole host of 

mechanisms.  The first is thermal decomposition: a homolytic cleavage of the S-N 

bonds leads to the formation of disulfide (RSSR) compounds and an NO radical.  The 

ease of this reaction owes to the fact that RSNOs only require low temperatures 

(sometimes room temperature) to decompose thermally.136  The second way in 

which RSNOs can decompose is photochemically.  The same homolytic cleaving 

reaction occurs as in the thermal decomposition, but the initiating step is the 

irradiation of the nitrosothiol at either λmax = 340 or 545 nm.  Nitrosothiols can also 

decompose through a metal-ion (Cu+, Fe2+, Hg2+, Ag+) catalysed mechanism.137, 138 

One major drawback of RSNOs is their thermal instability.  As mentioned previously 

thermal decomposition of some compounds can occur spontaneously at room 

temperature.  Whilst tertiary RSNOs like S-nitroso-N-acetylpenicillamine (SNAP) are 

much more stable than their primary alky and aryl counterparts, premature 

decomposition before reaching the target site is still a concern.  The current focus is 

on developing novel therapeutics with desirable pharmacokinetic properties for NO 

storage and delivery.  

2.5.5 N-Diazeniumdiolates 
When primary or secondary amines are treated with NO gas, the NO adduct of the 

precursor amine, known as an N-diazeniumdiolate is formed (Figure 2.9).  The first 

such compound was prepared in 1960 by Drago and co-workers, which has today led 

to this class of compounds sometimes being referred to as Drago complexes.139  

Although N-diazeniumdiolates can be formed effectively on primary amines, the 
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most reported synthesis of these molecules has been by treating a secondary amine-

containing compound with high pressures of NO gas.139, 140  The NO release 

mechanism of these compounds is initiated by protonation of the amine nitrogen to 

release 2 mol of NO per molecule of N-diazeniumdiolate.  An external base is most 

often employed during synthesis to keep the product stable by preventing 

protonation, however inter- and intramolecular bonding can also play this role.141  

The general formation and decomposition cycle of the N-diazeniumdiolates is shown 

in Figure 2.9. 

 

Figure 2.9: Formation and decomposition of N-diazeniumdiolates. 

The NO-release rates of N-diazeniumdiolates can vary greatly, depending on the pKa 

of the amine precursor, the pH of the reaction medium and the temperature; 

reported half-lives range from 2 s to 20 hrs.142  As such this class of NO donors is the 

most versatile, therapeutically, as they allow for controlled NO rates and 

concentration that can be tuned depending on the desired biological target.  

2.5.6 Comparison of NO Donors as Antibacterial Agents 
Whilst the previous sections gave a small insight into the most common NO donors, 

their different NO-release mechanisms and some of their advantages and 

disadvantages as therapeutic agents, the primary concern of this thesis is to use NO 



20 
 

    
 

donors to antibacterial materials for use in medical implant applications.  This section 

discusses the NO donors mentioned previously and compares them to one another 

for use as antibacterials. 

Organic nitrates and nitrites probably exhibit the least potential as antibacterial 

agents.  The NO-release mechanism is primarily initiated by enzymes that are not 

present in bacteria.  However endogenous enzymes however are found in the 

surrounding tissue of an infection and so premature NO release can occur.143  The 

metal nitrosyl complexes are extremely light-sensitive which poses a number of 

problems.  In a clinical environment this is an issue as exposure to light is almost 

guaranteed before administration, potentially leading to premature NO-release 

before arriving at the infected site.  Furthermore, if the infection is internal, 

incorporating an external light source to initiate release of NO that can penetrate 

tissue during the clinical process would be difficult.  The RSNOs show more promise 

as antibacterials.  They spontaneously release in physiological conditions and as well 

as releasing NO they also generate thiyl radicals; due to this RSNOs can adversely 

trans-nitrosylate thiolated proteins in bacteria.144  The versatility and tuneability of 

the N-diazeniumdiolates make them the most promising candidates for antibacterial 

agents.  The NO-release occurs spontaneously under physiological conditions, and 

the dependency on temperature and a proton initiated mechanism means these 

compounds can be stored relatively simply at low temperatures.  
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2.6 N-diazeniumdiolated NO Storage and Delivery vehicles 

N-Diazeniumdiolates were historically synthesised as small molecule donors.145   

Their utility as antibacterial coatings has been greatly expanded through their 

incorporation into macromolecular coatings and scaffolds.  Whilst there are a 

number of vehicles that can incorporate N-diazeniumdiolates, the main focus within 

this thesis is on polymers and xerogels, due to their potential as materials/coatings 

for implant applications and more detailed discussions of these are found in the 

following subsections.  N-diazeniumdiolates have, however, been incorporated into 

other storage and delivery vehicles and an overview of their release abilities have 

been outlined in Table 2.4.  

Table 2.4: An overview of some N-diazeniumdiolated NO storagage and delivery 
vehicles and their NO release capabilities. 

Storage and 

Delivery Vehicle 

Category Total NO 

release 

NO release 

Duaration 

Ref. 

Serum albumin Protein 40 mol per mol ≈6 months 146 

Fumed silica Silica particles 0.6 µmol per 

mg 

7 hrs  147 

Sol-gel synthesised 

silica patrticles 

Silica particles 11.26 µmol per 

mg 

101 hrs 148 

Gold monolayer 

protected clusters 

Metal 

nanoparticles 

0.39 µmol per 

mg 

16 hrs 149 

poly(amidoamine) Dendrimer 5.60 µmol per 

mg 

> 16 hrs 150 
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2.6.1 Polymer-based Strategies 
In an attempt to facilitate localised NO-delivery, small molecule N-diazeniumdiolates 

can be incorporated into polymeric materials.  N-diazeniumdiolate-incorporated 

polymeric scaffolds can be categorised based on their interaction with the small 

molecule N-diazeniumdiolate: physical dispersal throughout the polymer matrix or 

covalent attachment of N-diazeniumdiolated precursor or N-diazeniumdiolate to the 

polymer backbone.  Representative structures are displayed in Figure 2.10. 

 

 

Figure 2.10: N-diazeniumdiolates are incorporated into polymers through (a) non-

covalent dispersal (b) covalent attachment of N-diazeniumdiolate precursor or (c) 

covalent attachment of N-diazeniumdiolate.  Wavy lines represent polymer 

backbone. 

2.6.1.1 Physically Dispersed LMW NO Donors 
The first report of non-covalent dispersion of small molecule N-diazeniumdiolates 

into polymeric matrices was by Smith et al. in 1996, incorporating an N-

diazeniumdiolated triamine species into poly(caprolactone).151  NO detection by 

chemiluminescence showed NO release for a full week with a release of 56 nmol NO 

per mg of polymer for the duration.  It was also calculated that 93 % of stored NO 

was recovered.  Later work by Mowery et al. showed that non-covalent doping of 

small molecule N-diazeniumdiolates can lead to leaching.152  N-Diazeniumdiolated 

N,N-dimethyl-1,6-hexanediamine was dispersed through poly(vinyl chloride) (PVC) or 

polyurethane (PU).  High-performance liquid chromatography (HPLC) analysis 

showed the formation of a potentially toxic nitrosamines; a class of compound 

known for their carcinogenic properties.  It was hypothesised that decomposed free 

amine was most likely leaching out of the polymer and reacting with intermediates 

of NO oxidation to form the nitrosamine.  In 2003, Batchelor et al. developed more 
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lipophilic N-diazeniumdiolates by altering the alkyl chain length of precursor 

diamines, after recognising the water-solubility of non-covalently dispersed N-

diazeniumdiolates through the hydrophobic polymer was the cause of leaching.153  

2.6.1.2 Covalently Bound LMW NO Donors 
The leaching of non-covalently doped small molecule N-diazeniumdiolates can be 

attenuated by covalently binding N-diazeniumdiolated precursor/N-

diazeniumdiolates to the polymer backbone.  Smith et al. first demonstrated the 

simplicity in covalently binding N-diazeniumdiolates to polymers.151  In this work two 

different approaches were used: the first to modify polymers with precursor amines 

to form N-diazeniumdiolate side chains, perpendicular to the polymer backbone.  

NO-releasing materials were synthesised by using the precursor dipropylenetriamine 

and the polymer dextran.  Two slightly different protocols were employed: a pre-

diazeniumdiolated treatment in which the precursor amine was N-diazeniumdiolated 

and then grafted to dextran; and a post-diazeniumdiolated treatment where the 

precursor amine was first grafted to dextran and then the whole material treated 

with NO.  Whilst both techniques led to NO release, a pre-diazeniumdiolated 

synthetic process led to greater NO release over longer periods of time.  The second 

approach was through the treatment of amine-containing polymer backbones with 

NO to incorporate N-diazeniumdiolates directly.  Insoluble poly(ethylenimine) (PEI) 

was treated with 5 bar of NO gas to and the secondary amines in the polymer 

backbone were N-diazeniumdiolated (PEI/NO).  Vascular grafts were coated with 

PEI/NO and constant NO release was measured for a duration of 5 weeks. 

Meyerhoff and co-workers furthered the work by Smith and covalently attached N-

diazeniumdiolates to other polymers, such as: silicone rubbers (SRs),154 

polymethacrylates,155  polyurethanes156 and poly(vinyl chlorides).152   Zhang et al. 

covalently attached di- and triamines to cured SR and then treated with 5 bar of NO 

to form N-diazeniumdiolated SRs.  The most promising material, DACA-6/N2O2-SR, a 

N-diazeniumdiolated silicone rubber with a diamine precursor, showed NO release 

profiles lasting approximately 20 d, through a thermally driven dissociation of the N-

diazeniumdiolate moiety.  When coated on intravascular sensors, reduced platelet 

activation and clotting was observed.157  Boc-protected secondary amine containing-
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methacrylate monomers were co-polymerised with methyl methacrylate by 

Parzuchowski et al.155  The ratios of the two monomers were varied to give 20, 40 

and 100 mol. % of amine-containing monomer.  As this concentration increased, NO 

release increased proportionally but interestingly the percentage of N-

diazeniumdiolated amine sites decreased.  This was hypothesised to be caused by 

the increased solubility of the amine monomer during diazeniumdiolation.  Reynolds 

et al. employed two synthetic methods to generate N-diazeniumdiolate containing 

PU, either by first incorporating a precursor diamine into the polymer backbone or 

as a linked pendant chain.156  When the amines were present in the polymer 

backbone an additional counter cation and a base were necessary to stabilise the N-

diazeniumdiolate.  This was not necessary for the PU modified with N-

diazeniumdiolate pendant chains due to less rigidity allowing amine sites to act as 

the stabilising base.  N-diazeniumdiolates incorporated into the backbone released 

21 nmol NO per mg of PU over 24 hrs, whilst N-diazeniumdiolates as pendant chains 

released 17 nmol NO per mg of PU over 6 days.   

2.6.2 Xerogel Coatings 
Over the past decade the sol-gel process has been used extensively to develop NO 

releasing coatings due to the mild conditions needed for synthesis and the flexibility 

of the technique to give such vastly different products.  In particular, the 

incorporation of N-diazeniumdiolates into xerogels has been used to synthesise 

coatings for polymeric materials for a range of biomedical applications.  

In 2001, Schoenfisch and co-workers first co-condensed an alkylsilane,  

(isobutyltrimethoxysilane (BTMOS)) and an aminosilane,  (N-(3-

trimethoxysilylpropyl)diethylenetriamine (DET3)) and allowed gelation and solvent 

evaporation to form amine-containing xerogel networks.158  3 days under 5 bar of NO 

allowed N-diazeniumdiolate formation at the amine sites.  NO release was observed 

for 24 hrs and the level of release was proportional to the concentration of DET3.  

These materials were tested for their antibacterial efficacy against P. aeruginosa.  

The NO-releasing xerogels exhibited up to 44 % reduction of cell coverage when 

compared to the non-releasing controls.  
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In 2003, Robbins and Schoenfisch synthesised NO-releasing methyltrimethoxysilane 

(MTMOS)/aminoethylaminomethyl)phenethyltrimethoxysilane (AEMP3) xerogels 

using the same method described above, for incorporation into patterned 

microarrays.159  The surface flux of NO (≈ 6 pmol cm-2 s-1) was comparable to that 

produced endogenously by stimulated epithelial cells and release was observed for 

a period of up to 7 d.  The NO-releasing materials were shown to reduce platelet 

adhesion relative to their controls.   

In a subsequent study, combinations of aminosilane: DET3, AEMP3 or (6-

aminohexyl)aminopropyltrimethoxysilane (AHAP3) and alkylsilane, BTMOS were co-

condensed to form smooth stable xerogel coatings.160  A pre-hydrolysis of BTMOS 

was incorporated into the protocol due to the increased rate at which aminosilanes 

hydrolyse compared to alkylsilanes.  A xerogel is formed when a sol-gel solution is 

allowed to dry and a temperature of 70 oC speeds up this process.  Schoenfisch 

demonstrated that aminosilane concentrations greater than 45 % or drying 

temperatures above 70 oC, produced coatings that were nonhomogeneous, brittle or 

opaque.  This study again showed the ability to control the NO flux through changes 

in the structure and concentration of the aminosilane precursor: 40 % DET3/BTMOS 

gave initial NO fluxes of 60 pmol cm-2 s-1 in PBS, whilst 5 % AEMP3/BTMOS gave < 1 

pmol cm-2 s-1; 40 % AHAP/BTMOS xerogels showed release durations of up to 20 d. 

Aminosilane to N-diazeniumdiolate conversion studies were also carried out and 

DET3 showed the greatest efficiency.  This can be attributed to the additional amine 

groups that stabilise the N-diazeniumdiolates through hydrogen bonding.  NO-

releasing 40 % AHAP3/BTMOS coatings showed reduced platelet and bacterial 

adhesion.   

This study also corroborated the results from previous reports that NO release from 

N-diazeniumdiolates is temperature dependent, with the flux of 40 % AEMP3/BTMOS 

xerogels nearly doubling when the temperature was increased from 25 oC to 37 oC.140  

Further, this report confirmed preservation of N-diazeniumdiolates when storing at 

temperatures below freezing, by showing that NO release at 0 oC was negligible.   

In a subsequent study the antibacterial properties of NO-releasing AHAP3/BTMOS 

xerogel coatings were explored for use on orthopaedic implants.161  The bacterial 
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adhesion of Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus 

epidermis at 25 oC and 37 oC on NO-releasing AHAP3/BTMOS-coated stainless steel 

was significantly reduced compared to bare and control xerogel-coated steel.  

Nablo et al. employed a protective PVC polymer coating for the xerogels.162  This 

increased the stability of the xerogels whilst only a small reduction in NO flux was 

observed.  The controlled surface chemistry of the PVC-protected xerogels allowed a 

correlation between bacterial adhesion and NO flux to be determined.  It was seen 

that the reduction in P. aeruginosa cell adhesion was proportional to NO flux.  N-

diazeniumdiolated AHAP3/BTMOS xerogels were later shown to also kill adhered P. 

aeruginosa cells when total NO release was increased from 25 to 750 nmol cm-2 over 

15 hrs; a 96 % decrease in adhered cell viability was observed.163  

In the protocols of all the literature described above a ‘post-diazeniumdiolation’ was 

employed in which the aminosilane xerogels were formed first before treatment with 

NO gas to form the N-diazeniumdiolates.  In 2013, Storm and Schoenfisch employed 

a ‘pre-diazeniumdiolate’ technique, where the aminosilanes were first functionalised 

with N-diazeniumdiolate groups before incorporation into the xerogel.141    Indeed 

pre-diazeniumdiolated xerogels showed an NO release of more than 10 times their 

post-diazeniumdiolated counterparts.  This work also highlighted the importance of 

comparable reaction kinetics between alkylsilane and aminosilane.  A one-step 

hydrolysis and co-condensation was initially carried out but due to the increased rate 

of hydrolysis by N-diazeniumdiolated aminosilanes compared with alkylsilanes the 

two silanes were not stable in their connection.  A pre-hydrolysis of the alkylsilane 

was employed to solve this issue.  When MTMOS and BTMOS were used as the 

alkylsilane, the resulting xerogels of the former displayed cracking and of the latter 

remained viscous and tacky even after drying.  A third alkylsilane, 

trimethoxypropylsilane (PTMOS), was employed to give stable, non-tacky xerogels by 

changing the water to silane ratios, depending on the aminosilane. 
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2.7 Topographical Control of Bacterial Response 

Most research to date has focussed on using a chemical approach to control bacterial 

response.  Recently, bioinspired physical approaches to fabricating antibacterial 

surfaces without the use of chemicals have been developed.  These physical 

strategies hold significant promise as they do not involve the use of chemical 

antibiotics and bacteria will therefore have a lower tendency to developing 

antibacterial resistance.  Another advantage of this approach is the reduced risk of 

cytotoxicity to mammalian cells.  This section discusses the effect physical changes in 

the surface topography has on the antibacterial performance of materials. 

2.7.1 Natural Antibacterial Topographies. 
The natural world that exists today is a result of millions of years of evolution; it exists 

because it has adapted to survive.  The field of biomimetics takes inspiration from 

nature’s tried and tested blueprints when considering design.  There are many 

natural materials that display antibacterial behaviour due to their surface structure 

as shown in Figure 2.11. 

 

Figure 2.11: Examples of naturally occurring antibacterial topographies: (a) 

Bactericidal nanopillars of the cicada wing pierce the bacterial membrane.  (b) Super-

hydrophobic topography of the lotus leaf enables a self-cleaning surface.  (c) Shark 

skin has microscales which run parallel to the flow of water, promoting low drag and 

inhibiting microorganisms to adhere.  
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The cicada wing (Figure 2.11 a) is an example of a natural material that owes its 

bactericidal ability to its topography.  In 2013, Ivanova et al. explored the antifouling 

properties of the wing of one species of cicada (Psaltoda claripennis) against P. 

aeruginosa when it became apparent that the wings’ were lethal towards the cells.52  

The surface of the cicada wing is comprised of nanopillars.  The nanopillars were 

measured as 200 nm tall, 100 nm diameter at base, 60 nm diameter at the top, with 

170 nm spacing between each pillar.  Viability tests showed the effect to be very fast 

with kill of all adhered bacterial cells occurring in ≈ 5 mins.  The lethal effect was seen 

to be due to penetration of the bacterial cells by the nanopillars.  To assess whether 

the surface chemistry played a significant role in the observed behaviour, the wing 

was sputter-coated with gold and again tested for bactericidal behaviour.  The 

bactericidal effect of the wing was left unchanged, indicating the primary factor is 

the physical surface structure. 

Many natural surfaces show antifouling properties, preventing bacterial adhesion 

and eventually biofilm formation.  Barthlott and Neinhuis carried out experiments on 

an array of plant leaves to assess their antifouling and self-cleaning properties and 

found the lotus leaf performed best (Figure 2.11 b).164  SEM images showed 

microstructures on the surface of the lotus leaf; small cone-like protuberances.  

These cause the surface to have increased roughness which leads to 

superhydrophobicity (≈ 160 oC).  This property creates surfaces that do not wet, with 

water droplets remaining spherical and rolling off picking up contaminates and 

particulates, including bacteria along the way.  The skin of certain shark species 

(Figure 2.11 c) is another example of a naturally occurring antifouling material.165  The 

surface of the skin is made up of tooth like micro-scales with riblet structures parallel 

to the flow of water.  These promote low drag and do not allow micro-fouling 

organisms to attach to the surface. 
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2.7.2 Synthetic Materials with Micro-/Nanopatterned Topographies. 
The field of taking inspiration from nature is called biomimetics.166  Of particular 

interest to this thesis, is the development of materials with distinct topographies on 

the micro- and nanometer length scales for their antibacterial behaviour. 

2.7.2.1 Patterning at the Micro-/Nanometre Scale 
When fabricating materials with distinct patterns at the micro- and nanometer scale, 

the approach can either be top-down or bottom-up.167  Top-down techniques start 

with a large ‘block’ and material is eroded/etched away until the desired pattern is 

formed.  These techniques include electron beam lithography which can give very 

high resolution patterns but can be expensive and time consuming.  Bottom-up 

techniques use atoms, molecules or polymers as building blocks to build up to 

achieve the desired structure.  A summary of some of the advantages and 

disadvantages of some common patterning techniques are displayed in Table 2.5.167  
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Table 2.5: Advantages and disadvantages of some common patterning techniques. 

Technique Lateral 
resolution  

Advantages  Disadvantages Ref 

Photolithography 40 nm No shape 
limitations. 

Expensive. 167, 

168 

Electron beam 
lithography 

15 nm Very good 
resolution. 

Very slow. 
Expensive. 

169 

Colloidal 
lithography 

50 nm  Even spacing. 
Colloids readily 
available.  Do not 
require specialised 
techniques. 

Only hexagonal 
structures 
possible. 

170 

Nanoimprint 
lithography 

< 100 nm Topographical 
only.  (No 
chemistry). 
Controllable spatial 
distribution. 

Uneven swelling. 
Low resolution. 

171 

Polymer 
demixing 

Sub-
micrometre 

Very easy 
fabrication 
technique.  
Quick.  Cheap. 
Flexibility in 
material choice. 

Little variation in 
patterns.  Hard 
to fabricate 
ordered 
topographies 
with uniform 
feature size.   

172, 

173 

Electrospinning Fibre size-
dependent. 

Flexibility in 
material choice. 

Little flexibility in 
final pattern 
(bed of fibres). 

174 

Surface 
roughening 

Hard to 
control. 

Uniform 
throughout 
sample.  
Controlled 
chemistry 

No control in 
surface 
structures. 

175, 

176 

Metallic  
oxidation 

15 nm Size of pattern 
features easily 
controllable. 

No flexibility in 
material choice 
(metals only). 

177 
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2.7.2.2 Antibacterial Behaviour of Micro-/Nanopatterned Materials 
The effect of surface topography on the response of mammalian cells has been 

explored in great detail in comparison to its effect on bacterial cell attachment.  

Micro-/nanotopographical control of bacterial cell response is an emerging research 

area and this section discusses some recent studies exploring bacterial response 

when the topography of a material is altered at comparable length scales to the 

bacteria.  

In 2006, Diaz et al. assessed the initial stages of Pseudomonas fluorescens cell 

attachment on nanopatterned copper and gold.178  The nanostructures were in the 

form of channels 90 nm in height and 900 nm in width.  SEM images showed that on 

smooth surfaces bacterial adhesion was uneven, whilst on nanostructured Au 

substrates, in particular, cells underwent orientation to align themselves in the 

trenches and crevices.  

Hochbaum and Aizenberg explored this phenomenon in more depth (Fig. 2.12) and 

saw that when the pitch between nanoposts was greater than the length of 

Pseudomonas aeruginosa cells, they aligned randomly within the trenches (Fig. 2.12 

a), however the cells showed a slight preference to adhere at the points where 

nanoposts and the substrate met.55  When the spacing between nanoposts was 

comparable to the length of P. aeruginosa (1.2-1.5 µm), cells positioned themselves 

parallel to the substrate and perpendicular to one another, contacting multiple 

neighbouring posts (Fig. 2.12 b and 2.12 c).  As the pitch between posts decreased 

further to approximately 0.8 µm, cells positioned themselves perpendicular to the 

substrate aligning along the vertical lengths of the posts (Fig. 2.12 d).  
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Figure 2.12: Schematic showing the change in orientation by bacterial cells to 

maximise cell-surface contact area when spacing between surface features is 

decreased.  [Image adapted from Ref. 55] 

Hochbaum and Aizenberg have effectively shown that there is a definite response of 

bacterial cells to ordered topographical features and that bacteria organise 

themselves to maximise contact area with the surface.  A study conducted by Moraru 

and co-workers corroborated these results with three other species of bacteria (P. 

fluorescens, Escherichia coli, Listeria innocua).179  Here they have shown that cell size 

and morphology was a factor in the response of bacterial cells to topography.   

The feature size-dependent anti-adhesion effects of micro-/nanopatterned materials 

has been the specific focus of many studies.  Lu et al. fabricated PDMS films with 

micropatterned surface topographies with feature sizes ranging from 0.5 – 4 µm.180 

Three species of bacteria (Staphylococcus aureus, E. coli, P. aeruginosa) with 

different size properties were studied to assess the relationship between cell size, 

feature size and the anti-adhesion properties of the films.  For all three species of 

bacteria the same trend was observed: when the feature sizes were smaller than the 

size of the cells, bacterial cell adhesion was significantly reduced.  For example, S. 

aureus is ≈ 0.66 µm length and when inoculated onto patterned surfaces with feature 

diameters of 0.5 µm, the surfaces demonstrated anti-adhesion properties, with a 43 

% reduction in cell attachment compared to controls.  Conversely, on surfaces where 
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the S. aureus length was less than the pattern size, there was no reduction in bacterial 

cell adhesion.  In the case of P. aeruginosa (≈ 1.34 µm length), patterns with feature 

diameters of 2 – 4 µm showed an increase in bacterial adhesion compared to non-

patterned controls.  In the same study,180 SEM images also showed that P. aeruginosa 

cells preferred to adhere in the grooves between patterns rather than on top of 

them.  Hou et al. observed a similar phenomenon and investigated whether 

gravitational forces played a role.181  E. coli was inoculated onto patterned surfaces 

and turned upside down before incubation and it was found that cells still preferred 

to adhere in the grooves rather than on the top of the protruding patterns.  This 

experiment indicated that gravity was not the reason and bacterial cells actively 

chose the attachment site.  

Whilst the current literature finds difficulty in defining a conclusive set of factors to 

explain bacterial attachment and its site specificity, a theoretical thermodynamic 

approach182 can offer some reasoning on the phenomena discussed above.55, 178-180  

This model indicates that bacteria will prefer to bind to a substrate when the energy 

of the cell-substrate interface is lower than that of the cell-medium interface.  The 

system energy can be lowered with increased contact area between the cell and the 

surface and so bacteria arrange themselves, according to the surface topography, to 

maximise surface contact and minimise the energy required to adhere. 

In 2018, Michalska et al. fabricated black silicon with varied nanopillar morphologies 

that exhibited bactericidal efficiency against multiple species.183  Sharp and blunt 

nanopillars were fabricated and the mechanism of cell death observed was different 

for both.  SEM images showed that long, sharp nanopillars pierced the cell membrane 

and caused cytoplasm leakage; whilst when cells adhered to short, blunt nanopillars 

the membrane became stretched, enhanced by increased attractive strength 

between cell and surface.  The rate of killing seemed to be affected by properties of 

the bacterial cell such as: abundance of flagella, nature of cell wall and outer 

membrane, and the nature and extent of polysaccharide secretion. 

2.7.2.3 Commercial Applications: Sharklet AFTM 
One particular success story of the design of synthetic materials with antibacterial 

topographies is the research carried out to mimic the antifouling effect displayed by 
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shark skin topographies.  Brennan and co-workers designed a technology known 

commercially as Sharklet AFTM.184  The process uses photolithographic techniques to 

create silicon wafers with shark-skin like riblets.  The Sharklet AFTM topography is 

patterned by curing poly(dimethyl siloxane) (PDMS) over these wafers.  Sharklet AFTM 

and smooth PDMS were tested against S. aureus to assess any inhibition of cell 

adhesion and biofilm formation on the structured material.185  After 14 d the 

percentage coverage was 54 % on the smooth surfaces compared to 7 % on the 

Sharklet AFTM PDMS.  Biofilm colonisation was not observed until 21 d after 

colonisation.  In a more recent study, the Sharklet AFTM micropattern was 

incorporated into polyurethane materials to assess its potential in improving 

biocompatibility for central venous catheters.186  After 18 hrs S. aureus and S. 

epidermis colonisation were reduced by 70 % and 71 %, respectively, and platelet 

adhesion reduced by 86 % compared with non-patterned controls. 

