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Abstract 

Cranial form is closely allied to diet and feeding behaviour in the Canidae, with the force and 

velocity of jaw closing depending on both the bony morphology of the skull and mandible, 

and the mass and architecture of the jaw adductor muscles. Previously, little has been 

reported on the details of the form and function of the jaw adductor muscles, with earlier 

studies basing functional biomechanical hypotheses on data derived from dry skull 

specimens. For this study, empirically derived muscle data was recorded from 12 species of 

wild canid to examine how the jaw adductor muscles are scaled across the range of body 

sizes, phylogenies and trophic groups. I also considered how the muscles are accommodated 

on the skull, and how this is influenced by differences of endocranial size.  Findings reveal 

that all jaw adductor muscles scale isometrically against body mass, regardless of phylogeny 

or trophic group, but that endocranial volume scales with negative allometry against body 

mass. Gross dissection techniques were used to explore the architecture of the muscles, and 

findings were used to inform the building of finite element models that predict bite force 

and strain energy density values. The inclusion of muscle architectural detail is shown to 

influence masticatory muscle force production capability calculations, indicating that 

muscles with longer fascicles were disadvantaged compared to muscles with shorter 

fascicles. Dietary groups were differentiated by temporalis fascicle angles, which, when allied 

with the differentiation of rostral length, may further contribute to specialisations of fast jaw 

closing or forceful jaw closing species. The most biomechanically demanding masticatory 

function is canine biting, and the highest strain energy values were reported in these loading 

conditions, particularly in the zygomatic arches and caudal rostrum. Specific head shapes 

may be constrained by size, with scaled strain energy density models predicting that some 

bony morphologies may only be viable in species with small body masses.  Lastly, ex vivo 

laboratory experiments and in silico models were used to explore the role of a previously 

underreported structure, the postorbital ligament, during biting. This study found that the 

postorbital ligament plays a minimal role in attenuating stress during mastication and that it 

need not be included in any future FEA bite force studies in canids. This work provides both 

original data and methodological recommendations for future projects.  It is hoped that 

these findings can help to inform future studies on masticatory function in extant and extinct 

wild canid species and domesticated canid breeds.     
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1.1 Introduction  

How species adapt to new opportunities or threats is the overarching theme in evolutionary 

biology.  Throughout this thesis ‘carnivoran’ is used to refer to any of the order of Carnivora.  

Carnivoran adaptations have been widely studied because their evolutionary history is well 

documented within the fossil record.   In addition, ecological studies of the many extant 

carnivoran species allow for behavioral correlates to be made with morphological traits.  

Comparative biological studies explore the differences and similarities between individuals, 

species or genera to identify adaptive traits.  Many previous studies have looked at 

morphological differences between different families within the carnivoran order, often with 

a focus on masticatory function, which is a key feature of carnivorans (Greaves, 1983; 

Biknevicius and Ruff, 1992; Goswami, 2006b; Van Valkenburgh, 2007; Figueirido et al., 2011; 

Goswami et al., 2011).  These broad approach studies allow for identification of traits that 

distinguish groups at a high taxonomic level.  Other work has focused specifically on 

masticatory function within the Canidae, although these have been primarily based on 

osteological material (Van Valkenburgh, 1991; Kieser and Groeneveld, 1992; Van 

Valkenburgh et al., 2004; Finarelli, 2007; Slater et al., 2009; Damasceno et al, 2013; Drake et 

al., 2015; Figueirido et al., 2015; Meloro et al, 2015; Slater, 2015).  

The Caninae are the only extant subfamily of the Canidae family and arose around 40Ma 

(megaannum ago) in the North American landmass (Wang and Tedford, 2010).  It was only 

with the demise of the other Canidae subfamilies, firstly Hesperocyoninae in the Miocene 

and subsequently the Borophaginae in the late Pleistocene, that the Caninae underwent a 

rapid and extensive expansion (Wang and Tedford, 2010). They flourished throughout the 

Pleistocene epoch and diversified into not only new ecological niches, but also began to 

spread into new geographical locations (Berta, 1987; Wozencraft, 1993; Van Valkenburgh, 

1999; Sillero-Zubiri et al., 2004; Perini et al., 2010; Prevosti, 2010; Tchaicka et al., 2016).  

Caninae are now found in all environments from equatorial forests, to arid desert and the 
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high artic, and their widespread success is reflected by their morphological diversity. Body 

masses range from less than one kilogram to in excess of eighty (Wozencraft, 1993, 2005; 

Macdonald and Sillero-Zubiri, 2004; Nowak, 2005; MacDonald, 2009; Wang and Tedford, 

2010).  Even a cursory look at the skulls of different canid species reveals that, although they 

are all identifiable as canids, they are also easily distinguishable from one another. Skull 

shapes range from the delicate gracile heads of the small foxes to the broad skulls and short 

muzzles of the dholes and wolves.  Their diet is equally varied with some species specialised 

in hunting large mammals, whilst others eat mainly insects and fruit.  The evolution of a wide 

variety of extant morphologies and diets over a relatively short period of evolutionary time 

makes the Caninae an ideal group to study, as it raises intriguing questions about the 

plasticity of the canid blueprint, and the constraints and drivers for the development of 

adaptive traits. 

This study compares 12 species in the canid subfamily of Caninae, using soft tissue and 

skeletal material to investigate the form and function of the masticatory apparatus.  This 

represents one third of extant canid species.  The aim is to quantify some of the differences 

in canid head shape, and to explore the impact of skull morphology on masticatory function. 

Specifically: 

 

• To describe for the first time, the mass and internal architecture of the jaw adductor 

muscles of twelve species of wild canid 

• To explore muscle size and scaling and to quantify head shape with regard to the 

accommodation of the jaw muscles 

• To determine how skull and muscle morphology impacts on bite force 

• To determine how masticatory function impacts on skull strain energy density 

• To explore the viability of different head shapes after rescaling  

• To assess the biomechanical role of the orbital ligament during mastication.  
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Chapter One gives a brief summary of the evolutionary history of the Canidae, and discusses 

the circumstances and adaptations of the Caninae that allowed them to flourish and succeed 

as the only extant member of the family.  The phylogeny of the extant canids is outlined and 

brief descriptions of generic mammalian and more specific canid anatomical features are 

given. I also very briefly compare the salient anatomical features of the extant canids to those 

of either their close competitors, i.e. other carnivorans, or their prey, as they must be 

functionally matched to both groups, at least to some degree.  Diet and hunting strategies 

are also discussed here.   Chapter Two discusses the methodologies common to the following 

chapters, and describes for the first time, the detailed anatomy of the jaw adductor muscles 

in 12 species of wild canid.  Chapter Three explores and quantifies head shape with regard 

to the accommodation of the jaw adductor muscles using geometric morphometric analyses 

(GMM). Factors that could explain differences or similarities in head shape include allometry, 

dietary specialisation or phylogenetic constraints, and these are explored using bivariate 

analyses and regression analyses and independent phylogenetic contrast analyses. Chapter 

Four compares the generation of muscle force, simulated bite force and the biomechanical 

performance of the skull.  Muscle force is determined using the reduced physiological cross-

sectional area (RPCSA) method. Adaptations in skull shape to improve muscle and bite 

performance are identified and discussed.  This is the first time such a complete dataset of 

any mammalian subfamily has been explored using finite element analyses (FEA).  

Comparison of the RPCSA findings with the dry skull method are made so as to compare 

methodologies.  Chapter Five discusses the role of the orbital ligament with regard to biting.  

As a soft tissue structure this feature is usually overlooked in bite force studies but has been 

posited to play a role in dissipating stress or strain across the skull during masseteric 

contraction. I investigate this with a series of laboratory experiments using cadaveric 

material which were compared to computer generated models to record the change in strain 
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across the loaded skull when the orbital ligaments were severed. This part of the study also 

includes sensitivity and validation studies to ensure that in silico models were reliably 

modelled and thus, are adequate for testing the key hypothesis.  Chapter Six summarises 

and discusses the implications of the findings.  

 

1.2 Taxonomy and phylogeny of canids. 

Establishing the evolutionary history and relatedness of species allows for contextualisation 

and categorisation.  The evolutionary history of canids is complex, with hundreds of species 

in three major subfamilies, spanning 40 million years and geographically dispersed across 

the globe.  Dietary specialisation within extinct canids can be inferred to some extent from 

body mass and anatomical traits, and by comparison with extant correlates (Slater et al, 

2009; Van Valkenburgh and Slater, 2009; Damasceno et al, 2013).  The iterative pattern of 

repeated phenotypes throughout canid evolution demonstrates not only the variety of 

environmental niches where available to them at particular times, but also the plasticity or 

constraints of their morphologies.  

 

1.2.1 Taxonomic and phylogenetic techniques and their limitations 

Taxonomy and the phylogenetic relationships amongst extinct and extant canids have been 

the focus of many studies, and yet some details at species or genus levels are still much 

debated and not fully resolved (Figueirido et al., 2015; Rueness et al., 2015; Slater, 2015).  

There has been a great deal of re-ordering of the canid family tree as new evidence is 

uncovered and analysed using increasingly sophisticated diagnostic techniques. The three 

main sources of evidence for categorising species are chronostratigraphy, morphology and 

molecular analysis.  Palaeontological studies consider both chronostratigraphic and 

morphological evidence.  Chronostratigraphy is particularly important for contextualising 

when species moved into new regions and how they adapted to novel environmental 
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conditions.  Morphology compares form, and in most cases, focuses on bony or fossilised 

remains, but may also include soft tissue structures such as muscles and viscera, and 

integumentary structures such as skin, hair and claws.  Fossil evidence is inevitably 

incomplete and biased toward skeletal material preserved in particular taphonomic 

conditions. That which has been found often consists of damaged, fragmentary or partial 

remains.  Apart from obvious diagnostic features, such as teeth and mandibles, some small 

internal structures of the skull are used to aid in determining taxonomic grouping. Of 

particular interest in carnivorans is the bony morphology of the middle ear.  This region 

exhibits some anatomical features that distinguish families within in the order Carnivora 

(Hunt, 1974; Radinsky, 1981).  Canids have an enlarged entotympanic bulla that is divided by 

a partial septum along the entotympanic and ectotympanic suture (Hunt, 1974; Wang and 

Tedford, 2010). Other features seen within the middle ear in canids are the loss of the 

stapedal artery, and its corresponding bony groove, and the medial position of the partially 

enclosed internal carotid artery (Wang and Tedford, 2010), as evidenced by its corresponding 

bony groove.  Felid species have a large bony septum subdividing the middle ear and an 

enclosed internal carotid artery, whereas ursid species have only moderately inflated bullae 

with no septum, and a wholly enclosed internal carotid artery (Wang & Tedford, 2010).   

These morphologically observable features have played a major role in identifying and 

categorising fossil evidence. Molecular evidence compares DNA (deoxyribose nucleic acid) 

sequences between species with the assumption that closely related species exhibit a high 

degree of homology between sequences. Molecular clocks, that is using the known mutation 

rate of DNA sequences to estimate clade divergence times, are used in many analyses to 

determine common ancestors and describe phylogenetic relationships (Delisle and Strobeck, 

2005; Lindblad-Toh et al., 2005; Horsburgh, 2008;  Tedford et al., 2009;  Prevosti, 2010; Lee 

et al., 2015;  Tchaicka et al., 2016).  Each of the evidential sources utilised for categorizing 

species into taxonomic groups, are in their own way, imperfect, and due to limited 
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availability of material, any analyses can only be carried out on partial datasets.  

Chronostratigraphy is confined to sampling only geographically accessible areas and is biased 

towards areas where there is greatest tradition of paleontological sampling, notably Eurasia 

and North America.  Newly discovered or analysed samples can lead to new interpretations 

of existing data. Examples of recently discovered species include Cynarctus wangi (Jasinski 

and Wallace, 2015), Lycaon sekowei (Hartstone-Rose et al., 2010) and Nurocyon 

chonokhariensis (Sotnikova, 2006), all of which need to be placed within the context of 

evolutionary history. Previously known species may be discovered in novel contexts, either 

geographically or within the fossil timeline. For instance, the recent discovery of Sinicuon 

dubius in the Himalayas, implies that this species is much older than previously thought, and 

hence may be ancestral to the extant Cuon alpinus and Lycaon pictus species (Wang et al., 

2015). Similarly, until a sampling gap of fossil Vulpes vulpes in the middle of the  Eurasian 

landmass was filled, little was known of this species dispersal pattern across the Holarctic 

region (Kutschera et al., 2013).   It is also possible that geological phenomena may disturb 

the spatial relationships of strata and confound expected timescales. In addition, the 

processes involved in the preservation of fossils, taphonomy, are subject to local geological 

and meteorological conditions.   Certain landscapes such as floodplains, rivers and lakes are 

better at producing and preserving fossil remains, whereas high and low altitude 

environments are only poorly represented in the fossil record (Wang and Tedford, 2010; 

Fernández-Jalvo and Andrews, 2016). This results in only a narrow set of conditions where 

fossil evidence may be successfully created, protected and later, uncovered.  Such evidence 

should be viewed with this in mind, as seemingly very speciose clades in the fossil record 

may reflect a preservation or accessibility artefact. In addition to naturally occurring 

taphonomic bias, sampling bias and erroneous interpretation of data may also lead to 

inaccurate conclusions.  
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Many morphological studies rely on comparison with, and inference from, other fossil 

samples, and new discoveries may result in reclassification of existing material.  In addition, 

morphological comparisons are not only limited to available material, but also to the choice 

of the investigator as to what to features to compare.  Until recent advances in imaging, 

many deep or fragile structures would have been hard to access.  Even when using 

techniques such as micro computed tomography (CT) or magnetic resonance (MR), small 

or delicate structures may have been lost in poorly preserved samples.  Soft and 

integumental tissues are also difficult to preserve, and studies using this type of material are 

far fewer than those investigating bony morphologies.  Even when non-osteological 

materials are evident in the fossil record they can usually provide only morphological, rather 

than molecular data.   Molecular phylogenetic techniques depend upon access to DNA.   

However, evolutionary trends such as differential extinction and rate heterogeneity, cannot 

be inferred from studying only modern DNA, and so inferred phylogenies using only this 

evidence are also potentially flawed (Finarelli and Goswami, 2013). To overcome this, 

techniques using ancient DNA (aDNA) have been used in several studies determining 

relationships within the canid clade, many of them focusing on domestication (Horsburgh, 

2008; Byrd et al., 2013; Druzhkova et al., 2013; Lee et al., 2015; Brzeski et al., 2016). 

However, as these techniques are only viable in specimens dating from the late Pleistocene 

onwards, they are not applicable to specimens from the early evolution of the canids.   

Sampling of aDNA material is subject to very limited datasets and also, as aDNA is generally 

degraded to some extent, to missing data within the sample.  Even when using extant species 

DNA samples, phylogenetic relationships are difficult to fully resolve.  Choices of how to 

partition gene sequences into sites where similar evolutionary characterizes are grouped, is 

subject to interpretation.  Different types of algorithmic analyses of the data (for example: 

maximum likelihood, maximum parsimony, Bayesian) often give varying results (Yang and 

Rannala, 2012).  Some researchers have used combined techniques, using two or more of 
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the above methods, to attempt to resolve the phylogeny of the canids (Wayne et al., 1997; 

Zrzavý and Řičánkova, 2004). Here I endeavor to give a broad overview of the evolution and 

phylogenetic relationships of the canids, taking into account the often-conflicting evidence 

available in the current literature.  

 

1.2.2 Evolutionary history 

Canidae are the oldest of the extant families within the Order Carnivora (Macdonald and 

Sillero-Zubiri, 2004), and were first seen as a distinct group in the middle to late Eocene. 

During the late Eocene and early Oligocene canids underwent three periods of diversification 

resulting in three subfamilies (Wang and Tedford, 2010): Hesperocyoninae, appeared 40Ma 

and became extinct 15Ma, Borophaginae, appeared 35Ma and became extinct 2Ma and 

Caninae appeared 35Ma and are currently represented by  34 - 36 extant species (Janis, 1993; 

Valkenburgh, 1999; Wang et al., 1999; Andersson and Werdelin, 2003; Wang et al., 2004; 

Tedford et al., 2009; Wang and Macdonald, 2009; Wang and Tedford, 2010). 

The timeline of canid evolution is summarised in Table 1.1 and Figure 1.1.  There have been 

at least 244 (McKenna and Bell, 1997; Wang and Tedford, 2010) identified species of canid 

across their 40 million year history, although this number is set to increase as new discoveries 

are made.  The first two subfamilies to arise, Hesperocyoninae and Borophaginae, were 

confined throughout their lineage to North America.  The third family to arise, Caninae, 

remained small in both body size and number of species throughout much of its history, but 

flourished after the Borophaginae became extinct in the Pleistocene (Wang and Tedford 

2010) (Figure 1.1).   Caninae are now found worldwide in all continents except Antarctica.   