2.8 Summary 

The review of the literature considered here provides a detailed background for the 

study and design of antibacterial surfaces for use as medical implants.  This review 

has focussed on both chemical and physical antibacterial approaches.  Specifically, 

the antibacterial properties of NO, its release from NO donor molecules (particularly 

N-diazeniumdiolates) and the maximising of NO release capabilities using NO storage 

and delivery vehicles has been reviewed.  The literature reviewed concerning a 

physical antibacterial approach, has focussed on natural antibacterial materials with 

distinct topographies, and the design and fabrication of synthetic micro-

/nanopatterned surfaces and their ability to adversely affect bacteria.  The work in 

this thesis has used the literature reviewed in this chapter as a guideline to design 

NO releasing surfaces and also surfaces with discrete micro-/nanotopographical 

features for use as antibacterials, and help to gain a mechanistic understanding of 

their antibacterial behaviour.  Nitric oxide is a diverse biomolecule that has shown 

great therapeutic potential, namely in antibacterial applications. With its extremely 

short half-life the use of an NO-donor is paramount to prevent premature NO 

release.  From reviewing the literature it is also clear to see that certain NO-mediated 

processes are a function of NO release concentrations.  Therefore this study will 
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explore the control of NO release through different methods and the effect changes 

in this have on antibacterial mechanisms.   
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Chapter 3 - Materials and Methods 

3.1 Introduction 

This chapter details medically relevant polymers that have been modified for 

antibacterial implant applications, the chemicals used to functionalise them and the 

techniques and protocols required for modification.  In order to confirm chemistry 

and topography, an array of analytical techniques were employed.  The efficacy of 

the antibacterial surfaces was evaluated by several methodologies listed here.    

3.2 Polymer Substrates 

The polymers selected for this study were chosen for their medical relevance and 

their current use in medical implant applications.  Silicone elastomer (SE) and 

poly(ethylene terephthalate) (PET) have been modified, as they are materials 

commonly used in making medical devices, such as catheters and sutures, which can 

be prone to bacterial infection.187  Polystyrene (PS), poly(methyl methacrylate) 

(PMMA) and polycaprolactone (PCL) have also been used throughout this study due 

to their medical relevance.  In Figure 3.1 the structures of the monomer repeating 

units of the polymers used are shown.  

From Goodfellow, UK: 

 SE  

 PET 

From Sigma-Aldrich: 

 PS (Mw:280000) 

 PMMA (Mw:350000) 

 PCL (Mw:48000-90000) 
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Figure 3.1: Chemical structures of the repeating units of the polymers. 

3.3 Silanes 

Aminosilanes were used to modify the surface with amine functionality which were 

then utilised as anchor points for diazeniumdiolate synthesis.  Two secondary amine-

containing aminosilanes: N-(3-Trimethoxysilylpropyl)diethylenetriamine (DET3) and 

N-(3-trimethoxysilylpropyl)aniline (PTMSPA) have been used.  Alkylsilanes were also 

used in the synthesis of xerogels (Chapter 5).  Two alkylsilanes: 

trimethoxy(propyl)silane (PTMOS) and isobutyl(trimethoxy)silane (BTMOS) were 

investigated.  Structures of all silanes are as displayed in Figure 3.2.   
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Figure 3.2: Chemical structures of silanes. 
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3.4 Synthesis 

In this work different materials, with varying properties, have been fabricated: N-

diazeniumdiolate-tethered polymers, N-diazeniumdiolated xerogels, polymer 

demixed films and micropatterned PDMS.  The scientific protocol for the fabrication 

of each material mentioned has its own unique reaction scheme and so for clarity an 

experimental section at the start of each chapter has been provided.  Common 

protocols used throughout the thesis have been outlined below.    

3.4.1 Preparation of Substrates for Analysis 
Sheets of PET, 0.175 mm thick and SE, 1 mm thick (Goodfellow, Cambridge, UK) were 

cut into disks, 6 mm in diameter for NO release quantification experiments and 

bacterial assays.  For all other analyses, substrates were cut into 15 x 15 mm squares.  

The disks were washed in 70 % EtOH for 3 x 5 mins, rinsed with DI water and dried in 

air before use. 

3.4.2 Plasma treatment of Substrates 
Pristine substrates were subjected to oxygen (BOC, Guildford, U.K.) plasma 

treatment at a gas flow rate of 14 standard cubic centimetres per minute (sccm) and 

a pressure of 0.75 mbar using a HPF100 plasma treatment system (Henniker Plasma, 

Warrington, U.K.). 

3.5 Analytical Techniques  

The surface chemistry and topography throughout each step of each fabrication 

process were characterised through a number of techniques.  Static water contact 

angle measurements were carried out to assess the changes in surface wettability; 

X-ray photoelectron spectroscopy (XPS) and Fourier-transform Infrared Spectroscopy 

(FTIR) were employed to determine chemical changes on the surface; NO detection 

via chemiluminescence was carried out to understand the kinetics of NO-release 

from N-diazeniumdiolate-functionalised materials; atomic force microscopy (AFM) 

enabled the acquisition of surface roughness values and the imaging of surfaces at 

the micro-/nanoscale. 

3.5.1 Contact Angle Analysis  
Static contact angles of water were used to determine changes in surface wettability 

using an Attension ThetaLite optical tensiometer (Biolin Scientific, Västra Frölunda, 
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Sweden).  The sessile drop method was used and contact angles were taken at 17 

frames per second for 10 s. Data was collected using OneAttension software (Biolin 

Scientific, Västra Frölunda, Sweden).  At least three readings were performed per 

sample type and samples were produced in triplicate.  The results recorded as mean 

average ± standard deviation. 

3.5.2 Fourier-transform Infrared Spectroscopy 
The infrared (IR) region of the light spectrum is split into three sub-regions and ranges 

in wavelength from approximately 0.78 – 1000 µm, however wavelengths between 

2.5 – 15 µm are most useful for IR spectroscopy (Table 3.1).  

Table 3.1: IR spectral sub-regions 

Region Wavelength (µm) Wavenumber (cm-1) 

Near 0.78-2.5 12800-4000 

Mid 2.5-50 4000-200 

Far 50-1000 200-10 

Most Used 

(spectroscopically) 

2.5-15 4000-670 

 

Higher energy radiation types such as x-ray, ultraviolet and near-infrared deal with 

electronic transitions, whilst the lower energy of IR radiation is only concerned with 

rotational and vibrational energy transitions.  An absolute necessity in IR active 

compounds is that the molecules exert net change in the dipole moment as they 

vibrate or rotate.  This arises when the elemental components are different in 

electronegativity making the charge unevenly dispersed.  When such molecules 

vibrate and rotate the fluctuation in dipole moment is observed.  The electrical field 

of the IR radiation interacts with these fluctuations.  When the frequency of the 

radiation and vibrational frequency of the molecule match, the radiation can be 

absorbed, which leads to a change in the amplitude of molecular vibration. 

In these studies FTIR spectra were obtained at room temperature in the spectral 

range between 3200 cm-1 and 1400 cm-1, using a PerkinElmer Frontier FTIR 

Spectrometer (Perkin Elmer, UK).  The spectra were obtained with 64 scans at 
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resolution of 4 cm-1 and data was collected using PerkinElmer Spectrum v10.4 

software. 

3.5.3 X-ray Photoelectron Spectroscopy 
Like FTIR analysis, X-ray photoelectron spectroscopy (XPS) is a method of analysis to 

determine chemical composition of a surface.  In XPS, the surface of a sample is 

irradiated by soft x-rays (Mg Kα or Al Kα) with the energy of hν.  This process allows 

mono-energetic photons to approach the surface atoms, after which one of three 

events can occur: 

1. The photon can pass through the atom without any interaction. 

2. Scattering of the photon by an atomic orbital electron can lead to 

partial energy loss. 

3. The photon energy is totally transferred to an atomic orbital electron 

resulting in electron emission from the atom.  

This third event (photoemission) is what provides an essential basis for the XPS 

technique and is outlined in Figure 3.3.  

 

Figure 3.3: A photon source of efficiently high energy will transfer its energy to a 

core-level electron enabling it to be emitted as a photoelectron able for detection by 

XPS. 
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The sampling depth of XPS is related to the inelastic mean free path of the electrons.  

This is the ability to travel much further through solids than electrons.  1 keV (typical 

energy of x-rays used in XPS) can penetrate the surface to a depth of 1 µm, where an 

electron of the same energy can only penetrate ≈ 10 nm.  Photoelectrons emitted 

due to x-ray excitation, below the uppermost surface will penetrate 1 µm into the 

surface however, electrons are only ejected from the top 10 nm.  This is because 

electrons that are ejected below 10 nm in depth will undergo inelastic scattering with 

other atoms and lose energy before they can escape.  It is for these reasons that XPS 

can be considered highly surface sensitive (top 10 nm).  

The x-ray photoelectron spectrometer measures the kinetic energy of emitted 

electrons that have reached the detector with no energy loss.  By using the Einstein 

equation: 

 

 KE = ℎν − BE −  ϕ 

                                                                                 (3.1) 

where KE, represents kinetic energy of photoelectron, hν is the energy of the 

excitation photon, BE is the binding energy of the electron in the atom and φ is the 

spectrometer’s work function, some valuable information can be obtained.  The 

binding energy deduced from Equation 3.1 can provide great detail about where its 

corresponding electron originated. 

The chemical information of ionic and covalent bonds can be gathered from the 

calculated binding energies.  The binding energy of an electron is a measure of how 

well a negatively charged electron is bound to a positively charged nucleus.  Each 

atom has a different nuclear charge and so the binding energy of each element is 

different.  When other atoms are bound to the atom of interest the electron 

distribution is altered which also affects the binding energy.  More specifically, the 

more electronegative the species bonded to the atom of interest is, the greater the 

binding energy of the electron.  As a result of this XPS can be used to identify chemical 

composition and surface elemental concentrations. 
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The advantages of XPS are that it is a non-destructive surface sensitive technique that 

can identify all elements except hydrogen and helium.  The interpretation and theory 

behind XPS is relatively straightforward and high information content on chemical 

bonding can be retrieved, quantitatively.  The disadvantages of XPS include its 

relatively large analysis area (≈ 10 µm), the cost of the instrument, as well as the 

running and maintaining of it, and the use of a high vacuum which samples must be 

compatible with.  

In these studies XPS analysis was carried out on an Axis-Supra instrument (Kratos 

Analytical, Manchester, UK) using a monochromated Al Kα x-ray source operating at 

a power of 225 W.  Charge compensation was performed using a low-energy electron 

flood source.  Survey and narrow region scans were carried out at pass energies of 

160 and 20 eV and step sizes of 1 and 0.1 eV, respectively.  Hybrid lens mode was 

used in both cases.  Data was converted to vamas (*.vms) format and analysed using 

CASAXPS 2.3 software (Casa Software, Devon, UK).  Spectra were calibrated to 284.6 

eV for SE samples and 285 eV for all other polymers, corrected with linear 

background removal and fitted using Gaussian-Lorentzian line curves. Three separate 

areas on each sample were recorded and the average results are reported as atomic 

% concentrations (at. %) ± standard deviation 

3.5.4 Atomic Force Microscopy 
Atomic force microscopy (AFM) is a scanning probe microscopy technique, which 

involves the use of an atomically sharp tip that interacts with the surface.  The tip is 

at the end of a cantilever that is placed parallel to the sample surface.  The tip, which 

is typically made of silicon or silicon nitride, is brought into contact with the surface, 

which leads to an interaction force between the tip and the surface.  As this force 

varies, deflections are produced in the cantilever.  Before operation, a laser spot is 

positioned on top of the cantilever at an angle allowing it to be reflected into the 

photodetector.  The deflections of the cantilever are measured by these reflections 

into the photodiode, to produce a three dimensional topographical image at the 

micro-/nanoscale.  A schematic representation of AFM system is displayed in Figure 

3.4. 
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Figure 3.4: Schematic representation of an operating AFM system 

There are three modes of operation for AFM: tapping, contact and non-contact.  In 

this research tapping mode was used.  In this mode the tip oscillates over the surface, 

and only touches it for a very small amount of time, reducing the issue of lateral force 

damage and drag across the surface.  The topography is imaged by adding the short-

range repulsive and long-range attractive forces together to get an average force 

response curve. 

In this study AFM was used to image the topography of sample surfaces, measure 

the dimensions of surface micro-/nanofeatures, and determine surface roughness 

values.  A Bruker Multimode 8 (Bruker, Billerica, MA, USA) system fitted with a 

NanoScope V controller was used and samples were imaged in air in ScanAsyst mode 

using a silicon RTESPA-150A tip, operating at a scan rate of 0.9 Hz.  Third order 

flattening was used to correct any errors in piezo linearities whilst processing the 

image.  Samples were analysed over a 5 x 5 µm2 sample area and average roughness 

(Ra) and root mean square roughness (Rq) were calculated from at least three 

replicates of each sample type using NanoScope Analysis 1.7 software.  Ra is the 

arithmetic average of the absolute values of the peaks and valleys over the whole 

length of the sample.  Rq is the root mean square average of the profile height 

deviations from the mean over the whole length of the sample.   
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3.5.5 Nitric Oxide Detection by Chemiluminescence 
This method of detection utilises the chemiluminescence signal of the reaction 

between nitric oxide and ozone: 

NO + O3  →  NO2
∗ + O2  

         NO2
∗  →  NO2 + h𝜈 

NO first reacts with ozone to form a molecule of nitrogen dioxide (NO2) in an excited 

state (NO2*).  Decomposition of NO2 to its ground state emits a photon, which is what 

the detection of NO depends on.  This method of detection requires a carrier gas to 

push the NO through the reaction cell.  This carrier gas (N2 in this work) plays an 

essential role in the overall process.  NO2* returns to its ground state by quenching 

and this quenching occurs through collisions of NO2* with the carrier gas. 

In these studies a Sievers Nitric Oxide Analyser NOA 280i (GE Analytical, Boulder, CO, 

USA) system was used.  The system was calibrated with air passed through a zero air 

cylinder (0 ppm NO) and NO standard gas (89.2 ppm NO).  A three-necked round 

bottom flask containing 5 ml acetate buffer or phosphate-buffered saline (PBS) were 

used for pH 4 and pH 7.4 experiments, respectively.  The sample was dropped into 

the buffered solution once the baseline was stable.  

A vacuum pump is employed to continuously draw the carrier gas (N2) and any NO 

produced into the analyser at a constant flow rate.  A standard frit restrictor keeps 

the flow rate at 200 ml/min.  Ozone is generated from an external O2 supply into an 

electrostatic ozone generator.  The rate of gas flow into the ozone generator is ≈ 30 

ml/min, controlled using a regulator (adjusted to 6 psi) and small diameter tubing 

restrictors.  The ozone generator works alongside a high voltage transformer to 

generate ozone at a concentration of ≈ 2% v/v (balance O2).  This is sufficient 

concentration for NO measurements up to 500 ppm.  The reaction between NO and 

ozone takes place in a reaction cell with small volumetric capacity (20 ml).  The small 

volume allows measurement of low concentration of NO at low flow rates.  Three 

other compounds give chemiluminescence products when reacted with ozone: 

sulphur compounds, ethylenic compounds and carbonyls.  The light from these is 

emitted at shorter wavelengths and so the system is fitted with an optical filter 
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installed between the reaction cell and photomultiplier tube that only transmits red 

wavelengths (> 600 nm).  The photomultiplier tube is where the photon emission is 

measured and to increase sensitivity is cooled to – 12oC.  Data was collected using 

the Plot program of the NOAnalysis 3.21 software (GE Analytical, Boulder, CO, USA).  

Three replicates of each sample were used to acquire NO release data.  Average 

maximum NO release is reported in µM s-1 (cm-2) ± standard deviation.  Average total 

NO release is reported in µmol (cm-2) ± standard deviation    

3.5.6 Scanning Electron Microscopy   
Scanning electron microscopy (SEM) images a sample by scanning the surface with a 

focussed beam of electrons.  These electrons interact with surface atoms, producing 

secondary electrons which are collected by a detector to form images.  Due to the 

much shorter wavelengths of electrons, compared to light, electron microscopes 

allow for much better resolution compared to light microscopes.  Typically, SEMs can 

give resolutions between 1 and 20 nm.  If samples are non-conductive, they must be 

metal sputter coated.  Analysis is carried out under vacuum and so samples must be 

able to handle moderate vacuum pressures.  

In this study, samples were sputter coated with 15 nm coatings of chrome using a 

Quorum QT150T turbomolecular pumped coater (Quorum Technologies, Lewes, UK).  

Samples were imaged using a JSM-6610LV SEM system (JEOL USA, Peabody, MA, 

USA), at a working distance of 14 mm and using an accelerating voltage of 10 keV. 

3.6 Biological Assessment 

3.6.1 Preparation of Bacterial Solutions 
Antibacterial tests were carried out against the P. aeruginosa laboratory reference 

strain PA14.  Overnight cultures of P. aeruginosa were diluted from frozen stock (- 80 

oC) to McFarland Standard 0.5 in Luria-Bertani (LB) broth or phosphate buffered 

saline (PBS) buffer (pH 7.4).  

3.6.2 Planktonic Cell CFU Assay 
Substrate disks were placed in 24-well plates and 2 mL of the bacterial solution added 

before incubating at 37 oC for 1, 4 or 24 hrs.  Substrate disks were then transferred 

to sterile well plates and washed with PBS to remove any non-adhered planktonic 

bacteria.  Substrates were then placed in fresh wells and repeatedly washed and 
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agitated vigorously to remove and re-suspend the attached cells.  A serial dilution 

was performed on LB agar using the Miles and Misra method in order to enumerate 

the bacteria.  Non-treated substrates were used as positive control and % reduction 

in adhered cells was calculated as a function of cells attached to controls.  All samples 

were studied in triplicate and repeated at least three times.  Graphs are displayed as 

bar charts in which bars represent average CFU/ml ± standard error. 

3.6.3 Adhered Cell CFU Assay 
Substrate disks were placed in 24-well plates and 2 mL of the bacterial solution added 

before incubating at 37 oC for 1, 4 or 24 hrs.  A serial dilution was performed on LB 

agar using the Miles and Misra method in order to enumerate the bacteria.  Non-

treated substrates and bacterial solutions without substrates were used as positive 

controls.  The % reduction of cell counts in wells containing treated substrates, 

compared to positive controls can be considered directly proportionate to kill rate.  

All samples were studied in triplicate and repeated at least three times.  Graphs are 

displayed as bar charts in which bars represent average CFU/ml ± standard error. 

3.6.4 Fixation of Bacteria 
The size of the bacteria was determined by SEM analysis.  In order to image the 

bacteria the cells needed to be fixed.  Clean glass coverslips were inoculated with 2 

ml of a 1:100 bacterial solution, prepared from an overnight culture.  The bacteria 

were then fixed with 2.5 % glutaraldehyde solution in sterile PBS for 4 hrs.  The 

bacteria were then dehydrated in increasing concentrations of ethanol (30, 50, 75, 

90, 95 and 100 v/v %) by soaking for 5 mins in each ethanol concentration.  The 

coverslips were dried in air and stored at 4 oC before SEM imaging.   

3.7 Statistical Analysis 

Where appropriate, statistical analysis was performed using the data analysis 

package, SigmaPlot 13.0 (Systat Software, San Jose, CA, USA).  One-way analysis of 

variance (ANOVA) was used to establish differences between group means and thus 

variance between treatment types.  Significance between treatment types was 

determined using the Student–Newman–Keuls (SNK) method.  A value of p < 0.05 

was taken as statistically significant. 
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Chapter 4: Covalently bound N-diazeniumdiolates to Polymer Surfaces 
for Prevention of Biofilm Formation 

4.1 Introduction  

Nitric oxide (NO) is an endogenously produced diatomic free radical messenger 

molecule that, as well as playing fundamental roles in wound healing,188 

neurotransmission88 and vasodilation,84 has displayed antibacterial behaviour 

against multiple species.100-104  With NO involved in such a vast array of physiological 

processes, it has become a heavily studied area to modify material surfaces with NO-

donor groups that can release the molecule at appropriate concentrations.  N-

diazeniumdiolate NO donors are advantageous due to the tuneable NO release 

kinetics, through changes in pH, temperature and precursor structure.142  The 

incorporation of these donors into polymeric matrices has been carried out 

previously, in one of three ways:151 

1. Non-covalent dispersal throughout the polymer matrix.  

2. Covalently bound aminosilane precursors to the polymer backbone to form 

donor pendant groups. 

3. Covalently bound N-diazeniumdiolates directly incorporated into N-sites of a 

polymer backbone. 

Whilst all three protocols have been found to improve NO storage and delivery 

potential compared to small molecule N-diazeniumdiolates, reactions between 

leaching free amines and oxidative intermediates of NO, leading to the formation of 

potentially carcinogenic nitrosamines, has been observed when non-covalently 

dispersed (Scheme 4.1).152  
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Scheme 4.1: Free amines (R2NH) and NO· can leach from a polymer matrix when N-

diazeniumdiolates (R2NN2O2) are non-covalently dispersed throughout.  Oxidative 

intermediates of NO (NOx) then react with leaching R2NH to form nitrosamine 

(R2NHNO·).  

N-diazeniumdiolates have been covalently tethered to many biomedically relevant 

polymers previously, including: silicone rubbers (SRs),154 polyurethanes (PUs),156 

poly(vinyl chlorides) (PVCs)152 and polymethacrylates155 to form NO storage and 

delivery vehicles for a controlled and sustained release.  Herein, N-

diazeniumdiolates, formed by functionalising aminosilane precursors, have been 

covalently tethered to two biomedically-relevant polymers, used for medical implant 

applications (poly(ethylene terephthalate) (PET) and silicone elastomer (SE)).  The 

reaction scheme is outlined in Figure 4.1 and the full experimental protocol is 

described in Section 4.2. 

 

Figure 4.1: Reaction scheme for the covalent tethering of N-diazeniumdiolates onto 

PET and SE. 
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In order to assess the effect aminosilane precursor structure has on tuneable NO 

release kinetics of the N-diazeniumdiolates an aliphatic aminosilane with two 2o 

amines and one 1o amine, N-(3-(trimethoxysilyl)propyl)diethylenetriamine (DET3) 

and an aromatic aminosilane with one 2o amine, N-(3-(trimethoxysilyl)propyl)aniline 

(PTMSPA) have been used separately as precursors.  The pH dependence on NO 

release will also be discussed.  

This chapter introduces the use of NO as an antibacterial agent and particularly its 

ability in preventing bacterial cell adhesion and biofilm formation.  The prevention of 

biofilm on the surface of a medical implant is highly important because when 

bacterial cells are in this state the ability to resist antibacterial treatment is greatly 

increased.189  The biofilm prevention assays have been carried out against a lab strain 

of Pseudomonas aeruginosa (PA14).  This particular isolate is a well-characterised, 

medically-relevant opportunistic biofilm former.  By inoculating the samples for 24 

hrs at pH 7.4, this study aims to provide insight in to the potential of covalently 

binding N-diazeniumdiolates to synthetic polymers for use in preventing bacterial cell 

adhesion, leading to biofilm formation on the surfaces of medical implants. 

4.2 Experimental  

4.2.1 Aminosilanisation 
Pristine PET and SE were subjected to oxygen (BOC, Guildford, U.K.) plasma for 

optimum treatment times of 7 and 2 mins, respectively, as determined from 

preliminary experiments.  Substrates were then aminosilanised using DET3 and 

PTMSPA (Sigma-Aldrich, St. Louis, MO, USA).  Immediately following plasma 

treatment the polymers were immersed in 10 % solutions of either DET3 or PTMSPA 

in EtOH for 2 hrs.  Substrates were rinsed in anhydrous EtOH, dried in air and cured 

for 4 hrs at 80 °C. 

4.2.2 N-diazeniumdiolate tethering 
N-Diazeniumdiolate tethering was carried out using a stainless steel reactor built in-

house.  Aminosilanised substrates were placed into the reactor and purged with 6 

bar of argon (BOC, Guildford, UK) for 3 x 5 mins and 3 x 10 mins.  The reactor was 

then filled with 5 bar of NO (BOC, Guildford, UK) for 96 hrs.  Upon release of NO from 
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the system, the system was again purged with 6 bar of argon for 2 x 5 mins and 2 x 

10 mins.  Substrates were removed from the reactor and stored at -20 oC prior to use. 

4.3 Results 

4.3.1 Ageing Test: Contact Angle 
Contact angles were recorded immediately after plasma treatment, then at 15 min 

intervals for 1 hr.  Measurements were also taken 1 d and 10 d after treatment.  

Figures 4.2 and Figure 4.3 show the relationship between contact angle and ageing 

time, after different plasma treatment times, for PET and SE, respectively. 

PET 

In the case of the PET samples, all treatment times resulted in reduced contact 

angles, in comparison to the untreated control.  The contact angle of surfaces after 

7 mins treatment time had the lowest rate of recovery.  After an immediate reduction 

to 5o, these surfaces retained low contact angles for up to 60 mins after treatment 

with values of 10o, 12o and 8o, for 15, 30 and 60 mins, respectively.  Hydrophobic 

recovery was observed after 10 d (30o) but contact angle did not return to values of 

pristine non-treated PET (≈ 80o). 

 

Figure 4.2: Ageing profile of static water contact angle on PET as a function of time 
after oxygen plasma treatment for different oxygen plasma treatment times. 
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SE 

All SE samples subject to plasma treatment showed a reduction in contact angles 

compared with the pristine state.  The contact angle of surfaces after 2 mins 

treatment time had the lowest rate of recovery.  After an immediate reduction to 

13o, these surfaces started recover up to 60 mins after treatment with values of 30o, 

37o and 61o, for 15, 30 and 60 mins, respectively.  Complete hydrophobic recovery 

was observed after 1 d.   

 

Figure 4.3: Ageing profile of static water contact angle on SE as a function of time 
after oxygen plasma treatment for different oxygen plasma treatment times. 

. 
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4.3.2 Wettability: Contact Angle 
The average contact angle values after each synthesis step are recorded in Table 4.1.  

A reduction in contact angle was observed on both substrates following plasma 

treatment, confirming an increase in wettability as result of surface functionalisation.  

Upon aminosilanisation, all substrates showed an increase in contact angle: PET-

DET3 (90.2o), PET-PTMSPA (88.5o), SE-DET3 (116.6o) and SE-PTMSPA (119.2o).  A 

decrease in contact angles was observed after diazeniumdiolate formation: PET-

DET3/NO (79.0o), PET-PTMSPA/NO (81.7o), SE-DET3/NO (108.8o) and SE-PTMSPA/NO 

(108.6o).  This increased wettability may be due to an increased polarity of the 

[N(O)NO]- N-diazeniumdiolate moiety, as well as decomposition products (NO2
- and 

NO3
-) produced upon the water droplet contacting the surface. 

Table 4.1: Static water contact angle measurements of aminosilanised and 

diazeniumdiolate-tethered PET and SE substrates 

 Contact Angle (o) 

PET SE 

Pristine 88.1±1.0 113.0±2.3 

Plasma treated 19.7±1.8 11.0±1.2 

DET3 90.2±0.9 116.6±1.8 

DET3/NO 79.0±0.4 108.8±2.0 

PTMSPA 88.5±0.3 119.2±1.5 

PTMSPA/NO 81.7±1.9 108.6±2.8 
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4.3.3 Surface Chemistry: XPS 
The functionalisation of the surface with N-diazeniumdiolate groups was followed 

after each synthesis step by XPS. 

PET 

The XPS spectra for PET substrates are displayed in Figures 4.4 - 4.6 and the resulting 

quantitative data recorded in Tables 4.2 and 4.3.  The repeat unit of PET is C10H8O4.  

An O/C ratio of 4:10, gives a theoretical at. % of 28.6 for oxygen and 71.4 for carbon.  

Curve fitting of the C 1s envelope of PET gave three components: C-C/C-H at 285.0 

eV, C-O at 286.5 eV and O-C=O at 288.9 eV A fourth peak was fitted in the C 1s 

envelope of PETox at 288.0 eV due to C=O.  The peak displayed in the O 1s region 

was resolved into two components at 532.0 eV and 533.5 eV, due to the carbonyl 

(O=C) and ether (O-C) constituents of the ester groups, respectively.  PET is 

comprised of two ester groups and so as expected the ratio of the two O 1s 

components was approximately 1:1.  An increase in O=C and decrease in O-C of 12.6 

% after oxygen plasma treatment was observed. 

Successful immobilisation of aminosilane molecules onto PETox was confirmed by 

the appearance of peaks in the N 1s and Si 2p envelopes.  The peak in the N 1s 

envelope of PET-DET3 and PET-PTMSPA was curve fitted to give two components, 

centred at 399.9 eV and 401.1 eV  the former due to free amine nitrogen (N-H) and 

the latter due to positively charged amine nitrogen (N+).  Two peaks were also 

resolved when curve fitting the Si 2p envelope.  The first at 102.1 eV is assigned to 

Si-O-Si polymer bridges, the second at 102.7 eV is due to Si-O-C.  Tethering of the N-

diazeniumdiolate was confirmed with the appearance of a third component in the N 

1s spectra of PET-DET3/NO and PET-PTMSPA/NO at 402.5 eV. 
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Table 4.2: XPS-derived at. % of C 1s, O 1s, N 1s and Si 2p regions for PET surfaces. 

 

 

at. % 

C 1s O 1s N 1s Si 2p 

PET 73.0±0.4 27.0±0.4 - - 

PETox 66.0±0.2 34.0±0.2 - - 

PET-DET3 56.0±1.1 22.5±0.2 4.7±0.3 16.8±1.3 

PET-DET3/NO 57.2±0.3 26.9±0.1 5.7±0.7 10.2±0.4 

PET-PTMSPA 61.7±1.1 25.4±0.2 3.3±0.3 9.6±0.6 

PET-

PTMSPA/NO 

59.6±0.6 25.5±0.6 4.5±0.9 10.4±1.4 
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Figure 4.4: Curve fitted (a) C 1s and (b) O 1s XPS spectra for (i) PET and (ii) PETox. 
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Figure 4.5: Curve fitted (a) C 1s (b) O 1s (c) N 1s and (d) Si 2p XPS spectra for (i) PET-

DET3 and (ii) PET-DET3/NO. 
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Figure 4.6: Curve fitted (a) C 1s (b) O 1s (c) N 1s and (d) Si 2p XPS spectra for (i) PET-

PTMSPA and (ii) PET-PTMSPA/NO. 
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SE 

The XPS spectra for SE substrates are displayed in Figures 4.7 - 4.9 and the resulting 

quantitative data recorded in Tables 4.4 and 4.5.  The C 1s envelope of SE was curve 

fitted to give one component at binding energy 284.6 eV, characteristic of C-C/C-Si/C-

H.  The high resolution O 1s spectra was curve fitted to give two peaks: Si-O-Si at 

532.2 eV and O-Si-O at 533.1 eV.190  Four peaks were found after curve fitting the Si 

2p envelope: At 102.1 eV, the first peak is attributed to Si-O-Si bridges.  The next 

peak, at 102.7 eV, is characteristic of R2-Si(O)2.  The third peak is seen at 103.5 eV and 

is assigned to R-Si(O)3, and the final peak at 104.1 eV due to Si(O)4.  

After plasma treatment, changes in the XPS spectra indicated the step was successful.  

There is an increase in the overall at. % of oxygen from 32.3 % to 35.1 %.  Peak fitting 

of the C 1s envelope of SEox showed the presence of four components: C-C/C-Si/C-H 

at 284.6 eV as present in SE, C-C-O at 285.7 eV,C-O at 286.6 eV  and C=O at 288.8 eV.  

In the Si 2p envelope, a decrease of 19.1 % in the concentration of the Si-O-Si was 

observed, whilst the other components, where Si is bound to more oxygen atoms, 

increased.  

Similarly to PET, immobilisation of the two aminosilane molecules was confirmed by 

the introduction of a peak in the N 1s envelope, curve fitted to give N-H and N+ peaks.  

The diazeniumdiolate formation on the surface was confirmed by a third peak in the 

N 1s envelope fitted at 402.5 eV due to N-O. 

Table 4.4: XPS-derived at. % of C 1s, O 1s, N 1s and Si 2p regions for SE surfaces. 

 

 

at. % 

C 1s O 1s N 1s Si 2p 

SE 38.2±1.5 32.2±1.2 - 29.6±0.3 

SEox 35.4±1.5 35.1±1.6 - 29.6±0.5 

SE-DET3 41.3±1.2 28.4±1.0 3.7±0.5 26.6±0.7 

SE-DET3/NO 33.8±0.9 35.1±0.7 2.4±0.2 29.4±0.7 

SE-PTMSPA 40.5±1.5 30.0±1.3 1.8±0.0 27.7±0.3 

SE-PTMSPA/NO 37.1±0.4 33.4±0.4 1.6±0.1 28.0±0.0 
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Figure 4.7: Curve fitted (a) C 1s (b) O 1s and (c) Si 2p XPS spectra for (i) SE and (ii) 

SEox. 
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Figure 4.8: Curve fitted (a) C 1s (b) O 1s (c) N 1s (d) Si 2p XPS spectra for (i) SE-DET3 

and (ii) SE-DET3/NO. 
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Figure 4.9: Curve fitted (a) C 1s (b) O 1s (c) N 1s (d) Si 2p XPS spectra for (i) SE-PTMSPA 

and (ii) SE-PTMSPA/NO. 
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4.3.4 Surface Topography: AFM 
 

PET 

The surface topography and roughness of PET, PETox, PET-DET3, PET-DET3/NO, PET-

PTMSPA and PET-PTMSPA/NO surfaces were assessed using AFM.  Representative 

images and corresponding route mean square roughness (Rq) and average roughness 

(Ra) values are displayed in Figure 4.10.  The roughness values of pristine PET (Rq = 

5.0 nm and, Ra = 3.2 nm) indicate a fairly smooth topography.  After plasma 

treatment, an increase in roughness was observed for PETox (Rq = 14.3 nm, Ra = 8.0 

nm), indicating that the surface underwent plasma-induced etching.  After 

aminosilanisation, a decrease in roughness was seen for PET-DET3 (Rq = 4.5 nm, Ra 

= 3.2 nm) in comparison to PETox.  A large variation in roughness values across 

samples was observed for PET-PTMSPA.  This is thought to be due to the ease in 

which aminosilanes form inhomogeneous layers when silanisation is carried out 

through solution phase deposition.191  A decrease in roughness was seen for PET-

DET3/NO (Rq = 2.9 nm, Ra = 2.0 nm) and PET-PTMSPA/NO (Rq = 2.6 nm, Ra = 1.6 nm) 

in comparison to aminosilanised surfaces.  
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Figure 4.10: AFM 3D images (5 x 5 µm2) and corresponding depth profiles of (a) PET 

(b) PETox (c) PET-DET3 (d) PET-DET3/NO (e) PET-PTMSPA and (f) PET-PTMSPA/NO.  

Rq and Ra values are given in nm.  
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SE 

The surface topography and roughness of SE, SEox, SE-DET3, SE-DET3/NO, SE-

PTMSPA and SE-PTMSPA/NO surfaces were assessed using AFM.  Representative 

images and corresponding route mean square roughness (Rq) and average roughness 

(Ra) values are displayed in Figure 4.11.  Pristine SE has roughness values of Rq = 29.3 

nm, Ra = 23.0 nm.  After plasma treatment, large cracks in the polymer could be seen 

(Figure 4.11 b).  This is consistent with the literature in which SE forms a brittle, 

inorganic silica outer layer, susceptible to cracking after oxygen plasma treatment.192-

197  No significant difference (p < 0.05) in surface roughness was observed after 

aminosilanisation and diazeniumdiolate formation, however a less uniform array of 

peaks and troughs can be seen when compared to pristine SE.  This is due to 

agglomerates of aminosilane which have self-assembled on the surface.198   
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Figure 4.11: AFM 3D images (5 x 5 µm2) and corresponding depth profiles of (a) SE 

(b) SEox (c) SE-DET3 (d) SE-DET3/NO (e) SE-PTMSPA and (f) SE-PTMSPA/NO.  Rq and 

Ra values are given in nm. 
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4.3.5 NO Release: Chemiluminescent Detection 
 

PET 

NO release was monitored for PET-DET3/NO and PET-PTMSPA/NO at ambient 

temperature (25 oC) in real time via chemiluminescence at pH 4 and pH 7.4 shown in 

Figures 4.12 and 4.13, respectively, and NO release data is presented in Table 4.6.  At 

pH 4, PET-DET3/NO exhibited an average maximum release of 0.42 µM s-1 of NO after 

2.5 hrs.  After this the rate of NO release decreased.  A total release of 453 µmol was 

observed after 17 hrs.  At pH 7.4, the NO release of PET-DET3/NO reached an average 

peak of between 0.17 µM s-1 in just under 3 hours.  This remained constant for 

approximately 5 hrs, before a descent back to base levels of NO.  The total NO 

released was 177 µmol after 12 hrs. 

At pH 4, PET-PTMSPA/NO exhibited an initial NO release peaking at 0.31 µM s-1 after 

5 hrs and a total release of 289 µmol after 22 hrs.  At pH 7.4, PET-PTMSPA/NO 

released a maximum of 0.07 µM s-1 and a total of 44 µmol after 10 hrs.  

Table 4.6: NO release data for PET-DET3/NO and PET-PTMSPA/NO at pH 4 and 7.4 

 Max NO 

release  

(µM s-1) 

Max NO 

Release 

(µM s-1 cm-2) 

Total NO 

release 

(µmol) 

Total NO 

release 

(µmol cm-2) 

PET-DET3/NO (pH 4) 0.42±0.18 0.19±0.08 453±95 201±42 

PET-DET3/NO (pH 7.4) 0.17±0.05 0.08±0.02 177±5 79±2 

PET-PTMSPA/NO (pH 4) 0.31±0.13 0.14±0.16 289±49 129±22 

PET-PTMSPA/NO (pH7.4) 0.07±0.03 0.03±0.01 44±2 20±1 
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Figure 4.12: NO release profiles for N-diazeniumdiolate-tethered PET at pH 4 

determined by chemiluminescence detection. 

 

Figure 4.13: NO release profiles for N-diazeniumdiolate-tethered PET at pH 7.4 

determined by chemiluminescence detection. 
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SE 

NO release was monitored for SE-DET3/NO and SE-PTMSPA/NO at ambient 

temperature (25 oC) in real time via chemiluminescence detection at pH 4, and pH 

7.4 shown in Figures 4.14 and 4.15, respectively and NO release data is presented in 

Table 4.7.  At pH 4, a burst release of NO to a maximum of 3.37 µM s-1 after 18 mins 

was observed for SE-DET3/NO with 536 µmol released after 7 hrs.  At pH 7.4 a more 

prolonged release was observed.  A maximum NO release of 0.31 µM s-1 and total 

release of 184 µmol after 14 hrs was observed.   

At pH 4 burst release was also seen for SE-PTMSPA/NO in which a maximum NO 

concentration of 0.49 µM s-1 was released after 6 mins and a total of 212 µmol NO 

after 8 hrs.  At pH 7.4, steady releases of NO were observed reaching a maximum of 

0.36 µM s-1 and releasing 115 µmol over 11 hrs. 

Table 4.7: NO release data for SE-DET3/NO and SE-PTMSPA/NO at pH 4 and 7.4. 

 Max NO 

release  

(µM s-1) 

Max NO 

Release 

(µM s-1 cm-2) 

Total NO 

release 

(µmol) 

Total NO 

release 

(µmol cm-2) 

SE-DET3/NO (pH 4) 3.37±0.80 1.50±0.36 536±38 238±17 

SE-DET3/NO (pH 7.4) 0.31±0.07 0.14±0.03 184±7 82±3 

SE-PTMSPA/NO (pH 4) 0.49±0.04 0.22±0.02 212±4 94±2 

SE-PTMSPA/NO (pH 7.4) 0.36±0.15 0.17±0.07 115±29 51±13 
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Figure 4.14: NO release profiles for N-diazeniumdiolate-tethered SE at pH 4 

determined by chemiluminescence detection. 

 

Figure 4.15: NO release profiles for N-diazeniumdiolate-tethered SE at pH 7.4 

determined by chemiluminescence detection. 
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4.3.6 Bacterial Response 
Antibacterial activity was investigated by carrying out an adhered cell colony forming 

unit (CFU) assay against P. aeruginosa, lab strain PA14.  Surfaces were inoculated 

with bacterial solution for 24 hrs to allow cell adhesion and biofilm formation.  

Planktonic bacteria was washed away and remaining viable bacteria on the surface 

were counted to test the efficacy of the NO-releasing surfaces against cell adhesion 

and in biofilm prevention.  The results are given in Figures 4.16 and 4.17 for PET and 

SE, respectively.  For all NO-releasing materials, a statistically significant (p < 0.05) 

reduction in CFU count, compared to pristine, plasma and corresponding silane-

tethered control substrates demonstrated that all NO-releasing polymers are 

capable of preventing formation of P. aeruginosa biofilms.  No significant difference 

was observed between any control groups (p > 0.05).  Specifically, in the case of PET-

DET3/NO and PET-PTMSPA/NO, 83 % and 62 % reductions in viable adhered cells 

were observed, respectively, compared to pristine, plasma-treated and 

corresponding silane-tethered control surfaces.  Likewise, for SE-DET3/NO and SE-

PTMSPA/NO, 92 % reduction was observed for both, compared to pristine, plasma-

treated and corresponding silane-tethered control surfaces.  
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Figure 4.16:  Viable adhered PA14 cell counts (CFU/ml) after 24 hrs on PET substrates.  

Black bars indicate control surfaces; blue bars indicate NO-releasing surfaces. 

 

Figure 4.17:  Viable adhered PA14 cell counts (CFU/ml) after 24 hrs on SE substrates.  

Black bars indicate control surfaces; blue bars indicate NO-releasing surfaces. 
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4.4 Discussion 

4.4.1 Oxygen Plasma Treatment of Polymeric Surfaces 
Plasma treatment is a useful tool in activating hydrophobic and inert polymers to 

allow for addition of oxidative functional groups which can then be used to conjugate 

molecules of interest.  After optimum plasma treatment times, contact angles were 

measured to be 19.7o and 11.0o for PET and SE, respectively.  A reduction in contact 

angle is the cause of an increased wettability of the surface due to the presence of 

oxygen functionalities.  By using XPS data combined with studies found within the 

literature two feasible mechanisms for oxidation of the polymers have been 

described below. 

PET 

Alteration in the surface chemistry of PET after plasma treatment was confirmed by 

a reduction in the contact angle from 88.1o before treatment to 19.7o.  In the XPS C 

1s spectra, the contribution of aromatic C-C/C-H decreased, whilst the O-CH2CH2 (C-

O) and O=C-O (C=O) contributions increased.  This corroborated the mechanism 

outlined by Gonzalez et al.199 in which oxygen functionality is induced on the phenyl 

ring. 

SE  

An alteration in the surface chemistry of SE after plasma treatment was first 

confirmed through contact angle.  A change from 113.0o to 11.0o indicated an 

increase in the hydrophilicity post treatment.  Smith and Owen outlined a mechanism 

for plasma treatment of polydimethylsiloxane (PDMS) surfaces in which the methyl 

carbons become oxidised; however, were unable to distinguish between C-OH and 

CH3 in the C 1s envelope from their XPS data.194  In this work a distinction could be 

made with the C 1s envelope being resolved into two peaks with a shoulder at a 

greater binding energy showing oxidation of carbon.  

Morra et al.193 reported the preference of plasma species to interact with silicon 

atoms; the Si 2p envelope of the untreated polydimethylsiloxane (PDMS) could be 

fitted into two peaks, with the small shoulder at a higher binding energy 

corresponding to Si bound to 3 O atoms.  After plasma treatment the peak shape 
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changed so that the relative intensity was reversed with the more oxidised silicon 

displaying a greater relative contribution to the envelope.  

In this present work, although the Si 2p peak shapes were not analogous to those 

seen by Morra193, the same conclusion could be drawn.  The reason behind the 

differences observed is most likely due to the difference in the degree of 

polymerisation of the materials used.  The work carried out by Morra employed 

native PDMS polymers, whilst in this work elastomers were used as the substrate.  

Elastomers are the product of largely cross-linked PDMS chains with a greater degree 

of polymerisation and this explains why it is possible to resolve the Si 2p envelope of 

untreated SE into four.  After plasma treatment the relative contribution of the peaks 

at the higher binding energies, corresponding to Si atoms bound to multiple oxygens 

all increased at the expense of the Si-O-Si contribution.  Furthermore, the relative 

contribution of the O-Si-O group in the O 1s spectra increases as Si-O-Si decreases, 

further supporting the notion that Si atoms are the preferred choice of plasma attack.  

The ageing profile of SE in Figure 4.3, supports the highly reported phenomenon that 

the polymer recovers back to its native hydrophobicity after plasma treatment.192-197  

Complete hydrophobic recovery of SE is seen 1 day after treatment.  

There are several possible explanations for hydrophobic recovery.  Owen and Smith 

hypothesised that plasma-induced hydrophilic surface groups reorient towards the 

bulk.  They also stated that migration of treated polymer chains into the bulk and 

untreated chains to the surface are other possible mechanisms for hydrophobic 

recovery.194, 196  Lee and Homan reported that condensation of the surface silanol 

groups eliminated hydroxyl species.200 

Additionally, the formation of a thin, brittle, inorganic silica-like surface layer prone 

to cracking is also a factor in the recovery mechanism.194, 196, 197, 201  These cracks allow 

a pathway from the bulk to the surface, in which untreated low molecular weight 

(LMW) chains can migrate to the surface.  Toth et al.202 concluded that this 

mechanism accounts for roughly two thirds of the recovery, whilst reorientation of 

polar groups plays a less extensive role.  A schematic diagram of the different regions 

in plasma treated silicone elastomer has been displayed in Figure 4.18. 
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Figure 4.18: A schematic representation of the different regions in plasma treated 

SE.  The pores and cracks in a silica-like top layer allows LMW untreated components 

to migrate to the surface, whilst treated polymer chains can migrate to the bulk. 

4.4.2 N-Diazeniumdiolate Formation and NO Release  
In this chapter, the aim was to determine whether aminosilane linkers could be used 

to facilitate N-diazeniumdiolate formation on the surface and the NO release profile 

could be controlled by the nature of this aminosilane precursor.  

In these experiments, it was clear that the structure of the aminosilane used had an 

effect on the flux and payload of NO released.  DET3 is an aminosilane that contains 

three amines (2 secondary, 1 primary), which can all act as an anchor point for N-

diazeniumdiolate formation.  The PTMSPA molecules contain only one secondary 

amine (in aniline form) that can act as a potential site for N-diazeniumdiolate 

formation.  At pH 4, the initial burst release for SE-DET3/NO is 7 times more 

concentrated than SE-PTMSPA/NO and total NO release approximately 4.5 times 

greater.  For PET-DET3/NO, the maximum NO release is comparable to PET-

PTMSPA/NO but the total NO release is approximately 1.5 times greater.  At pH 7.4, 

PET-DET3/NO and SE-DET3/NO released more NO over a longer period of time than 

PET-PTMSPA/NO and SE-PTMSPA/NO, respectively.  These results highlight the pH-

dependency for NO release of the N-diazeniumdiolates, depending on the 

aminosilane precursor used.  
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The acid dissociation constant (Ka) is a quantitive measure in determining the 

strength of an acid (HA) through its ability to dissociate into a proton (H+) and 

conjugate base (A-), as shown in Equation 4.1.  

 Ka =  
[H+][A−]

[HA]
                                                  (4.1) 

The Henderson-Hasselbach equation can be derived from the acid dissociation 

equation (Eq. 4.2) as: 

 pH = pKa + log10
[A−]

[HA]
                                   (4.2) 

which can be rearranged to give: 

 10pH−pKa =  
[A−]

[HA]
                                                (4.3) 

From Equation 4.3 it can be seen that when pH = pKa, [A-] = [HA].  Therefore when 

pH > pKa, the concentration of deprotonated species is greater than protonated 

species.  Vice versa, when pH < pKa, a larger concentration of the compound would 

be in its protonated form than deprotonated form. 

McIntyre and co-workers203 reported the pKa values of diethylenetriamine (the 

precursor molecule to DET3) to be 9.7, 8.6 and 3.6 at 30 oC.  The PTMSPA precursor 

is an aniline-containing compound, in which the amine nitrogen has a pKa of 4.6.204  

In DET3, two of the three acid dissociation constants are larger than both pH values 

(pH 4 and 7.4) used in these experiments.  This would suggest that a larger 

concentration of the amines in the N-diazeniumdiolate undergo protonation leading 

to quicker decomposition and NO release.  The lower pKa of PTMSPA indicates that 

the aniline nitrogen is less basic than two of the three amines in DET3, which would 

suggest protonation is relatively more difficult.  Prolonged NO release by DET3/NO 

can be attributed to intramolecular amine molecules acting as counter ions and 

stabilising the N-diazeniumdiolate moieties.  The increased NO payload of DET3/NO 

surfaces is due to increased number of amines in these molecules. 
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4.4.3 Bacterial Response 
One estimation by the National Institutes of Health (NIH) is that 80 % of all chronic 

infections are biofilm associated and that 65 % of all microbial infections are, in some 

way, due to biofilm growth.  There are a multitude of effective antibacterial strategies 

against planktonic cells that often do not translate in terms of their efficacy when 

tested against biofilms.205  In this chapter the bacterial response of the NO-releasing 

N-diazeniumdiolate-tethered polymeric substrates was tested against persistent 

cultures of a lab strain of P.aeruginosa (PA14) grown over the surfaces for a 24 hr 

incubation period.  

A number of studies have reported on NO-mediated biofilm formation and dispersal 

of P. aeruginosa.104, 206-208  Barraud et al. utilised sodium nitroprusside (SNP) NO 

donors to exogenously produce low-level, non-toxic concentrations of NO.104  Pre-

established 1-day old biofilms were treated with 0.5 nM NO for 24 hrs and cell 

detachment and dispersal from the surface was observed, resulting in an 80 % 

reduction in biofilm surface coverage.  Darling et al. showed that the adherence of P. 

aeruginosa cells was reduced up to 72 % in cystic fibrosis (CF) epithelial cells when 

the cells were transfected with iNOS;207 an endogenously produced enzyme that 

facilitates NO production from L-arginine.  

All four N-diazeniumdiolated surfaces, PET-DET3/NO, PET-PTMSPA/NO, SE-DET3/NO 

and SE-PTMSPA/NO showed a reduction in cell counts after 24 hrs.  The surfaces were 

washed in PBS to remove any planktonic bacteria floating on the surface, making the 

cell count specific to surface-adhered cells.  SE-DET3/NO and SE-PTMSPA/NO showed 

> 1 log reduction in cell counts of PA14 after 24 hrs, whilst PET-DET3/NO and PET-

PTMSPA/NO exhibited 83 % and 62 % reduction in cell counts, respectively.  SE-

DET3/NO released comparable amounts of NO over the period of analysis compared 

with SE-PTMSPA/NO, which would explain the equal reductions in cell counts for 

both surfaces.  The increased performance of PET-DET3/NO compared to PET-

PTMSPA/NO was most likely due to the difference in total NO release with PET-

DET3/NO releasing 133 µmol NO more over the period of analysis.  

The reduction in cell counts of NO-releasing PET surfaces were not as great as their 

corresponding NO-releasing SE surfaces.  One reason for this could be due to the 
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difference in wettabilities of the PET and SE surfaces.  It is generally accepted that 

bacteria with more hydrophilic characteristics prefer hydrophilic surfaces, whilst 

hydrophobic bacteria prefer hydrophobic surfaces.209, 210  In one study by Das et al211 

contact angles of wildtype PA14 were measured at 49.9o, indicating the strain to be 

hydrophilic in nature.  The PET surfaces are more hydrophilic than the SE surfaces 

and this may be a more desirable environment for cell adhesion for this hydrophilic 

P. aeruginosa strain. 

4.5 Conclusion 

In this chapter the fabrication of covalently bound N-diazeniumdiolates to PET and 

SE substrates has been successfully characterised.  XPS analysis confirmed that 

plasma treatment did induce oxygen functionality on the surface of the substrates.  

The subsequent aminosilane and N-diazeniumdiolate modifications were confirmed 

through the occurrence of peaks in the N 1s envelope of the XPS spectra.  The NO 

payload and release were controlled by the nature of the aminosilane precursor, in 

terms of number of NO tethering sites and pKa of the amine groups.  All NO-releasing 

coatings in this study were shown to significantly reduce P. aeruginosa (PA14) 

adhesion over 24 hrs with the efficacy being a function of the aminosilane 

modification and the underlying substrate.  These NO-releasing polymers 

demonstrate the potential and utility of this facile coating technique for preventing 

biofilms on medical implant devices. 
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Chapter 5: Nitric Oxide-releasing Xerogels as Antibacterial Coatings 

5.1 Introduction 

The concentration of NO has been shown to have a varying effect on bacteria, from 

being a biofilm dispersal agent at low concentrations to bactericidal at higher 

concentrations.104, 212  In Chapter 4, aminosilane molecules were tethered to 

polymers to allow the formation of N-diazeniumdiolate surface molecules and the 

resulting low payload of NO led to the prevention of biofilm formation.  The aim of 

this chapter was to tune the payload of NO released in order to generate the 

concentrations necessary to have a bactericidal effect.   

The first way to facilitate an increase in NO payload is to increase the surface area of 

the coatings allowing for an increased density of N-diazeniumdiolate groups on the 

surface.  This can be achieved through the fabrication of NO-releasing xerogels using 

the sol-gel process to generate coatings with large surface areas as shown in Figure 

5.1.  

 

Figure 5.1: Xerogels are fabricated using the sol-gel process by evaporating the 

solvent from a gel. 
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Xerogels are particularly attractive coatings for use in biomaterial applications 

because of the mild synthetic parameters required for their formation and 

modification.  By incorporating preformed N-diazeniumdiolates into the initial alkoxy 

silane solution, NO-releasing xerogels with large surface areas (allowing for increased 

density of N-diazeniumdiolates) are formed (Fig. 5.1).  These types of coatings will be 

described as N-diazeniumdiolated xerogel coatings and the experimental method is 

described in section 5.2 

The N-diazeniumdiolated xerogels to be discussed in this chapter have been 

synthesised using a preformed N-diazeniumdiolate, which allows for an increase in 

the NO payload.  There are two ways to form tethered N-diazeniumdiolates as shown 

in Figure 5.2 

 

Figure 5.2: The two pathways to tether N-diazeniumdiolates to the substrate surface.  

(For clarity only DET3 has been included but the same reaction steps were carried 

out for PTMSPA). 

In Pathway A, a substrate is first functionalised with aminosilanes before being 

exposed to high pressures of NO to allow N-diazeniumdiolate formation to occur in 
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situ on the surface (Chapter 4).  In Pathway B, an aminosilane solution is first exposed 

to high pressures of NO to afford a preformed N-diazeniumdiolate solution before 

being tethered to the substrate (Chapter 5).  The rationale behind using a preformed 

N-diazeniumdiolate is based on work by Schoenfisch et al. which has demonstrated 

that preformed N-diazeniumdiolates have the potential to increase NO payload 10-

fold when compared with diazeniumdiolates formed in situ.141, 213, 214 

The aim of this chapter is to use both of these strategies (forming xerogels for 

increased surface area and preforming the N-diazeniumdiolate) in order to 

investigate the effect that increasing the payload of NO has on the bactericidal 

efficacy of the material.     

5.2 Experimental 

5.2.1 Preparation of Preformed N-Diazeniumdiolate Solutions  
In this chapter the N-diazeniumdiolate was preformed in solution before being 

placed onto the polymer substrate.  The reaction scheme is outlined in Figure 5.3. 

 

Figure 5.3: Synthesis of preformed N-diazeniumdiolate solution.  (For clarity only 

DET3 has been included but the same reaction steps were carried out for PTMSPA). 