The introduction of Canis lupus dingo, a subspecies of grey wolf, to the Australian landmass, 

is assumed to have been facilitated by humans around 1000-5000 years ago, and is not a 

true indigenous species (Fillios and Taçon, 2016).  The sequential iterations of canids were 

closely related to the successes of their competitors and prey.  Prey species, in turn, are 
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ultimately if not directly, dependent on plant material which itself responds to, and 

contributes toward, global climatic changes.  Global cooling and drying throughout the 

Eocene, Oligocene and Miocene epochs lead to a decline in broad leaf forests, and an 

increase in bushlands and grasslands.  Although not happening geographically 

simultaneously, this broad shift in habitat occurred in all continents (Janis et al., 2004).  Many 

of the small herbivorous mammals that had browsed on forest plants, evolved into larger 

grazing species, capable of processing tougher and drier vegetation (Janis, 1993; Lovegrove 

and Mowoe, 2013).   The diet of grazing mammalian herbivores consists mainly of grass, and 

these species exhibit morphological adaptations to cope with a coarse diet that is low in 

nutrients.  Some of these adaptations relate directly to the processing of food such as the 

development of hypsodont dentition, and the enlargement of the gastrointestinal tracts into 

fermentation chambers to allow nutrient extraction from cellulose (Janis, 1993; Lovegrove 

and Mowoe, 2013).  In addition, their limbs became elongated and simplified to achieve an 

unguligrade form (Figueirido et al., 2015).  The shift from browsing to grazing forced an 

increase in body mass.  Fermentation requires bulk processing of vegetation and animals 

below ~10kg cannot ferment enough material at a fast enough rate to meet their basal 

metabolic requirements.  The mean body mass of the unguligrade predecessors was ~2kg in 

the early Paleocene.  The early unguligrade species had an increased mean body mass of 

~50kg by the middle Miocene, which increased to ~ 200kg by the late Miocene (Lovegrove 

and Mowoe, 2013).   Consequently, predators capable of tackling them coevolved in terms 

of size and behavior (Figueirido et al., 2015).  Canid predators of large herbivorous mammals 

not only had to be capable of tackling substantial prey, they also had to compete with other 

carnivorous species.  In North America, the decline of other meat-eating guilds such as the 

creodonts and nimravids (false sabre toothed cats) in the late Oligocene and early Miocene, 

coincided with the expansion and diversification the Hesperocyonid canids.  As 

Hesperocyonid body size increased, their morphology indicates a move toward specialized 
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hypercarnivory, with larger teeth and shorter muzzles (Van Valkenburgh, 1999).  These early 

canids were then largely superseded by species from other families, Amphiocyonids, 

Hemicyonines, Mustelids and Ursids, many of whom had more pronounced cursorial 

adaptations (Van Valkenburgh, 1999).  The mid-late Miocene saw the rise of the 

Borophaginae canids, alongside felids, in North America (Hunt  and Tedford, 1993; Hunt, 

1996).  The Borophaginae canids were very diverse and occupied the greatest number of 

ecological niches of any canid subfamily.  The larger hypercarnivourous Borophagines 

appeared to outcompete the Amphicyonids and Hemicyonines (Van Valkenburgh, 1999).  

Hypercarnivorous canids appeared at times when other North American hypercarnivorous 

species, including creodonts (extinct carnivorous mammals), Nimravids, Mustelids and 

Amphicyonids (extinct bear dogs), were less diverse and offered less competition for food 

(Van Valkenburgh, 2007).   The Bororphagines were the dominant group of carnivores in 

North America for several million years throughout the Miocene period (Wang and Tedford, 

2010).  Even after the reappearance of felids in North American fossil record at around 18Ma, 

Boropahaginae canids continued to prosper, possibly because each group developed broadly 

different hunting strategies, and as such were not direct competitors.  Felids tend to be lone 

stealth hunters and prefer to remain under the cover of densely wooded forest (Wang and 

Tedford, 2010; Walmsley, 2012).  The Borophaginae canids became differentiated from felids 

by developing rudimentary cursorial adaptations, such as the lengthening of the limbs (Van 

Valkenburgh, 1987).  They also sacrificed the sharp retractile claws of the felids in favour of 

short tough claws to aid grip on terrain at speed, and so became more dependent on their 

dentition for dealing with prey (Wang, 1993; Van Valkenburgh et al., 2003; Andersson, 2005).  

A major extinction event in the late Miocene at around 5-8Ma removed up to 80% of North 

American genera (Janis, 1993; Van Valkenburgh, 1999).  This period saw the decline of the 

Borophaginae canids. Low diversity, high specialisation and giant size are often signs of 

terminal lineages in carnivores (Wang and Tedford, 2010).  This pattern was seen as the 
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Borophaginae first increased in body size and hypercarnivory, and then began to die out and 

were superseded by the less specialized Caninae.  
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Table 1.1 Summary of Canidae evolution 

Epoch Ma Event 
Palaeocene 
(66-57Ma) 

65 Dinosaurs become extinct, mammals start to diversify to fill the newly 
vacated niches, carnivorans first appear (in the Viverradae family)2,5,8. 

Eocene 
(56 -34Ma) 

56 The ancestral group of the canids, the Miacidae, arise from the 
Viverravids. These early canids are the size of weasels to small foxes2.  
They continue to slowly diversify throughout the Eocene8. 

40 The first identifiable canid, Prohesperocyon, appears in North America. 
This displays the diagnostic anatomy of canids - inflated auditory bullae, 
carnassial teeth and lack of upper third molar tooth. This is shortly 
followed by the emergence of Hesperocyon2,5,6. 

37 Climatic cooling resulted in less tropical forests, and more open 
grasslands1.  Canids start to move away from plantigrade stance to a 
more digitigrade one.  Adaptations to enable running allows them to co-
evolve with the increasingly cursorial herbivores and may be key to their 
future success4.  

36 

35 

Oligocene 
(33- 24Ma) 

30 Three subfamilies evolve from Hesperocyon; Hesperocyoninae, 
Borophaginae, and Caninae2,4,7,9. Caninae were confined to a few small 
fox-like species of Leptocyon8. 

Miocene 
(23- 6Ma) 

18    
 
 
 
 

Hesperocyoninae begin to die out and the Borophaginae increase in 
number and diversity. At this time point many hyper and 
hypocarnivorous species existed, and canids filled more environmental 
niches than at any other timepoint in their history8.  Borophaginae start 
to become larger and more hypercarnivorous2,3,4,9. 

15 Caninae species start to diversify.  This is attributed to a change in climate 
favouring grassland, which in turn favoured cursorial herbivores, in turn 
favouring the cursorial canids above other predators1.  The Caninae 
already exhibited some cursorial adaptations that were lacking in the 
Borophaginae (slender distal limbs with a reduced first phalanx), which 
put them at a greater advantage4 during pursuits. Borophaginae start to 
decline.  Vulpini tribe within Caninae appear5,8. 

6 Caninae begin to prosper due to the dying off of the smaller 
Borophagines.  For the first-time canids break out of north America via 
the Bering strait and start to colonise Europe and then, Africa8. 

Pliocene 
(5- 3Ma) 

5 Canids arrive in Asia5,8. 
3 The isthmus of Panama land bridge between north and south America 

appears and canids start to migrate to south America2,5,8. 

Pleistocene 2 The last of the Borophagines become extinct leaving Caninae as the only 
surviving subfamily of canids.  The combination of anatomical 
adaptations for cursorial hunting, an abundance of prey and land bridges 
opening access to most of the land masses of the world created the 
greatest period of canid expansion2,3,4,5,7,8. 

Holocene 1 36 extant species of canid 

1. Janis, 1993  
2. Valkenburgh, 1999  
3. Wang et al, 1999  
4. Andersson and Werdelin, 2003  
5. Wang et al., 2004  
6. MacDonald, 2009  
7. Tedford et al., 2009  
8. Wang and Tedford, 2010 
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Figure 1.1 Diversity of species through time in the three subfamilies of Canidae, after Wang and 

Tedford (2010).   

 

1.2.3 The rise of the Caninae 

The subfamily Caninae originated from the North American landmass and remained confined 

to this continent for much of their history (Wang et al., 2004; Prevosti et al., 2009; Tedford, 

et al., 2009; Sotnikova and Rook, 2010).  Fossil evidence shows Leptocyon, the precursor to 

all modern canids, existing in various small weasel to fox sized forms from around 30 Ma to 

around 8Ma (Van Valkenburgh, 1999; Wang and Tedford, 2010).  With the opening up of 

ecospaces previously occupied by the Borophagines, the Caninae began to flourish. At 

around 10 Ma the first major branch from Leptocyon developed into the Vulpes clade, and 

another branch soon after became the Eucyon clade, which later evolved to be the Canis 
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clade.  Leptocyon, the first recognised member of the Caninae, became extinct around 9Ma. 

Around 8Ma the Caninae began to migrate beyond North America, and specimens start to 

appear in the fossil record in Europe, Africa and Asia (Hunt, 1996; Van Valkenburgh, 1999; 

Wang and Tedford, 2010). The timing of the sudden expansion of both the number of 

Caninae species and their geographical dispersal is complex and has caused much debate.  

The Bering strait land bridge existed long before canids dispersed to Europe, Africa and Asia, 

and yet they appeared not to have moved out of North America until the late Miocene (Wang 

and Tedford 2010).  A number of related theories have been proposed. Firstly, the Bering 

region was highly forested and as such precluded early canids from moving into it as the 

contemporaneous felids dominated this type of environment.  Another possibility is that the 

changing anatomy of the new Caninae species towards a more cursorial form (longer limbs 

with a reduced skeleton) allowed canids to cover greater distances and they began to utilise 

the new grassland landscapes that were opening up within the North American landmass 

(Van Valkenburgh, 1987; Van Valkenburgh, 1999; Andersson and Werdelin, 2003). 

Researchers have also proposed that canids were able to cross the Bering land bridge but 

were met with such strong competition from existing felids and hyaenids that they failed to 

gain any significant foothold, and it was only the decline in these species that allowed wide 

geographical dispersal of canid species (Wang and Tedford, 2010).   As none of these theories 

are mutually exclusive, in all probability it was a combination of competitive and 

environmental factors that allowed for this great canid radiation into Europe, Asia and Africa. 

This complex scenario differed from the canid expansion into South America approximately 

3Ma, which occurred as a result of the Panamanian land bridge opening due to global cooling 

(Wayne et al., 1997; Van Valkenburgh, 2007; Nyakatura et al., 2012; Tchaicka et al., 2016).  

Few large carnivores existed in South America before this time and the lack of competition 

from other sympatric species allowed multiple migrations of canids into South American 

where they quickly radiated and diversified into many environments (Berta, 1987; 
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Wozencraft, 1993; Van Valkenburgh, 1999; Sillero-Zubiri et al., 2004; Perini et al., 2010; 

Prevosti, 2010; Tchaicka et al., 2016). 

The mass radiation of canids happened over a relatively short period of time (Nyakatura et 

al., 2012), which is one of the factors that makes categorisation of modern canids so difficult.  

To discriminate between closely related species a great quantity of genomic sequence is 

required to yield enough informative nucleotide sites for unambiguous reconstruction of 

phylogenetic trees (Lindblad-Toh et al., 2005).  For this reason, the current taxonomy of 

canids is, at least partially, unresolved, and most authors acknowledge that any detailed 

phylogenetic trees have some branches that are poorly supported by the evidence. However, 

some common themes populate the literature: it is widely supported that the grey foxes 

(Urocyon) are a basal clade that separated from the other modern canids early at the start 

of the last radiation and formed a sister group to all other extant canids.  The remaining 

species fall into two groups - one of which contains Otocyon megalotis, Nyctereutes 

procyonoides and all of the Vulpes species, and one which contains all other species, 

including jackals, wolves and the South American foxes. (Wayne et al., 1997; Zrzavý and 

Řičánkova, 2004; Lindblad-Toh et al., 2005; Agnarsson et al., 2010; Perini et al., 2010; 

Nyakatura et al., 2012).  Many authors agree that the South American canids form a 

monophyletic clade.  However, divisions within the South American group are less clear. 

Some authors speculate that there are two groups - Chrysocyon brachyurus and Speothos 

venaticus form one group, and all of the South American foxes form the other group 

(Lindblad-Toh et al., 2005; Perini, et al., 2010). However, other studies (Bardeleben et al., 

2005; Lindblad-Toh et al., 2005) consider that both Chrysocyon brachurus and Speothos 

venaticus may be better aligned to other clades.   Nyakatura places Speothos with Lycaon 

pictus as a sister clade to all remaining canini.  Bardeleben considers that Chrysocyon 

brachurus may be grouped with either the South American foxes, the wolf like canids or 

Speothos venaticus.  
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1.2.4 Extant canid taxonomy 

Order carnivora 

Suborder caniforma 

Superfamily cynoidea 

Family Caninae 

Tribes – canini and vulpini 

There are 34 - 38 species within 10 - 14 genera of extant canid, all belonging to the subfamily 

Caninae (Wozencraft, 1993, 2005; Macdonald and Sillero-Zubiri, 2004; Nowak, 2005; 

MacDonald, 2009; Wang and Tedford, 2010).  The uncertainty in quantifying the exact 

number of genera and species is accounted for in the ambiguity relating to their 

classification.  This is occasionally due to new species being discovered and therefore not 

being recognised in older texts. However, it occurs more often due to the taxonomic revision 

of existing species. Revised species are often subsequently given new common and/or 

binomial names.  The classification of species, even using advanced molecular techniques, is 

also often confounded by hybridisation between similar species who, by nature or human 

intervention, share the same geographic territory.  Whether a group of related animals are 

a species or subspecies may also be contentious.  Many recent examples highlight these 

confounding factors: the wolf may be classified as one species (Canis lupus) (Wilson and 

Reeder, 2005), two species (Canis lupus and Canis rufus) (Nowak, 2005), or three species 

(Canis lupus, Canis rufus and Canis lycaon) (Kyle et al., 2006).  Similarly, Canis aureus lupaster, 

the Eygyptian Jackal, was formerly considered to be a subspecies of Canis aureus, the golden 

jackal.  However, following work that highlighted morphological similarities between Canis 

aureus lupaster,  and Canis lupus (Ferguson, 1981), further studies using molecular analysis 

of DNA, have confirmed that Canis aureus lupaster  is closely related to Canis lupus (Rueness 

et al., 2011; Koepfli et al., 2015).   As to whether this is now a subspecies of Canis lupus or a 

phylogenetically distinct species continues to be debated, as does the possibility of re-
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naming (Sillero-Zubiri et al., 2004; Koepfli et al., 2015).  Similarly the dingo (Canis lupus dingo) 

is described as either a subspecies of domestic dog (Canis lupus familiaris) (Nowak, 2005), or 

a subspecies of Canis lupus, possibly derived from the Indian wolf subspecies, Canis lupus 

pallipes, (Sillero-Zubiri, et al., 2004; MacDonald, 2009).  Further examples of taxonomic 

revision within the canid clade include the raccoon dog, Nyctereutes procyonoides which is 

arguably separable into two distinct species (Kauhala and Saeki, 2004), and Vulpes zerda 

which is named as Fennecus zerda when placed in its own genus, Fennecus, (Geffen et al., 

1992; Wayne et al., 1997; Nowak, 2005), but called Vulpes zerda when placed within the 

Vulpes genus (Macdonald and Sillero-Zubiri, 2004; Sillero-Zubiri et al., 2004). Similarly, the 

arctic fox has the binomial Alopex lagopus when placed in its own genus (Alopex) (Macdonald 

and Sillero-Zubiri, 2004; Nowak, 2005), or Vulpes lagopus when considered as belonging 

within the Vulpes genus  

Notwithstanding ongoing taxonomic deliberations, for the purposes of this thesis I follow the 

categorisation and nomenclature from Wilson and Reeder (1993).  The later edition (Wilson 

and Reeder, 2005) reclassifies Alopex lagopus as Vulpes lagopus. For detailed descriptions of 

species used in this study see ‘Species details’ in Appendix 1.  

 

1.2.5 Phylogenetic trees  

Published phylogenetic trees of Caninae (Zrzavý and Řičánkova, 2004; Lindblad-Toh et al., 

2005; Nyakatura et al., 2012) have used molecular and morphological analyses to attempt 

to clarify the evolutionary history and relationships between the extant canids.  Lindblad Toh 

et al.’s (2005) molecular analysis allows the canids to be grouped into four main clades: the 

red fox-like clade, the wolf-like clade, the South American clade and the grey fox-like clade 

(Figure 1.2).  The more recent tree by Nyakatura et al (2012) concurs with these groupings 

with the exception of placing Speothos venaticus with the wolf like clade, rather than the 

South American clade (Figure 1.3).  Zrzavý and Řičánkova (2004) executed multiple tree 
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based on different datasets, both molecular and morphological, and concludes that Speothos 

venaticus is difficult to place, sometimes grouping with the South American subset, and 

sometimes with the wolf subset. 

For all of the phylogenetic analyses within this study I used the tree published by Nyakatura 

et al. (2012), as this was an open source resource and is widely cited within the literature 

(Rolland et al., 2014; Michaud et al., 2018; Prevosti and Forasiepi, 2018; Rizzuto et al., 2018; 

Wu et al., 2018).  

Figure 1.2. Phylogenetic tree of the extant Caninae from Lindblad-Toh et al. (2005).
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Figure 1.3 The complete downloaded tree from Nyakatura et al. (2012).  This differs from the 

Lindblad-Toh et al. (2005) tree in the placement of Speothos venaticus with the wolf like species, 

rather than the South American species. 
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1.3 Canid anatomy. 