A 10 % aminosilane solution (DET3 or PTMSPA) was prepared in methanol containing 

either 0.5 M methanolic sodium methoxide (NaOMe) or 0.1 M sodium hydroxide 

(NaOH) so that the solution contained 1 molar equivalent of base for every secondary 

amine.  Aminosilane solutions were purged with 6 bar of argon (BOC, Guildford, UK) 

for 3 x 5 mins and 3 x 10 mins in an in-house built NO reactor.  Following purging, the 
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reactor was filled with 5 bar of NO (BOC, Guildford, UK) for 96 hrs.  At the end of this 

time, NO was released and the reactor was purged with 6 bar of argon for 2 x 5 mins 

and 2 x 10 mins.  Solutions were then stored at -20 oC until use. 

5.2.2 Preparation of N-diazeniumdiolated Xerogel Coatings 
The preformed N-diazeniumdiolates were next incorporated into xerogel coatings 

and tethered to SE substrates, as in the reaction scheme displayed in Figure 5.4. 

 

Figure 5.4: Preformed N-diazeniumdiolate solutions are incorporated into alkylsilane 

(PTMOS) sol-gel solutions before being coated onto plasma-treated SE (SEox), and 

allowed to dry to form N-diazeniumdiolated xerogel coatings on SE (For clarity only 

DET3 has been included but the same reaction steps were carried out for PTMSPA).  
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Briefly, EtOH (983 µl), H2O (190 µl) and 0.5 M HCL (31.5 µl) were premixed and added 

to either trimethoxypropylsilane (PTMOS) (353 µl) or isobutyltrimethoxysilane 

(BTMOS) (378 µl), to maintain a 1:3.2 molar ratio of silane to H2O (Section 5.2.3).  This 

mixture was stirred for 1 hr to pre-hydrolyse the alkylsilane.  Preformed DET3/NO 

(2564 µl) or PTMSPA/NO (2439 µl) solution was then added to the solution to give a 

2:1 molar ratio of alkylsilane to aminosilane.  This solution was mixed for 3 hrs.  SE 

substrates were treated with oxygen plasma for 2 min.  The alkylsilane/N-

diazeniumdiolated aminosilane sols (15 µl) were dropped onto the surface of the 

substrate.  The xerogel coated SE substrates were then pre-dried for 10 mins in air 

before drying in a vacuum desiccator for 3 d at 60 oC.  Materials were stored at -20 

oC until use.  

5.2.3 Optimisation of Sol-gel Process 
Depending on aminosilane and  backbone of the alkylsilane, the silane to water ratio 

must be varied to produce stable, non-tacky coatings.141  In much of the work by 

Schoenfisch, isobutyltrimethoxysilane (BTMOS) was the alkylsilane used to prepare 

xerogel materials.161, 215, 216  As a result, to optimise the sol-gel process in this work, 

BTMOS was also used.  Sol-gels with varying silane to water ratios (1:0, 1:0.5, 1:1, 

1:3.2, 1:10) were prepared.  Photographic images of BTMOS-DET3 and BTMOS-

PTMSPA xerogels with varying silane to water ratios are displayed in Figures 5.5 and 

5.6. 
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Figure 5.5: BTMOS-DET3 processed gels with varying silane to water ratios. 

 

Figure 5.6: BTMOS-PTMSPA processed gels with varying silane to water ratios. 

BTMOS-DET3 (1:1) and BTMOS-DET3 (1:3.2) displayed the most transparency, 

however all xerogels were tacky and unsuitable for use as coatings.  The same was 

true for BTMOS-PTMSPA xerogels.  As a result, an alternative alkylsilane was 

employed.  

BTMOS was replaced with trimethoxypropylsilane (PTMOS) and the experiment 

described above was repeated.  The photographic images of PTMOS-DET3 and 
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PTMOS-PTMSPA with varying silane to water ratios (1:0, 1:0.5, 1:1, 1:3.2, 1:10) are 

displayed in Figures 5.7 and 5.8, respectively. 

 

Figure 5.7: PTMOS-DET3 processed gels with varying silane to water ratios. 

 

Figure 5.8: PTMOS-PTMSPA processed gels with varying silane to water ratios. 

PTMOS-DET3 xerogels were transparent apart from PTMOS-DET3 (1:0) which was 

opaque.  The xerogel formation process was slow and gelation was not observed.  
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PTMOS-DET3 (1:10) formed a tacky xerogel.  PTMOS DET3 (1:1) and PTMOS-DET3 

(1:3.2) both formed nontacky xerogels.  PTMOS-PTMSPA (1:0) formed a solution that 

did not gel, whilst PTMOS-PTMSPA (1:10) gave an opaque xerogel.  PTMOS-PTMSPA 

(1:3.2) gave the most desirable non-tacky xerogel.  As a result silane to water ratios 

of 1:3.2 for both PTMOS-DET3 and PTMOS-PTMSPA were used for all experiments. 

5.3 Results: Preformed N-diazeniumdiolate Solutions  

This chapter explores an increased NO payload onto the surfaces of SE, by forming 

N-diazeniumdiolated xerogels on the surface (Fig. 5.4) and preforming the N-

diazeniumdiolate before tethering it onto the surface (Fig. 5.3).  The results in Section 

5.3, characterise the preformed N-diazeniumdiolate solution before incorporation 

into the xerogel.  Chemical characterisation of these solutions was achieved using 

UV-Vis spectroscopy.  A preliminary experiment, in which NO release was quantified 

by chemiluminescence detection, was also carried out to ascertain the importance 

of base in stabilising the preformed N-diazeniumdiolate and prolonging NO release 

before incorporation into the xerogel. 

5.3.1 UV-Vis Spectroscopy 
The N-diazeniumdiolate solutions were characterised by UV-Vis spectroscopy (Figure 

5.9).  Absorbance maxima of 251 nm and 244 nm for DET3/NO and PTMSPA/NO, 

respectively, are indicative of N-diazeniumdiolate formation as previously 

reported.140, 141, 217  

 

Figure 5.9: UV-Vis spectra of (a) DET3/NO and (b) PTMSPA/NO in 1 M NaOH solution, 

using DET3 and PTMSPA solutions to deduce respective baselines. 
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5.3.2 NO Release: Chemiluminescence Detection 
A preliminary experiment was carried out to evaluate whether the presence of a base 

had an effect on NO release of the preformed N-diazeniumdiolate solutions, 

DET3/NO and PTMSPA/NO, before incorporation into the xerogel coating as shown 

in Figures 5.10 and 5.11, respectively (NO release data in Table 5.1 and 5.2).  The 

rationale to using a base (NaOMe/NaOH) was to promote formation and stabilisation 

of the N-diazeniumdiolate (Fig 5.4).141 DET3/NO (NaOMe), DET3/NO (NaOH) and 

DET3/NO (no base) exhibited maximum NO releases of 626.5 µM s-1, 347.0 µM s-1 

and 42.0 µM s-1, respectively, after 2 mins.  The total NO payloads of DET3/NO 

(NaOMe), DET3/NO (NaOH) and DET3/NO (no base) were 25434 µmol, 26728 µmol 

and 8647 µmol, respectively.  

Table 5.1: Nitric oxide release data for preformed DET3/NO solutions. 

 Maximum NO 

release  

(µM s-1) 

Maximum NO 

release  

(µM s-1 µl-1)  

Total NO 

(µmol) 

Total NO 

(µmol µl-1) 

DET3/NO 

(NaOMe) 

626.5±99.7 52.2±8.3 25434±5726 2120±477 

DET3/NO  

(NaOH) 

347.0±67.9 28.9±5.7 26728±1225 2227±102 

DET3/NO  

(no base) 

42.0±5.7  3.5±0.5 8647±1328  721±111 
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Figure 5.10: NO-release profiles for preformed DET3/NO solution using NaOMe (blue 

line), NaOH (red line) or no base (black line) at pH 4, determined by 

chemiluminescence detection. 
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PTMSPA/NO (NaOMe) solution exhibited a maximum release of 178.7 µM s-1 after 1 

min, and PTMSPA/NO (NaOH) released 14.5 µM s-1 after 0.5 min; PTMSPA/NO (no 

base) gave a maximum NO release of 4.6 µM s-1 instantaneously.  The total NO 

payloads for PTMSPA/NO (NaOMe), PTMSPA/NO (NaOH) and PTMSPA/NO (no base) 

were 592 µmol, 137 µmol and 7 µmol, respectively.  

Table 5.2: Nitric oxide release data for preformed PTMSPA/NO solutions. 

 Maximum NO 

release  

(µM s-1) 

Maximum NO 

release  

(µM s-1 µl-1)  

Total NO 

(µmol) 

Total NO 

(µmol µl-1) 

PTMSPA/NO 

(NaOMe) 

178.7±15.3 14.9±1.3  592±83  49±7  

PTMSPA/NO 

(NaOH) 

14.5±0.5 1.2±0.0 137±106 11±9 

PTMSPA/NO  

(no base) 

4.6±0.6 0.4±0.1  7±1 < 1 
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Figure 5.11: NO-release profiles for preformed PTMSPA/NO solution using NaOMe 

(blue line), NaOH (red line) or no base (black line) at pH 4, determined by 

chemiluminescence detection. 

5.4 Results: N-diazeniumdiolated Xerogel Coatings 

The results presented below detail the modification of SE substrates using NO-

releasing N-diazeniumdiolated xerogels consisting of an alkylsilane and a preformed 

N-diazeniumdiolate.  The results presented below are of N-diazeniumdiolated 

xerogels with PTMOS as the alkylsilane (optimisation of the sol-gel process has been 

described previously in Section 5.2.3). 

5.4.1 Wettability: Contact Angle 
The average contact angle values after each fabrication step are recorded in Table 

5.3.  A reduced contact angle after plasma treatment confirmed an increased 

wettability of the SE substrates, due to oxygen functionalisation.  An increase in 

contact angle was observed after applying all xerogel coatings onto the substrates.  

There was no difference in the contact angles of SE-PTMOS-DET3 (115.2o) and SE-

PTMOS-DET3/NO (115.7o) surfaces.  SE-PTMOS-PTMSPA displayed a contact angle of 

88.0o and an increased contact angle of 108.1o was observed for SE-PTMOS-

PTMSPA/NO.  
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Table 5.3: Static water contact angle measurements of xerogel coated SE substrates. 

 Contact Angle (o) 

SE 113.0±2.3 

SEox 11.0±1.2 

SE-PTMOS-DET3 115.2±1.9 

SE-PTMOS-DET3/NO 115.7±2.1 

SE-PTMOS-PTMSPA 88.0±4.5 

SE-PTMOS-PTMSPA/NO 108.1±5.4 

 

5.4.2 Surface Chemistry: XPS 
The XPS spectra for SE substrates are displayed in Figures 5.12 - 5.14 and 

corresponding at.  % are given in Tables 5.4 and 5.5.  The C 1s envelope of SE was 

curve fitted to give one component at binding energy 284.6 eV, characteristic of C-

C/C-Si/C-H bond.  The high resolution O 1s spectra was curve fitted to give two peaks: 

Si-O-Si at 532.2 eV and O-Si-O at 533.1 eV.190  The high resolution Si 2p envelope was 

curve fitted into four components at 102.1 eV (Si-O-Si bridges), 102.7 eV (R2-Si(O)2), 

103.5 eV (R-Si(O)3) and 104.1 eV (Si(O)4). 

After plasma treatment, there was a small increase in the overall at. % of oxygen from 

32.3 % to 35.1 %.  Peak fitting of the C 1s envelope of SEox showed the presence of 

four components: C-C/C-Si/C-H at 284.6 eV as present in SE, C-C-O at 285.7 eV,C-O at 

286.6 eV  and C=O at 288.8 eV.  In the Si 2p envelope, a decrease of 19.1 % in the 

concentration of the Si-O-Si was observed, whilst the other components, where Si is 

bound to more oxygen atoms, increased (R2-Si(O)2, R-Si(O)3, Si(O)4). 

After attachment of the xerogels onto SE, the C 1s spectra was curve fitted into four 

peaks: 284.6 eV (C-C/C-Si/C-H),285.7 eV (β-shifted C), 286.4 eV (C-O/C-N) and 288.8 

eV (C=O).  The presence of C=O components can be attributed to amide formation 

by reaction with CO2 when storing in air.218  The presence of N-H (399.3 eV) and N+ 

(400.4 eV) peaks in N 1s spectra for SE-PTMOS-DET3 and SE-PTMOS-PTMSPA 

confirmed the presence of aminosilane groups and a third at 402.5 eV due to N-O in 

the N 1s envelopes of SE-PTMOS-DET3/NO and SE-PTMOS-PTMSPA/NO confirmed 

the presence of the N-diazeniumdiolates.  
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Table 5.4: XPS-derived at. % of C 1s, O 1s, N 1s and Si 2p regions of xerogel coated SE 

substrates. 

 

 

at. % 

C 1s O 1s N 1s Si 2p 

SE 38.2±1.5 32.2±1.2 - 29.6±0.3 

SEox 35.4±1.5 35.1±1.6 - 29.6±0.5 

SE-PTMOS-DET3 48.9±2.6 27.3±1.4 6.0±0.4 17.7±1.6 

SE-PTMOS-DET3/NO 46.9±0.3 33.6±3.4 6.7±0.6 12.7±3.5 

SE-PTMOS-PTMSPA 49.2±1.2 28.1±1.3 0.9±0.8 21.9±2.4 

SE-PTMOS-PTMSPA/NO 53.0±3.9 25.9±2.5 1.4±0.8 19.7±6.6 
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Figure 5.12: Curve fitted (a) C 1s (b) O 1s and (c) Si 2p XPS spectra for (i) SE and (ii) 

SEox 
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Figure 5.13: Curve fitted (a) C 1s (b) O 1s (c) N 1s (d) Si 2p XPS spectra for (i) SE-

PTMOS-DET3 and (ii) SE-PTMOS-DET3/NO. 
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Figure 5.14: Curve fitted (a) C 1s (b) O 1s (c) N 1s (d) Si 2p XPS spectra for (i) SE-

PTMOS-PTMSPA and (ii) SE-PTMOS-PTMSPA/NO. 
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5.4.3 Surface Topography: AFM 
The surface topography of SE, SEox, SE-PTMOS-DET3, SE-PTMOS-DET3/NO, SE-

PTMOS-PTMSPA and SE-PTMOS-PTMSPA/NO were examined by AFM.  In Figure 5.15, 

representative 3D images, depth profiles and average roughness values of the 

surfaces are displayed.  The roughness value of SE (Ra = 23.0 nm) increased after 

plasma treatment (SEox) to Ra = 101.7 nm, due to large cracks forming in the polymer 

(Figure 5.15 b).  In Figures 5.15 c and 5.15 d, although roughness values of SE-PTMOS-

DET3 (Ra = 108.6 nm) and SE-PTMOS-DET3/NO (Ra = 141.7 nm) are not significantly 

(p < 0.05) different to SEox, a change in surface morphology can be observed; 

topographic surface features of elevated height, indicated that xerogel coatings were 

present on the substrate.  A decrease in roughness was observed for SE-PTMOS-

PTMSPA (Ra = 19.9 nm) and SE-PTMOS-PTMSPA/NO (Ra = 55.4 nm).  In both cases 

discrete topographical surface protrusions were apparent, possibly due to dewetting 

of the sol-gel on the SE substrate before hardening to form a xerogel.  
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Figure 5.15: AFM (i) 3D images (5 x 5 µm2) and (ii) depth profiles of (a) SE; (b) SEox; 

(c) SE-PTMOS-DET3, (d) SE-PTMOS-DET3/NO, (e) SE-PTMOS-PTMSPA and (f) SE-

PTMOS-PTMSPA/NO.  Rq and Ra values given in nm.  
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5.4.4 NO release: Chemiluminescence Detection 
NO is released from N-diazeniumdiolates upon protonation and is controlled by the 

pKa of the amine nitrogen (Figure 5.16).  As the pH of the release medium decreases, 

the rate of NO release increases.  To investigate this, NO release of the N-

diazeniumdiolated xerogel coatings was assessed in release mediums of differing pH. 

 

Figure 5.16: NO release rates of N-diazeniumdiolates are controlled by protonation 

of the amine nitrogen.  Therefore the pKa of the amine nitrogen and the pH of the 

reaction medium are important factors for NO release. 

Additionally, NO release is also affected by temperature; the rate of NO release 

increases at physiological temperatures (37 oC) vs ambient temperatures (25 oC).140  

Therefore, the NO release of N-diazeniumdiolated xerogel coatings was also 

compared at physiological and ambient temperatures.  Finally the NO release of N-

diazeniumdiolated xerogel coatings was compared when the preformed N-

diazeniumdiolate was synthesised using different bases.   

5.4.4.1 Effect of pH  
Nitric oxide release of SE-PTMOS-DET3/NO and SE-PTMOS-PTMSPA/NO was 

monitored in real time via chemiluminescence detection at pH 4 and 7.4 with the 

corresponding representative release profiles and concentrations given in Figures 

5.17 and 5.18, respectively.  NO release data is displayed in Table 5.6.  At pH 4, SE-

PTMOS-DET3/NO exhibited an initial burst reaching 193.0 µM s-1 after 5 mins and 

released a total of 11313 µmol.  At pH 7.4, the same surfaces reached a maximum 



103 
 

    
 

NO release of 5.4 µM s-1 after approximately 8 mins and released 3531 µmol NO in 

total over a 25 hr period.  At pH 4, SE-PTMOS-PTMSPA/NO released up to 0.7 µM s-1 

as a burst release and released 21 µmol in total after 30 mins.  At pH 7.4, these 

surfaces reached a maximum NO release of 0.1 µM s-1 in a burst release and a total 

of 6 µmol after 1 hr.  

Table 5.6: Nitric oxide release data from N-diazeniumdiolated xerogel coatings on SE 

at pH 4 and 7.4. 

 Maximum 

NO release  

(µM s-1) 

Maximum 

NO release  

(µM  s-1 cm-2)  

Total NO 

(µmol) 

Total NO 

(µmol cm-2) 

SE-PTMOS-DET3/NO 

(pH 4) 

193.0±60.8  68.9±21.7 11313±272

6 

4040±974 

SE-PTMOS-DET3/NO        

(pH 7.4) 

5.4±3.2 1.7±1.1  3531±223  1261±80  

SE-PTMOS-PTMSPA/NO  

(pH 4) 

0.7±0.1 0.2±0.0 21±9  7±3 

SE-PTMOS-PTMSPA/NO 

(pH 7.4) 

0.1±0.0 < 0.1 6±4 2±1 
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Figure 5.17: NO release profiles for SE-PTMOS-DET3/NO (blue line) and SE-PTMOS-

PTMSPA/NO (red line) at pH 4, determined by chemiluminescence detection. 

 

Figure 5.18: NO release profiles for SE-PTMOS-DET3/NO (blue line) and SE-PTMOS-

PTMSPA/NO (red line) at pH 7.4, determined by chemiluminescence detection. 
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5.4.4.2 Effect of Temperature 
Nitric oxide release and representative NO release profiles of SE-PTMOS-DET3/NO 

and SE-PTMOS-PTMSPA/NO are given in Figures 5.19 and 5.20, respectively, at 

physiological (37 oC) and ambient (25 oC) temperature.  All release profiles were 

recorded at pH 7.4.  NO-release data is reported in Table 5.7.  At 25 oC, SE-PTMOS-

DET3/NO exhibited a maximum NO release of 5.4 µM s-1 and a total payload of 3531 

µmol.  When the temperature was increased to 37 oC   a maximum release of 9.1 µM 

s-1 NO and a total payload of 6760 µmol NO was observed.  At 25 oC, the maximum 

NO release for SE-PTMOS-PTMSPA/NO was 0.1 µM s-1 and a total of 6 µmol was 

released after 1 hr.  At 37 oC NO release increased; maximum and total NO release of 

1.0 µM s-1 and 65 µmol were observed, respectively, releasing beyond 3 hrs.  

Table 5.7: Nitric oxide release metrics from N-diazeniumdiolate-modified xerogel 

coatings on SE at different temperatures. 

 Maximum 

NO release  

(µM s-1) 

Maximum 

NO release  

(µM s-1 cm-2)  

Total NO 

(µmol) 

Total NO 

(µmol cm-2) 

SE-PTMOS-DET3/NO 

(25 oC) 

5.4±3.2 1.7±1.1  3531±223  1261±80  

SE-PTMOS-DET3/NO    

(37 oC) 

9.1±1.6  

 

3.2±0.6 6760±78 2414±28  

SE-PTMOS-PTMSPA/NO  

(25 oC) 

0.1±0.0 < 0.1 6±4 2±1 

SE-PTMOS-PTMSPA/NO 

(37 oC) 

1.0±0.2  0.3±0.1 65±4  24±1  
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Figure 5.19: NO release profiles for SE-PTMOS-DET3/NO at 25 oC (black line) and 37 

oC (blue line) at pH 7.4, determined by chemiluminescence detection. 

 

 

Figure 5.20: NO release profiles for SE-PTMOS-PTMSPA/NO at 25 oC (black line) and 

37 oC (blue line) at pH 7.4, determined by chemiluminescence detection. 
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5.4.4.3 Effect of Bases 
In the literature, NaOMe has been used effectively as a base for the formation of the 

N-diazeniumdiolate and was the initial choice when synthesising the preformed N-

diazeniumdiolate (Figure 5.3).  Although effective, the reaction produces methanol 

which can be bactericidal itself (see Section 5.5 Discussion), thereby complicating the 

clarity of the source of the antibacterial effect.  As such this chapter also explored 

the NO release of the N-diazeniumdiolated xerogel coatings on SE using NaOH when 

preforming the N-diazeniumdiolate, where the by-product is water. 

To test the effect base has on NO release from N-diazeniumdiolated xerogel coatings, 

preformed DET3/NO was also prepared with NaOH instead of NaOMe.  The NO 

release profiles (pH 7.4) of SE-PTMOS-DET/NO when forming DET3/NO with different 

bases, are displayed in Figure 5.21 and NO-release data presented in Table 5.8.  When 

NaOMe was used SE-PTMOS-DET3/NO reached a maximum NO release of 5.4 µM s-1 

after approximately 8 minutes and released 3531 µmol NO in total over a 25 hr 

period.  When NaOH was used as a base, a maximum release of 3.0 µM s-1 was 

reached after approximately 2.5 hrs.  After 20 hrs a total release of 3866 µmol NO 

was observed.  In the absence of base, the maximum NO release was 0.3 µM s-1 with 

a total release of 298 µmol NO, over 20 hrs.   

Table 5.8: Nitric oxide release data from DET3/NO xerogel coatings on SE, when 

varying the base system employed when preforming the diazeniumdiolate solution. 

 Maximum NO 

release  

(µM s-1) 

Maximum NO 

release  

(µM s-1 cm-2)  

Total NO 

(µmol) 

Total NO 

(µmol cm-2) 

DET3/NO 

(NaOMe) 

5.4±3.2 1.7±1.1  3531±223  1261±80  

DET3/NO 

(NaOH) 

3.0±1.3 1.1±0.5 3866±692 1381±249 

DET3/NO  

(no base) 

0.3±0.1 0.1±0.0 298±9 106±3 
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Figure 5.21: NO release profiles for SE-PTMOS-DET3/NO using NaOMe (blue line), 

NaOH (red line) and no base (black line) to synthesise preformed N-diazeniumdiolate 

solution at pH 7.4, determined by chemiluminescence detection. 
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5.4.5 Bacterial Response 
The bacterial response of the NO-releasing N-diazeniumdiolated xerogel coatings on 

SE substrates was measured in terms of their bactericidal and anti-adhesion ability 

compared to pristine, plasma-treated and non-releasing xerogel-coated control 

substrates.  Bactericidal efficacy was determined by comparing the viable planktonic 

cell counts, whilst the anti-adhesion efficacy was tested by counting the viable 

adhered cell counts, isolated after a PBS wash.  Factors including interference from 

LB media and bactericidal activity from non-releasing xerogel-coated controls meant 

optimisation of the assays was required to acquire a valid result.  This section details 

the modifications made that enabled a valid conclusion on the bacterial response of 

the N-diazeniumdiolated xerogel coatings to be made.     

5.4.5.1 Adhered Cell CFU Assay (LB Media) 
The antibacterial efficacy was first tested in terms of anti-adhesion ability against a 

lab strain of P. aeruginosa (PA14) using a CFU assay.  The CFU/ml counts are given in 

Figure 5.22.  It can be seen that NO-releasing surfaces tested against PA14 exhibited 

no significant reduction in cell count when compared to pristine, plasma-treated, or 

non-releasing xerogel-coated control substrates. 

                     

Figure 5.22: Viable P. aeruginosa (PA14) adhered cell counts (CFU/ml) after 24 hrs of 

growth on SE surfaces.  Blue bars indicate NO-releasing materials. 
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5.4.5.2 Planktonic and Adhered Cell CFU Assays (Phosphate Buffered Saline) 
The results from Section 5.4.5.1 showed no reduction in cell counts on N-

diazeniumdiolated xerogel coatings when compared to pristine, plasma-treated and 

non-releasing xerogel-coated control substrates.  As a result planktonic and adhered 

cell CFU assays were carried out in PBS, against non-growing PA14 cells and assayed 

at 1, 4 and 24 hr time points.  PBS rather than LB broth was used as Brooun et al. has 

previously  shown the antibacterial ability of materials is often hindered in fresh rich 

media due to the ability of the bacteria to recover.219  The viable planktonic and 

adhered cell counts are given in Figures 5.23 and 5.24, respectively.   

After 1 hr, on SE-PTMOS-DET3/NO surfaces, a 5-log reduction in planktonic cell count 

was observed; after 4 hrs the reduction was > 4-log; after 24 hrs the reduction was 

5-log.  It is important to note that no growth was observed for the non-releasing 

xerogel-coated control substrate (SE-PTMOS-DET3).  SE-PTMOS-PTMSPA/NO 

surfaces showed no significant reduction in cell count compared to either SE or SE-

PTMOS-PTMSPA.  

 

Figure 5.23: Viable P.aeruginosa (PA14) planktonic cell counts after 1 hr (black bars), 

4 hr (grey bars) and 24 hr (pink bars) inoculation periods.  The * symbol indicates the 

control surfaces that are significantly different to the NO-releasing surfaces at p < 

0.05. 
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After 1 hr, on SE-PTMOS-DET3/NO a 2-log reduction in adhered cells was observed 

compared to pristine SE; after 4 and 24 hrs the reduction was > 4-log.  It is important 

to note that no growth was observed for the non-releasing xerogel-coated control 

substrate (SE-PTMOS-DET3).  SE-PTMOS-PTMSPA/NO surfaces showed no significant 

reduction in cell count compared to either SE or SE-PTMOS-PTMSPA. 

    

 

Figure 5.24: Viable P.aeruginosa (PA14) adhered cell counts after 1 hr (black bars), 4 

hr (grey bars) and 24 hr (pink bars) inoculation periods.  The * symbol indicates the 

control surfaces that are significantly different to the NO-releasing surfaces at p < 

0.05. 

As mentioned above, no bacterial growth was observed in the presence of the 

silanised control surface, SE-PTMOS-DET3.  This was hypothesised to be a bactericidal 

effect of the residual sodium methoxide base.  For this reason, it is not feasible to 

conclude that the reduction seen on SE-PTMOS-DET3/NO surfaces was solely due to 

the presence and performance of NO. 
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5.4.5.3 Effect of Base on Bactericidal Activity  
In Section 5.4.5.2, the ability of SE-PTMOS-DET3/NO, and therefore NO, as a 

bactericidal agent could not be concluded as the non-releasing xerogel-coated 

control substrate (SE-PTMOS-DET3) showed evidence of bactericidal activity.  It was 

hypothesised that this was most likely due to some bactericidal activity of the sodium 

methoxide base.  

Consequently, a bactericidal assay was carried out in which different bases (NaOH 

and NaOMe) were employed in preforming the N-diazeniumdiolate solution (Figure 

5.3).  The assay was carried out in the same way as in Section 5.4.5.2 with substrates 

being inoculated for 1, 4 and 24 hrs with a bacterial solution of PA14 in PBS.  The 

viable planktonic cell counts for SE-PTMOS-DET3/NO and corresponding pristine (SE) 

and non-releasing xerogel-coated control (SE-PTMOS-DET3) substrates are displayed 

in Figures 5.25-5.27.  

(To note: SE-PTMOS-PTMSPA/NO showed no significant reduction in viable 

planktonic or adhered cell counts compared to pristine (SE) or non-releasing xerogel-

coated control (SE-PTMOS-PTMSPA) substrates and so have not been included in the 

experiments concerning the results in Section 5.4.5.3) 
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At 1 hr when base was absent, the planktonic cell count in the presence of SE-PTMOS-

DET3/NO surfaces was 50 % higher than for SE and 34 % higher compared to the 

corresponding non-releasing xerogel-coated control substrate (SE-PTMOS-DET3).  At 

4 hrs and 24 hrs, no significant difference was observed (Fig. 5.25). 

 

Figure 5.25: Viable P. aeruginosa (PA14) planktonic cell counts (CFU/ml) after 1 hr 

(black bars), 4 hr (grey bars) and 24 hr (pink bars) inoculation periods.  The preformed 

N-diazeniumdiolate incorporated into SE-PTMOS-DET3/NO was formed without the 

use of a base.  The * symbol indicates the control surfaces that are significantly 

different to the NO-releasing surfaces at p < 0.05. 
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When 0.5 M NaOMe was used to synthesise the preformed N-diazeniumdiolate 

solution (Fig. 5.3) before incorporation into SE-PTMOS-DET3/NO, a 5-log reduction in 

viable planktonic cell counts compared to pristine SE was observed after 24 hrs (Fig. 

5.26).  It is important to note that no growth was observed for the non-releasing 

xerogel-coated control substrate (SE-PTMOS-DET3).  The results in this section are 

repeated from those in Section 5.4.5.2 for clarity.  

 

Figure 5.26: Viable P. aeruginosa (PA14) planktonic cell counts (CFU/ml) after 1 hr 

(black bars), 4 hr (grey bars) and 24 hr (pink bars) inoculation periods.  The preformed 

N-diazeniumdiolate incorporated into SE-PTMOS-DET3/NO was formed using 0.5 M 

NaOMe.  The * symbol indicates the control surfaces that are significantly different 

to the NO-releasing surfaces at p < 0.05. 
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When 0.1 M NaOH was used as a base to synthesise the preformed N-

diazeniumdiolate (Fig 5.3) the viable planktonic cell counts in the presence of the 

non-releasing xerogel-coated control substrate (SE-PTMOS-DET3) were not 

significantly different to pristine SE (Fig. 2.7).  At 1 hr the cell counts for SE-PTMOS-

DET3/NO (NaOH) were 69 % less than SE-PTMOS-DET3 (NaOH).  A reduction of 93 % 

remained consistent after 4 hrs and 24 hrs.   

 

Figure 5.27: Viable P. aeruginosa (PA14) planktonic cell counts (CFU/ml) after 1 hr 

(black bars), 4 hr (grey bars) and 24 hr (pink bars) inoculation periods.  The preformed 

N-diazeniumdiolate incorporated into SE-PTMOS-DET3/NO was formed using 0.1 M 

NaOH.  The * symbol indicates the control surfaces that are significantly different to 

the NO-releasing surfaces at p < 0.05. 

These results confirmed that NaOMe was responsible for the bactericidal effect 

observed in the non-releasing xerogel-coated control substrate, SE-PTMOS-DET3 and 

suggests that NaOH is the most suitable base in preforming the N-diazeniudmiolate.  
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5.5 Discussion 

This chapter investigated two different approaches to increase the payload of NO.  

This was achieved by: 

1. Investigating the effects of preforming the N-diazeniumdiolate in the 

presence of a base before incorporation into the xerogel coating.   

2. Formation of N-diazeniumdiolated xerogel coatings on the substrate surface 

to increase the surface area, thereby increasing the density of N-

diazeniumdiolate groups on the surface. 

5.5.1 Preformed N-Diazeniumdiolate Solutions  
Preforming the N-diazeniumdiolate with or without a base was investigated to see 

the effect it has on stabilising the N-diazeniumdiolate and therefore their NO release 

ability.  The solutions were prepared with NaOMe, NaOH or in the absence of base 

and release profiles recorded at pH 4. 

DET3/NO 

The total NO payloads of DET3/NO when prepared with NaOMe, NaOH or in the 

absence of base were 25434 µmol, 26728 µmol and 8647 µmol, respectively.  Whilst 

there was significant difference in maximum NO release between DET3/NO solutions 

with and without base, there was little difference in the shape of the NO release 

profiles.  NO release returned to base levels after approximately the same length of 

time (11 hrs).  Inter- and intramolecular amines can act as bases to facilitate N-

diazeniumdiolate formation and stabilisation.141  DET3 contains two secondary 

amines and one primary, which can stabilise DET3/NO to some extent.  Whilst the 

total payload of NO was significantly reduced with no base present the comparable 

release duration is most probably due to some intramolecular stabilisation.  More 

importantly, it is clearly apparent that in the absence of base, NO storage and release 

capabilities are greatly hindered. 

PTMSPA/NO 

The total NO payloads of PTMSPA/NO when prepared with NaOMe, NaOH or in the 

absence of base were 592 µmol, 137 µmol and 7 µmol, respectively.  When 

PTMSPA/NO was formed with NaOMe and NaOH the NO release was steady over 40 

mins and 120 mins, respectively; whilst with no base the release was in the form of 
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a rapid and immediate burst.  PTMSPA contains one secondary amine, which if N-

diazeniumdiolated is unable to stabilise other N-diazeniumdiolate moieties 

intermolecularly, resulting in NO storage and release capabilities being greatly 

hindered.  

5.5.2 N-diazeniumdiolated Xerogel Coatings 
In this chapter, xerogel materials were fabricated with an alkylsilane/preformed N-

diazeniumdiolated aminosilane solution using the sol-gel process.  Schoenfisch has 

previously used this procedure to produce NO-releasing xerogel coatings for use in a  

wide range of applications such as:  microarrays,220 orthopaedic implants161 and 

antibacterials.216, 221  

In Chapter 4, N-diazeniumdiolate-tethered surfaces were fabricated by 

aminosilanising polymer substrates then exposing them to NO gas in situ.  In this 

chapter, a method of fabrication in which a preformed N-diazeniumdiolate is 

incorporated into a xerogel before being coated onto the substrate surface was 

employed.  Reports show that forming the N-diazeniumdiolate as a preliminary step 

before coating them on to the substrate yielded 10x more NO upon release.141  

5.5.2.1 Formation 
The ease in material adaptation and modification and the mild synthesis conditions, 

such as  low temperatures and use of aqueous solvents, make xerogels attractive as 

potential biomaterials.222  Functionalised xerogels can be prepared using more than 

one precursor silane.  By hydrolysing and co-condensing an alkylsilane and a pre-

modified aminosilane (preformed N-diazeniumdiolates), xerogel coatings with 

tuneable NO storage and release potential were fabricated.  

Schoenfisch et al. previously reported that a one-step hydrolysis and co-

condensation of both silanes led to instabilities arising from poor connectivity 

between the alkylsilane and the preformed N-diazeniumdiolate.141  This was most 

likely due to the hydrolysis rates and thus gelation times of aminosilanes being 

considerably faster than alkylsilanes.223  In this work, a two-step, one-pot reaction in 

which the alkylsilane (PTMOS) was pre-hydrolysed before adding the preformed N-

diazeniumdiolate allowed for better matched reaction kinetics between the two 

silanes during co-condensation.  
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The preformed N-diazeniumdiolate concentration and the total silane to water 

concentration are two factors that have to be controlled.  Xerogels were fabricated 

with 4 % mol preformed N-diazeniumdiolate concentrations; it was reported 

previously that larger concentrations led to unstable xerogels regardless of 

parameters changed in the synthetic process.141  In order to optimise the total silane 

to water concentration ratio, preliminary tests were carried out by synthesising 

PTMOS-DET3 and PTMOS-PTMSPA sol-gels with varying water content (Section 

5.2.3).  Schoenfisch et al. showed that this ratio was dependent on the nature of the 

two silanes undergoing co-condensation and the compatibility of their reaction 

kinetics;141 cracking was observed when using methyltrimethoxysilane (MTMOS), 

whilst isobutyltrimethoxysilane (BTMOS) remained viscous and tacky.141  The latter 

was observed to be true in this work at a range of different silane to water ratios.  A 

silane to water ratio of 1:3.2 for both PTMOS-DET3 and PTMOS-PTMSPA gave 

transparent sols with short gelation times.  The subsequently formed xerogels were 

transparent and non-tacky. 

In order to produce xerogels, sol-gels are aged and dehydrated.222 The environment 

in which the sol-gels are dried is of paramount importance in producing xerogels with 

desirable biomaterial properties.  Cracking of the xerogels is one of the most common 

problems observed during the drying phase, due to the pressure gradient caused as 

a result of solvent evaporation.224, 225  The evaporation rate was controlled by drying 

the sol-gels mildly at 60 oC under vacuum for 3 days and the resulting xerogels were 

not cracked. 

5.5.2.3 NO Release 
The N-diazeniumdiolated xerogel coatings were tested under a number of different 

experimental conditions.  In Chapter 4 the enhanced NO-release capabilities of SE-

DET3/NO compared to SE-PTMSPA/NO was apparent.  The same relationship was 

seen between xerogels made using DET3/NO and PTMSPA/NO: Due to increased 

number of amine sites and additional inter-/intramolecular stabilisation, SE-PTMOS-

DET3/NO released more NO over a more prolonged period than SE-PTMOS-

PTMSPA/NO, at both pH 4 and pH 7.4.  
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The temperature dependency on N-diazeniumdiolate decomposition and NO release 

was also assessed.  For SE-PTMOS-DET3/NO approximately 2-fold increase for 

maximum and total NO release was observed when increasing the temperature from 

25 oC to 37 oC; for SE-PTMOS-PTMSPA/NO, the increase was around 10-fold.  Hrabie 

et al. observed a temperature dependence of N-diazeniumdiolate decomposition 

and NO release, with increases of up to 9-fold when temperatures were raised from 

22 oC to 37 oC.140  This observation is most likely due to the small increases in pH 

when temperature is increased.  

The NO release capabilities of SE-PTMOS-DET3/NO were also assessed when either 

0.5 M NaOMe, 0.1 M NaOH or no base was used in preforming the DET3/NO solution.  

The maximum and total NO release when using NaOMe was comparable to as when 

using NaOH.  It was clearly apparent that xerogels formed when using no base in the 

preformed N-diazeniumdiolate solution greatly hindered the NO release storage and 

release capabilities of the materials, however low-level steady release was observed, 

due to inter-/intramolecular catalysis and stabilisation.141 

5.5.3 Bacterial Response 
In Chapter 4, N-diazeniumdiolates were bound to polymeric substrates with low level 

NO release and showed the ability to prevent bacterial cell adhesion and the biofilm 

formation on the surface.  The aim of this chapter was to assess the bacterial 

response of materials with increased NO storage and release capabilities.  A number 

of problems arose during assessment of the bacterial response and this section 

outlines these and the modifications made to the experimental method to ascertain 

a valid result.  

5.5.3.1 Adhered Cell CFU Assay (LB Media)  
The high releasing N-diazeniumdiolated xerogels were first tested against PA14 in 

fresh LB media to determine the viable cell count on the surface after 24 hrs.  Based 

on several reports in the literature, it was expected that the enhanced NO flux of the 

xerogel coatings would lead to a bactericidal effect and improve antibacterial efficacy 

however in the first assay performed this was not the case.226, 227  The experiments 

carried out here showed no reduction in viable adhered cells.  This was in 
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corroboration with Brooun et al. who reported that bacteria are often able to recover 

when grown in fresh rich media.219  

5.5.3.2 Planktonic and Adhered Cell CFU Assays (Phosphate Buffered Saline) 
Due to the prior result, the assay was modified by changing the inoculating medium 

from LB broth to phosphate buffered saline (PBS).  Both planktonic and adhered cells 

were counted, to determine bactericidal and anti-adhesion efficacy of the surfaces, 

respectively.  Indeed, the bacteria did not appear to recover and statistically 

significant reductions in both planktonic and adhered cell counts compared to 

pristine SE were apparent.  A new problem did however arise upon transition to PBS 

as the inoculating medium: the non-releasing xerogel-coated control substrate (SE-

PTMOS-DET3) exhibited a complete bactericidal effect when comparing counts to 

pristine SE. Whilst SE-PTMOS-DET3/NO surfaces exhibited at least 99 % reduction in 

planktonic and adhered cell counts at all time points compared to pristine SE, the 

involvement of NO could not be conclusively determined.  One possible explanation 

is that the decomposition of the coating caused leaching of the NaOMe which 

exhibited a bactericidal effect, due to the methanol by-product formed.  The same 

bactericidal effect was not observed by the other non-releasing xerogel-coated 

control substrate (SE-PTMOS-PTMSPA) and no significant reduction in cell counts for 

the N-diazeniumdiolated xerogel-coated substrates (SE-PTMOS-PTMSPA/NO) was 

observed; most likely due to the short NO release durations (≈ 2 hrs). 

When preforming the N-diazeniumdiolate, 1 mol equivalent of NaOMe was used for 

every secondary amine in the aminosilane precursor.141  This was to ensure all N-

diazeniumdiolate moieties would be stabilised through the equimolar availability of 

Na+ counter cations.  The lower concentration of NaOMe used in the synthesis 

process, due to PTMSPA only containing one secondary amine and requiring only half 

the concentration of NaOMe as used when forming DET3/NO solutions, is most likely 

the reason that no bactericidal activity was observed by SE-PTMOS-PTMSPA, but was 

by SE-PTMOS-DET3. 

5.5.3.3 Effect of Base on Bactericidal Activity. 
The results from the assays carried out in PBS led to a study in which N-

diazeniumdiolated xerogel coatings were made with preformed DET3/NO solutions 
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using NaOH instead of NaOMe and tested against planktonic P. aeruginosa (PA14).  

Xerogels prepared when the preformed N-diazeniumdiolate solution was prepared 

in the absence of base (control) showed no significant reduction in viable cell count 

after 24 hrs.  This can be attributed to the reduced NO release rates observed when 

no counter cation is present to stabilise the N-diazeniumdiolate.  

When NaOH was used, the cell counts exhibited in the presence of the non-releasing 

xerogel-coated substrate (SE-PTMOS-DET3) showed no difference, statistically, to 

pristine SE, meaning the results acquired from the NO-releasing surfaces could be 

directly attributed to the presence of NO.  A reduction in viable planktonic cells was 

observed at all time points and by 24 hrs this was > 1-log.  These surfaces released 

total payloads of 3866 µmol after 22 hrs and so were above the minimum bactericidal 

concentration previously seen in other reports.163  These xerogels did however 

become completely delaminated from the surface of the SE substrate, possibly due 

to NaOH causing silanol cleavage at the substrate surface; it was therefore not 

possible to carry out adhered cell CFU assays and the xerogels were considered 

unsuitable as coatings for medical implant devices. 

5.6 Conclusion 

The aim of this chapter was to create xerogel coatings that had greater NO storage 

and release potential than the N-diazeniumdiolate-tethered polymer substrates 

fabricated in Chapter 4 and assess the antibacterial advantages these may possess.  

The sol-gel process was optimised through various parametric alterations to give 

non-tacky, transparent, NO-releasing N-diazeniumdiolated xerogel coatings immune 

to cracking.  N-diazeniumdiolates were formed prior to attaching to the SE substrate 

using NaOMe/NaOH to stabilise the N-diazeniumdiolate moiety and prevent 

premature decomposition.  Xerogels made in this way released micromolar 

concentrations of NO for prolonged durations, dependent on aminosilane structure, 

temperature and pH.  SE-PTMOS-DET3/NO released concentrations an order of 

magnitude higher than SE-PTMOS-PTMSPA/NO at physiological conditions. 

The xerogel coatings were first tested for their ability to prevent biofilm formation.  

The surfaces were inoculated with a bacterial suspension in LB media, however due 
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to bacterial recovery no significant reduction in adhered cells on N-

diazeniumdiolated xerogel coated SE substrates was seen after 24 hrs.  A transition 

to PBS as the inoculation medium led to observable significant reductions of non-

growing planktonic and adhered bacteria on SE-PTMOS-DET3 and SE-PTMOS-

DET3/NO compared to pristine SE.  Complete eradication of bacteria was seen when 

tested against SE-PTMOS-DET3 controls, so it was not possible to decisively 

determine whether the antibacterial behaviour exhibited by SE-PTMOS-DET3/NO 

was a direct result of NO release.  SE-PTMOS-PTMSPA/NO showed no reduction 

compared to pristine (SE) or non-releasing xerogel-coated (SE-PTMOS-PTMSPA) 

substrates.  Further bactericidal assays were carried out using N-diazeniumdiolated 

xerogels that had used different bases when preforming the N-diazeniumdiolate.  

When NaOH was employed instead of NaOMe, the planktonic cell count of SE-

PTMOS-DET3 was the same, statistically, as pristine SE, indicating that NaOMe was 

the cause of bacterial cell death.  After 24 hrs, planktonic PA14 cells tested against 

SE-PTMOS-DET3/NO (NaOH) were reduced by 93 % compared to controls, proving 

that surfaces releasing high levels of NO have great bactericidal efficacy.  Adhered 

cell CFU assays could not be performed on xerogels made with NaOH, however, due 

to delamination from the substrate surface.  

Whilst the aims of this chapter, in terms of surface modification, were achieved in 

creating high concentration NO-releasing N-diazeniumdiolated xerogels and a 

definitive conclusion concerning the bactericidal abilities of NO could be drawn; 

these particular materials could not be considered as coatings for medical implant 

devices, due to their physical instability.   
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Chapter 6: Polymer Demixed Films with Micro-/Nanotopographies to 
Control Bacterial Response 

6.1 Introduction 

In Chapters 4 and 5 polymer substrates were modified chemically to produce 

antibacterial NO-releasing surfaces that exhibited bactericidal and anti-adhesion 

effects.  In Chapter 6, medically relevant polymer films have been modified 

physically, using the polymer demixing process, to assess their ability to prevent 

biofilm formation. 

Polymer demixing is a low cost and efficient method in producing binary polymer 

films.  This process utilises the immiscibility of polymers in a blend to form films with 

distinct topographies and wettabilities (Figure 6.1).228  

 

Figure 6.1: The polymer demixing process: a solution of two immiscible polymers is 

spun down and after an initial spin-off (a) the film splits vertically into two layers (b).  

Interfacial instabilities then occur between the polymer layers (c) leading to lateral 

phase separation (d),(e).  [Adapted from Ref. 228] 
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Two or more immiscible polymers are dissolved in a common solvent and spin coated 

on to a substrate (Fig. 6.1 a).  In a binary polymer blend, one polymer will segregate 

to the air interface and one to the substrate interface (Fig. 6.1 b).  The nature of this 

phase separation and the interfacial instabilities and interactions (Fig. 6.1 c) that 

occur will determine the resulting surface topography (Fig. 6.1 d), (Fig. 6.1 e).  There 

are a whole host of parameters that can be changed in this process, to give a vast 

array of surface topographies.  These include: solvent type, polymer system, relative 

polymer concentrations and substrate used.  

Before biofilm formation can occur bacteria must first irreversibly adhere to a 

surface.  There are many factors which affect the ability of the bacteria to do this.  

Cell-surface interactions can be influenced by the surface topography of a material, 

particularly by micro-/nanotopographical surface structures.  Studies by Hochbaum 

and Aizenberg  and Lu et al. have shown there is a relationship between the size of 

bacteria and the size and spacing of the surface structure and  bacteria will organise 

themselves on the surface in order to maximise their cell-surface contact area.55, 180 

In this chapter, surfaces with distinct topographies were fabricated by altering the 

relative polymer concentrations of three different polymers in binary blends: 

Polystyrene (PS), polycaprolactone (PCL) and poly(methyl methacrylate) (PMMA) to 

form PS/PCL, PS/PMMA and PCL/PMMA polymer demixed films.  The antibacterial 

performance of these surfaces has been assessed in terms of their anti-adhesion 

abilities after 24 hrs to see if biofilm formation can be prevented. 

6.2 Experimental 

6.2.1 Preparation of Polymer Demixed Thin Films  
Glass coverslips (13 mm diameter) were cleaned by immersing them in 5 % NaOH for 

30 mins, followed by concentrated HNO3 for 30 mins.  Coverslips were then washed 

in EtOH (4 x 2 min), rinsed in DI water and dried at 80 oC.  Coverslips were then 

treated with oxygen plasma for 1 min. 

PS, PCL and PMMA were dissolved in chloroform (CHCl3) to give 5 % w/v stock 

solutions.  1 % w/v binary blend solutions of PS/PCL, PS/PMMA and PCL/PMMA were 

made by diluting and mixing the stock solutions in the following ratios: 0:100, 25:75, 
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50:50, 75:25 and 100:0.  Aliquots of the blend solutions (70 µl) were spin coated onto 

freshly cleaned coverslips at 4000 rpm for 2 min, using an SCS 6800 spin coater 

(Speciality Coating Systems Inc, IN, USA).  Spin coated films were dried in a vacuum 

desiccator at room temperature overnight, to allow evaporation of any remaining 

CHCl3. 

6.3 Results: Characterisation 

In this chapter, PS/PCL, PS/PMMA and PCL/PMMA polymer demixed films in ratios 

of 0:100, 25:75, 50:50 and 75:25 were fabricated with micro-/nanotopographical 

surface features on a comparable length scale to bacteria for which to study bacterial 

response.  In this section, the chemical and topographical surface analysis results of 

the demixed films have been presented. 

6.3.1 Wettability: Contact Angle 
The wettability of the surfaces was determined using static contact angle analysis.  

The contact angles of 100 % polymer films are recorded in Table 6.1 with the 

corresponding polymer demixed films in Table 6.2.  PS100 exhibited the greatest 

hydrophobicity, with a contact angle of 83.8o.  A reduction in contact angle was 

observed for PCL100 and PMMA100 with values of 76.2o and 68.9o, respectively.  For 

both PS/PCL and PS/PMMA demixed films an increase in contact angle was observed 

as the concentration of PS was increased.  As the concentration of PCL was increased 

in the PCL/PMMA demixed films the contact angle too increased, showing an 

expected increase in hydrophobicity.  

Table 6.1: Static water contact angle measurements for 100 % polymer films. 

 Contact Angle (o) 

PS100 83.8±1.5 

PCL100 76.2±1.2 

PMMA100 68.9±1.6 
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Table 6.2: Static water contact angle measurements of polymer demixed films with 

varying ratios. 

 Contact Angle (o) 

PS:PCL PS:PMMA PCL:PMMA 

25:75 71.8±3.6 70.0±1.0 67.2±2.4 

50:50 72.9±3.8 68.6±2.4 71.4±1.2 

75:25 81.4±2.3 81.1±5.3 72.7±2.8 

 

6.3.2 Surface Chemistry: FTIR 
The surface chemistry of 100 % polymer films and polymer demixed films was 

determined using FTIR and representative spectra are displayed in Figures 6.2-6.4.  

The resulting spectrum of PS100 (Fig. 6.2 and 6.3) exhibited peaks at 3026 cm-1, due 

to the aromatic C-H stretching vibration and 2925 cm-1 due to the aliphatic C-H 

stretch.  The PCL100 spectrum is displayed in Figures 6.2 and 6.4: Bands at 2948 cm-

1 and 2865 cm-1 are characteristic of asymmetric and symmetric CH2 stretching, 

respectively.  A strong peak at 1726 cm-1 was observed due to the carbonyl stretching 

mode of PCL.  Figures 6.3 and 6.4 display the spectrum of PMMA100.  Peaks observed 

at 2996 cm-1 and 2950 cm-1 are due to C-H stretching vibrations of CH3 and CH2, 

respectively.  The band at 1732 cm-1 confirmed the presence of the acrylate carboxyl 

group.229 
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Figure 6.2 displays FTIR spectra of PS/PCL demixed films in varying ratios (PS25PCL75, 

PS50PCL50, PS75PCL25).  In the PS25PCL75 spectrum a broad peak was seen with its 

apex at 2948 cm-1, next to a peak at 2864 cm-1, due to symmetric and asymmetric 

CH2 stretching of PCL, respectively.  As the concentration of PS was increased, the 

intensity of the band at 1726 cm-1 decreased, as PS does not have any carbonyl 

functional groups in it backbone.   

 

Figure 6.2: FTIR spectra of PS/PCL polymer demixed films. 

 

 

 

 

 

 

 



128 
 

    
 

Figure 6.3 displays FTIR spectra of PS/PMMA demixed films in varying ratios 

(PS25PMMA75, PS50PMMA50, PS75PMMA25).  In PS25PMMA75 peaks were 

observed at 2997 cm-1 and 2950 cm-1, indicative of the C-H stretching vibrations of 

CH3 and CH2, respectively.  As the relative concentration of PS was increased, the 

emergence of a peak at 3026 cm-1, was attributed to an aromatic C-H stretching.  The 

resulting peak of the PMMA carboxyl stretch at 1732 cm-1 was present in all spectra, 

except PS100. 

 

Figure 6.3: FTIR spectra of PS/PMMA polymer demixed films. 
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Figure 6.4 displays FTIR spectra of PCL/PMMA demixed films in varying ratios 

(PCL25PMMA75, PCL50PMMA50, PCL75PMMA25).  The two CH2 stretching bands of 

PCL, at approximately 2950 cm-1 and 2865 cm-1 were seen in the spectra of each film.  

For PCL25PMMA75, a shoulder was observed on the peak at 2950 cm-1, at 2993 cm-

1, due to the increased relative concentration of PMMA, resulting in the presence of 

the band due to CH3 stretching.  In these spectra, a peak was also seen at 1732-1728 

cm-1, with wavenumber depending on the origin of the C=O group.  When the 

concentration of PCL was increased the peak was downshifted from 1732 cm-1 

(PCL25PMMA75) to 1728 cm-1 (PCL75PMMA25), as the major C=O contributing 

polymer shifts from PMMA to PCL.  

 

Figure 6.4: FTIR spectra of PCL/PMMA polymer demixed blends. 
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6.3.3 Surface Chemistry: XPS 
The surface compositions of the polymer demixed films were determined by XPS 

analysis.  The spectra of the C 1s and O 1s high resolution scans are given in Figures 

6.5 - 6.7.  

Curve fitting of the C 1s spectra for PS100 (Fig. 6.5 (e) and 6.6 (e)) gave three 

components: aromatic C-C/C-H at 285.0 eV, aliphatic C-C/C-H at 285.6 eV and the π - 

π* shakeup at 291.7 eV.230  For PCL100 (Fig. 6.5 (a) and 6.7 (e)), the C 1s spectra was 

curve fitted into four components: C-C/C-H at 285.0 eV, β-shifted C at 285.5 eV, C-O 

at 286.3 eV and C=O at 289.1 eV.231  The C 1s envelope of PMMA100 (Fig. 6.6 (a) and 

6.7 (a)) was fitted into four components: C-C/C-H at 285.0 eV, β-shifted C at 285.5 

eV, C-O at 286.3 eV and C=O at 289.1 eV.232  Curve fitting of the O 1s spectra for both 

PCL100 and PMMA100 gave two components at 532.1 and 533.7, due to the carbonyl 

(O=C) and ether (O-C) constituents of the ester groups, respectively.     

The spectra of the C 1s and O 1s high resolution XPS scans for PS/PCL demixed films 

are given in Figure 6.5 and the resulting quantitative data is given in Tables 6.3 and 

6.4.  The peak contribution from aromatic and aliphatic C-C/C-H increased as the PS 

concentration increased, from 58 % in PCL100 reaching 93.8 % in PS100.  The π – π* 

shakeup not observed in PCL100 also increased as PS concentration increased, from 

0.7 % in PS25PCL75 up to 6.2 % in PS100.  The PCL-specific C-O and C=O component 

contributions decreased from 8.1 % and 15.7 % to 4.6 % and 1.6 %, respectively, going 

from PCL100 to PS75PCL25.   