The focus of this thesis is the gross functional anatomy of the canid head, specifically the 

structure and function of the jaw adductor muscles and their relationship to the skeleton of 

the head.  Jaw adduction plays a key role in acquisition and processing of food, and in 

drinking, panting and social behaviours such as grooming and vocalisation. This thesis 

focuses on jaw adduction in relation to masticatory function, that is, biting for food 

acquisition and processing.  In order to contextualise the role of the head, I firstly consider 

the post cranial anatomy with regard to hunting and digestion.  To highlight some of the 

salient anatomical adaptations I briefly compare the canids to their close carnivoran 

counterparts, felids, ursids and mustelids, plus some of their prey species, chiefly large and 

small herbivorous mammals. Carnivoran competitors must be well matched in the 

functionality of prey capture, killing and food processing, whilst herbivorous prey must be 

equalled in speed and manoeuvrability to ensure hunting success in at least some pursuits.  

In part 1.3.2 I describe the features of the generic mammalian head salient to this thesis, and 

focus on properties particular to canids.  

 

1.3.1 Post cranial form and function. 

Two important influences have shaped how the canids specialise and differ from the basic 

mammalian quadruped blueprint: that they, like nearly all carnivorans, are meat eaters, and 

that they, unlike most carnivorans, are adapted for cursorial hunting (Wayne 1986; Van 

Valkenburgh, 1987; Figueirido et al., 2015). Cursorial animals have evolved to run both 

quickly and efficiently, often for sustained periods of time. These factors greatly influence 

both cranial and post cranial anatomy, and trade-offs in functionality, for example that the 

dexterity of the distal limbs is sacrificed for a reduced lightweight skeleton, are common.  

Such compromises often have consequent effects on cranial anatomy.  For instance, species 

unable to use their forelimbs to apprehend prey must rely on their jaws and teeth to do so.  
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1.3.1.1 Spine 

The canid spine is made up of seven cervical, thirteen thoracic, seven lumbar, three sacral 

and up to twenty coccygeal vertebrae.  The areas that exhibit the greatest flexibility are the 

cervical region, where flexion of the neck is important for obtaining and manipulating food 

and drink, plus it is essential for grooming, and the caudal thoracic and lumbar region (Getty, 

1975; Evans and De Lahunta, 2013; Singh et al., 2018).  It is the great flexibility at the caudal 

thoracic and lumbar region that allows the alternating spinal flexion and extension seen in 

the fast gallop of canids. At such high pace the distal part of the hindlimbs may be placed 

alongside or in front of the distal forelimbs, greatly extending overall stride length, which is 

the goal of all cursors (Hildebrand et al., 1995).  One notable feature of the lumbar vertebral 

region is the relatively short transverse processes of the vertebrae which are reduced as they 

do not need to support the extensive musculature needed to contain a large abdomen as 

seen in herbivores.  In addition, the articular processes of the lumbar vertebra do not display 

the pronounced ‘interlocking’ form that is frequently seen in herbivorous species (Dyce et 

al., 2009; Getty, 1975). The interlocking processes create a strong, rigid and inflexible spine 

which is able to support the weight of the enlarged herbivore gastrointestinal tract, and so 

are not necessary in the canid.  The intervertebral discs, the collagenous soft tissue 

structures that lie between the vertebrae and are not present when regarding skeletal 

material alone, are also diagnostic of spinal function.  It is the relatively large size of the 

intervertebral discs in canids, especially in the cervical and lumbar regions that contributes 

towards enhanced flexion and extension in this region (Evans and De Lahunta, 2013).  In 

ungulates the intervertebral discs account for around 10% of the overall spine length, but 

they make up around 16% in dogs (Dyce et al., 2009).  In carnivores, the deeply lobed 

appearance of the viscera lying within the central part of the trunk i.e. the lungs in the thorax 

and the liver in the abdomen, also reflect the increased degree of spinal movement as this 

allows the individual lobes to slide over one another during ventral flexion, rather than 



 36 

become compressed.  In contrast, the straight-backed ungulates have only shallow or even 

absent divisions between the lobes of their lungs and liver.  

 

1.3.1.2 Neck 

The neck of the canids distinguishes them from other carnivorans.  Within the neck the 

nuchal ligament runs from the first cervical vertebra, the axis, to first thoracic vertebra and 

is continuous with the supraspinous ligament.  It is a thick elastic structure and helps support 

the weight of the head, whilst conserving muscular effort (Hildebrand et al., 1995; Dyce et 

al., 2009; Evans and De Lahunta, 2013).   Within the extant carnivorans, only canids possess 

a nuchal ligament, and within the canid guild it is only the extant subfamily, the Caninae, that 

do so (Wang and Tedford, 2010). Inference from fossil remains suggests that the nuchal 

ligament was absent in both the extinct Hesperocyoninae and Borophaginae families. Felids 

too lack a nuchal ligament, which has led to speculation it acts as a compensatory device to 

offset the longer neck, and hence the longer lever arm, of canids (Hildebrand et al., 1995).  

Not only is the canid neck relatively longer than that of the felid, it also has relatively less 

muscle mass, and so is weaker (Dyce et al., 2009).  The short well-muscled neck of the felids 

allows for more powerful control over their prey during the kill (Macdonald, 1992).  Fossil 

evidence shows that the extinct canid families also had shorter stockier necks and may have 

hunted and killed in a similar way to modern felids (Wang and Tedford, 2010; Andersson, 

2005).  Felids, and extinct canids, had shorter faces, and hence shorter nasal cavities, which 

may imply less of a reliance on olfaction, and a greater reliance on sight for hunting.  Wang 

and Tedford (2010) posit that the longer length of the canid neck is needed to follow scent 

trails that are located primarily on the ground, and that the lengthening of the neck may 

have been particularly necessary due to the lengthening of the limbs that is seen in the 

Caninae subfamily. 
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The relative weakness of the long slender canid neck is not disadvantageous when hunting 

small prey (Macdonald, 1992; Wang and Tedford, 2010).  As hypercarnivory evolved in the 

Caninae, individuals formed packs to disarm and kill large quarry.  Neck strength may be one 

of the morphological constraints of modern canids that consigns them to a pack hunting 

lifestyle.   Hildebrand (1952) notes that the modern hypercarnivorous canids, Canis lupus, 

Cuon alpinus and Lycaon pictus, do have slightly shorter necks than predicted for canids  of 

their body mass, and so maybe are evolving towards more hypercarnivorous forms. 

 

1.3.1.3 Limbs 

Morphological cursorial adaptations of the limbs are less pronounced in canids than in their 

large herbivorous prey.  Although predator and prey species must be well matched to 

maintain a sustainable ecological equilibrium, canids have the advantage of a flexible spine, 

something that the herbivores, with their large rounded abdomens, are unable to achieve 

(Getty, 1975; Hildebrand et al., 1995; Singh et al., 2018).  Ungulates, constrained by their 

relatively rigid spine, demonstrate extreme cursorial adaptations of the limbs, whilst canids 

demonstrate only a moderate elongation of the limbs (Getty, 1975; Hildebrand et al., 1995).  

The different anatomical adaptations which are allied to dietary constraints, ensure that the 

top running speeds of large prey species such as bison (Bison bison), wildebeest 

(Connochaetes) and zebra (Equus zebra) are well matched to that of their hypercarnivorous 

pursuers such as Canis lupus, Cuon alpinus and Lycaon pictus.  In his review paper of 

mammalian running speeds, Garland (1983) describes Canis lupus, Lycaon pictus and Canis 

mesolmelas as all exceeding running speeds of 60km/h.  Their prey, such as bison (Bison 

bison), zebra (Equus zebra) and various Cervidae, are recorded as having similar maximum 

speeds of between 56-65km/h (Mech, 1970; Garland, 1983).   A defining feature of the limbs 

of the cursorial mammals is the simplified range of movement to simple protraction and 

retraction, with little or no rotational or abductional movements, especially in the forelimbs 
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(Van Valkenburgh, 1987).  Although the proximal limbs demonstrate some cursorial 

adaptation they retain relatively large and robust bones to accommodate the muscle masses 

required to move the limbs (Getty, 1975; Hildebrand et al., 1995; Singh et al., 2018).  The 

more distal segments of the limbs are elongated with reduced skeletal and muscular 

components (Hildebrand et al, 1995).  Specific limb related cursorial adaptations are 

discussed below.  

 

Forelimb 

The lateral compression of the ribcage is a key anatomical trait seen in cursorial mammals. 

It allows the scapulae to be positioned on the lateral aspect of the thorax, and so act as a 

functioning part of the limb (Hildebrand et al., 1995; Kardong, 2015).  This is in contrast to 

more primitive species or those that are adapted for climbing, where the scapulae lie on the 

dorsal or posterior surface of a dorsoventrally flattened thorax (Hildebrand et al., 1995; 

Kardong, 2015).  The scapulae in cursorial mammals are enabled to protract and retract, 

effectively lengthening stride length (Hildebrand et al, 1995).  In form, the cursorial scapulae 

are simplified and the bony prominences such as the coracoid and acromion are vestigial or 

absent (Hildebrand et al., 1995; Kardong, 2015; Singh et al., 2018).   In extreme cursors such 

as equids, the dorsal border of the scapula is also extensively enlarged by an unossified rigid 

cartilaginous process which increases the long axis of the scapula, in effect lengthening limb 

length and thus stride length (Hildebrand et al., 1995; Getty, 1975).  Canid scapulae 

demonstrate only small acromial, corocoid and hamate processes, and lack the 

suprahammate process found in felids (Getty, 1975; Evans and De Lahunta, 2013; Singh et 

al., 2018).  The reduced form of the cursorial scapula reflects their limited range of motion.  

Although the glenohumeral joint retains the ancestral ball and socket morphology, 

functionally it acts as a hinge joint allowing only fore and aft movements to any degree. The 

strong tendons of insertion of the subscapularis, supraspinatus and infraspinatus muscles act 
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as collateral ligaments running proximodistally across the joint to restrict any lateral or 

rotational shoulder joint movements (Evans and De Lahunta, 2013).  The clavicle is absent or 

vestigial in cursors (Oxnard, 1968; Hildebrand et al., 1995).  In the equids and bovids, no trace 

remains, whereas in the canid, a small tendinous line indicates the ancestral position and in 

some specimens this may ossify in later life (Getty, 1975; Dyce et al., 2009; Thrall and 

Robertson, 2015). The effect of losing or reducing the clavicle has two major implications. 

Firstly, there is no fixed bony connection of the shoulder region to the axial skeleton, and 

freed from such constraints, the shoulder joint may be drawn extensively cranially or 

caudally, considerably increasing stride length.   Secondly, the muscles attaching to the 

clavicle, cleidomastoideus, cleidocervicalis and cleidobrachialis, unite to become one long 

straplike muscle, brachiocephalicus (Evans and De Lahunta, 2013).  This extensive muscle 

runs from the caudal skull and dorsal neck to the distal cranial surface of the humerus, and 

is a powerful protractor of the forelimb.   Felids retain a small bony clavicle, and although it 

does not articulate with any other part of the skeleton and is skeletally functionally obsolete, 

it serves to clearly delineate the individual muscles of brachicephalicus (Getty, 1975; Evans 

and De Lahunta, 2013; Singh et al., 2018).  The more complex shoulder anatomy of felids, 

with more prominent scapula processes and a bony clavicle, reflects the wider range of 

shoulder movement which is utilised during grappling prey and climbing (Getty, 1975; Evans 

and De Lahunta, 2013; Singh et al., 2018).  Within the carnivorans, forelimb anatomy is also 

characteristic of specific hunting methods (Van Valkenburgh, 1985; Van Valkenburgh, 1987;  

Andersson, 2004).  Current literature cites three methods of hunting that are allied to 

forelimb morphology: ambush, pounce/pursuit and pursuit (Andersson and Werdelin, 2003; 

Janis and Figueirido, 2014; Figueirido et al., 2015).  The humeral component of the elbow 

joint in particular, is diagnostic of predatory habit (Andersson and Werdelin, 2003; Janis and 

Figueirido, 2014; Figueirido et al., 2015).  Ambush predators, have wide (from medial to 

lateral) elbow joints, capable of a large degree of pronation and supination in the 



 40 

antebrachium, an action used for grappling prey and climbing (Andersson, 2004).  Ambush 

predator elbow morphology is considered to be the generalised condition and is found in all 

early forms of carnivores, including the early Caninae.  Ambush predators are seen 

extensively in the extant felid ursid and mustelid families where the laxity of the joint allows 

for the forelimbs, with their sharp claws, to be used tackling prey (Andersson and Werdelin, 

2003). No ambush predator elbow morphologies are found within the extant canid species, 

as these were superseded by more cursorial forms from the late Miocene (Andersson and 

Werdelin, 2003). 

Around 7Ma pounce/pursuit elbow morphologies began to appear in the Caninae lineage, 

followed at around 2Ma by the most derived form, the pursuit predator elbow morphology 

(Figueirido et al., 2015).  Pursuit hunters have a narrow (from medial to lateral) elbow joint 

which is relatively fixed in the prone position, allowing only very limited rotation of the distal 

limb (Andersson, 2005). The distal condyle of the humerus, composed of the capitulum and 

trochlea, that articulate with the radius and ulna respectively, is much narrower than in the 

ambush predators (Andersson and Werdelin, 2003).  This form limits rotation, increases 

stability, and enables the elbow to function primarily as a hinge joint, which is of great benefit 

to efficient sustained trotting and running.   Canid pursuit hunters are represented by the 

modern species Canis lupus, Cuon alpinus and Lycaon pictus (Janis and Figueirido, 2014; 

Figueirido et al., 2015) who specialise in long distance pursuit and endurance hunting. All 

other extant canids are pounce/pursuit hunters, specialising in short distance sprinting and 

either grabbing prey by the neck or pouncing to restrain them with their forepaws. 

Pounce/pursuit hunters, have an intermediate morphology, with a moderately narrow 

humeral condyle.  

The bones of the brachium and antebrachium are relatively long and slim and have a very 

congruent elbow joint to promote stability whilst running (Getty, 1975; Hildebrand et al., 

1995; Singh et al., 2018).  In canids and felids, the radius and ulna maintain their identity as 
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two separate bones, but they have become united and reduced in the ungulates.  The ability 

to pronate or supinate the distal antebrachium or paw is still very evident in felids, much 

reduced in canids, and due to the fused nature of the antebrachial bones, completely absent 

in the ungulates.  Muscles associated with rotation of the distal limb are correspondingly 

evident: in the cat, two supinators, brachioradialis and supinator, and two pronators, 

pronator teres and pronator quadratus, are clearly present. The canids usually possess all 

four muscles although the brachioradialis is very slight. Ungulates have none of these 

muscles,  their function is obsolete and their mass would only add to the weight of the distal 

limb (Getty, 1975; Dyce et al., 2009; Liebich et al., 2009; Evans and De Lahunta, 2013).  The 

bones of the carpus are reduced and simplified in all cursorial species. In canids and felids, 

the radial and intermediate carpal bones are fused. Equids variably lack a first carpal bone 

and ruminants lack a first carpal bone and the second and third carpal bones are fused (Dyce 

et al., 2009; Liebich et al., 2009).  Range of motion at the carpal joint is largely confined to 

simple flexion and extension.  The majority of canids and all felids have five metacarpal bones 

and associated phalanges, although the most medial is much reduced, and colloquially called 

the dew claw. The dew claw is vestigial and has little function but may play a small role in 

food manipulation. The first digit is lost altogether in Lycaon pictus, and the second and third 

digital pads are usually fused in this species. Both of these adaptations of reduction and 

simplification, have been associated with the very cursorial lifestyle of Lycaon (Sillero-Zubiri 

et al.,  2004; MacDonald, 2009).   To aid the semi-aquatic lifestyle of the bushdog, Speothos 

venaticus, it has partially webbed feet (Zuercher et al., 2004). Ruminant ungulates have fused 

metacarpal bones three and four, and digits two and four are represented by vestigial 

remnants. In equids, the most extreme cursorial limb adaptations are evident with digit three 

becoming the only weight bearing component, and vestigial remains of digits two and four 

evident as small splint-shaped bones.  
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Canids, with their moderate limb adaptations, deploy a digitigrade stance, where at normal 

standing position only the palmar or plantar aspects of the phalanges, or more accurately 

their footpads, are in contact with the ground. Ungulate species are, by definition 

unguligrade, that is, weight bearing on only the tips of the digits, protected by the structure 

of the horny hoof (Hildebrand et al., 1995; Kardong, 2015, Singh, 2018). Ruminants bear 

weight on two hooves, and equids on one single hoof per limb. The canids have well 

developed digital and metacarpal/metatarsal footpads. These structures consist of a densely 

cornified epidermis covering a collagenous fatty pad. They act to cushion and protect the 

bony structures of the food and their roughened appearance may aid grip in slippery 

conditions (Nickel et al., 1981).  Canid claws are blunt and non-retractile.  Canids appear to 

have lost the ability to retract their claws early in their evolutionary history, with the fossil 

remains of the early Hesperocyon species showing reduced phalangeal lateral ridges that 

housed the retracted claws (Andersson, 2005; Wang and Tedford, 2010). The assumption 

follows that non-retractile claws are blunt as they are eroded by exposure to the ground. 

This indicates a move away from arboreal dwelling to ground dwelling as sharp claws help 

with climbing (Wang and Tedford, 2010).    The function of blunt claws is to aid grip on even 

ground, scratching for parasite removal and for digging, either to unearth prey or to dig dens 

for shelter.  They do not function as a weapon to catch prey or as grappling irons to aid tree 

climbing, both actions which are seen in the felids (Hildebrand et al., 1995; Andersson, 2005; 

Wang and Tedford, 2010). 

 

Hindlimb 

The ilium of the pelvis of the ungulates is relatively vertical.  The effect of this is to bring the 

sacroiliac joint directly above the hip joint, which aids in carrying the heavy burden of the 

trunk (Getty, 1975). This is less important in the carnivore species as they have proportionally 

smaller and lighter abdomens, and consequently have a more obliquely orientated pelvis 
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with the sacroiliac joint cranial to the hip joint.  The more oblique angle of the canid ilium 

increases the effectiveness of the abdominal muscles in flexing and extending the spine, 

which aids the bounding gate of the carnivores. Unlike the ball and socket arrangement of 

the shoulder joint, the ball and socket formation of the hip joint in carnivores is still capable 

of rotational movements, for example during squatting and leg cocking activities associated 

with urination and scent marking (Evans and De Lahunta, 2013).  The range of movement at 

the hip joint in ungulates is much more restricted. Ruminant hip anatomy allows for a small 

amount of outward rotation, which allows the flexed stifle to avoid hitting the abdomen 

during fast gait (Dyce et al., 2009).  Equids possess an accessory ligament, which runs from 

near midline as a detachment of the prepubic tendon, and passes under the transverse 

tendon at the point of the acetabular notch, to insert on the femoral head.  This effectively 

prohibits abduction or rotational movements of the equine hip, another example of their 

extreme cursorial adaptation (Getty, 1975; Dyce et al., 2009; Liebich et al., 2009).  In both 

canids and ungulates, the femur is around one fifth longer than the humerus, to compensate 

for the lack of an elongate lateral girdle bone, as in the scapula in the forelimb. The skeleton 

of the distal hindlimb, like that of the forelimb is simplified in form and reduced in mass. The 

tibia and fibula are both present in the carnivores, although the fibula is very slight. In 

ruminants the fibula shaft is absent with only the proximal and distal extremities remaining. 

In equids the fibula is very slight and only the proximal half is present (Getty, 1975; Dyce et 

al., 2009; Liebich et al., 2009).   As in the forelimb carpus, there is a similar pattern of bones 

in the tarsus, with fusion and reduction of certain bones, simplifying the overall 

arrangement.  Bones, integumentary and soft tissue structures of the pes are very similar to 

those of the manus in all species.  
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1.3.1.4 The gastrointestinal tract 

The gastrointestinal tract is concerned with the acquisition, mechanical and chemical 

processing of nutrients, and the elimination of waste.  As, in essence, it is a modified tube 

running from the mouth to the anus, the oral cavity is the first part of the tract.  The 

masticatory apparatus, that is the structures involved in chewing within the oral cavity, 

include the jaws and their muscles, teeth, tongue and salivary glands.  The remaining parts 

of the tract are the oesophagus, stomach and the small and large intestines.  The jaws and 

the muscles that power them, are discussed extensively throughout this work, but here I 

briefly cover the gross anatomy of the remaining tract.  Associated gastrointestinal 

structures (e.g. salivary glands, pancreas and liver) are not discussed.   

The nutritional quality of the food plus the methods of procuring it all have a great impact 

on the morphology and relative size of the component parts of the gastrointestinal tract.   

Although I am unaware of any published studies comparing the gross anatomy of the 

gastrointestinal tract of different species of canid, from my personal observations of the 

digestive tracts of Vulpes vulpes, Lycaon pictus and Cuon alpinus I can remark that they are 

all grossly very similar to one another and also to that of the domestic dog.  Meat is a very 

nutritious food source and requires relatively little processing to gain great nutrient 

resource, and consequently the gastrointestinal tract in carnivorans is relatively short and 

simple.  This is in contrast with species that follow a herbivorous diet who must have greatly 

expanded fore or hindgut fermentation chambers to break down complex carbohydrates 

into easily absorbable simple starches. Ruminant species are foregut fermenters with a 

greatly enlarged stomach, and equid species are hindgut fermenters with a greatly enlarged 

large intestine (Dyce et al., 2009).  The poor nutritional quality of the herbivore diet also 

means that food must be consumed in great quantities to gain sufficient nutrition.  The 

average combined length of the small and large intestine in the canid is around five times 

body length which in a large domestic dog would equal around five to six metres.  In 
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comparison, the length of the intestines in the horse is around ten times the body length, 

equaling around 30 metres in a large horse, and in the ox the intestinal tract is around 20 

times the body length, a total of up to 63 metres (Nickel et al., 1979).  The economical 

proportions of the canid tract are not its only advantage. Unlike herbivores that must eat for 

up to 18 hours per day and constantly process food to fuel their needs, carnivorans often 

exist in a ‘feast or famine’ regime, where large meals may be taken infrequently.  The great 

distensibilty and capaciousness of the carnivore stomach allows canids to make the most of 

any opportunity to gorge. The stomach of an average sized domestic dog has a capacity of 

up to 9L (Nickel et al., 1979). When empty it lies completely within the intrathoracic part of 

the abdominal cavity, but when fully distended its caudal limit extends as far into the 

abdomen as the fourth lumbar vertebra (Nickel et al. 1979).  It is this great distensability that 

not only allows gorging on plentiful food supplies, for instance after a large kill, but also 

allows food to be transported back to the den to feed weaned offspring.  A short, simple and 

often empty tract takes up considerably less room in the abdominal cavity than a large one 

that is constantly full (Getty, 1975; Evans and De Lahunta, 2013; Singh et al., 2018). This has 

two advantages; it weighs less, which takes up less energy to carry around, and it allows for 

a dorsoventrally flexible spine (Hildebrand et al., 1995).  Although, to my knowledge, there 

are no studies comparing gut transit times in all canid species, studies have been done on 

domestic dogs, and less frequently on wolves, and due to the similarity in gross anatomy, it 

may be fair to extrapolate this data to the broader range of canid species.  In brief, animal 

derived protein based diets in wolves and dogs have gut transit times of between eight and 

fifty-eight hours depending on content (Floyd et al., 1978; Kreeger et al., 1997; Iwanaga et 

al., 1998; Bruce et al., 1999; Boillat et al., 2000; Lefebvre et al., 2001; Rolfe et al., 2002; 

Hernot et al., 2005).  Indigestible content such as hair, decreases transit time, and one theory 

is that wolves strategically consume the hair of large carcasses to accelerate gut transit time 

to permit them to quickly eat again from the same kill (Peterson and Ciucci, 2003).  Wolves 
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may consume up to 10kg of meat per day (Mech and Boitani, 2003; Peterson and Ciucci, 

2003).  At the other dietary extreme, dogs also have the ability to survive with little or no 

meat content in their diet, allowing them to thrive in a wide variety of environmental 

conditions.   At certain times of the year for example, the diet of the maned wolf consists of 

around 50 - 64% vegetable matter, and fruit, nuts and seeds make up large proportions of 

the autumnal diet of many foxes (MottaJunior et al., 1996; Rodden, et al., 2004; MacDonald, 

2009).  The ability to exist on a low meat diet is due to the canid’s ability to synthesize taurine, 

an amino acid that is essential to virtually all body systems (Hand and Lewis, 2000).  The 

potential for omnivory gives dogs an advantage over other carnivorans such as felids and 

mustelids, who, due to their inability to synthesize taurine must obtain it from ingested 

animal protein, and consequently are obligate carnivores (Sjaastad et al., 2010; Miller and 

Fowler, 2014). 

 

1.3.2. Anatomy of the head.  

The head is arguably the most complex region of mammalian anatomy, both morphologically 

and functionally.  It houses the major component of the central nervous system, the brain, 

plus the special sensory organs associated with vision, olfaction, gustation, hearing and 

balance.  It also houses the start of both the gastrointestinal and respiratory tracts.  In this 

section I describe the anatomy associated with jaw adduction only, that is the bones of the 

skull and mandible, and the jaw adductor muscles, with reference to the work of previous 

authors.  

 

1.3.2.1. The skeleton of the head. 

All mammalian skulls follow a modified synapsid pattern with regard to the pattern of 

individual bones that contribute to the unified whole (Vaughan et al., 2013; Kardong, 2015).  

It can be seen from the wide diversity of mammalian form that within this broad blueprint, 
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morphology is highly varied, reflecting the vast array of mammalian adaptations (Hildebrand 

et al., 1995; Kardong, 2015).  Accordingly, nomenclature varies between authors when 

describing the elements that make up the skull, and differences in classification occur, even 

within genera.   In canids, some authors describe 11 paired bones, occurring on the left and 

right of the skull to make 22 bones, plus seven unpaired bones, which lie ventrally and 

medially, giving a total of 29 bones (Dyce et al., 2009; Liebich et al., 2009).  Other authors 

(Getty, 1975; Evans and De Lahunta, 2013) describe 31 skull bones as they classify the dorsal 

and ventral nasal turbinate bones as separate entities rather than projections from the 

internal nasal and maxillary surfaces.  The smaller bones associated with the skeleton of the 

head are the nine hyoid bones and six middle ear bones.  See Figure 1.4 for labelled diagrams 

of bones of the skull.     

The bones of the skull are joined to one another with sutures and synchondroses that 

variably ossify during life.  The skull can broadly be divided into two regions or modules:  the 

facial/palatine component consisting of the incisive (premaxilla), maxilla, vomer, nasal, 

zygomatic, palatine, lacrimal, and pterygoid bones, and the cranium consisting of the 

parietal, interparietal, frontal, temporal, basisphenoid, presphenoid, ethmoid and occipital 

bones.  The mandible is the third major skeletal component of the head (Dyce et al., 2009; 

Evans and De Lahunta, 2013).  This is usually counted as one bone, but sometimes as two 

when classified as distinct left and right elements.  Although morphologically distinguishable, 

the division between the three areas is not as well defined functionally, with many actions, 

(e.g. chewing, breathing and swallowing), utilising all three components simultaneously. 

Modularity of the skull is further discussed in Chapter Three, part 3.3.2.2. 

 

Embryological origins of the bones of the skull. 

Not all of the bones of the skull share the same embryological origin. The ventral bones of 

the skull are derived from three cartilaginous tissue types, all of which develop from neural 
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crest cells (Hall, 2005).  The parachordal and trabecular cartilages fuse to form the 

chondocranium, which lies ventral to the brain, and the pharyngeal arch cartilage forms the 

hyoid apparatus, bones of the middle ear, the laryngeal cartilages and part of the mandible 

(Hall, 2005; Evans and De Lahunta, 2013).  The bones forming the dorsal cranium arise from 

membranous tissue to form the desmocranium.  The chondocranium and desmocranium 

unite to form the skull.  Development of the mandible is complex with a cartilaginous rod, 

Meckel’s cartilage, arising from pharyngeal arch one, and elongating and expanding to fuse 

rostrally at the mandibular symphysis (Evans and De Lahunta, 2013).  Membranous bone 

subsequently forms around Meckel’s cartilage, which itself also undergoes ossification 

(Stevens-Sparks and Strain, 2014).  The mandible is therefore made of both cartilaginous and 

membranous derived bone.  

Ossification of the membrane derived bones occurs before those derived from cartilage, and 

the maxilla, frontal nasal incisive, palatine, zygomatic, mandibular and parietal bones have 

begun to ossify by day 32 in the domestic dog embryo (Evans and Sack, 1973; Williams and 

Evans, 1978). Ossification of the cartilage derived bones begins to occur from day 35 to day 

50 (Evans and Sack, 1973; Williams and Evans, 1978; Evans and De Lahunta, 2013).   In the 

region of the dorsocaudal border of the mandible a secondary cartilage develops, ossifies 

and fuses with the main body of the mandible to form the condylar process. The final skeletal 

component of the skull to begin to ossify is the hyoid apparatus where ossification begins to 

occur from day one until two months after birth (Evans and Sack, 1973; Williams and Evans, 

1978; Evans and De Lahunta, 2013). 
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Figure 1.4 Bones of the skull. A, Lateral Skull and mandible, B, Ventral Skull, C, Caudal Skull. 1 nasal, 2 

incisive, 3 maxilla, 4 lacrimal, 5 zygoma, 6 frontal, 7 parietal, 8 temporal, 9 mandible, 10 palatine, 11 

vomer, 12 presphenoid, 13 pterygoid, 14 basisphenoid, 15 basioccipital, 16 interparietal, 17 

supraoccipital, 18 exoccipital.  The ethmoid bone is completely hidden from view in the intact skull. 

The dashed blue line indicates the position of the orbital ligament.  
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Macroscopic structure of bone. 

There are two categories of bone structure: compact bone and trabecular bone. 

Nomenclature varies between texts and compact bone is also referred to as cortical bone, 

and trabecular bone is also referred to as spongy or cancellous bone. Both cartilaginous and 

membrane derived bones can develop into either bone type.  Compact bone consists of 

concentrically arranged densely packed lamellae arranged around neurovascular channels 

called Haversian canals.  Compact bone forms the dense outer part of all bones. Trabecular 

bone is found within the bone cavity and consists of many small struts of bone attaching to 

the inner lamellae of the compact bone. The orientation of the trabecular struts chiefly 

follows Wolff’s law, with many struts broadly reflecting the direction of the primary stresses 

the bone is subject to (Gefen and Seliktar, 2002; Mitchell and Peel, 2009; Young et al., 2014).  

 

Shape of the bones of the skull 

Most of the dorsal bones of the head are classified as flat bones, ossa plana.  These consist 

of external and internal layers of compact bone, and an intermediate layer of trabecular 

bone called the diploë (Hall, 2005; Dyce et al., 2009). However, none of the bones of the skull 

are entirely flattened, and even the ‘flat’ bones are curved and consist of often expansive 

and intricate projections.  For example, the temporal bone is subdivided into three divisions:  

squamosal, petrous and temporal (Getty, 1975; Evans and De Lahunta, 2013; Singh et al., 

2018).  In canids, only one part of the squamous division, the plate making up the 

caudolateral cranial vault is flattened (Evans and De Lahunta, 2013).  Other parts of the bone 

make up the highly complex bony middle and inner ear structures, the caudal zygomatic arch 

and the mandibular fossa (Figure 1.4) (Getty, 1975; Evans and De Lahunta, 2013; Singh et al., 

2018).  The ventral bones of the skull are termed irregular bones, ossa irregulata, to describe 

their complex form and various projections and processes (Getty, 1975; Liebich et al., 2009).  
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Diploë  

In many mammalian species, the flat bones of the cranium consist of a trilaminar 

arrangement whereby diploë, areas of trabecular bone, lie between the innermost and 

outermost layers of compact bone. The diploë increase in volume nearer the centre of flat 

bones of the skull, away from the sutures (Mcelhaney et al., 1970).  The structures of diploë 

in mammalian cranial bone appear to be highly varied with random patterns of trabecular 

struts throughout (Mcelhaney et al., 1970).  Lynnerup et al. reported in studies of human 

cranial bone that diploe thickness related to overall cranial vault thickness, and did not differ 

relative to age, body mass or height in human subjects. Their study also found that the only 

region to demonstrate sexual dimorphism were the diploe within the frontal bone, where 

male diploe were thicker than those found in female specimens (Lynnerup et al., 2005).  

Whilst a physiological role has been determined for the diploe, i.e. it houses bone marrow 

and thus contributes to haematopoiesis, the biomechanical function of the diploe is debated. 

Most authors acknowledge the diploe as a device to thicken the skull without adding 

excessive mass (Copes and Kimbel, 2016), and other authors also describe them as a way of 

creating a disparity between the inner surface area of the cranium and the outermost surface 

(Sharp and Rich, 2016).  Other authors have also suggested that the diploe may also serve to 

act as an energy absorbing layer, reducing the impact of external forces, and to increase the 

bending strength of the cranium (Motherway et al. 2009; Rahmoun et al., 2014).  

 

Cranial sutures and synchondroses. 

Two types of joints separate the bones of the skull.  Sutures are the fibrous joints between 

the membrane formed bones or between membrane formed bones and cartilage formed 

bones (Hall, 2005; Geiger and Haussman, 2016).  Synchondroses are cartilaginous joints 

between the cartilage formed bones.  In the immature animal, the sutures and 

synchondroses clearly demarcate the margins of the individual bones, but as the animal ages 
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most of the sutures ossify and unite adjacent bones.   As the mammalian skull follows a 

similar basic pattern regarding the number and position of bones that make up the skull, it 

follows that the position and name of the sutures and synchondroses that lie between them 

are also broadly homologous.  The degree of suture interdigitation between bones follows a 

standard arrangement: some sutures present relatively straight alignments with their 

neighboring bones as seen in the plane and limbous forms of the zygomaticotemporal and 

internasal sutures.  These are associated with regions of skull that experience tension 

(Herring and Teng, 2010).  Other sutures or synchondroses are arranged as tortuous 

interdigitations between opposing bones, as seen in the denticulate and serrate sutures of 

the fronto-maxillary and maxillo-palatine sutures, and are characteristic of compression 

resistance (Rafferty and Herring, 1999; Burn et al., 2010).  Within this broad pattern, and at 

a finer level of detail, species have particular and identifiable patterns of cranial suture 

arrangements (Brunner et al., 2004; Wilson and Sánchez-Villagra, 2009).  Species that can 

generate high bite forces, eat obdurate foodstuffs, or that compete through head-butting 

behaviors are shown to have a more complex interdigitated pattern suggesting an adaptive 

morphology to specific loading (Jaslow, 1990; Monteiro and Lessa, 2000; Byron, 2009;2018; 

Buezas et al., 2017).  The sutures and synchondroses perform three major functions. Firstly, 

to unite the bones of the skull whilst allowing for small measures of movement, notably 

during birth (Ogle et al., 2004).  Secondly, the synchondroses and sutures are the primary 

areas for bone formation in the skull during ontogeny and allow for areas of rapid interstitial 

growth (Opperman, 2000; Ogle et al., 2004; Kolpakova-Hart et al., 2008). This is particularly 

evident in the bones forming the calvarium to allow for brain expansion (Ogle et al., 2004).   