Table 6.3: XPS derived at. % of C 1s and O 1s regions for PS/PCL demixed films.  

  at. %  

C 1s O1s 

PCL100 77.4±0.6 22.6±0.6 

PS25PCL75 77.6±4.1 22.4±4.1 

PS50PCL50 79.8±4.5 20.2±4.5 

PS75PCL25 90.1±4.7 9.9±4.7 

PS100 100±0.0 - 
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Table 6.4: XPS-derived at. % of curve-fitted C 1s components for PS/PCL demixed 

films. 

 C 1s Component % (Binding energy, eV) 

C-C/C-H 

aliphatic 

(285.0) 

β-shifted C 

(C-C/C-H 

aromatic)a 

(285.5) 

C-O 

 

(286.3) 

C=O 

 

(289.1) 

π – π* 

 

(291.6) 

PCL100 56.0±3.9 15.9±0.7 8.1±2.5 15.7±0.6 - 

PS25PCL75 54.4±4.4 21.7±4.7 13.1±0.6 10.2±0.3 0.7±0.2 

PS50PCL50 69.3±7.5 15.7±7.5 8.4±0.5 5.6±0.5 1.3±0.4 

PS75PCL25 55.9±2.9 34.0±2.9 4.6±0.5 1.6±0.7 3.7±0.7 

PS100 69.7±0.6 24.1±0.3a - - 6.2±0.3 

 



132 
 

    
 

 

Figure 6.5: Curve-fitted (i) C 1s and (ii) O 1s XPS spectra for PS/PCL polymer demixed 

films in ratios of (a) 0:100 (b) 25:75 and (c) 50:50 (d) 75:25 and (e) 100:0. 
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The spectra of the C 1s and O 1s high resolution XPS scans for PS/PMMA demixed 

films are given in Figure 6.6 and the resulting quantitative data is given in Tables 6.5 

and 6.6.  The C-C/C-H contribution of the PS/PMMA blends increased as the 

concentration of PS increased.  The three PMMA specific components are β-shifted 

C, C-O and C=O.  There was no significant difference in the contribution of β-shifted 

Cfor PS25PMMA75 or PS75PMMA25.  The contribution of the C-O and C=O 

decreased by 9.2 % and 8.7 %, respectively.  The peak due to π – π* shakeup was not 

observed in PS25PMMA75.  The shakeup contributed 1.2 % of the PS50PMMA50 C 

1s envelope and 2.0 % of PS75PMMA25.  

Table 6.5: XPS derived at. % of C 1s and O 1s regions for PS/PMMA demixed films.  

  at. %  

C 1s O1s 

PMMA100 75.8±1.2 24.2±1.2 

PS25PMMA75 77.5±0.5 22.5±0.5 

PS50PMMA50 77.7±3.6 22.3±3.6 

PS75PMMA25 85.3±2.6 14.7±2.6 

PS100 100±0.0 - 

 

Table 6.6: XPS-derived at. % of curve-fitted C 1s components for PS/PMMA demixed 

films. 

 C 1s Component % (Binding energy, eV) 

C-C/C-H 

aliphatic 

(285.0) 

β-shifted C 

(C-C/C-H 

aromatic)a 

(285.5) 

C-O 

 

(286.3) 

C=O 

 

(289.1) 

π – π* 

 

(291.6) 

PMMA100 38.0±1.3 21.0±1.8 21.4±2.0 19.6±1.0 - 

PS25PMMA75 43.5±3.1 23.0±4.2 18.3±1.0 15.2±1.0 - 

PS50PMMA50 54.7±4.5 18.0±5.7 15.1±1.5 10.8±0.6 1.2±0.1 

PS75PMMA25 62.2±3.7 20.2±1.3 9.1±3.5 6.5±2.2 2.0±0.6 

PS100 69.7±0.6 24.1±0.3a - - 6.2±0.3 
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Figure 6.6: Curve-fitted (i) C 1s and (ii) O 1s XPS spectra for PS/PMMA polymer 

demixed films in ratios of (a) 0:100 (b) 25:75 (c) 50:50 (d) 75:25 and (e) 100:0. 
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The spectra of the C 1s and O 1s high resolution XPS scans for PCL/PMMA demixed 

films are given in Figure 6.7 and the resulting quantitative data is given in Tables 6.7 

and 6.8.  The C 1s spectra for PCL/PMMA demixed films was curve fitted into four 

components: C-C/C-H, β-shifted C, C-O and C=O.  There was no significant difference 

in the contribution of the C-C/C-H component for any of the blends (44.2 % - 44.5 %), 

however the contribution was greater than PMMA100 (38.0 %) and less than that 

from PCL100 (56.0%).  There was no significant difference in at. % contribution of the 

β-shifted C, C-O and C=O peaks  

Table 6.7: XPS derived at. % of C 1s and O 1s regions for PCL/PMMA demixed films.  
 

at. %  

  C 1s O1s 

PMMA100 75.8±1.2 24.2±1.2 

PCL25PMMA75 74.3±1.0 25.7±1.0 

PCL50PMMA50 75.9±0.8 24.1±0.8 

PCL75PMMA25 76.4±0.1 23.6±0.1 

PCL100 77.4±0.6 22.3±0.6 

 

Table 6.8: XPS-derived at. % of curve-fitted C 1s components for PCL/PMMA demixed 

films. 

 C 1s Component % (Binding energy, eV) 

 C-C/C-H 

aliphatic 

(285.0) 

β-shifted C 

 

 (285.5) 

C-O 

 

(286.3) 

C=O 

 

(289.1) 

PMMA100 38.0±1.3 21.0±1.8 21.4±2.0 19.6±1.0 

PCL25PMMA75 44.5±1.8 18.3±0.6 19.1±0.6 18.4±0.2 

PCL50PMMA50 44.5±1.8 17.7±0.8 20.0±3.0 17.8±0.4 

PCL75PMMA25 42.2±4.8 21.4±4.2 19.2±0.7 17.3±0.2 

PCL100 56.0±3.9 15.9±0.7 8.1±2.5 15.7±0.6 
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Figure 6.7: Curve-fitted (i) C 1s and (ii) O 1s XPS spectra for PCL/PMMA polymer 

demixed films in ratios of (a) 0:100 (b) 25:75 (c) 50:50 (d) 75:25 and (e) 100:0. 
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6.3.4 Surface Topography: AFM 
The surface topography of the polymer demixed films was examined by AFM, and 

representative images and roughness values (Rq, Ra) are displayed in Figures 6.8 – 

6.10.  AFM derived data, including surface feature dimensions are presented in 

Tables 6.9 - 6.11.  Both PS100 and PMMA100 produced smooth films both with 

roughness values of Rq = 0.3 nm, Ra = 0.2 nm.  The PCL100 film was rougher in 

relation (Rq = 5.2 nm, Ra = 3.7 nm).  

Figure 6.8 shows the representative images and corresponding roughness values (Rq, 

Ra) of PS/PCL polymer demixed films in varying ratios.  The roughness values of 

PS25PCL75 (Ra = 14.4 nm), PS50PCL50 (Ra = 18.7 nm) and PS75PCL25 (Ra = 18.9 nm) 

were all seen to increase when compared to their corresponding 100 % polymer 

controls.  When PCL was in abundance, island structures were observed with 

dimensions averaging 48 nm in height and 185 nm in diameter.  With PS in abundance 

a pit-like topography was observed with features averaging 65 nm in height and 711 

nm in diameter.  When the polymer concentrations were equal, the topography 

observed was ribbon-like.  The height and diameter of these ribbons averaged 72 nm 

and 609 nm, respectively.  

Table 6.9: Topographical data for PS/PCL demixed films determined by AFM 

 Topography Feature 

height/depth 

(nm) 

Feature 

diameter 

(nm) 

Feature 

spacing 

(nm) 

PCL100 flat - - - 

PS25PCL75 islands 48±20 185±53 197±69 

PS50PCL50 ribbons 65±14 609±185 381±237 

PS75PCL25 pits 72±19 711±239 248±152 

PS100 flat - - - 
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Figure 6.8: AFM (i) 3D images and (ii) depth profiles of PS/PCL polymer demixed films 

in ratios (a) 0:100 (b) 25:75 (c) 50:50 (d) 75:25 and (e) 100:0.  
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Figure 6.9 shows the representative images and corresponding roughness values (Rq, 

Ra) of PS/PMMA polymer demixed films in varying ratios.  The roughness values of 

PS25PMMA75 (Ra = 2.2 nm), PS50PMMA50 (Ra = 2.5 nm) and PS75PMMA25 (Ra = 

2.7 nm) were all seen to increase when compared to their corresponding 100 % 

polymer controls.  In this blend system, when PMMA was in a greater concentration, 

islands were formed averaging 7 nm in height with a diameter of 160 nm.  When the 

polymers were in equal concentration pits were formed, 8 nm in height and 118 nm 

in diameter.  The pit structures were also seen when PS was in abundance with 

features averaging 11 nm in height and 190 nm in diameter.   

Table 6.10: Topographical data for PS/PMMA demixed films determined by AFM. 

 Topography Feature 

height/depth 

(nm) 

Feature 

diameter 

(nm) 

Feature 

spacing 

(nm) 

PMMA100 flat - - - 

PS25PMMA75 islands 7±2 160±42 200±69 

PS50PMMA50 pits 8±5 118±39 60±33 

PS75PMMA25 pits 11±4 190±57 88±28 

PS100 flat - - - 
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Figure 6.9: AFM (i) 3D images and (ii) depth profiles of PS/PMMA polymer demixed 

films in ratios (a) 0:100 (b) 25:75 (c) 50:50 (d) 75:25 and (e) 100:0. 
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Representative images and corresponding roughness values (Rq, Ra) of PCL/PMMA 

polymer demixed blends in varying ratios are displayed in Figure 6.10.  The roughness 

values of PCL25PMMA75 (Ra = 8.4 nm), PCL50PMMA50 (Ra = 7.9 nm) and 

PCL75PMMA25 (Ra = 2.9 nm) were all seen to increase when compared to 

PMMA100; there was no significant difference between the demixed films and 

PCL100.  This blend system produced films with island structures.  When PMMA was 

in abundance these islands were depressed in the apex, with heights of 30 nm and 

diameters of 232 nm.  When polymers were in equal concentration, islands were 

formed, 30 nm in height and 154 nm in diameter.  The islands decreased in height 

(16 nm) when the PCL concentration was increased to 75 %, but there was no 

significant difference between the diameter of the structures.  Furthermore, there 

was no depression in the apex of the islands observed for the PCL50PMMA50 and 

PCL75PMMA25. 

Table 6.11: Topographical data for PCL/PMMA demixed films determined by AFM. 

 Topography Feature 

height/depth 

(nm) 

Feature 

diameter 

(nm) 

Feature 

spacing 

(nm) 

PMMA100 flat - - - 

PCL25PMMA75 pitted islands 29±12 232±100 145±101 

PCL50PMMA50 islands 30±20 154±82 191±113 

PCL75PMMA25 islands 16±5 162±57 186±92 

PCL100 flat - - - 
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Figure 6.10: AFM (i) 3D images and (ii) depth profiles of PCL/PMMA polymer demixed 

films in ratios (a) 0:100 (b) 25:75 (c) 50:50 (d) 75:25 and (e) 100:0. 
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6.4 Results: Stability in LB Media 

All the surfaces above were analysed for their stability in LB media before 

determining the bacterial response.  This ensured that the surfaces were stable under 

the conditions tested.  As such all of the characterisation was repeated after soaking 

the samples in LB for 24 hrs at 37 oC which replicates the conditions for the bacterial 

assays. 

6.4.1 Wettability: Contact Angle 
The change in wettability after soaking in LB broth was determined by static water 

contact angle measurements.  Data for 100 % polymer films and polymer demixed 

films have been recorded in Tables 6.12 and 6.13, respectively. 

All polymer demixed films and 100 % polymer control films had noticeably reduced 

contact angles after soaking.  The most hydrophilic 100 % polymer film after soaking 

was PS100 (32.3o), followed by PCL100 (53.9o) and PMMA100 (58.9o).  This trend is 

the reverse of that seen before soaking, where PS was the most hydrophobic 

polymer.  The observed phenomenon is most probably due to swelling of the polymer 

in the LB media.  Swelling of polymers has been reported to decrease contact angle 

and increase wettability.233  

Table 6.12: Static water contact angle measurements of 100 % polymer films after 

soaking in LB media.  

 Contact Angle (o) 

PS 32.3±8.0 

PCL 53.9±1.5 

PMMA 58.9±4.1 
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Table 6.13: Static water contact angle measurements of polymer demixed films in 

varying ratios after soaking in LB media. 

 Contact Angle (o) 

PS:PCL PS:PMMA PCL:PMMA 

25:75 45.2±3.6 49.0±3.9 65.6±3.7 

50:50 53.9±2.2 49.9±2.5 60.9±4.22 

75:25 37.7±0.7 58.6±1.2 49.2±5.1 

 

6.4.2 Surface Chemistry: FTIR 
The polymer demixed films underwent FTIR analysis to determine whether the 

soaking in media had any effect on the chemical composition of the blends.  The 

spectra are displayed in Figures 6.11 – 6.13.  

The characteristic aromatic C-H stretching vibration and aliphatic C-H stretch of PS 

were seen in the PS100 spectrum (Fig. 6.11 and 6.12) with peaks at 3026 cm-1 and 

2925 cm-1, respectively.  In the PCL100 spectrum (Fig. 6.11 and 6.13) two peaks at 

2948 cm-1 and 2865 cm-1 were due to asymmetric and symmetric CH2 stretching, 

respectively.  The carbonyl stretching mode was seen at 1726 cm-1.  The PMMA100 

spectrum (Fig. 6.12 and 6.13) showed three characteristic peaks of PMMA.  The first 

at 2996 cm-1 was due to the C-H stretching mode of CH3.  At 2950 cm-1, due to the C-

H stretching mode of CH2 and at 1732 cm-1, due to the acrylate carboxyl group.229  All 

peaks described were observed in the corresponding spectra for the demixed films.  

The presence of a new peak in all spectra was apparent at 1648 cm-1.  This is 

characteristic of the bending mode of H2O, which further corroborates the reduced 

contact angle measurements in indicating that swelling of the polymer may be 

occurring. 
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Figure 6.11: FTIR spectra of PS/PCL polymer demixed films after soaking in LB media. 

 

Figure 6.12: FTIR spectra of PS/PMMA polymer demixed films after soaking in LB 

media. 
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Figure 6.13: FTIR spectra of PCL/PMMA polymer demixed films after soaking in LB 

media. 

6.4.3 Topography: AFM 
The surface topography of the polymer demixed films after soaking in LB media was 

examined by AFM, and representative images and roughness values (Rq, Ra) are 

displayed in Figures 6.14 – 6.16.  AFM derived data, including surface feature 

dimensions are presented in Tables 6.14 – 6.16.  It can be seen that there are changes 

in the topography of all blends after exposure to the broth attributed to the swelling 

effect of the polymers.  

PS100 (Fig. 6.14 and 6.15) increased in roughness after soaking (Rq = 12.9 nm, Ra = 

7.5 nm).  The roughness values of PCL100 (Fig. 6.14 and 6.16) decreased (Rq = 3.4 

nm, Ra = 2.5 nm) and for PMMA100 (Fig. 6.15 and 6.16) values increased slightly after 

soaking in LB media (Rq = 1.7 nm, Ra = 1.2 nm).  

Figure 6.14 shows the representative images of PS/PCL polymer demixed films in 

varying ratios.  The roughness values of PS25PCL75 (Ra = 15.1 nm), PS50PCL50 (Ra = 

9.7 nm) and PS75PCL25 (Ra = 7.9 nm) were all seen to increase when compared to 

PCL100, whilst only PS25PCL75 was significantly rougher than PS100.  When PCL was 

in abundance, island surface structures 52 nm in height and 252 nm in diameter, 
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were observed.  With PS in abundance, a pit arrangement was observed with features 

of 32 nm in height and 252 nm in diameter.  When the polymer concentrations were 

equal, a topography with partial character of the two described prior was observed 

to form a ribbon-like topography.  The height and diameter of these features were 

38 nm and 226 nm, respectively.  

Table 6.14: Topographical data for PS/PCL blends soaked in LB broth determined by 

AFM 

 Topography Feature 

Height/Depth (nm) 

Feature 

Diameter 

(nm) 

Feature 

spacing 

(nm) 

PCL100 flat - - - 

PS25PCL75 islands  52±13 252±91 125±62 

PS50PCL50 ribbons  38±8 226±79 197±68 

PS75PCL25 pits 32±8 252±86 220±57 

PS100 flat - - - 
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Figure 6.14: AFM (i) 3D images and (ii) depth profiles of PS/PCL polymer demixed 

films in ratios (a) 0:100 (b) 25:75 (c) 50:50 (d) 75:25 and (e) 100:0 after soaking in LB 

media. 
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Figure 6.15 shows the representative images of PS/PMMA polymer demixed films in 

varying ratios.  The roughness values of PS25PMMA75, PS50PMMA50 and 

PS75PMMA25 were Ra = 10.3 nm, 3.1 nm and 22.2 nm, respectively.  In this blend 

system, when PMMA was in a greater concentration islands of 76 nm in height and a 

diameter of 1530 nm were formed.  When the polymers were in equal concentration 

pits were formed, 16 nm in height and 942 nm in diameter.  Islands were also 

observed when PS was in abundance.  Features were 91 nm in height and 1386 nm 

in diameter.   

Table 6.15: Topographical data for PS/PMMA blends soaked in LB broth determined 

by AFM 

 Topography Feature 

Height/ 

Depth (nm) 

Feature 

Diameter 

(nm) 

Feature 

spacing 

(nm) 

PMMA100 flat - - - 

PS25PMMA75 islands 76±12 1530±265 869±512 

PS50PMMA50 pits 16±5 942±403 537±226 

PS75PMMA25 islands 91±9 1386±444 891±241 

PS100 flat - - - 
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Figure 6.15: AFM (i) 3D images and (ii) depth profiles of PS/PMMA polymer demixed 

films in ratios (a) 0:100 (b) 25:75 (c) 50:50 (d) 75:25 and (e) 100:0 after soaking in LB 

media. 
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Representative images of PCL/PMMA polymer demixed blends in varying ratios are 

displayed in Figure 6.16.  The roughness values of PCL25PMMA75 (Ra = 22.6 nm), 

PCL50PMMA50 (Ra = 10.2 nm) and PCL75PMMA25 (Ra = 21.5 nm) were all seen to 

increase when compared to PCL100 and PMMA100.  In this blend system all observed 

topographies were island-like.  When PMMA was in abundance these islands had 

heights of 78 nm and diameters of 418 nm.  When polymers were in equal 

concentration, the islands were 37 nm in height and 176 nm in diameter.  Islands of 

PCL75PMMA25 films were 88 nm high and 512 nm in diameter. 

Table 6.16: Topographical data for PCL/PMMA blends soaked in LB broth determined 

by AFM. 

 Topography Feature 

Height/Depth 

(nm) 

Feature 

Diameter 

(nm) 

Feature 

spacing 

(nm) 

PMMA100 flat - - - 

PCL25PMMA75 islands 78±28 418±75 163±38 

PCL50PMMA50 islands 37±11 176±45 218±105 

PCL75PMMA25 islands 88±19 512±224 412±167 

PCL100 flat - - - 
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Figure 6.16: AFM (i) 3D images and (ii) depth profiles of PCL/PMMA polymer demixed 

films in ratios (a) 0:100 (b) 25:75 (c) 50:50 (d) 75:25 and (e) 100:0 after soaking in LB 

media.



153 
 

    
 

6.5 Results: Bacterial Response 

Antibacterial activity was investigated against the lab strain of P. aeruginosa, PA14.  

An adhered cell CFU assay was performed, in which the surfaces were inoculated 

with bacteria for 24 hrs to allow any potential biofilm formation.  After removal of 

any planktonic bacteria with a PBS wash, remaining viable bacteria from the surface 

were counted to test the ability of materials with structured surface topographies in 

preventing adhesion and therefore biofilm formation.  The cell counts for the 

adhered cell CFU assays are given in Figures 6.17 - 6.19 for PS/PCL, PS/PMMA and 

PCL/PMMA demixed films with 100 % polymer films as control surfaces.  

6.5.1 PS/PCL 
On PS/PCL demixed films, all bacterial counts were significantly reduced compared 

to the control surfaces (Fig. 6.17).  The PS25PCL75 film reduced the bacterial count 

by 28 % and 23 % with respect to PCL100 and PS100.  For PS50PCL50, reductions of 

50 % and 46 % were observed for PCL100 and PS100, respectively.  Finally, on the 

PS75PCL25 films the count was 49 % less than PCL100 and 45 % less than PS100.  

 

Figure 6.17: Viable adhered PA14 cell counts (CFU/ml) after 24 hr growth on PS/PCL.  

The symbol ‘*’ and blue bars indicate that all polymer demixed films have a 

statistically significant reduction in cell counts compared to controls (p < 0.05). 
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6.5.2 PS/PMMA 
In PS/PMMA demixed films, there was no statistically significant reduction for PA14 

adhered cell CFU counts, compared to either PS100 or PMMA100 (Fig. 6.18).  

 

Figure 6.18: Viable adhered PA14 cell counts (CFU/ml) after 24 hr growth on 

PS/PMMA.  Black bars indicate no statistically significant reduction in cell counts 

between demixed films and controls. 
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6.5.3 PCL/PMMA 
All PCL/PMMA demixed films exhibited statistically significant reductions in CFU 

counts compared to PCL100 and PMMA100 (Fig. 6.19).  The counts on 

PCL25PMMA75 were reduced by 77 % compared to on PCL100 and 72 % compared 

to on PMMA100.  For PCL50PMMA50, reductions of 78 % and 73 % were observed 

against PCL100 and PMMA100, respectively.  The counts on PCL75PMMA25 were 

reduced by 76 % and 70 % compared to PCL100 and PMMA100, respectively.    

 

Figure 6.19: Viable PA14 cell counts (CFU/ml) after 24 hr growth on PCL/PMMA 

demixed films.  The symbol ‘*’ and blue bars indicate that all polymer demixed films 

have a statistically significant reduction in cell counts compared to controls (p < 0.05).
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6.6 Discussion 

6.6.1 Polymer Demixing Process 
Polymer demixing provides an economic, efficient alternative in modifying polymer 

surfaces when compared to the more expensive manufacturing techniques such as 

electron lithography.  A schematic of the steps involved in polymer demixing has 

been displayed at the beginning of this chapter in Figure 6.1.228   The sections below 

will detail the science involved in the formation of surfaces with distinct micro-

/nanotopographical features, using the polymer demixing process. 

6.6.1.1 Immiscibility of Polymers 
The process of polymer demixing utilises the immiscibility of polymers to produce 

polymer films with varying topographies and wettabilities.  Immiscibility between 

polymers arises as the entropic law that governs the miscibility of low molecular 

weight (LMW) analogues becomes an almost insignificant contributing factor for high 

molecular weight materials.234  

The miscibility of two components is governed by: 

 ΔGm  =   ΔHm  −  TΔSm    (6.1) 

where ΔGm is the free energy of mixing, ΔHm is the enthalpy of mixing and ΔSm is the 

entropy of mixing.  As in any Gibbs free energy equation, ΔGm must be less than 0 for 

miscibility to occur.  When discussing LMW compounds, an increase in temperature 

tends to lead to an increase in the TΔSm term which will increase the negativity of 

ΔGm and thus the miscibility.  

In binary polymer mixtures, the Flory-Huggins theory can be applied to account for 

immiscibility between polymers.  In this model the combinatorial entropy of mixing, 

ΔSm is: 

 ΔSm  =  −R [
ϕ1

r1
lnϕ1 + 

ϕ2

r2
lnϕ2 ] (6.2) 

where, R is the gas constant, φi is the volume fraction of polymer, i, and ri is the 

number of polymer segments.  As ri is proportional to the degree of polymerisation, 

an increase in molar mass leads to a decrease in ΔSm values.  And so for high 

molecular weight compounds ΔSm decreases to such an extent the TΔSm becomes 
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negligible, regardless of temperature change and immiscibility is the most common 

outcome.235, 236 

6.6.1.2 Vertical Phase Separation 
After the initial spin-off stage in which solvent and polymer are removed, an initial 

bilayer is formed, in which one polymer segregates to the substrate interface and 

one to the air interface (Fig 6.1 b).  Initially, the arrangement is purely kinetic and the 

relative solubility of the polymers within their common solvent is the dominant 

factor.237, 238  The least soluble polymer will come out of solution first and wet the 

substrate followed by the more soluble polymer wetting the surface.  

With time, thermodynamic factors may also play a role in the interfacial preference 

of each polymer.  The polymer with the lower surface free energy would be expected 

to segregate to the air interface to maintain the minimum interfacial free energy.239, 

240  Additionally, the polymer with the higher molecular weight tends to favour the 

substrate interface so as to avoid potential loss of conformational entropy associated 

with compression on the film surface.240, 241  

In order to determine which polymer segregates to the air interface, analysis of the 

surface composition was performed by assessing the relative contribution of the 

ester (O-C=O) component to the C 1s envelope in the XPS spectra of the demixed 

films compared to the 100 % polymer film, as reported previously by Ton-That and 

D’Sa.173, 238   In two of the systems studied (PS/PCL and PS/PMMA), the ester 

functional group is unique to only one polymer (PCL and PMMA).  As such, using 

Equation 6.3 it is possible to determine the surface composition of each demixed 

PS/PCL and PS/PMMA film.  To determine whether the vertical phase separation was 

thermodynamically stable, XPS analysis was also carried out on polymer demixed 

films that had been cured at 80 oC.  In the PCL/PMMA demixed films, the ester 

functional group is present in the backbone of each polymer and therefore this 

method cannot be used for this blend system.  
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For both PS/PCL and PS/PMMA blend systems the arbitrary term ‘A’ can be defined 

as the fraction of O-C=O peak in the C 1s spectrum:  

 A = (
𝐼𝑂−𝐶=𝑂

𝐼𝐶
) (6.3) 

In PS/PCL blends the relative contribution of PCL is 6 XPCL (six carbon atoms per repeat 

unit) and in PS/PMMA the relative contribution of PMMA is 5 XPMMA (five carbon 

atoms per repeat unit).  The relative contribution of PS in both blend systems is 8(1-

X) (eight carbon atoms per repeat unit), where Xn is the molar surface concentration 

of the polymer, to give: 

 A =  
𝑋𝑃𝐶𝐿

6 𝑋𝑃𝐶𝐿+8(1−𝑋𝑃𝐶𝐿)
 (6.4a) 

for PS/PCL blends and, 

  A =  
𝑋𝑃𝑀𝑀𝐴

5 𝑋𝑃𝑀𝑀𝐴+8(1−𝑋𝑃𝑀𝑀𝐴)
 (6.4b) 

for PS/PMMA blends.  Rearranging 6.4 a and 6.4 b gives 6.5 a and 6.5 b, respectively: 

 𝑋𝑃𝐶𝐿 =  
8𝐴

2𝐴+1
  (6.5a) 

 𝑋𝑃𝑀𝑀𝐴 =  
8𝐴

3𝐴+1
  (6.5b) 

 

In Figures 6.20 and 6.21, the surface fraction of PCL and PMMA in PS/PCL and 

PS/PMMA demixed films, respectively, deduced from the equation set above, have 

been compared to the equivalent composition of their corresponding 100 % polymer 

film.  
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Figure 6.20: Plot of PS/PCL film surface PCL fraction vs bulk PCL fraction.  Data 

obtained using high resolution C 1s XPS measurements and Equation 6.5 a.  

 

Figure 6.21: Plot of PS/PMMA film surface PMMA fraction vs bulk PMMA fraction.  

Data obtained using high resolution C 1s XPS measurements and Equation 6.5 b.  
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In PS/PCL demixed films, it can be seen that the surface fraction of PCL is below the 

theoretical equivalent composition line, indicating that PS segregates to the air 

interface.  In PS/PMMA demixed films, the PMMA surface fraction is above the 

equivalent composition line indicating that, in this system, the PMMA wets the 

substrate-favouring PS.  In both figures, red circles show surface composition without 

curing and black squares show with curing.  As there is no movement of the data 

points across the equivalent composition line, this indicates that the initial kinetic 

arrangement is also a thermodynamically stable one. 