Thirdly, they play a role in mechanical stress absorption (Jaslow, 1990; Herring and 

Ochareon, 2005; Curtis et al., 2013; Goswami et al., 2013; Geiger and Haussman, 2016). In 

particular the suture microstructure suggests that the orientation of the collagen fibres 

reflects their biomechanical function. Fibres with straight orientation are found in sutures 
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undergoing tensile forces, and fibres with oblique orientation are found in sutures 

undergoing compressive forces (Rafferty and Herring 1999; Kolpakova-Hart et al 2008). 

The extent of and timing of closure of sutures varies within mammals. Fusion occurs when 

growth slows down or ceases, and varying heterochronous patterns are seen across 

mammalian genera (Rager et al., 2014).   Goswami et al. (2013) concluded that the caniform 

carnivorans displayed a greater number of heterochronous shifts in cranial suture fusion 

when compared to feliforms, which may account for the greater diversity of cranial shape in 

canids.  In canids some sutures remain patent throughout life, most notably the 

zygomaticotemporal suture and the internasal suture (Goswami et al., 2013; Thrall and 

Robertson, 2015).  Landon et al. (1998) also report the basisphenoid/presphenoid 

synchondroses as late or never closing in the wolf.  Whether this reflects a continued need 

to attenuate force, or a diminished need to transmit force in these regions is not established 

at present.  

 

Paranasal Sinuses.  

The paranasal sinuses are air filled diverticula of the nasal cavity that arise from the 

pneumatisation of the diploe in post-natal development (Singh et al., 2018).  In bones where 

well-developed sinuses are present, the shape of the outer and inner surfaces of the bone 

may be significantly different (Singh et al., 2018). Developmental expansion of the sinuses 

during ontogeny accounts for some of the differences in head shape between immature and 

mature animals (Getty, 1975; Evans and De Lahunta, 2013; Singh et al., 2018).  Individual 

paranasal sinuses are named after the bones that they invaginate, although they can extend 

into several other bones of the skull.  In the canids, the maxillary sinuses have a wide 

communication with the nasal cavity and are often termed the paranasal recesses (Evans 

and De Lahunta, 2013).  The sphenoidal sinus is small and lies within the presphenoid bone.  

The largest and most defined sinus in canids is the frontal sinus (Getty, 1975; Evans and De 
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Lahunta, 2013; Thrall and Robertson, 2015; Singh et al., 2018).  The presence of a frontal 

sinus is also used to recognise Canidae within the fossil record, and all major subfamilies of 

Canidae exhibit evidence of frontal sinuses throughout their lineage (Huxley, 1880; Tedford, 

et al., 1995; Wang, et al, 1999; Tedford et al., 2009).   The frontal sinuses lie between the 

inner and outer tables of the frontal bone and are subdivided by bony septa into three 

divisions. Each division communicates independently with the caudal nasal cavity.  The 

functions of mammalian paranasal sinuses are not well understood. Many authors have 

speculated as to their function which I briefly summarise here.  Firstly, that they may serve 

to alter head shape to enhance performance by enlarging areas of muscle attachment (Curtis 

and Van Valkenburgh, 2014).  Secondly, they may help to dissipate stresses during biting 

(Bookstein et al., 1999; Prossinger et al., 2000; Farke, 2008; Tanner et al., 2008; Curtis and 

Van Valkenburgh, 2014).  Thirdly that they may offer thermal or mechanical protection to 

the deep skull contents (Davis et al., 1996).  Fourthly that they may have a role to play in 

respiratory physiology as proposed by Lundberg et al, after their discovery that nitrous oxide 

(NO) is produced within the paranasal sinuses. The role of NO is to enhance pulmonary 

oxygen intake as it acts as a vasodilator (Lundberg et al., 1994).  Or finally, as several authors 

suggest (Márquez, 2008; Rae and Koppe, 2008; Zollikofer and Weissmann, 2008; Curtis and 

Van Valkenburgh, 2014) they may simply act as biological ‘spandrels’, in effect simply filling 

spaces between functionally meaningful structures. The concept of spandrels was first 

posited by Gould and Lewontin  and considers the viewpoint that not all anatomical 

differences must have adaptive significance, and many morphologies arise as a result of 

incidental spaces or structures due to incongruities between regions of functional 

significance (Gould and Lewontin, 1979). 
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Mandibular symphysis.  

The lower jaw consists of the left and right mandibles. In carnivorans the degree of fusion 

between the two mandibles at the mandibular symphysis varies widely. Scapino (1981) 

studied 23 genera of carnivoran and classified them as having one of four types of 

mandibular symphysis. Type I showed very little unification, with a fibrocartilage pad 

between the two halves and a relatively high degree of independent mobility. At the other 

extreme, Type IV showed complete bony fusion and no independent movement.  Scapino 

also noted that symphysis type appeared to be independent from other morphological and 

behavioural factors such as dentition, temporomandibular joint shape, body mass, diet and 

feeding behaviour.  

Scapino (1985) defined all genera of canids except for Speothos, as Type I.  He noted that 

Speothos has much higher degrees of fusion, and classified the single Speothos specimen in 

his study as Type IV.  I conducted a brief review of freely available online CT scans of Speothos 

specimens and concur that in this species the mandibular symphysis is usually well fused.  

The specimen used in this thesis was not fully dissected at the mandibular symphysis but CT 

reconstructions show a closely united linear division between left and right halves, so may 

have not been fully fused, although this may have been as a consequence of immature age, 

which was unrecorded in this specimen.  

The advantage of semi-independent mandibles may be to allow for subtle realignment of 

teeth during biting, possibly to orientate them to advantage or to protect their sectorial 

surfaces.  Scapino describes the widening of the posterior part of the mandibular symphysis 

to aid in aligning upper and lower carnassial teeth during unilateral carnassial biting (Scapino, 

1965).   Movement at the symphysis may also allow the joint to act as a shock absorber under 

duress, and limit forces transmitted to the skull (Gans, 1961). 

The cost of having semi-independent hemi mandibles is that forces transmitted to one side 

of the mandible are not readily transferred to the other.  Transference of force may be 
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advantageous during unilateral biting where high force is required. Therefore, if the 

masticatory muscles are powerful enough to allow for required force to be recruited on one 

side, fusion is not required and is lost at the expense of mobility.  

 

Orbital ligament 

The morphology of the lateral orbit of the eye is diverse in mammals (Cox, 2008; Jasarevic et 

al., 2010).  Most mammals display the primitive condition with a collagenous structure, the 

postorbital ligament, extending from the zygomatic process of the frontal bone to the frontal 

process of the zygomatic bone. This is the condition found in canids.  The postorbital 

ligament makes up approximately one quarter of the circumference of the orbit in the 

domestic dog (Evans and De Lahunta, 2013).  The role of the postorbital ligament is unclear.  

Its position, bridging the gap between the zygomatic arch and the frontal bone, implies it 

may have a functional use during mastication. As the masseter contracts and displaces the 

arch ventrally,  forces may transmitted across the post orbital ligament, in effect supporting 

the zygomatic arch (Buckland‐Wright, 1978, Herring et al., 2011). However, other authors 

dispute this and speculate it may protect the orbit of the eye from injury (Prince, 1953; 

Simons, 1962), or help to stabilize the eye during temporalis contraction (Cartmill, 1970, 

1980).  The biomechanical role of the post orbital ligament is explored further in Chapter 

Five.  
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1.3.2.2 Dentition 

In all mammals, the form of the rostral part of the skull reflects the requirements of the 

dental apparatus.  The dentition of the canids is specialised to reflect their carnivorous diet 

but retains much of the basic mammalian plan.  The typical eutherian mammal has 44 teeth, 

with each quadrant of the jaw having three incisors, one canine, four premolars and three 

molars (Hildebrand et al., 1995; Kardong, 2015).  Most evolutionary adaptations away from 

the primitive condition are a reduction in the number of teeth, with the exception of 

cetaceans, one canid and one armadillo species, who all demonstrate increased numbers of 

teeth (Armfield et al., 2013).   Unlike some other families of carnivorans, most notably felids 

and ursids, the cursorial specialisation of the canid distal limbs renders them ineffective for 

prey apprehension, and consequently the dentition is used for capture, submission and 

killing of prey and for food processing.   In this section I describe the general dentition of 

Canis lupus familiaris, as this is takes the form of the generic canid and is well documented 

in the literature.  Species specific differences are described in the next section. All canids 

demonstrate diphyodont, brachydont and heterodont dentition (Gorrel, 2004; Tutt et al., 

2006; Dyce et al., 2009; Evans and De Lahunta, 2013).  Diphyodont dentition is the 

replacement of the deciduous teeth seen in juveniles, with the permanent teeth of adults.  

The embryological derivation of the teeth is from the ectoderm and mesoderm of pharyngeal 

arch one.  Tooth enamel is formed from the ectoderm, and the dentine and cementum from 

mesoderm. In domestic dogs, the deciduous dentition of puppies erupts between day 20 and 

35 after birth, although the teeth have become calcified from day 55 of gestation (Evans and 

De Lahunta, 2013).  Deciduous teeth start to be shed and replaced by the permanent 

dentition from two months, and all permanent teeth have fully erupted by around seven 

months (Williams and Evans, 1978; Gorrel, 2004; Gioso and Carvalho, 2005; Tutt et al., 2006; 

Dyce et al., 2009; Evans and De Lahunta, 2013).  Adults have more teeth than pups: the first 

premolar erupts late and is not replaced, but remains throughout life, and all of the molars 
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have no deciduous counterpart and are only present in the permanent adult dentition.  The 

generic canid dental formula is: 

 

Deciduous I3/3, C1/1, PM3/3 x2 = 28 

Permanent 13/3, C1/1, PM4/4, M2/3 x 2 = 42 (Figure 1.5) 

I – incisors, C – canines, P – premolars, M – molars  

 

Brachydont dentition describes the condition where the crown of the tooth is fully erupted 

by adulthood and is entirely covered with enamel. The overall form of the teeth can be 

described as tuberculosectorial, with all teeth except the canines exhibiting greater or lesser 

degrees of tubercles, and all teeth having a sectorial or cutting component (Getty, 1975; Tutt 

et al., 2006; MacDonald, 2009; Evans and De Lahunta, 2013).  All carnivorans exhibit distinct 

heterodont dentition, with four categories of teeth, each specialising in particular tasks.  The 

individual tooth morphologies are particularly distinct in the canids (Figure 1.5) (Peterson 

and Ciucci, 2003).   The incisors are adapted for grooming and nibbling, and in young adults 

the unworn upper incisors take the form of a tri-lobed crown, and the lower ones a bi-lobed 

crown.  This incisive formation usually reduces to a simple peg form with age and wear 

(Gorrel, 2004; Tutt et al., 2006; Dyce et al., 2009).  The large canine teeth curve caudally and 

have no lobes or tubercles. They are well designed for stabbing and gripping prey.  The length 

of the canines impacts on the space between the upper and lower jaws, i.e. the size of prey 

that can be accommodated and killed, and so a trade-off must occur between canine tooth 

length and functional gape width.   Canine teeth have the longest crown of any teeth, and 

their root is even more extensive at nearly twice the length of the crown (Gorrel, 2004; Dyce 

et al., 2009; Evans and De Lahunta, 2013). The roots of the canine teeth are usually wider 

and more massive below the gum line, an arrangement that, along with their caudally curved 

shape, keeps them securely anchored within their alveoli during prey capture and food 
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processing (Gorrel, 2004; Dyce et al., 2009; Evans and De Lahunta, 2013). The first premolars 

are single cusped and single rooted.  The second and third premolars of the upper arcade, 

and premolars two, three and four of the lower arcade are double rooted, and the fourth 

upper premolar has three roots, reflecting its greater bulk (Getty, 1975; Evans and De 

Lahunta, 2013).  The premolar tooth roots tend to diverge within the mandible and maxilla, 

and are often longer than the crowns, making them very well anchored for grappling and 

processing prey (Gorrel, 2004; Dyce et al., 2009; Evans and De Lahunta, 2013).  The first lower 

molar is very large with correspondingly massive roots (Gorrel, 2004; Dyce et al., 2009; Evans 

and De Lahunta, 2013). The remaining molars are much smaller with a flattened tubercular 

appearance to the crown. Both upper molars and lower molars one and two have short 

diverging roots, whilst lower molar three is single rooted (Gorrel, 2004; Dyce et al., 2009; 

Evans and De Lahunta, 2013).  Lower molar one (LM1) and upper premolar four (UPM4) 

constitute the carnassial dentition that is particular to carnivorans, which together act as a 

shearing blade to slice skin and meat from carcasses (Gorrel, 2004; Gioso and Carvalho, 2005; 

Dyce et al., 2009; Evans and De Lahunta, 2013).  There is some overlap of function between 

the premolars and molars, with the carnassial teeth variably exhibiting both slicing and 

crushing functions (Getty, 1975; Evans and De Lahunta, 2013).  LM1 in particular, exhibits a 

wide variety of morphological variation between canid species, and is indicative of diet 

(Ewer, 1973; Van Valkenburgh, 1991; Biknevicius and Ruff, 1992; Van Valkenburgh and 

Koepfli, 1993; Van Valkenburgh, 1996; Macdonald and Sillero-Zubiri, 2004; Sillero-Zubiri et 

al., 2004; MacDonald, 2009).   

 

Dental occlusion  

Unlike herbivorous mammals, carnivoran dentition does not exhibit an extensive flat occlusal 

‘table’, as the teeth are not used as a grinding surface.   Normal occlusion in the canids 

protects and maintains the enamel and sharp cutting surfaces of the teeth and follows a 
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complex and precise arrangement.  The crowns of the upper incisors are positioned rostral 

to the crowns of the lower incisors, the tips of the crowns of the lower canines lie rostral and 

medial to the tips of the crowns of the upper canines within an interdental space.  As the 

mandibular dental arcade is anisognathic, being narrower and shorter than that of the upper 

arcade, the lower cheek teeth lie medial to their upper counterparts.  The sharp cusps of the 

first three upper premolar teeth interdigitate with the spaces between the premolar teeth 

of the lower arcade.  The upper premolar teeth do not contact the lower premolar teeth but 

instead a small gap is maintained at occlusion, often referred to as the carrying space 

(Hobson, 2005; Tutt et al., 2006; Dyce et al., 2009; Evans and De Lahunta, 2013).  The lower 

carnassial tooth lies medial to the upper carnassial tooth at occlusion, creating a shearing 

pair during biting. The largest process of the lower carnassial tooth fits into a small fossa on 

the hard palate at occlusion (Evans and De Lahunta, 2013).   The relatively flat molars 

maintain contact with their upper or lower counterparts at normal occlusion (Hobson, 2005; 

Evans and De Lahunta, 2013).  This arrangement preserves the sharp cutting edge of the 

large teeth used for killing prey and processing meat, the canines, premolars and carnassials.  

An important factor in protecting teeth by moderating chewing patterns and bite force is the 

proprioceptive feedback modulation mechanism. Mechanoreceptors within the periodontal 

ligament associated with the alveolus of each tooth detect forces acting upon the teeth and 

provide sensory feedback to the brain via the trigeminal nucleus. This mechanism regulates 

bite force to provide an appropriate amount of bite force and ensure that the tooth cusps 

are not brought into occlusion too rapidly or too strongly (Lund, 1991; Piancino et al., 2017).  
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Figure 1.5 Generic canid dentition. A, ventral aspect of skull, B, Dorso-lateral aspect of mandible.  

I – Incisor, C – Canine, P = Premolar, M- Molar.  The asterisk marks the retroglenoid process of the 

temporal bone.   Normal dental occlusion can be seen in Figure 1.4A.  

 

Species specific dental adaptations and variations 

The dentition of some of the canid species diverges from the generic description in two ways:  

firstly, the number of teeth, and secondly the form of the individual teeth. The form of the 

teeth describes both their size and shape.  All of these factors affect the functionality of 

biting.  Size and shape determine how the teeth interact with foodstuffs, and their placement 

within the jaws relative to the TMJ, influences the force with which they can come together.   
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Three of the hypercarnivorous species, Cuon alpinus, Lycaon pictus and Speothos venaticus 

have evolved an entirely slicing function of the LM1, elongating the cutting blade and 

replacing the caudal basin-shaped talonid with a sharpened edge, the trenchant heel (Ewer, 

1973; Van Valkenburgh and Koepfli, 1993).  The fourth hypercarnivore, Canis lupus, has an 

intermediate form of talonid, lying between the three other hypercarnivores and all other 

canid species (Ewer, 1973; Van Valkenburgh and Koepfli, 1993).  It is this feature that 

confounded early taxonomists who erroneously classified these species as close relatives.  