In these experiments, the blend solutions were dissolved in chloroform; a highly 

volatile compound (BP = 61.2 oC)242.  Due to its low boiling point, rapid solvent 

evaporation occurs, which would be indicative of  the demixed films forming under 

kinetic rather than thermodynamic control.243  The Hildebrand solubility parameters 

for chloroform, PS, PCL and PMMA are 9.29, 8.94, 10.35 and 8.80, respectively.  The 

closer the value of a polymer to that of its solvent generally indicates better solubility.  

PS/PCL 

In PS/PCL blends, PS is the more soluble of the two polymers in chloroform, which 

corroborates the XPS-derived surface quantification discussed above (Fig. 6.20).  PS 

segregates to the air interface despite having a higher surface energy (PS: 40.7 

mN/m, PCL: 30.8 mN/m)239, 244, 245 and despite the entropic penalty it incurs being the 

higher molecular weight component (PS: 280 kDa, PCL: 45 kDa).  A possible 

explanation for this is that the pre-cleaning of the glass substrates renders the 

surface hydrophilic, thereby having a higher affinity for the more polar PCL.239  

PS/PMMA 

Whilst the solubility parameters of PS and PMMA are comparable, it can be assumed 

that PMMA has better solubility in chloroform from its segregation to the surface of 

the film (Fig. 6.21).  Ton-That et al. investigated the effect of curing PS/PMMA 

demixed films after the spin coating process to allow the system to potentially 

reassemble under thermodynamic control.237  Indeed they observed that the initial 

orientation of the polymers were as a result of kinetics, segregating PMMA to the air 

interface, but after the addition of heat to the system, PMMA migrated to the 

substrate interface owing to its lower surface energy.  In PS/PMMA demixed films 
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the XPS analysis shows that PMMA prefers the air interface even after curing, despite 

having a comparable surface energy to PS (PS: 40.7 mN/m, PMMA: 41.0 mN/m)244 

and higher molecular weight (PS: 280 kDa, PMMA: 380 kDa).  It is feasible that the 

curing conditions may have not been adequate to allow the blend system to reach 

thermodynamic equilibrium.  

PCL/PMMA 

As the O-C=O component is present in both PCL and PMMA, the XPS-derived relative 

ester contribution method was unsuitable for PCL/PMMA demixed films.  It can 

however, be hypothesised that due to higher solubility of PMMA in chloroform the 

PCL deposits first on the substrate, which is in agreement with the work carried out 

by Khattak et al. on PCL/PMMA blends.246  PMMA has a greater surface energy (PCL: 

30.8 mN/m, PMMA: 41.0 mN/m)244, 245 and higher molecular weight (PCL: 45 kDa, 

PMMA: 380 kDa) so it is hypothesised that the initial kinetic arrangement is most 

likely thermodynamically unstable and may result in a rearrangement of PCL to the 

surface.   

There are a host of other parametric changes that can affect initial phase separation, 

such as solvent and substrate type.  These considerations are beyond the scope of 

this thesis and have been discussed in detail elsewhere.172, 247-249 

6.6.1.3 Lateral Phase Separation 
The spin coating of polymer demixed blends in varying relative concentrations leads 

to the formation of films with island-, ribbon- and pit-like micro-/nanotopographical 

surface structures.  This arises through complex dewetting pathways in which one or 

both polymer in the binary blend dewets the underlying surface, leading to lateral 

phase separation.  The dewetting pathway depends on the relative concentrations 

of the polymers and the nature of the vertical phase separation. 

The two polymers are blended into a single phase system 

(polymer/polymer/solvent).  Once the evaporation process begins the polymer-

polymer-solvent system splits into two phases, vertically separated (See Section 

6.6.1.2).  This gives rise to three interfaces: polymer-air, polymer-polymer and 

polymer-substrate.  The dewetting of the two layers in the system is governed by the 

dynamics between the deformable polymer-air and polymer-polymer interfaces.  An 
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instability is induced through one of two modes250 depending on which polymer film 

ruptures first: the bending mode or the squeezing mode.  This results in completely 

different dewetting pathways and potential morphologies.  The two modes of 

instability, bending and squeezing modes, have been schematically shown in Figure 

6.22 and 6.23, respectively. 

 

Figure 6.22: Schematic representation of the bending mode of instability in a thin 

binary polymer blend.  Red arrows show the direction of interaction of the polymer-

air and polymer-substrate interfaces. 

In Figure 6.22, the bending mode of instability is depicted.  In this mode, the polymer-

polymer interface and polymer-substrate interface have a stronger attractive 

interaction than the polymer-polymer and polymer-air interfaces, causing Film 1 to 

dewet first.  This deformation leads to an in-phase deformation of Film 2 as it is pulled 

down towards the substrate.  As Film 1 continues to dewet the substrate, holes are 

formed as the bottom layer ruptures.  At the site of these holes the polymer-

substrate and polymer air interfaces can interact; the result of this interaction is the 

formation of different topographical surface features.  If the polymer-substrate and 

the polymer-air interface have a repulsive interaction, Film 1 dewets forming sub-

surface islands under an intact top layer.  If the interaction is attractive, a 

deformation over every hole, where the top layer is in contact with the substrate, is 
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engendered, eventually leading to holes in the top layer.  This leads to final surface 

features that are governed by the structure of the droplets formed in the dewetting 

of Film 1, encased by Film 2. 

 

Figure 6.23: Schematic representation of the squeezing mode of instability in a thin 

binary polymer blend.  Red arrows show the direction of interaction of the polymer-

air and polymer-substrate interfaces. 

In Figure 6.23, the stretching mode of instability is depicted.  In this mode, the 

instability of Film 2, due to attractive interactions between the polymer-polymer and 

polymer air-interface initiates the mechanism.  Unlike in the bending mode, where 

the deformation occurs over the rigid substrate, both polymer-polymer and polymer-

air interfaces can deform in the squeezing mode and an out-of-phase interaction 

occurs as the interfaces pull towards one another.  As Film 2 dewets Film 1, there are 

again two pathways the mode can follow, as Film 1 becomes exposed to air.  A 

repulsive interaction between polymer-substrate and polymer-air interface would 

lead to drops of polymer in Film 2 on a stable Film 1.  If the interaction is attractive 

then Film 1 dewets the substrate.  With Film 2 having already dewetted Film 1 this 

pathway can often lead to complex structural arrangements. 
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PS/PCL 

Ma et al. reported on the underlying mechanisms involved in the formation of the 

surface morphologies seen in PS/PCL demixed films.239  As in this work, Ma reported 

that first a vertical phase separation occurs with PS segregating to the air interface.  

PS/PCL blends with a smaller concentration of PS gave island-like structures.  They 

proposed that the thin upper PS layer leads to interfacial instability, which results in 

dewetting of the PS layer from the PCL layer, to give PS islands like PS25PCL75 

(squeezing mode, Fig. 6.23).  When the PS concentration was increased, vertical 

phase separation led to a liquid-liquid dewetting process, in which both films dewet 

their underlying surface.  The PS chains lose mobility as solvent evaporates, before 

the dewetting process is complete and result in ribbon like structures, as seen in 

PS50PCL50.  When the concentration of PS was increased further dewetting led to 

the growth of holes, like the pits formed from PS75PCL25 blend films (bending mode, 

Fig. 6.22).        

PS/PMMA 

de Silva et al. demonstrated that by varying the concentrations of the polymers in 

PS/PMMA blends, and as a result, the relative thicknesses of the individual 

components of the bilayer, the layer instability can be transferred.251  It was seen 

that when the PMMA top layer was thinner than the underlying PS layer the 

instability was driven by the PMMA layer.  Vice versa, when the PMMA concentration 

was increased (thicker layer) on top of the thinner PS layer a transition to an unstable 

PS layer was observed.  In Figure 6.9, it can be seen that an abundance of PMMA 

leads to an island-rich morphology, whilst when PS is in excess, pits are formed.  de 

Silva’s conclusions251 would suggest that the morphology of PS25PMMA75 is due to 

an initial bending mode of instability (Fig. 6.22), whilst the formation of pits in 

PS75PMMA25 begins with an instability in the top layer (squeezing mode, Fig 6.23). 

PCL/PMMA 

Whilst XPS data was unable to confirm the organisation of the vertical phase 

separation in this blend system (Section 6.6.1.2), the hypothesis that the more 

soluble PMMA segregates to the air interface corroborates Khattak’s work on 

PCL/PMMA.246  From the reports by both Ma and de Silva, it can be concluded that 

the initial interfacial instability occurs in the lower concentration (thinner) film.239, 251  
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In PCL25PMMA75, the pitted island formation is most likely initiated by an instability 

in the underlying PCL film (bending mode, Fig. 6.22), whilst the island morphology 

seen for PCL75PMMA25, begins with an instability in the top PMMA layer (squeezing 

mode, Fig 6.23). 

6.6.2 Bacterial Response 
In this chapter a low cost, efficient technique was used to fabricate surfaces with 

micro-/nanotopographical features in order to understand the underlying 

mechanism of how topography affects bacterial adhesion and prevents biofilm 

formation.  All of the surfaces characterised were assayed for their anti-adhesion 

efficacy against P. aeruginosa (PA14) using an adhered cell CFU assay to see if biofilm 

formation could be prevented.  An inoculating period of 24 hrs was chosen to allow 

the potential for irreversible adhesion and subsequent biofilm formation.  

Bacterial adhesion and biofilm formation can generally be grouped into four stages: 

1. Bacteria contacts the surface (Brownian motion, gravitational forces, 

hydrodynamic forces) 

2. Bacterial adhesion to the surface (reversible/irreversible adhesion) 

3. Proliferation of adhered bacteria resulting in the synthesis of biofilm 

matrix.252 

4. Maturation of the biofilm with specific metabolism and physiology.253 

It is generally considered that the second stage of biofilm formation is the one most 

influenced by the topography of a surface, as physical bacterial cell-surface 

interactions are involved at this stage.  Within the studies reported here, modifying 

the topography of a material at a comparable length scale to the bacterial cell can 

prevent adhesion of the Pseudomonas strain (PA14) (Figure 6.24).   
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Figure 6.24: Topographical structure diameter and spacing has an effect on bacterial 

adhesion.  If the structures and spacing are comparable in size (PS/PMMA) no anti-

adhesion effect is observed.  If the structures and spacing are smaller than the cell 

size (PS/PCL, PCL/PMMA) an anti-adhesion effect is observed.  

A study by Lu et al. in 2016, reported the anti-adhesive properties of PDMS with 

micropatterned surfaces.180  A significant reduction in bacterial adhesion was 

observed for three different strains of bacteria (Escherichia coli, Staphylococcus 

aureus and Pseudomonas aeruginosa).  When the pattern size was smaller than the 

bacterial cell diameter an improved anti-adhesion effect was observed; when the 

pattern size was comparable or larger than the bacterial cell, the anti-adhesion effect 

was reduced.  

The work carried out in this chapter corroborated Lu’s findings.180  PS/PCL and 

PCL/PMMA demixed films all formed structured films with feature diameters (Tables 

6.10, 6.12) significantly smaller than the diameter of PA14 cells (1.7±0.3 µm) and 

showed significant reduction in bacterial adhesion compared to corresponding 100 
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% polymer control films.  Feature diameters of all PS/PMMA demixed films (Table 

6.11) were comparable in size to the diameter of the PA14 cells and showed no 

reduction in bacterial adhesion compared with their corresponding 100 % polymer 

control films.  

In another study, Hochbaum and Aizenberg demonstrated the ability to affect the 

spontaneous ordering and arrangement of P. aeruginosa cells on nanostructured 

substrate surfaces by altering the spacing between nanoposts (Figure 6.25).55  

 

Figure 6.25:  Schematic showing the change in orientation by bacterial cells to 

maximise cell-surface contact area when spacing between surface features is 

decreased [Adapted from Ref. 55]. 

It was seen that when spacing is larger than the cell diameter, the adhesion of 

bacteria on the whole is random, with a slight preference to adhere at sites where 

the substrate and posts meet (Fig. 6.25 a); as the spacing between features 

approaches the length of the cell, the bacteria position themselves parallel to the 

substrate and perpendicular to one another, contacting multiple neighbouring posts, 

so as to maximise the cell-surface contact area (Fig. 6.25 b, Fig. 6.25 c); when the 

posts are arranged so densely that bacteria cannot physically arrange parallel to the 

surface, they orientate perpendicular to the surface and parallel to the posts to 

maximise their contact area that way (Fig 6.25 d).  In this work, the spacing between 

features in PS/PCL and PCL/PMMA demixed films are again significantly smaller than 
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the length of the cell.  Whilst Hochbaum and Aizenberg concluded that cells adhered 

vertically, parallel to the posts, when the spacing between posts was smaller than 

the cell, the posts were 2 µm in height and so adhesion this way allowed for greater 

contact along the whole length of the cell.  The heights of features for PS/PCL and 

PCL/PMMA were no more than 52 nm and 88 nm, respectively, so vertical 

orientation, parallel to the height scale of the features would not advantage cells in 

increasing contact area. 

The link between feature size/spacing distance and cell diameter observed is in 

agreement with the conclusions drawn from the literature.55, 167, 180  On the surfaces 

of PS/PCL and PCL/PMMA demixed films a reduction in adhered cells is due to the 

reduced diameters and reduced spacing between features.  The surface features are 

also much smaller in height than the cell diameter so adhering perpendicular to the 

surface would again be an undesirable orientation to maximise contact area.  On the 

surfaces of PS/PMMA demixed films no reduction in adhered cells was observed due 

to the comparable diameters of both the features and the cells.  

6.7 Conclusion 

In this chapter, the relationship between surface topography on a length scale 

comparable to bacterial cell diameters was investigated.  Using the polymer demixing 

process, binary polymer blends were spin coated onto substrates to give polymer 

demixed films with distinct topographies and wettabilities, as confirmed by AFM and 

contact angle analysis, respectively.  Chemical characterisation of the surface by XPS, 

enabled determination of the interfacial preferences of the two polymers within the 

blend during the vertical phase separation.  Using this data, as well as the relevant 

literature,239, 246, 250, 251 lateral phase separation through dewetting pathways were 

hypothesised for the polymer blends.  This chapter has shown that, using a low cost 

and efficient method it is possible to fabricate materials with surface topographies 

that can control bacterial adhesion and therefore biofilm formation.  PS/PCL and 

PCL/PMMA demixed films were prepared with feature size and spacing between 

features much smaller than the bacterial cell.  As a result of this the surface was less 

desirable for the bacteria to adhere to due to the inability to maximise cell-surface 

contact area.  
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Chapter 7: Conclusions and Recommendations for Future Studies 

7.1 Conclusions 

The main aim of this thesis was to develop antibacterial alternatives to current 

antibiotics that kill bacteria and inhibit biofilm formation with a focus on medical 

implant applications.  The current issue with antibiotics is the ever growing threat of 

them becoming obsolete due to misuse and overuse.  The aim of developing novel 

antibacterial materials is not necessarily to replace antibiotics completely but to 

provide alternatives that may aid in reducing the dosage and prevalence of 

antibiotics used in clinical applications.  All the antibacterial materials fabricated in 

this thesis showed greater than 1-log reduction in bacterial counts compared to 

corresponding controls, showing promising potential as agents in reducing current 

antibiotic usage.  

A diverse range of fabrication and synthesis techniques were employed to develop 

polymeric materials with varied chemical and physical properties that could 

adversely affect localised bacteria.  XPS and FTIR analysis were used to follow surface 

specific chemical changes after every synthesis step and AFM analysis was used to 

observe topographical surface changes at the micro-/nanoscale.  The main focus of 

this thesis involved the incorporation of N-diazeniumdiolates onto surfaces with the 

aim of fabricating NO-releasing synthetic polymer materials; the NO release profiles 

of such materials were determined via chemiluminescence detection.  The 

antibacterial performance of the modified surfaces was assessed in terms of either 

their bactericidal activity or their anti-adhesion (biofilm preventing) ability.  

Planktonic cell CFU assays were carried out for bactericidal efficacy and adhered cell 

CFU assays carried out for anti-adhesion determination, against a lab strain of P. 

aeruginosa (PA14). 

In Chapter 4, NO-releasing N-diazeniumdiolate-tethered PET and SE substrates were 

fabricated.  The conclusions drawn from this chapter were as follows: 

1. NO storage and release is affected by the structure of the aminosilane 

precursor. 
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2. Low level NO release from PET and SE significantly reduces cell adhesion on 

the surface after 24 hrs, preventing biofilm formation. 

In Chapter 5, NO-releasing N-diazeniumdiolated xerogel coatings on SE substrates 

were fabricated.  The conclusions drawn from this chapter were as follows: 

1. Preforming N-diazeniumdiolates and incorporating them into xerogel 

coatings increases NO storage and release compared to tethering N-

diazeniumdiolates in situ (Chapter 4).  

2. High level NO release from N-diazeniumdiolated xerogel-coated SE kills 

planktonic bacteria (bactericidal) after 1, 4 and 24 hrs.  

3. The materials developed here are physically unstable and not suitable for use 

in medical implant applications. 

In Chapter 6, polymer demixed films with distinct surface micro-/nanotopographies 

were fabricated.  The conclusions drawn from this chapter were as follows: 

1. By varying the relative concentration of two polymers in a binary blend, spin 

coating can result in demixed films with island-, ribbon- and pit-like micro-

/nanotopographical features on the surface.  

2. Cell adhesion is dependent on surface feature size in comparison to bacterial 

cell diameter; when the structure size is smaller than the cell, reduction in cell 

adhesion is observed; when the structure size is comparable to the cell, no 

reduction in cell adhesion is observed.  

 

 

 

 

 

 

 



171 
 

    
 

Overall, this thesis can be concluded to have achieved the following aims and 

objectives:   

1. A review of the key principles in designing antibacterial surfaces led to the 

development of a broad range of materials with varying antibacterial abilities.  

The use of both a chemical approach (NO) and a physical approach (surface 

topography) allowed the fabrication of materials with bactericidal and/or 

anti-adhesive properties.  

2. NO storage and release capabilities of materials modified with the NO donor 

class, N-diazeniumdiolates were controlled in a number of ways: using 

aminosilane precursors with varying structures, the pH of the release 

medium, the temperature at which decomposition is carried out, the 

preforming of the N-diazeniumdiolate compared to in situ, and incorporation 

into xerogels with large surface area. 

3. Low level NO-release from N-diazeniumdiolate-tethered SE and PET 

substrates exhibited an anti-adhesion effect after 24 hrs, preventing biofilm 

formation. 

4. High level NO-release from N-diazeniumdiolated xerogel coated SE substrates 

exhibited a bactericidal effect after 24 hrs, but are not suitable for use in 

medical implant applications due to their physical instability. 

5. Polymer demixed binary films are anti-adhesive and prevent biofilm 

formation after 24 hrs if their surface structures are smaller than the bacterial 

cell diameter; they exhibit no anti-adhesion effect if the surface structures 

are comparable in size. 

7.2 Recommendations for Future Studies 

The research presented here has been directed at developing new antibacterial 

solutions to combat the ever-growing problem of bacterial and biofilm resistance to 

the current classes of antibiotics.  Modified medically relevant polymeric 

biomaterials for a range of medical implant applications have been put through the 

initial stages of antibacterial testing.  The extremely promising results, concluded, 

allow for a number of recommendations for future work with the aim of developing 

materials suitable for commercial use in medical implant applications.  
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1. The success of implanted medical devices is dependent on their 

biocompatibility when integrating into the body.  It is important that whilst 

the material kills bacteria or prevents adhesion, the surrounding tissue 

remains healthy.  It is therefore suggested that cytotoxicity and 

biocompatibility assays with relevant cells are carried out to ensure these 

materials would not adversely affect the tissue.  A further suggestion is to 

carry out co-culture experiments in which tissue and bacterial cell viability are 

assessed when both are present simultaneously.  

2. The aim of this thesis was to develop alternatives to current antibiotics used 

in the clinic today that are becoming ever less effective against certain species 

of bacteria as resistance grows.  The solution to this problem is not necessarily 

the complete replacement of current antibiotics but the ability to reduce both 

dosage and clinical prevalence. It is therefore suggested that stewardship 

studies be carried out in which current antibiotics are complimented with the 

antibacterial materials developed within this thesis to assess their ability in 

reducing the required antibacterial dosages for the antibiotics.  
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Abstract: The ability of nitric oxide (NO)-releasing polymer coatings to prevent biofilm formation is
described. NO-releasing coatings on (poly(ethylene terephthalate) (PET) and silicone elastomer (SE))
were fabricated using aminosilane precursors. Pristine PET and SE were oxygen plasma treated, followed
by immobilisation of two aminosilane molecules: N-(3-(trimethoxysilyl)propyl)diethylenetriamine
(DET3) and N-(3-trimethoxysilyl)propyl)aniline (PTMSPA). N-diazeniumdiolate nitric oxide donors were
formed at the secondary amine sites on the aminosilane molecules producing NO-releasing polymeric
coatings. The NO payload and release were controlled by the aminosilane precursor, as DET3 has two
secondary amine sites and PTMSPA only one. The antibacterial efficacy of these coatings was tested using
a clinical isolate of Pseudomonas aeruginosa (PA14). All NO-releasing coatings in this study were shown to
significantly reduce P. aeruginosa adhesion over 24 h with the efficacy being a function of the aminosilane
modification and the underlying substrate. These NO-releasing polymers demonstrate the potential and
utility of this facile coating technique for preventing biofilms for indwelling medical devices.

Keywords: nitric oxide donors; N-diazeniumdiolates; drug release; antimicrobial surfaces; biofilm
prevention

1. Introduction

Bacterial adhesion followed by biofilm formation at an implantation site can pose a significant
health risk for patients with indwelling medical devices. The longevity and viability of these
tissue-contacting devices are highly reliant on modifying the material surface properties to impart
antimicrobial function. Within the National Health Service (NHS), approximately 300,000 patients
acquire healthcare-associated infections (HCAIs) annually, with susceptibility to these increasing when
devices are implanted [1]. These HCAIs are of significant economic burden to health services and
are linked with increased patient morbidity and mortality [2,3]. The most frequent HCAIs detected
were respiratory tract (22.8%), catheter associated-urinary tract (17.2%) and surgical site infections
(15.7%) [4]. Owing to the prevalence of these device-related infections, there has been much focus
on developing antimicrobial coatings that can eliminate bacterial adhesion and subsequent biofilm
formation at the implantation site.

When bacteria first interact with a surface, they are in a planktonic state, which results in a rapid,
non-specific, reversible colonization of the surface [5]. If bacteria attach irreversibly, a phenotypic
change is triggered as a biofilm is formed. The pattern of gene expression for a planktonic bacterial
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cell adhering to the surface is significantly different (up to 70%) to one in a biofilm phenotype.
Biofilm bacteria irreversibly anchor to the surface and possess mechanisms that allow them to evade
immune responses of the host, thus increasing their virulence [6,7]. This increase in virulence and
resistance to antimicrobial therapies makes treating HCAIs challenging. Pseudomonas aeruginosa is
a Gram-negative bacterial pathogen frequently found in water, soil and plants [8,9] that can cause
serious infections in hosts such as humans, plants and animals [8,10]. It has been classed by the World
Health Organization (WHO) as one of the top three priority pathogens worldwide in urgent need
of new antibiotics for treatment [11]. It is the most commonly-isolated organism from patients with
hospital stays of one week or more, as well as one of the leading causes of nosocomial infections,
worldwide [12,13].

The most commonly-used strategy in terms of infection control for biomaterials and medical
devices is to incorporate antimicrobials into coatings in order to kill planktonic cells before a biofilm
can be formed at the implant site [14]. Importantly, these coatings must also balance the antimicrobial
efficacy against the growing epidemic of antimicrobial resistance. A promising strategy for the next
generation of antimicrobial coatings will be to specifically target the bacteria’s signalling pathways
affecting biofilm formation and detachment. Theoretically, by disrupting bacterial signalling pathways,
there should be a lower tendency for the bacteria to develop defence responses and resistant mutants.
The use of a “universal” antibiofilm molecule for biofilm prevention and dispersal would be ideal, but
this remains elusive. The most promising strategies would borrow from nature as they have evolved
over millions of years and are still effective [15,16].

NO is a diatomic free radical produced endogenously and has a crucial role in wound healing
and neurotransmission and is an innate host antimicrobial response against viruses, bacteria, parasites
and fungi [17–20]. The mechanism of action of NO results from its interaction with superoxide and
oxygen to form reactive nitrogen species that exhibit bactericidal properties through DNA cleavage,
lipid peroxidation and protein dysfunction [19,21]. As a result of NO having several mechanisms of
bacterial inactivation, it is regarded as a broad-spectrum antimicrobial with a low tendency towards
developing resistance mechanisms [19,21]. Moreover, very low levels of NO (nM) have been shown to
prevent biofilm formation and dispersal via a signalling pathway [22,23].

To be considered for use in the clinical setting, NO donors must be capable of controlled
NO release at the required site and be stable for storage [24]. Despite the fact that NO is
a potent therapeutic and antimicrobial agent, devising a means of storing NO is technically
challenging due to its high reactivity and short half-life [24,25]. Several types of NO donors that
are capable of releasing NO under physiological conditions have been reported: N-diazeniumdiolates,
S-nitrosothiols (RSNOs), organic nitrates and nitrites and NO-metal complexes [19,26–32]. Out of these,
N-diazeniumdiolates and RSNOs are the most widely-employed NO donors as they spontaneously
decompose under physiological conditions. When exposed to proton sources, such as water or buffer,
the N-diazeniumdiolates decompose to regenerate NO as seen in Figure 1 [32].
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First identified by Drago, N-diazeniumdiolates (1) are compounds containing the functional
group [N(O)NO], formed as a product of exposing secondary amines to high pressures of NO [33,34].
N-diazeniumdiolates have shown great potential in a variety of medical applications, requiring the
rapid or gradual production of NO as they are stable as solid salts, but theoretically release two
moles of NO when dissolved in aqueous solution at physiologically-relevant conditions, as seen
in Figure 1 [35,36]. By varying the amine precursor, N-diazeniumdiolates can be synthesized with
tuneable NO release rates with half-lives ranging from 2 s–20 h [37]. The addition of NO donors into
polymeric materials has been demonstrated to be non-cytotoxic and non-haemolytic and preserves the
mechanical properties of the underlying substrate polymer [38]; however, there is still a need to control
the payload and external long-term release of the coating, whilst also preventing leaching. Meyerhoff’s
group has demonstrated that doping lipophilic dibutyhexyldiamine diazeniumdiolate into polymer
films can be used as stable NO donors with minimal leaching [39]. The advantage of such a system
is that the proton-catalysed release mechanism of NO creates free lipophilic amine species, which
increases the pH, consequently slowing the NO release. Schoenfisch studied a range of NO-releasing
xerogel and sol-gel polymers that are capable of inhibiting bacterial adhesion [40–42]. Unfortunately,
the xerogels have had problems with stability due to the exposure of high pressures of NO during
N-diazeniumdiolate formation, which appears to enhance sol-gel polycondensation, producing dense
and non-permeable xerogel coatings [43]. Schoenfisch’s group has also developed NO-releasing
dendritic scaffolds using N-diazeniumdiolate derived from primary amine, secondary amine and
amide functionalities. The secondary amine had the highest payload/storage capacity for NO owing
to higher stability of the secondary amine diazeniumdiolates [44]. These macromolecular dendritic
NO scaffolds had half-lives that significantly surpassed those for small molecule equivalents [44]

Herein, we report on the development and antimicrobial efficacy of stable NO-releasing polymer
coatings on two medically-relevant polymers used for indwelling medical devices (poly(ethylene
terephthalate) (PET) and silicone elastomer (SE)) and their efficacy in preventing Pseudomonas aeruginosa
biofilm formation. The NO-releasing polymer coatings are synthesised as covalently tethered
aminosilane-precursor diazeniumdiolates in order to yield a range of NO-release properties.
The purpose of the study was to evaluate the relationship between the structure of the precursor
aminosilane used and its relationship to decomposition rates and biofilm prevention. Much of the
research looking at efficacy of antimicrobial coatings studies microbes in planktonic, nutrient-rich
batch cultures, which is good for initial in vitro screening; however, in vivo infections are typically
caused by bacterial biofilms [45,46]. In this study, we look at the antimicrobial efficacy by using
overnight cultures of P. aeruginosa allowed to grow for 24 h at pH 7.4 under static conditions. Clinical
isolate P. aeruginosa (PA14) was selected for biofilm prevention studies, as they are well-characterized
medically-relevant opportunistic bacteria that form biofilms [47].