However, molecular analyses conclude that this feature has evolved separately in all four 

lineages, and demonstrates convergent evolution (Zrzavý and Řičánkova, 2004; Lindblad-Toh 

et al., 2005; Nyakatura et al., 2012).  Two of the hypercarnivorous species have reduced 

dentition: Cuon alpinus has only two lower molar teeth instead of the usual three, and 

Speothos venaticus has only one upper molar and two lower molars (de Mello Beisiegel and 

Zuercher, 2005), reducing the total number of teeth to 38.   As the molars lie at the most 

caudal end of the dental arcade, reducing either their size or number has the effect of 

shortening the muzzle and bringing both the canine and carnassial teeth closer to the TMJ, 

which in turn increases the force of the piercing and slicing apparatus respectively.  However, 

a trade-off must occur between bite force and gape (Dumont and Herrel, 2003; Slater and 

Van Valkenburgh, 2009; Perry et al., 2011).  Teeth nearer to the TMJ have more power driving 

them, but the space between the upper and lower teeth at wide gape needs to be such that 

it allows sizeable pieces of food to be processed. Pack hunters are often in competition for 

their kills, with either other pack members or different species, and food must be removed 

from the carcass, chewed and swallowed with great haste.  Excessive reduction of either the 

number or size of the post carnassial teeth would therefore restrict the functionality of the 

jaw.  In small prey and generalist dentition, lower molar one has a shorter cutting blade 

rostrally, a distinct talonid basin caudally, and the molars are relatively larger (Ewer, 1973; 

Macdonald and Sillero-Zubiri, 2004; MacDonald, 2009).   The enlarged bunodont formation 
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of the molars provides a greater crushing and grinding surface for tackling a wide variety of 

foodstuffs (Ewer, 1973; Macdonald and Sillero-Zubiri, 2004; MacDonald, 2009).  In one 

species, Urocyon megalotis, whose diet consists almost solely of invertebrates, the molars 

are not only increased in number (variably three or four upper molars and four or five lower 

molars), but also zalambdodont in shape, even the carnassial teeth, which indicates a diet 

high in coarse material (Sillero-Zubiri et al. 2004).  Lengthening the tooth row also has the 

effect of positioning the teeth that catch prey, the canines, further from the TMJ.  As in the 

third-class lever model this lessens the force that can be generated at the canine bite point 

but increases the speed with which the canines can come together, an advantage in catching 

fast moving prey.   

 

1.3.2.3 Movement of canid jaws.  

There are four major requirements for movement of the canid jaw.  Firstly, the ability to 

close the jaws with sufficient force to capture and subdue struggling prey and process tough 

food. Forces of struggling prey are chiefly ventrally and rostrally and must be opposed by 

caudal and dorsal bite forces (Maynard-Smith and Savage, 1959; Greaves, 2012).  Secondly, 

a stable temporomandibular joint is required to restrict lateral and rostrocaudal jaw 

movements. This is achieved by the bony components that make up the TMJ, with the 

cylindrical form of the condylar process of the mandible neatly fitting into the transversely 

elongated gulley of the mandibular fossa of the temporal bone.  This congruent arrangement 

limits any translational movements and protects the tooth enamel from any potentially 

damaging malocclusion (Getty, 1975; Evans and De Lahunta, 2013; Singh et al., 2018). There 

is also a pronounced bony retroglenoid process that prevents caudal luxation of the TMJ 

(Figure 1.5A). The very prescribed occlusal closing arc allows the carnassial teeth to shear 

past each other for effective biting, and the congruent TMJ also allows for the jaws to close 

with great strength without the risk of dislocation.  This is especially important when dealing 
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with struggling prey and tough foodstuffs (Getty, 1975; Smith, 1993; Greaves, 2012).  Thirdly, 

a wide gape is required to allow sufficient space between upper and lower canine teeth when 

apprehending and killing prey, and to allow sizeable chunks of food to be inserted laterally 

into the oral cavity and be processed by the carnassial teeth.  Not only do the jaws need to 

be able to attain a wide gape, but they must also maintain a powerful bite force whilst doing 

so (Greaves, 1983; Smith, 1993).  Lastly, the jaws need the capacity for fast closing (Maynard-

Smith and Savage, 1959; Smith, 1993).  This is more important in species that hunt by lone 

stealth.  Stealth hunters surprise their quarry, and as such their prey may have the energetic 

capacity to outrun them if not overpowered quickly.  Long jaws are advantageous in allowing 

the rostral most teeth to come together at great speed, and hunters of small prey have 

longer jaws than those that hunt large prey (Slater et al., 2009).  Large prey specialists hunt 

in packs and aim to exhaust and overpower individual prey during a long pursuit, and the 

fast snapping shut of jaws may not be of such importance (Radinsky, 1981; Macdonald and 

Sillero-Zubiri, 2004; Sillero-Zubiri et al., 2004). 

 

The carnivoran jaw as a modified third-class lever.  

In its most simplified representation the mammalian jaw acts as a lever to obtain and process 

food. In species where some or all of the masticatory muscle attachment lies cranial to the 

most caudal teeth, for example rodents and primates, biting at the most caudal tooth points 

represents a second-class lever system (Turnbull, 1970; Mansour and Reynik, 1975; Cox 

2017).  In carnivoran species biting at all tooth points along the the jaw has been described 

as a third-class lever, where force is applied between the load and the fulcrum.  That is, the 

muscle force inserts on the vertical ramus of the mandible which lies between the bite points 

(the load) and the temporomandibular joint (the fulcrum).   In this model, bite forces increase 

toward the TMJ, with the highest forces experienced at the most caudal tooth points. Clearly 

the three-dimensional biological condition is more complex than simple geometric lever 
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mechanics implies.  The most influential factor to increase complexity of the model is to unite 

the two halves of the mandible into one functioning unit, as is the case in all mammals. This 

transforms the simple bar lever to a triangle consisting of two fulcrums, the TMJs, and one 

shared rostral apex, the mandibular symphysis. When muscle forces are bilaterally and 

equally applied the resultant single vector that represents muscle force lies at point 

approximately half way between the rostral most and caudal most points on the midline. 

Greaves goes someway to describing the consequences on bite force of this more complex 

geometry the generalised carnivore jaw (Greaves, 1983; 1985; 2012).  He refers to a triangle 

of support consisting of both TMJs and the particular tooth bite point. When the bite point 

is unilaterally on an incisive, canine or premolar tooth the triangle of support contains the 

midline resultant muscle force.  As the bite point moves caudally the midline resultant force 

point lies outwith the triangle of support. In this condition, the balancing side muscle forces 

are reduced to prevent dislocation at the temporomandibular joint. The consequence is a 

lower than expected bite force at the caudal end of the dental row.  This finding was also 

supported in later work on primates by Spencer (Spencer, 1997).  In carnivores this is of little 

biological consequence as strong bites at the very caudal part of the dental row are limited 

in function as the gape between upper and lower arcades is so narrow. Using his model, 

Greaves was able to identify a region approximately halfway along the carnivoran mandible 

as the most powerful bite position when loaded with idealized forces. Carnassial teeth are 

sited here, allowing for maximum bite force and relatively wide gape.  

Greaves model is however, still limited to describing the functional shape of the lower jaw 

as a triangular plane and a series of straight intersecting lines within it. The morphology of 

the skull and individual tooth shapes is far less straightforward. The mandible is curved both 

dorsally and medially, and the irregular profile of the teeth mean that the true condition 

cannot be capture by simple geometric calculations.  
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Jaw adductor muscle anatomy 

The muscles that close the jaws are comprised of three muscle groups: the temporalis, the 

masseter and the pterygoids.  Embryologically they are all derived from the first pharyngeal 

arch and are innervated by the mandibular division of the trigeminal nerve (Evans and De 

Lahunta, 2013; Singh et al., 2018).  Muscle classification and the nomenclature of the 

subdivisions within each muscle varies between authors. For this study I broadly follow the 

plan of Druzinsky (Druzinsky et al., 2011).  Throughout the text I use the anglicised versions 

of muscle names, rather than their Latin counterparts. The basic mammalian plan is 

described below. More detailed descriptions of the jaw adductor muscles of the species used 

in this study are given in Chapter Two.  

Temporalis   

The temporalis muscle arises from the lateral bones of the calvarium and lies within the 

temporal fossa, a shallow depression behind the orbit.  In species with a relatively small 

temporalis the origin chiefly covers the temporal and sphenoidal bones with only a small 

amount of the muscle originating from the parietal and frontal bones.  In species with a more 

powerful temporalis the origin is more extensive and covers most of the parietal and occipital 

bones, in effect covering most of the lateral cranium.  The temporalis muscle is subdivided 

into three divisions:  the suprazygomatic, superficial and deep bellies.  Druzinsky et al. (2011).  

states that the primitive condition for temporalis is the presence of all three of these 

divisions, but either one or both of the suprazygomatic and superficial parts are lost in many 

taxa.  All three divisions are present in canids (Evans and De Lahunta, 2013).  All parts of the 

temporalis insert onto the dorsal, medial and lateral surfaces of the vertical ramus of the 

mandible and its action is to draw the mandible dorsally and caudally.    
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Masseter 

The morphology of the masseter is complex in mammals and this is reflected in the varied 

nomenclature used to describe its subdivisions across academic texts.   It is a multi-layered 

muscle, arising from the ventral and medial aspects of the zygomatic arch.   In some taxa, 

the origin extends as far rostrally as the maxilla.  It consists of at least three distinct muscle 

bellies, arranged as three broad flat layers, with their muscle fascicles running in opposing 

directions.  Some authors describe the three layers as superficial, middle and deep masseter  

(Getty, 1975; Liebich et al., 2009; Evans and De Lahunta, 2013).  However, the deepest part 

of the masseter complex is more often described as a separate muscle, 

zygomaticomandibularis, with the remaining two layers named deep and superficial 

masseter (Davis, 1964; Turnbull, 1970; Druzinsky et al., 2011).  This is the classification used 

within this thesis, with the entire complex referred to as the masseter.  All bellies insert onto 

the caudal lateral mandible at the masseteric fossa. In addition, the most superficial belly 

also covers the most ventral aspect of the mandible to insert on the medial aspect of the 

mandible and by way of a tendinous raphe, onto the pterygoid muscle. The action of 

masseter is to close the jaw, and in species capable of translational jaw movements, to work 

in conjunction with the contralateral pterygoid to draw the mandible to the working side.  

The more specific functional roles of each subdivision are less clear.  Studies on pigs, rabbits 

and humans describe how the differently orientated fascicles of the masseter are recruited 

at different times throughout the masticatory cycle (Hannam et al., 1981; Tonndorf et al., 

1989; Herring et al., 1991; Widmer et al., 2003).  Fascicles that contract simultaneously have 

the same nerve supply and so belong to the same functional neuromuscular units.  However, 

all of these species are capable of translational movements of the jaws, and many of the 

muscular sub-units are associated with lateral or rostro-caudal movements of the mandible.  

No work to date has been published regarding how the subdivision of the masseter function 

within the bite cycle of carnivorans, as due to the congruent nature of the carnivoran 
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temporomandibular joint, translational or rostrocaudal jaw movements are not possible. 

Other authors argue that a different functionality may explain the subdivision of the 

masseter.  In their 2011 paper Druzinsky et al. (Druzinsky et al., 2011) speculate that the 

separation of the masseter into smaller subdivisions may not be allied to complex 

translational jaw movements but may be related to the production of large bite forces at 

specific points along the dental arcade.  They noted that some genera capable of 

translational jaw movements such as Suidae and Primates had relatively minimal amounts 

of masseteric subdivision, whereas some species capable of exerting large bite forces at the 

rostral teeth, such as Glires, carnivorans and many ungulates, had well defined superficial 

masseters.  

 

Pterygoids 

The pterygoids consist of two muscles, the small lateral pterygoid and the much larger medial 

pterygoid.  In some species, including humans, the lateral pterygoid is reported to be further 

subdivided into a superior and inferior belly (Turnbull, 1970; Koolstra et al., 1988; Endo et 

al., 2003; Liu et al., 2016; Melke et al., 2016).  Both pterygoid muscles originate from the 

pterygoid plate of the skull and insert on the caudomedial surface of the vertical ramus of 

the mandible, with some fibres from the medial pterygoid inserting onto the tendinous raphe 

of the superficial masseter.   The function of the medial pterygoids appears to be consistent 

amongst mammals.  Most authors are in accordance that they adduct the mandible and in 

species capable of translational or rostrocaudal jaw movements, they move the mandible 

laterally and rostrally, when working in conjunction with the contralateral masseter.   The 

function of the lateral pterygoids appears to be more controversial, or at least unresolved.  

In some species, notably many primates, the lateral pterygoid abducts the mandible 

(Madeira and de Oliveira, 1979; Hylander and Johnson, 1994; Murray, 2012).  In species with 

two distinct lateral pterygoid bellies, such as man, the actions of the two divisions may 
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oppose each other with the superior division active during jaw closing and the inferior 

division active during jaw abduction. The opposing actions are facilitated by the fascicles 

running in different orientations, the superior head fascicles run caudoventrally and the 

inferior head fascicles run caudodorsally (McNamara, 1973).  During electromyographic 

studies the superior head has been shown to adduct the jaw whist the inferior head is only 

active during jaw opening (Gibbs et al., 1984; Juniper, 1984).  

 

Whilst the carnivoran masticatory muscle arrangement broadly adheres to the basic 

mammalian plan it is noticeable for the dominance of temporalis as the main jaw closer, 

whereas herbivorous mammals tend to favour the masseter complex (Turnbull, 1970; Cox, 

2008).  Surprisingly few empirical reports exist regarding the soft tissue structures of non-

human mammalian heads, and those that do tend to focus largely on primates (Perry et al., 

2014; Taylor et al., 2015, 2018; Terhune et al., 2015; Dickinson et al., 2018; Hartstone-Rose 

et al., 2018), or rodents (Satoh and Iwaku, 2006; Abe et al., 2008; Hautier and Saksiri, 2009; 

Williams et al., 2009; Cox and Baverstock, 2016; P-H Fabre et al., 2017).  Veterinary anatomy 

text books cover the anatomy of domestic species, and descriptions of domestic dog 

morphology, as a subspecies of Canis lupus are a valuable resource (Getty, 1975; Dyce et al., 

2009; Liebich et al., 2009; Evans and De Lahunta, 2013).  Descriptions of the musculature in 

wild species of carnivoran are greatly underrepresented in the literature.  Within the ursid 

family Davies describes the masticatory apparatus of both Tremarctos ornatus (Davis, 1955), 

and Ailuropoda melanoleuca (Davis, 1964), and Endo et al describe the masticatory 

apparatus of  Ailuropoda melanoleuca and Ursus thibetanus (Endo et al., 2003).  Turnbull 

(1970) describes the jaw adductors of the domestic cat (Felis silvestris) to illustrate the 

condition found within the ‘carnivore-shear’ mammals (Turnbull, 1970).  His description of 

the masseter muscle within this text is based in the main from a translation of Toldt’s earlier 

work (Toldt, 1904 in Turnbull, 1970). However, even within this single species the two 
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authors disagree on some findings.  Toldt describes the superficial masseter as being divided 

into four distinct lobes, whereas Turnbull, disputes this.  Turnbull also reports differences on 

the position of the insertion of the superficial masseter, the degree of division of the deep 

temporalis from zygomaticomandibularis, and the morphology of the lateral pterygoid 

muscle.  A later work on felid masticatory musculature by Hartstone-Rose et al., describes 

the jaw adductors in nine species of wild felid, and disagrees with some of the findings of 

both previous authors (Hartstone-Rose et al., 2018).  This serves to illustrate the difficulty in 

establishing the true arrangement of soft tissue structures.  Reported differences may be 

attributed to variation within the sample set, alternative dissection techniques or variance 

in the interpretation of findings.  

 

Muscle architecture 

Skeletal muscles consist of elongate contractile cells, described as fibres, which are bound 

together by collagenous supporting tissue into small bundles, called fascicles.  Fascicles are 

surrounded by a collagenous support tissue, the perimysium.  Spaces within the perimysium 

lying between the individual fibres are also filled with collagenous support tissue, the 

endomysium.   Fascicles are grouped together to form a muscle mass, which is invested in a 

dense collagenous sheath, the epimysium.  Blood vessels, nerves and lymphatic vessels run 

within the epimysium, perimysium and endomysium at sequentially smaller diameters to 

eventually supply individual fibres (Mitchell and Peel, 2009; Young et al., 2014).  Although 

individual muscle fibres are large enough to be visible to the naked eye it is easier and more 

conventional to measure the fascicles when considering the gross anatomy of muscle 

architecture, as they are easy to identify and easy to separate from neighbouring fascicles 

(Anapol and Barry, 1996; Taylor et al., 2018).  Physiological cross-sectional area (PCSA) is a 

measure of how many individual fascicles, and therefore fibres, a muscle has.  PCSA 

calculations are a refinement of simple cross-sectional area calculations as they take into 
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account not just the volume of the muscle but also the arrangement of the fascicles within 

the space that it occupies.  PCSA is proportional to the maximum force that a muscle can 

generate and muscles with a high PCSA are capable of producing more force than those with 

a low number of fascicles and a low PCSA (Powell et al., 1984; Lieber and Friden, 2000).  