2. Materials and Methods

2.1. Preparation of Polymer Substrates for Analysis

Sheets of poly(ethylene terephthalate) (PET), 0.175 mm thick, and silicone elastomer (SE), 1 mm
thick (Goodfellow, Cambridge, U.K.), were used as the substrate materials. Disks of each polymer,
6 mm in diameter, were used in NO release quantification experiments and bacterial assays. For all
other analyses, substrates were cut into 15 × 15 mm squares. Pristine substrates were subjected to
oxygen (BOC, Guildford, U.K.) plasma treatment at a gas flow rate of 14 standard cubic centimetres
per minute (sccm) and a pressure of 0.75 mbar using a HPF100 plasma treatment system (Henniker
Plasma, Warrington, U.K.).

2.2. Preparation of Aminosilanised Substrates

Substrates were aminosilanised using N-(3-(trimethoxysilyl)propyl)diethylenetriamine (DET3)
and N-(3-(trimethoxysilyl)propyl)aniline (PTMSPA) (Sigma-Aldrich, St. Louis, MO, USA), (Figure 2).
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Briefly, pristine PET and SE were subjected to oxygen (BOC, Guildford, U.K.) plasma for optimum
treatment times of 7 and 2 min, respectively, as determined from preliminary experiments. Immediately
after treatment, substrates were immersed in 10% solutions of either DET3 or PTMSPA in EtOH for 2 h.
Substrates were rinsed in anhydrous EtOH, dried in air and cured for 4 h at 80 ◦C.

2.3. Preparation of Diazeniumdiolate-Tethered Substrates

Diazeniumdiolate tethering was carried out using a stainless steel reactor built in-house. Silanised
substrates were placed into the reactor and the system purged with 6 bar of argon (BOC, Guildford,
UK) for 3 × 5 min and 3 × 10 min. The reactor was then filled with 5 bar of nitric oxide (NO) (BOC,
Guildford, UK) for 96 h. Upon release of NO from the system, the system was purged with 6 bar of
argon for 2 × 5 min and 2 × 10 min. Substrates were removed from the reactor and stored at −20 ◦C
prior to use.

2.4. Contact Angle Analysis

Static contact angles of water were used to determine changes in surface wettability following
each step of the synthesis, using an Attension ThetaLite optical tensiometer (Biolin Scientific, Västra
Frölunda, Sweden). The sessile drop method was used, and contact angles were taken at 17 frames per
second for 10 s and data recorded using OneAttension software (Biolin Scientific, Västra Frölunda,
Sweden). At least three readings were performed per sample type and the results recorded as the
mean average ± the standard deviation.

2.5. XPS Analysis

XPS analysis was carried out on an Axis-Supra instrument (Kratos Analytical, Manchester, UK)
using a monochromated Al Kα X-ray source operating at a power of 225 W. Charge compensation was
performed using a low-energy electron flood source. Survey and narrow region scans were carried out at
pass energies of 160 and 20 eV and step sizes of 1 and 0.1 eV, respectively. Hybrid lens mode was used
in both cases. Data were converted to vamas (*.vms) format and analysed using CasaXPS 2.3 software
(Casa Software, Devon, UK). Spectra were calibrated to 284.6 and 285.0 eV for SE and PET, respectively,
corrected with linear background removal and fitted using Gaussian-Lorentzian line curves.

2.6. Atomic Force Microscopy

AFM was used to observe changes in surface topography occurring during synthesis. A Bruker
Multimode 8 (Bruker, Billerica, MA, USA) system fitted with a NanoScope V controller was used,
and samples were imaged in air in ScanAsyst mode using a silicon RTESPA-150A tip operating at
a scan rate of 0.9 Hz. Third order flattening was used to correct any errors whilst processing the
image. 5 × 5 µm2 images were taken and root mean square roughness (Rq) and average roughness
(Ra) measured using NanoScope Analysis 1.7 software.

2.7. Electrochemical NO Detection

NO detection was carried out using an ISO-NOPF200 NO-specific electrochemical sensor (WPI,
Hitchin, UK). The NO probe was maintained as per the instruction manual by routinely equilibrating it
in distilled water for the purpose of acquiring stable background current measurements before samples
were tested. S-nitroso-N-acetylpenicillamine (SNAP) was used to calibrate the sensor and has been
recommended by WPI to be suitable for calibrating the system for long- and short-term donors [48,49].
Briefly, the sensor was left to polarise in 20 mL of 0.1 M CuCl2 solution. Following polarisation,
calibration was carried out on a daily basis owing to the fact that these types of electrochemical sensors
measure small changes in voltage and are therefore extremely sensitive to temperature fluctuations
and external noise [50,51]. Upon achieving a steady baseline, aliquots of 10 µM SNAP solution (20,
40, 80, 160 and 320 µL) were added sequentially to the CuCl2 solution to give final concentrations
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of 6, 12, 24, 48 and 96 nM of NO in the solution as outlined by WPI [48,49]. Each aliquot of SNAP
addition increased the voltage rapidly, followed by a plateau, which decayed before the next volume
was added. SNAP releases NO with a 60% efficiency, and this conversion yield is used to create a
calibration curve of voltage vs. NO concentration. For substrate measurements, the NO probe was
placed in either 2 mL acetate buffer (pH 4) or PBS (pH 7), until the baseline was stable (5–10 min).
Substrate disks were then placed into the solution, and measurements were taken for 30 min (pH 4)
and 24 h (pH 7). All experiments were conducted in a temperature controlled room at 25 ◦C. In order
to confirm that the electrochemical sensor was measuring NO release, 100 µM of the NO scavenger
2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, Sigma , Dorset, UK) was
added after the NO release measurements. The addition of this NO scavenger resulted in a decrease of
the response back to the baseline establishing that only NO was measured.

2.8. Biofilm CFU Assay

Antimicrobial tests were carried out against the P. aeruginosa laboratory reference strain PA14 [52].
Overnight cultures of P. aeruginosa were diluted to McFarland Standard 0.5 in Luria-Bertani (LB)
broth. Substrate disks were placed in 24-well plates and 2 mL of the bacterial solution added before
incubating at 37 ◦C for 24 h to allow biofilm formation. At the end of this time, substrate disks were
transferred to sterile well plates and washed with PBS to remove any non-adhered planktonic bacteria.
Substrates were then placed in fresh wells and repeatedly washed and agitated vigorously to remove
and re-suspend the attached biofilm. A serial dilution was performed on LB agar using the Miles
and Misra method in order to enumerate the bacteria from the biofilm. All samples were studied in
triplicate and repeated five times.

2.9. Statistical Analysis

The statistical analysis of bacterial numbers was performed using the data analysis package,
SigmaPlot 13.0 (Systat Software, San Jose, CA, USA). One-way analysis of variance (ANOVA) was used
to establish differences between group means and thus variance between treatment types. Significance
between treatment types was determined using the Student–Newman–Keuls (SNK) method. A value
of p < 0.05 was taken as statistically significant.

3. Results

The synthesis of diazeniumdiolates onto PET and SE is outlined in Figure 2. Briefly, pristine PET
and SE were plasma treated to introduce oxygen functionalisation onto the surfaces. This was followed
by silanization with the monoamine (PTMSPA) and the triamine (DET3). The aminosilane surfaces
were then exposed to a high pressure of NO for 96 h to form the N-diazeniumdiolate.
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3.1. Surface Wettability: Contact Angle

The average contact angle values after each synthesis step are recorded in Table 1. A steep
reduction in contact angle was observed on both substrates after plasma treatment, when compared
with the corresponding pristine controls, confirming an increase in wettability as a result of the
oxygen functionalisation of the surfaces. An increase in contact angle was also observed on all
substrates following silanisation of PET-DET3 (90.2◦), PET-PTMSPA (88.5◦), SE-DET3 (116.6◦) and
SE-PTMSPA (119.2◦) (Table 1), which confirmed functionalisation. After tethering the diazeniumdiolate,
there was a slight decrease from the aminosilane control surfaces for both PET (PET-DET3/NO
(79.0◦), PET-PTMSPA (81.6◦)) and SE surfaces (SE-DET3/NO (108.8◦), SE-PTMSPA (108.6◦)).
This minor increase in wettability is most likely due to the diazeniumdiolates being more polar,
as well as decomposition products (NO2

− and NO3
−) caused by the water droplet of the contact

angle measurement.

Table 1. Static water contact angle measurements of silanised and diazeniumdiolate-tethered PET
and SE.

Surface
Contact Angle (◦)

PET SE

Pristine 88.1 ± 1.0 113.0 ± 2.3
Plasma treated 19.7 ± 1.8 11.0 ± 1.2

DET3 90.2 ± 0.9 116.6 ± 1.8
DET3/NO 79.0 ± 0.4 108.8 ± 2.0
PTMSPA 88.5 ± 0.3 119.2 ± 1.5

PTMSPA/NO 81.7 ± 1.9 108.6 ± 2.8

3.2. XPS Analysis

3.2.1. PET

The success of each synthetic step for PET as a substrate was followed by XPS, and the resulting
quantitative data are given in Tables 2 and 3. Curve fitting of the C 1s envelope of PET samples gave
three components: C–C/C–H at 285.0 eV, O–CH2CH2 at 286.5 eV and O=C–O at 288.9 eV. PETox C 1s
spectra were fitted in the same way. After plasma treatment, an increase in the O 1s peak was observed
from 27–34 at %. This is attributed to an increase in oxygen functionalisation as evidenced from the
curve fitting of the C1s envelope, which showed a decrease in the aromatic/aliphatic components
commensurate with an increase in ether and ester type functional groups as seen in Table 3 (increase
of 13.4% for O–CH2CH2 and 15.0% for O=C–O). Immobilisation of the aminosilanes onto PETox was
confirmed by the appearance of the N 1s and Si 2p peak. Tethering of the diazeniumdiolate on the
surface did not change the overall elemental compositions. However, curve fitting the high resolution
N1s spectra clearly shows an additional component at 402.5 eV indicative of an N-O bond from the
diazeniumdiolate moiety (Table 3, Figure 3a,b).

3.2.2. SE

The success of each synthetic step for SE as a substrate was followed by XPS, and the resulting
quantitative data are given in Tables 2 and 4. The C 1s envelope of SE was curve fitted to give one
component at binding energy 284.6 eV characteristic of C–H/C–C/C–Si. The high resolution Si 2p peak
was curve fitted at 102.1 and 103.0 eV, indicative of R2-Si(O)2 and R-Si(O)3.Upon plasma treatment,
the at % of oxygen goes up slightly, from 32.3%–35.1%. Peak fitting of the C 1s envelope shows two
components, one at 284.6 and one at 285.7 eV (C–O). The Si 2p spectra now have an extra component
at 104.0 eV characteristic of Si(O)4 groups. SE is known to undergo rapid hydrophobic recovery
after plasma treatment [53]. The most widely-accepted mechanism for hydrophobic recovery is the
formation of an inorganic silica layer, which is covered by low molecular weight species that have
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diffused from the polymer bulk, which is consistent with what is observed here [53]. Similarly to PET,
immobilisation of the two aminosilane molecules is observed by the introduction of the N 1s peak.
Tethering of the diazeniumdiolate is confirmed by the appearance of a new peak in the N 1s spectrum
at 403.1 eV, which is indicative of the N–O bond in the (Table 4, Figure 3c,d).

Table 2. XPS derived at% of C 1s, O 1s, N 1s and Si 2p regions for PET and SE surfaces.

Sample
at %

C 1s O 1s N 1s Si 2p

PET 73.0 ± 0.4 27.0 ± 0.4 - -
PETox 66.0 ± 0.2 34.0 ± 0.2 - -

PET-DET3 56.0 ± 1.1 22.5 ± 0.2 4.7 ± 0.3 16.8 ± 1.2
PET-DET3/NO 57.2 ± 0.3 26.9 ± 0.1 5.7 ± 0.7 10.2 ± 0.4
PET-PTMSPA 61.7 ± 1.1 25.4 ± 0.2 3.3 ± 0.3 9.6 ± 0.6

PET-PTMSPA/NO 59.6 ± 0.6 25.5 ± 0.6 4.5 ± 0.9 10.4 ± 1.4

SE 38.2 ± 1.5 32.2 ± 1.2 - 29.6 ± 0.3
SEox 35.4 ± 1.5 35.1 ± 1.6 - 29.6 ± 0.5

SE-DET3 41.3 ± 1.2 28.4 ± 1.0 3.7 ± 0.5 26.6 ± 0.7
SE-DET3/NO 33.8 ± 0.9 35.1 ± 0.7 2.4 ± 0.2 29.4 ± 0.7
SE-PTMSPA 40.5 ± 1.5 30.0 ± 1.3 1.8 ± 0.0 27.7 ± 0.3

SE-PTMSPA/NO 37.1 ± 0.4 33.4 ± 0.4 1.6 ± 0.1 28.0 ± 0.0

Table 3. XPS-derived curved-fitted C 1s and N 1s components for PET surfaces.

Sample

at %

C 1s N 1s

C–H, C–C O–CH2CH2 O=C–O N–H N+ N–O

PET 59.6 ± 0.2 24.0 ± 0.2 16.5 ± 0.2 - - -
PETox 41.1 ± 0.6 37.4 ± 0.6 21.5 ± 0.1 - - -

PET-DET3 54.8 ± 3.7 40.4 ± 3.4 4.8 ± 0.7 52.0 ± 0.9 48.0 ± 0.9 -
PET-DET3/NO 62.0 ± 2.7 26.4 ± 2.1 11.6 ± 0.6 34.7 ± 0.5 32.7 ± 0.2 32.7 ± 0.3
PET-PTMSPA 69.9 ± 0.3 19.4 ± 0.8 10.7 ± 0.7 68.7 ± 1.2 31.3 ± 1.2 -

PET-PTMSPA/NO 66.2 ± 1.7 25.4 ± 0.9 8.6 ± 0.9 28.1 ± 3.1 35.9 ± 1.5 35.9 ± 1.5

Table 4. XPS-derived curved-fitted C 1s and N 1s components for SE surfaces.

Sample

at %

C 1s N 1s

C–H, C–C, C–Si C–O N–H N+ N–O

SE 100.0 ± 0.0 - - - -
SEox 82.2 ± 2.9 17.8 ± 2.9 - - -

SE-DET3 62.0 ± 6.2 38.0 ± 6.2 54.8 ± 3.2 45.2 ± 3.2 -
SE-DET3/NO 77.3 ± 5.3 22.7 ± 5.3 39.3 ± 0.2 30.4 ± 0.1 30.4 ± 0.1
SE-PTMSPA 70.9 ± 2.6 29.1 ± 2.6 66.6 ± 0.2 33.4 ± 0.2 -

SE-PTMSPA/NO 79.0 ± 2.5 21.0 ± 2.5 43.8 ± 4.5 28.1 ± 2.2 28.1 ± 2.2



Polymers 2017, 9, 601 8 of 17

Polymers 2017, 9, 601 8 of 16 

 

 

Figure 3. Curve-fitted N 1s XPS spectra for (a) PET-DET3, (b) PET-DET3/NO, (c) SE-DET3 and  

(d) SE-DET3/NO. 

3.3. Atomic Force Microscopy 

3.3.1. PET 

The surface topography of the PET, PETox, PET-DET3, PET-DET3/NO, PET-PTMSPA and  

PET-PTMSPA/NO surfaces was examined by AFM, and representative images with associated 

roughness values are displayed in Figure 4. Pristine PET has a fairly smooth topography  

(Ra = 3.2 nm). After plasma treatment, plasma-induced etching of the surface is observed by an 

increase in the roughness values. Upon silanisation, a decrease in roughness was seen for PET-DET3 

in comparison to PETox. A large variation in roughness values was observed for PET-PTMSPA; 

which is hypothesised to be due to the ease of aminosilanes forming inhomogeneous layers through 

solution phase deposition [54]. The roughness of both diazeniumdiolate tethered PET surfaces 

decreased in comparison to silanised surfaces. 

3.3.2. SE 

The surface topography of the SE, SEox, SE-DET3, SE-DET3/NO, SE-PTMSPA and SE-

PTMSPA/NO surfaces was examined by AFM, and representative images with associated roughness 

values are displayed in Figure 5. Pristine SE has a fairly rough surface (Ra = 23.0 nm). After plasma 

treatment, large cracks in the polymer can be seen (Figure 5b). This is consistent with the XPS analysis 

indicating that the SE forms a brittle inorganic silica outer layer, which can form cracks as previously 

reported in the literature [53,55–58]. Although silanised and diazeniumdiolate-tethered SE surfaces 

exhibited no significant difference (p < 0.05) in surface roughness, a less uniform array of peaks and 
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3.3. Atomic Force Microscopy

3.3.1. PET

The surface topography of the PET, PETox, PET-DET3, PET-DET3/NO, PET-PTMSPA and
PET-PTMSPA/NO surfaces was examined by AFM, and representative images with associated
roughness values are displayed in Figure 4. Pristine PET has a fairly smooth topography (Ra = 3.2 nm).
After plasma treatment, plasma-induced etching of the surface is observed by an increase in the
roughness values. Upon silanisation, a decrease in roughness was seen for PET-DET3 in comparison to
PETox. A large variation in roughness values was observed for PET-PTMSPA; which is hypothesised
to be due to the ease of aminosilanes forming inhomogeneous layers through solution phase
deposition [54]. The roughness of both diazeniumdiolate tethered PET surfaces decreased in
comparison to silanised surfaces.

3.3.2. SE

The surface topography of the SE, SEox, SE-DET3, SE-DET3/NO, SE-PTMSPA and
SE-PTMSPA/NO surfaces was examined by AFM, and representative images with associated
roughness values are displayed in Figure 5. Pristine SE has a fairly rough surface (Ra = 23.0 nm).
After plasma treatment, large cracks in the polymer can be seen (Figure 5b). This is consistent with the
XPS analysis indicating that the SE forms a brittle inorganic silica outer layer, which can form cracks as
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previously reported in the literature [53,55–58]. Although silanised and diazeniumdiolate-tethered
SE surfaces exhibited no significant difference (p < 0.05) in surface roughness, a less uniform array of
peaks and troughs can be seen when compared to pristine SE. This is due to agglomerates of silane
and resulting diazeniumdiolate found on the surface.
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3.4. NO Release: Electrochemical Detection

3.4.1. PET

Nitric oxide release was monitored for PET-DET3/NO and PET-PTMSPA/NO at ambient
temperature (25 ◦C) in real time via electrochemical detection at pH 4 and 7.4, as shown in Figure 6.
Not all pristine substrates and silanised control substrates release NO. At pH 4, a difference
was observed for the NO payload, which was dependent on the nature of the silane precursor
(DET3 vs. PTMSPA). For PET-DET3/NO, an initial burst release was observed with 3250 nM of NO
measured in under 2 min. Two smaller bursts of NO release were observed immediately after, each to
a maximum of approximately 1000 nM. A steady, continuous rise was then observed for the remainder
of the analysis. PET-PTMSPA/NO released less NO over a longer period of time, gradually rising to
a peak of 560 nM after 7 min and then flattening out at approximately 250 nM after 16 min. Lower,
steadier rates of release were observed over 24 h at pH 7.
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3.4.2. SE

Nitric oxide release was monitored for SE-DET3/NO and SE-PTMSPA/NO at ambient
temperature (25 ◦C) in real time via electrochemical detection at pH 4 and 7.4 as shown in Figure 7.
Not all pristine substrates and silanised control substrates release NO. Again for SE-DET3/NO, at pH
4, a continuous initial burst release led to a measurement of 5000 nM of NO just after 4 min. In the
same manner as PET-DET3/NO, a steady continuous rise of NO was then observed for the remainder
of the measurement. For SE-PTMSPA, NO was released steadily, reaching a peak of 1600 nM after
17 min. Lower, steadier rates of release were observed over 24 h at pH 7.
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3.5. Bacterial Response

To investigate the antibacterial activity against P. aeruginosa, a colony forming unit (CFU) biofilm
assay was carried out. The bacteria were incubated with the surfaces for 24 h in LB broth to allow
a biofilm to form. Remaining viable bacteria from the surface were then counted to test the efficacy
of the NO-releasing surfaces in biofilm prevention. The results are given in Figures 8 and 9 for PET
and SE, respectively. For all diazeniumdiolate-tethered polymers, a statistically-significant (p < 0.05)
reduction in CFU count, compared to pristine, plasma-treated and corresponding silane-tethered
control substrates demonstrates that all NO-releasing polymers are capable of disrupting P. aeruginosa
biofilms. Specifically, in the case of PET-DET3/NO and PET-PTMSPA/NO, 83% and 62% reduction
in viable bacteria was observed. Similarly, for the SE surfaces, 92% reduction was observed for both
SE-DET3/NO and SE-PTMSPA/NO.
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Figure 8. Viable P. aeruginosa cell counts (CFU/mL) after 24 h of biofilm growth on PET surfaces.
Black bars indicate control surfaces; blue bars indicate NO-releasing surfaces. The symbol * indicates
that all NO-releasing surfaces are statistically significantly different from all corresponding control
surfaces at p < 0.05.
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4. Discussion

NO is an endogenously produced molecule that plays an important role in the host antimicrobial
response [25]. Once bacterial infection occurs, cytokines signal macrophages to produce NO, which acts
as a potent oxidising agent causing oxidative stress via a plethora of reactive nitrogen intermediates.
For example, NO reacts with superoxide (also produced by macrophages) to produce peroxynitrite
(−OONO), which can damage the cell membrane due to lipid peroxidation [59]. The reactive nitrogen
species formed by NO are also able to damage DNA and denature proteins [60]. The antimicrobial
effects of NO in solution-based assays was first observed by Raulli and co-workers who showed low
molecular weight diethylenetriamine-derived diazeniumdiolate (DETA/NO) to have a bactericidal
efficacy against a range of Gram-positive and Gram-negative species [61]. Schoenfisch and Meyerhoff
doped LMW diazeniumdiolates into hydrophobic polymers [62,63]. However, there were concerns of
leaching of by-products and their potential toxicity.

To circumvent the issue of leaching and toxic metabolites, several research groups have
covalently tethered diazeniumdiolates into NO-releasing coatings. Schoenfisch’s group has developed
a series of sol-gel and xerogel coatings that are loaded with diazeniumdiolates [40–42,64,65].
These covalently-tethered diazeniumdiolate coatings were found to be effective in decreasing
bacterial adhesion of S. aureus, Escherichia coli and P. aeruginosa. The studies showed that
the maximal flux of NO released from the coatings occurred shortly after immersion in buffer
followed by a gradual release over time. The duration and amount of release was based on
the quantity and type of aminosilane used in the xerogel/sol-gel coating. For instance, the 40%
N-(6-aminohexyl)aminopropyltrimethoxysilane/Isobutyltrimethoxysilanecoatings released detectable
quantities of NO up to 20 days [42]. While promising, increasing the aminosilane concentration to
increase the NO release was limited by the xerogel stability [42].

The experimental approach taken in this study was to determine whether a simple aminosilane
coating on polymer surfaces could be tethered with diazeniumdiolates and whether the release could
be controlled in terms of the type of aminosilane used. For our surfaces, we found that the type of
aminosilane used and indeed the substrate had an effect on the flux and payload of NO released.
The DET3 silane has a triamine precursor (diethylenetriamine) with two secondary amines that can
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be used to tether diazeniumdiolates. The PTMSPA has only one secondary amine that can be used to
tether the diazeniumdiolate. Indeed, the NO release from the PET-DET3/NO and SE-DET3/NO was
higher than PET-PTMSPA/NO and SE-PTMSPA/NO at pH 4 as seen in Figures 6 and 7. From Figure 7a,
it can also be seen that at pH 4, SE-DET3/NO had an initial burst release of 5000 nM compared with
a lower initial release concentration by PET-DET3/NO (Figure 6a). This is attributed to SE being
porous, and as a result, it is hypothesised that some of the aminosilane precursor is doped within
the subsurface of the polymer. As the diazeniumdiolate reaction occurs under high pressure, NO is
able to reach the doped aminosilane precursor and form a diazeniumdiolate. This would account
for the significant increase in the concentration of NO on SE vs. PET. The shelf-life or stability of the
NO-releasing coating was analysed over a 14-day period after storage in air and at −20 ◦C. The payload
of NO release was significantly reduced when the substrates were left in air, indicating limited stability
under atmospheric conditions. Substrates left in the freezer showed a slight decrease in payload up to
14 days, indicating that the samples may be stored cold. Additional experiments exploring ways of
increasing the stability of these coatings is the focus of another study.

Diazeniumdiolate dissociation to NO is the reverse of its formation as shown in Figure 1 [66].
Therefore, the decomposition is based on the initial protonation of the amine functionality of the
diazeniumdiolate, which yields up to 2 mol of NO. As such, the decomposition of the diazeniumdiolate
moiety is dependent on the pKa of the secondary amine that is used to form the diazeniumdiolate,
and the decomposition reaction is accelerated when the molecule comes into contact with water or
another proton source (protonation of the amino nitrogen) [66], an increase in temperature [67] or a
shift in the equilibrium towards the aminosilane precursor vs. the diazeniumdiolate (Figure 1) [66].
The pKa of diethylenetriamine (the precursor used to form the DET3/NO) is 10.45, while the pKa
of aniline (the precursor of PTMSPA/NO) is 4.6. Based on the approximate pKa values, DET3
is more easily protonated and will decompose faster at pH 4 than PTMSPA. This is evident from
the NO releasing profiles of PET-DET3/NO and SE-PTMSPA/NO at pH 4 (Figures 6a and 7a),
which show DET3/NO surfaces to have a faster burst release followed by slower release than the
PTMSPA/NO surfaces. Furthermore, Nablo et al. have shown that DET3/NO xerogels exhibited an
enhanced diazeniumdiolate conversion efficiency due to the improved deprotonation resulting from
the additional amines [64]. Nablo et al. have also shown that a hydrophobic substrate such as PVC can
hinder the diffusion of water, which affects the decomposition rate, by reducing the initial NO flux
and prolonging the release duration of NO [41].

Although studying microbes in planktonic, nutrient-rich batch cultures is useful for antimicrobial
screening, in vivo infections are typically caused by bacterial biofilms [45,46]. In this study, more
persistent cultures of P. aeruginosa (PA14) grown for a 24-h incubation period have been utilised.
This assay more closely represents biofilm formation than the more commonly-used 30-min assay,
which only represents the very early stages of bacterial attachment. All four diazeniumdiolated
surfaces, PET-DET3/NO, PET-PTMSPA/NO, SE-DET3/NO and SE-PTMSPA/NO, reduced bacterial
colonisation and biofilm formation over 24 h. The reduced bacterial load after growth for the SE
surfaces was probably due to the higher initial rate of NO release, which may be crucial for fighting
the early stages of bacterial colonisation and biofilm formation. It is envisaged that a prolonged and
extended NO release in the slower phase can be effective for avoiding the recovery of bacterial growth,
and this is the focus of subsequent studies.

5. Conclusions

This paper reports on the antibacterial nature of nitric oxide, which herein has shown to actively
prevent P. aeruginosa biofilm formation when administered through different NO-releasing polymers
on PET and SE. The NO payload and release were controlled by the aminosilane precursor, as DET3
has two secondary amine sites and PTMSPA only one. All NO-releasing coatings in this study were
shown to significantly reduce P. aeruginosa adhesion over 24 h with the efficacy being a function of the
aminosilane modification and the underlying substrate. These NO-releasing polymers demonstrate
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the potential and utility of this facile coating technique for preventing biofilms for indwelling medical
devices. Future work will report on broadening the utility of these coatings in order to lengthen and
optimise release under physiological conditions.
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