Muscles where the fascicles are arranged running parallel to the long axis of the muscles 

have greater contractibility, whereas those with fibres running obliquely to an internal 

tendon, have greater force.  This is because the muscles with internal tendons can 

accommodate more (but shorter) fascicles, thereby increasing their PCSA (Gans, 1982; Sacks 

and Roy, 1982; Van Eijden et al, 1997).  In the carnivoran jaw adductor muscles the masseter 

and temporalis both have internal tendons, whereas the pterygoid muscle fascicles run in 

parallel to the axis of the muscles, and no internal tendon is present. Muscle architecture is 

further discussed in Chapter Two part 2.4, and PCSA is further discussed in Chapter Four, 

part 4.2.3.
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1.4 Canid Diet and hunting strategies 

1.4.1 Diet 

A carnivorous diet has many advantages. Meat is highly nutritious and easy to digest which 

means that only a simple gastrointestinal tract is required to process it. Simple 

gastrointestinal tracts are smaller and shorter than complex gastrointestinal tracts and take 

up less space, especially as, due to infrequent meals they are often empty, and so weigh less 

(Hildebrand et al., 1995; Dyce et al., 2009).  However, the food is often perilous to obtain, 

and may involve great risk to chase, kill and guard against thievery.  Dependency on prey 

species means that hunters are in turn, dependent on the fortunes of their prey, and any 

environmental factors that affect the diet of prey species will impact on the success of 

sympatric carnivores.  For instance, in African grasslands, in years where there is a lower than 

average rainfall, vegetation fails to grow and the species that feed on it fail to prosper (Owen-

Smith, 1990; Ogutu et al., 2008; Gandiwa, 2016).  If herbivore mortality rates are high, birth 

rates are low and the impact on predator success may affect not only the current year but 

also a number of subsequent years (Mech and Peterson, 2003; Mech and Boitani, 2003; 

Macdonald and Sillero-Zubiri, 2004; Sillero-Zubiri et al., 2004).  In evolutionary timescales, 

long term global climatic changes have led to widespread changes in vegetation, and 

subsequent changes in the morphology of herbivorous mammals. One example of this is the 

decline of the rainforests and opening up of the grass lands in the late Oligocene period.  

Many previously short legged leaf browsers evolved to become long legged grazers, who 

were able to quickly cover the open grasslands (Janis, 1993).  Consequentially, the canid 

predators of grassland species evolved cursorial anatomical adaptations to be able to pursue 

their fleeing prey (Figueirido et al., 2015).  Energy expended during unsuccessful hunting is 

energy wasted, and predators must be able to assess the likelihood of success before starting 

the chase.  Accurate scientific data of hunting behaviours is scarce and often hard to 

categorise, for example when is a pack actually hunting, rather than assessing prey, and how 
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much food needs to be gained per individual per hunt for it to be deemed successful?  

Notwithstanding the nuances of observational studies, several have shown the success rate 

of hunts to be less than 50%.  Packs of Lycaon pictus have a mean 47% success rate (Creel 

and Creel, 1995), Canis lupus a success rate of between 10-49% (Peterson and Ciucci, 2003) 

and the maned wolf a success rate of 21% (Rodden et al., 2004). 

Protein derived from animal prey need not mean, and in most cases, does not mean, large 

mammalian quarry.  The majority of extant canid species routinely hunt prey smaller than 

themselves, and in many cases also consume plant material.  Of the small prey, not all of it 

is mammalian, with the opportunistic taking of birds (and their eggs), fish, reptiles, 

amphibians and invertebrates.  Otocyon megalotis preferentially hunts invertebrates 

particularly dung beetles and termites (Nel, 1978; Maas, 1993; Klare et al., 2011). Many 

species vary their diet throughout the year, as food stuffs become more, or less, available.   

Many species have been shown to have a reliance on fallback foods, that is nutritional 

resources that are only utilised when preferential foods are unavailable (Marshall and 

Wrangham, 2007; Ungar et al., 2008; Marshall et al., 2009).  Several authors have found the 

incidence of tooth fractures increases in carnivorans when poor resources lead to increased 

utilisation of prey material.  That is, in times of duress, carnivorans that may optimally select 

soft tissue foodstuffs, are driven to consuming skeletal material (Mech and Frenzel, 1971; 

Carbone et al., 1997; Vucetich et al., 2012; Mann et al., 2017).  These pinch points in an 

animal’s life may act as a selective pressure on morphological traits to allow for survival 

success.  

 Seasonal changes to diet may be due to the migration of large quarry, such as caribou and 

wildebeest, or fluctuations in small quarry populations, such as lemmings and ground 

squirrels.  Many species that live near coastlines seasonally hunt marine mammals that come 

ashore to breed and give birth, such as seals and walruses, or survive on seabird eggs and 

young during the breeding season (Sillero-Zubiri et al., 2004).  Species that take fruit and 
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berries will also take advantage of seasonal gluts. In species living in cold climates the autumn 

fruit and berry glut allows individuals to increase their subcutaneous and intraperitoneal fat 

reserves to endure the cold climate.  For example, Alopex lagopus increase their body mass 

by 50% in the autumn to survive the cold winter (Prestrud, 1991). In Nyctereutes 

procyonoides this behaviour is even more extreme, as individuals not only greatly increase 

their body weight, but also undertake periods of decreased activity or even hibernation 

(Nowak, 2005; Kitao et al., 2009).   Even within one species, dietary and hunting specialisms 

exist.  For example, Vulpes vulpes may exist on earthworms and human refuse in built up 

urban areas (Doncaster et al., 1990; Bateman and Fleming, 2012; Vuorisalo et al., 2014) or 

rabbits and sheep carrion in agricultural areas (Forbes-Harper et al., 2017). Canis mesomelas, 

usually thought of as hunters of small mammals, have been seen to tackle antelope, although 

this is usually undertaken when hunting in pairs (Nowak, 2005; MacDonald, 2009).  Small 

canids are opportunistic eaters of carrion and will readily consume large prey that they have 

had no part in chasing or killing.  Vulpes vulpes for example, are keen followers of Canis lupus 

and often consume the remains of moose carcasses (Peterson and Ciucci, 2003), and all 

species of jackal will take carrion from the kills of apex predators such as Panthero leo or 

Lycaon pictus (Yarnell et al., 2013).   

Competition also occurs between sympatric species, although resource partitioning of either 

food, habitat or time allows species living in the same environment to co-exist.  In this way 

dietary choice is often determined by the presence of potential competitors, as well as the 

availability of prey.  For example, in Scandinavia the Alopex lagopus and Vulpes vulpes dietary 

niches overlap.  As Vulpes vulpes is the larger species it dominates the lowland environment.  

However, it is less well adapted to high altitude mountainous environments and it is here 

that the Alopex lagopus thrives.  An alternative strategy is food resource partitioning, where 

available prey are divided into distinct niches.  The dominant species, usually the species 

with the larger body mass, consumes the prime prey species, whilst the subdominant species 
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take food items of lower nutritional value.  Dividing of resources has allowed for example, 

Vulpes corsac and Vulpes vulpes to co-exist in Mongolia  (Murdoch et al., 2010), and Vulpes 

macrotis and Canis latrans to co-exist in North America (Cypher and Spencer, 1998; 

Kozlowski et al., 2008). 

Despite the variation in diet, seasonally, geographically and opportunistically, it is possible 

to categorise canids into three broad dietary categories.  For this I follow Slater et al. (Slater 

et al., 2009): 

• Hypercarnivores:  prey species that are 50% larger than their own body mass and 

make up at least 70% of their diet. 

• Small prey specialists, also often referred to as mesocarnivores: prey species that are 

smaller than 50% of their own body mass constitute 50% or more of the diet.  

• Generalists or omnivores: invertebrates, amphibians, fish, plant matter and carrion 

make up over 50% of the diet. 

 

1.4.2 Hunting strategies 

1.4.3.1 Hunting large prey 

Pursuing large mammalian prey, requires observation, fearlessness, speed and endurance.  

In open landscapes, keen eyesight is used to spot and observe prey, but in dense cover or 

areas of tall grass, olfaction maybe more important. Nocturnal or crepuscular hunting relies 

heavily on hearing and olfaction.  When hunting individuals within a herd, the canid pack 

aims to provoke them into fleeing.  Sustained chases may cover several kilometres, and the 

initial aim is to identify a weaker individual within the heard, usually one that is young, old 

or injured, and then pursue and kill it (Mech and Peterson, 2003; Mech and Boitani, 2003; 

Peterson and Ciucci, 2003).  The tactic of chasing prey also allows the pack to attack from 

behind, a less risky strategy with large ungulates who often have horns or antlers and may 

use aggressive head butting in combat.  By selecting weaker individuals, the chase is likely to 
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be shorter, so conserving energy, and the close contact with the prey animal at the point of 

killing is less dangerous to the pack.  Even strong confident canid packs tend to avoid 

confrontation with fully grown, fit prey individuals (Mech and Peterson, 2003).  Prey is 

chased and run to the point of exhaustion, whereupon it is quickly dispatched. Canids 

overpower large prey with multiple pack members inflicting many sustained bites.  First 

contact may be with the back or hindquarters of the animal and then one or more individuals 

will grasp the prey by the nose, and several other individuals will attack the ventral abdomen 

and flanks with the aim of eviscerating the prey.  Death occurs due to shock through blood 

loss (Creel and Creel, 1995, 2002; Sillero-Zubiri et al., 2004; MacDonald, 2009).  The nature 

of smaller predators attacking larger quarry is often treacherous, and, when cornered, large 

ungulates will defend themselves, and their young, using their strong kicking hooves, horns 

or antlers (Mech and Peterson, 2003).  Mortality among canids due to wounding by large 

prey, although not commonly reported, does occur, and presumably non-life-threatening 

injuries are more frequent (Mech and Nelson, 1990; Weaver et al., 1992).  Pack hunting as a 

strategy, is demonstrably successful.  As measured by kilograms of meat per individual, the 

gains are higher than if hunting alone (Creel and Creel, 2002). When feeding, canids gorge 

on food and remove meat from the carcass and swallow it as quickly as possible. The liver, 

heart intestines eaten first, then muscle, then bones and hide.  Larger packs can not only 

tackle larger prey species, but packs can better defend their kills against scavengers 

(Fanshawe and Fitzgibbon, 1993; Creel and Creel, 2002). 

The canid method of killing large prey differs from the felid approach. Large felids will tackle 

sizable prey alone, and death usually follows an ambush or a short pursuit.  Capture and 

restraint uses the claws of the forelimbs, as well as teeth, and death is by a sustained ventral 

neck bite causing suffocation. The choice of the ventral neck limits the possible interaction 

of canine teeth against the bony skeleton of the prey animal, which could damage the teeth, 
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and the great power of the bite quickly asphyxiates, and immobilises prey (MacDonald, 1992; 

Van Valkenburgh, 2007; MacDonald, 2009).  

 

1.4.3.2 Hunting small prey 

Small mammals, birds, fish, reptiles and invertebrates constitute much of the diet for the 

mesocarnivores or small prey hunters.  All fox diets appear to be similar in potential and are 

only limited by local availability of foodstuffs (MacDonald, 2009).   The hypercarnivorous 

species will also opportunistically take these foodstuffs, especially when their usual large 

prey are hard to come by (Ewer, 1973; MacDonald and Sillero-Zubiri, 2004; Sillero-Zubiri et 

al., 2004; Nowak, 2005).  The method of hunting for small prey differs greatly to that when 

hunting for large prey.  Many small mammals and reptiles have subterranean burrows or 

dens and a long pursuit would allow them to escape underground.  Similarly, birds and fish 

can usually evade capture by taking to the air or swimming beyond reach, if not quickly 

ambushed. The small size of the prey, usually less than 50% of the predator canid body mass, 

means that it will be easily overpowered, and collaborative group hunting is not necessary. 

It is more energy efficient, even for canid species that live communally, for individuals to 

hunt alone (Sillero-Zubiri et al., 2004).  Small prey hunters therefore hunt singly and covertly, 

often under the cover of dark or the low light conditions found at dawn and dusk.  Even those 

that hunt in daylight, may be doing so ‘blind’ as their quarry may be hidden from sight.   For 

example, during the long arctic winter Alopex lagopus chases voles within their snow covered 

runs and burrows, and, on the African plains Otocyon megalotis, listens for termites within 

their mounds. Keen eyesight and enhanced senses of olfaction and hearing are key to success 

for the small prey hunters. They hunt by stealth, lying low and observing or listening before 

executing a short quick pursuit or high arcing pounce.  The pounce allows the hunter to land 

forefeet first, trapping their prey, before killing it with a bite, seen for example in Canis 

mesomelas and Alopex lagopus when hunting mice and voles. Chasers usually attempt to 
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catch their prey by the back of the neck, before shaking it vigorously to break the spinal cord, 

for example when Vulpes vulpes tackles rabbit or hare.  The high pounce is usually deployed 

for very small prey such as rodents, whereas the short pursuit is used when hunting 

lagomorphs or juvenile cervids (MacDonald and Sillero-Zubiri, 2004; Rodden et al., 2004; 

MacDonald, 2009).  Many species of canid are adept at several hunting techniques and adapt 

their strategies to either pursue larger prey or pounce on small rodents (Martín-Serra et al., 

2016).  Most canids have been known to carry food away from the kill site to either cache it 

for future use, eat quietly away from scavengers, or give to pups back at a den (Peterson and 

Ciucci, 2003). 

 
1.5 Summary 

The aim of this thesis is to contribute toward the understanding of cranial morphology and 

masticatory biomechanics in the Canidae.  Canids are ideal for this study as their evolutionary 

history is well documented, and many extant forms survive today. Despite their 40-million-

year evolution, for most of their history the only extant subfamily, the Caninae, remained 

geographically and morphological restricted.  Their current wide diversity, in terms of body 

mass, diet and geographical dispersal are a result of several recent adaptive radiation events 

occurring in the late Pleistocene.  This is evidence of their ecological adaptability and 

morphological plasticity, and many adaptive traits such as muzzle length and dental form 

have been identified by previous authors.  The roles of interspecific differences in head shape 

however, are not always clear.  This thesis uses empirically derived data to explore the 

interaction of the previously under-reported soft tissue structures with the bony morphology 

of the skull.  I build on previous findings to determine the function and constraints of some 

of the traits associated with the masticatory apparatus.   I hypothesise that the 

morphological differences between canid species reflect dietary specialisms, and that 

hypercarnivorous species have relatively greater bite forces and more robust skulls than 
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small prey or generalist hunters.  In addition, it is hoped that the findings from this study 

may help inform methodologies in future comparative morphological studies.
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Chapter Two. Sampling, Imaging and Dissection 
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2.1 Introduction  

In a bid to minimise repetition, in this chapter I review the techniques used and report the 

methodological details common to many subsequent chapters regarding sampling, ethics, 

imaging and dissection.  I also describe the gross anatomy of the jaw adductor muscles.  

Techniques, methodologies and statistical tests specific to individual chapters are discussed 

within the relevant chapters. 

 

2.2 Sampling 

2.2.1 Review of species and numbers used in previous studies. 

Previous studies exploring canid head shape and bite force have varied widely in sample size, 

from a single specimen (Wroe et al., 2007; Bourke et al., 2008) to in excess of 800 

(Damasceno et al., 2013) (Table 2.1).   The number of canid species within each study is 

accordingly varied, ranging from one to 34.  All of the previously reported canid bite force 

studies have been performed using dry skull specimens (Wroe et al., 2005; Christiansen and 

Adolfssen, 2005; Christiansen and Wroe, 2007; Wroe et al., 2007; 5. Bourke et al., 2008; 

Slater et al., 2009; Tseng and Wang, 2010; Damasceno et al., 2013).  Dry skull studies have 

several shortcomings.  Firstly, often little is known about individual specimens regarding age, 

sex and body mass, as specimens tend to come from natural history museum collections, 

where such information is inconsistently recorded.  Secondly, soft tissue structures are 

missing from dry skull material. With regard to studies considering bite force, of particular 

pertinence are the details of the jaw adductor muscles, i.e. the muscles that close the jaw to 

seize, kill and process prey.  Muscle details can include not only the mass of the muscles but 

also information regarding their sites of attachment and the structure of their internal 

architecture.  Attachment sites influence biomechanical function, and knowledge of the 

muscle architecture is important to calculate muscle force capabilities (Chapter Four).  

Thirdly, in studies working directly with specimens, for example when measuring bone stress 
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or strain, the nature of dried material does not reflect the material properties seen in the live 

condition.    
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Table 2.1. Comparison of sample size with previous studies. 

Source 1 2 3 4 5 6 7 8  This study 

Type of study Muscle 
force and 
dry skull 
bite force 

Muscle 
force and 
dry skull 
bite force 

Muscle 
force and 
dry skull 
bite force 

Muscle 
force and 
FEA bite 
force 

Muscle 
force and 
FEA bite 
force 

Muscle 
force and 
FEA bite 
force 

Muscle 
force and 
FEA bite 
force 

Muscle 
force and 
dry skull 
bite force 

Muscle 
force and 
FEA bite 
force 

Wet(W) or dry(D) skulls D D D D D D D D W 

Alopex lagopus  * 1 **     37 1 

Atelocynus microtis   **     21  

Borophagus secundus†       1   

Canis adustus   **     30  

Canis lupus  * 1 **    1 30 3 

Canis lupus dingo *   1 1   33  

Canis lupus hallstromi *       6  

Canis aureus *  **     30  

Canis dirus †          

Canis familiaris   **       

Canis latrans   **     30  

Canis mesomelas   **   1  30 1 

Canis rufus        6  

Canis simensis      1  8  

Cerdocyon thous  1 **     32  

Chrysocon brachyusus  1 **     22 1 

Cuon alpinus  * 1 **     20 1 

Epicyon haydeni †       1   

Hesperocyon gregarious †          

Lycalopex gymnocercus  1 **    1 30  

Lycalopex culpaeus   **     31  

Lycalopex fulvipes        2  

Lycalopex griseus   **     30  
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Source 1 2 3 4 5 6 7 8  This study 

Lycalopex sechurae        30  

Lycalopex vetulus   **     18  

Lycaon pictus  * 1 **   1  30 4 

Mesocyon coryphaeus †       1   

Microtomarctus conferta †       1   

Nyctereutes procyonoides  1 **     30 1 

Otocyon megalotis  1 **     30 1 

Speothos venaticus  1 **     21 1 

Urocyon cineroargentus *  **     39  

Urocyon littoralis        30  

Vulpes bengalensis   **     10  

Vulpes chama   **     19  

Vulpes corsac          4 

Vulpes ferrilata   **       

Vulpes macrotis        21  

Vulpes pallida   **     19  

Vulpes rueppelli   **     30  

Vulpes velox   **     14  

Vulpes vulpes  ** 1 **     32 23 

Vulpes zerda  1 **     30 1 

TOTAL 49 12 609 1 1 3 6 831 42 

Number of species 9 12 28 1 1 3 6 34 12 
Table 2.1. Comparison of sample size with previous studies. 
1. Wroe et al., 2005, 2. Christiansen and Adolfssen, 2005, 3. Christiansen and Wroe, 2007, 4. Wroe et al, 2007, 5. Bourke et al, 2008, 6. Slater et al, 2009, 7. Tseng and Wang, 
2010, 8. Damasceno et al, 2013. 
† extinct. 
* This study did not break down specimen numbers to individual species. 49 specimens representing 39 carnivoran species. 11 species were from the Canidae family.  
** This study did not break down specimen numbers to individual species. 609 specimens representing 150 carnivoran. 28 species were from the Canidae family. 
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2.2.3 Description of sample 

Dry skull specimens were not used for this thesis as this work considered the relationship of 

soft tissue structures to the bony skeleton.  Wet specimens, that is those with the soft tissues 

still intact, were used for all work reported in this thesis.  Wet specimens allowed for the 

acquisition of empirical specimen specific muscle data, and the material properties of the 

skeletal components more closely reflected the conditions found in live animals.  In 

particular, specimen specific data was used to explore scaling of muscle mass and force, the 

accommodation of muscles on the cranium, to build in silico models to determine bite force, 

stress and strain within the skull and to conduct ex vivo laboratory experiments to explore 

the role of the orbital ligament during biting.    

In order to avoid preservation artefacts such as tissue drying or shrinking, only fresh or 

fresh/frozen specimens were used.  All specimens with the exception of Canis lupus 

familiaris, Cuon alpinus 1 and 2, Lycaon pictus 2 and Vulpes vulpes 1-8 arrived at the 

University of Liverpool in a frozen condition. The Vulpes vulpes specimens 9- 24 were 

supplied by the Animal and Plant Health Agency (APHA) had been frozen shortly after post 

mortem sample collection and not been defrosted since. The samples supplied by the 

National Museum of Scotland (Table 2.2) were initially donated to them via several zoos and 

safari parks, and the precise number of freeze thaw cycles is unknown.  Several of the fresh 

specimens were frozen soon after arrival (Table 2.2). All frozen specimens were defrosted 

once, and scanned and dissected within 24 hours of defrosting. Table 2.2 details the number 

of freeze thaw cycles where known.  The difficulty in acquiring such rare specimens resulted 

in a limited sample size of 47 specimens (Table 2.2).  Shortcomings of having small data sets 

are the concomitant increase in standard deviation values (SD), standard error of the mean 

(SEM) values and consequentially, broader confidence interval (CI) ranges.  This in turn can 

lead to an increase of Type II errors, where significant differences are masked by the wide CI 

range (Vinyard et al., 2003; Button et al., 2013).   However, small sample sizes are 
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unavoidable in studies using rare specimens, and this is widely acknowledged and 

demonstrated within the literature (Gittleman, 1991; Abouheif and Fairbairn, 1997; Wang et 

al., 1999; Huber, 2005; Christiansen and Wroe, 2007; Anapol et al., 2008; Rae and Koppe, 

2008; Christiansen, 2008; Cox, 2008; Drake and Klingenberg, 2008; Pierce et al., 2009; Huq 

et al., 2015; McIntosh and Cox, 2016; Burrows, 2018).  Five specimens were rejected for 

further analysis due to damage sustained at the time of death or post mortem and are not 

reported again.  The remaining sample set consisted of 42 individuals, covering nine of the 

13 genera and 12 of the 36 species within the canid family.  Not all of the specimens were 

used in all parts of the study.  Details of specimen allocation are reported in Table 2.2.  Canid 

diversity was further reflected in the sample set by the wide range of body masses spanning 

two orders of magnitude (1kg to 36kg), and the broad range of dietary specialisms that it 

encompassed.  All four of the hypercarnivorous species were represented (Canis lupus, Cuon 

alpinus, Lycaon pictus, Speothos venaticus), plus five small prey specialists (Alopex lagopus, 

Canis mesomelas, Chrysocyon brachyurus, Vulpes corsac, Vulpes vulpes) and three 

generalists (Nyctereutes procyonoides, Otocyon megalotis, Vulpes zerda).   In addition, 

specimens came from the three major canid clades: the fox-like clade, the wolf like clade and 

the South American clade.  Only the grey-fox clade, consisting of only two species, was 

unrepresented in the sample set.  
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Table 2.2 Details of specimens used in this thesis. 

Specimen Donor institution Remarks on sample/condition 
Freeze/thaw 

cycles 
Sex 

Body mass 
(kg) 

Mean body 
mass (kg)from 

literature 1,2 

Condylobasal 
length 

from specimen 
(mm) 

Condylobasal 
from literature 

(mm) 

Parts of 
the 

study 

Alopex lagopus 
1 

National Museum of 
Scotland 

Unusable - shot through head. unknown M Not known 5.2 Not measured 114.7-
132.53,4,9,14,16 

x 

Alopex lagopus 
2 

National Museum of 
Scotland 

Good, head only, skinned. unknown M 6.5 5.2 130.1 114.7-
132.53,4,9,14,16 

C, D, E 

Canis lupus 1 National Museum of 
Scotland 

Subspecies signatus. Good, head 
only, skinned 

unknown F 32.6 36.5 205.7 182-285 4,9,13,14,16 C, D. 

Canis Lupus 2 National Museum of 
Scotland 

Subspecies chanco. Head only, 
skinned.  Fair condition, slight 

damage to zygomatic arch 

unknown M 32.4 36.5 215.3 182-285 4,9,13,14,16 C, D, E 

Canis Lupus 3 National Museum of 
Scotland 

Subspecies chanco. Head only, 
skinned 

unknown M 33.2 36.5 229.8 182-285 4,9,13,14,16 C, D. 

Canis lupus 
familiaris 

University of 
Liverpool 

Good, entire. 0 M Not 
measured 

x Not measured x A 

Canis 
mesomelas 

National Museum of 
Scotland (Hamerton 

Zoo) 

Good, head only, skinned. unknown M 7.9 9.7  
152.6 

140.9-160 9,14,17 C, D, E 

Chrysocon 
brachyusus 

National Museum of 
Scotland (Port 

Lympne) 

Good, head only, skinned. unknown F 22.5 25.0 209.8 198 - 235 4,9,12,14 C, D, E 

Cuon alpinus 1 Twycross Zoo Unusuable - calvarium and 
temporalis partially removed, 

brain removed 

1 F Not known 14.0 Not measured 161.7-171.4 4,7,9,14 
 

X 

Cuon alpinus 2 
 

National Museum of 
Scotland 

Head only, skinned unknown F 26.9 14.0 171.0 161.7-171.4 4,7,9,14 
 

C, D, E 

Lycaon pictus 1 Chester Zoo Poor - temporalis removed. Not 
used. 

0 F 30.0 26.5 Not measured 185 -198 4,9,14,15,16 x 

Lycaon pictus 2 Twycross Zoo Good. Entire specimen. 1 M Not known 26.5 185.9 185 -198 4,9,14,15,16 C, D. 
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Specimen Donor institution Remarks on sample/condition 

 

Sex 
Body mass 

(kg) 

Mean body 
mass (kg)from 

literature 1,2 

Condylobasal 
length 

from specimen 
(mm) 

Condylobasal 
from literature 

(mm) 

Parts of 
the 

study 

Lycaon pictus 3 West Midlands Safari 
Park 

Good - entire but GI tract 
removed 

1 M 27.4 26.5 194.7 185 -198 4,9,14,15,16 C, D, E 

Lycaon pictus 4 National Museum of 
Scotland 

Good, head only, skinned. unknown F 30.3 26.5 185.1 185 -198 4,9,14,15,16 C, D. 

Nyctereutes 
procyonoides 

National Museum of 
Scotland 

Good. Head only, skinned. unknown Not 
known 

Not known 6.5 120.8 108.9-125.7 
4,9,14,16,18 

 

C, D, E 

Otocyon 
megalotis 

National Museum of 
Scotland 

Good. Head only, skinned unknown M 4.9 4.2 109.7 104-121 4,5,9,14,16 C, D, E 

Speothos 
venaticus 

National Museum of 
Scotland (Port 

Lympne) 

Good. Head only, Skinned unknown F 6.5 6.5 131.5 120 -133 4,7,9,14,16 C, D, E 

Vulpes corsac 1 National Museum of 
Scotland (Paradise 

Wildlife Park) 

Good. Head only, skinned unknown M Not known 2.9 109.5 103-1116 C, D. 

Vulpes corsac 2 National Museum of 
Scotland 

Good. Head only, skinned unknown M 3.0 2.9 108.8 103-1116 C, D, E 

Vulpes corsac 3 National Museum of 
Scotland 

Good. Head only, skinned unknown M 2.7 2.9 110.5 103-1116 C, D. 

Vulpes corsac 4 National Museum of 
Scotland 

Fair condition some slight 
damage to skull 

unknown Not 
known 

3.5 2.9 108.1 103-1116 C, D. 

Vulpes corsac 5 National Museum of 
Scotland 

Unusable - damage to skull unknown F Not 
Known 

2.9 Not measured 103-1116 X 

Vulpes vulpes 1 Gamekeeper Good. Entire specimen. 0 M 6.1 8.5 141.1 127.6-150 2,7,9,12,14 C, D, E 

Vulpes vulpes 2 Gamekeeper Good. 1 M 8.5 8.5 Not measured 127.6-150 
4,9,11,14,16 

B 

Vulpes vulpes 3 Gamekeeper Good. 1 F 4.7 8.5 Not measured 127.6-150 
4,9,11,14,16 

B 
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1. Macdonald and Sillero-Zubiri (2004), 2. Nowak (2005), 3. Audet et al. (2002), 4. Christiansen and Adolfssen (2005), 5. Clark (2005), 6. Clark et al. (2009), 7. de Mello Beisiegel 
and Zuercher (2005), 8. Elmhagen et al. (2000), 9. Gittleman (1991), 10. Larivière  (2002), 11. Lariviere and Pasitschniak-Arts (2018), 12. Mazzolli (2009), 13. Pocock (1935), 
14. Van Valkenburgh and Ruff (1987), 15. Van Valkenburgh (1996), 16. Van Valkenburgh et al. (2014), 17. Walton (2018), 18. Ward and Wurster-Hill (1990).   
A. MRI sensitivity study, Canis familiaris (n=1), this chapter B. Muscle mass MR/dissection validation Vulpes vulpes (n=4), this chapter, C. Dissection, all species (n=20), this 
chapter, D, Shape analysis, all species (n=19), Chapter Three, E. Finite element analysis models, all species plus one extra Vulpes vulpes (n=13), Chapters Four and Five, F, 
Strain Gauge experiments, Vulpes vulpes (n=17), Chapter Five. 

Specimen Donor institution Remarks on sample/condition 

 

Sex 
Body mass 

(kg) 

Mean body 
mass (kg)from 

literature 1,2 

Condylobasal 
length 

from specimen 
(mm) 

Condylobasal 
from literature 

(mm) 

Parts of 
the 

study 

Vulpes vulpes 4 Gamekeeper Unusable. Shot through head 1 M Not 
measured 

8.5 Not measured 127.6-150 
4,9,11,14,16 

x 

Vulpes vulpes 5 Gamekeeper Good. 1 M 6.3 8.5 Not measured 127.6-150 
4,9,11,14,16 

B 

Vulpes vulpes 6 Gamekeeper Good. 1 M 8.0 8.5 Not measured 127.6-150 
4,9,11,14,16 

B 

Vulpes vulpes 7 Gamekeeper Good 1 M 8.7 8.5 Not measured 127.6-150 
4,9,11,14,16 

C, E, 

Vulpes vulpes 8 Gamekeeper Good. 1 F 5.9 8.5 Not measured 127.6-150 
4,9,11,14,16 

F 

Vulpes vulpes 
9-24 

Animal and Plant 
Health Agency 

(APHA) 

Good. 1 Not 
known 

Not known 8.5 Not measured 127.6-150 
4,9,11,14,16 

F 

Vulpes zerda National Museum of 
Scotland 

Good. Head only, skinned. unknown F 1.0 1.1 85.2 80-88 4,9,10 
 

C, D, E 
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All specimens in this study, with the exception of the Vulpes vulpes samples, came from the 

UK zoo and safari park population, and were captive bred and maintained. I am unaware of 

any studies describing the effects of captivity on the morphology of wild canid species.  Other 

mammalian species are better documented, and captive animals are often reported to have 

better body condition and live to a greater age than their wild counterparts (Kitchener et al., 

1998; Ange et al., 2001; Schwitzer and Kaumanns, 2001; O’Regan and Kitchener, 2005; Clauss 

and Hatt, 2006; Mason, 2010; Mason and Veasey, 2010; Müller et al., 2010).  It is also likely 

that many of the older specimens may have experienced some degree of sarcopenia, that is, 

muscle loss related to ageing, but this has not been widely explored in canid species to date, 

and no data on likely muscle loss currently exists.  Several of the canid specimens, notably 

Cuon alpinus 2, had a greater body mass than that reported in the literature.  This is in 

agreement with the International Species Information System (ISIS) for Cuon alpinus which 

reports greater body mass values for captive animals than those expected in the wild 

population (Appendix 2).  In a study comparing body mass in wild and captive individuals of 

the primate Chlorocebus aethiops sabaeus, the authors found that the ready availability of 

high quality food, lack of competition and reduced activity rates of the captive animals 

resulted in their greater body mass, even when other variables such as genetic history and 

seasonality were kept constant.  The authors found that morphological measures of length 

(forelimb, hindlimb and torso) were not statistically different between the wild and captive 

populations, but measures of girth (waist, thigh, upper forelimb) were, with the higher values 

reported in the captive animals.  This indicates an increase in soft tissue such as muscle or 

adipose tissue (Turner et al., 2016).  In three further studies of primates the authors found 

that the weight gain seen in captive animals was due to a gain in adipose tissue resultant of 

their free access to food and their sedentary lifestyle (Altmann et al., 1993; Pereira and Pond, 

1995; Schwitzer and Kaumanns, 2001).  As an additional measure to check if the specimens 

in this study fell within normal morphological range, and that any increased or decreased 
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body masses could be accounted for by body condition, I also measured condylobasal length.  

Condylobasal length measures the distance from the prosthion to the caudal border of the 

occipital condyle of the skull.  It can be considered as a measure that is independent from 

body mass as it is unaffected by body condition, or changes in body condition.  All 

condylobasal lengths fell within the parameters reported for wild caught specimens in 

previous studies (Table 2.2). Five specimens (Cuon alpinus 2, Vulpes vulpes 1,3, 5 and 8) had 

body mass values were markedly different, that is greater the 20% , from the normal reported 

body mass range, but as their condylobasal lengths  fell within the normal parameters the 

differences were attributed to increased or decreased body condition.  

Some degree of sexual dimorphism has been documented in many canid species, but the 

literature concurs that it is very modest, and that overall body size is the greatest differential 

factor (Ewer, 1973, MacDonald and Sillero-Zubiri, 2004; Nowak, 2005).   Males often have a 

slightly greater body mass and larger overall proportions than females, however there 

appears to be a significant amount of overlap in body mass data between the largest female 

and smallest males (MacDonald and Sillero-Zubiri, 2004; Sillero-Zubiri et al., 2004; 

MacDonald, 2009; Wang and Tedford, 2010).  Several species have also been shown to 

exhibit some sexual dimorphism relating to dentition, although canids, along with hyaenids, 

are noted to be the least dimorphic in this respect of all of the carnivorans (Sillero-Zubiri et 

al., 2004; Macdonald, 2009).  Where species have been shown to exhibit dental dimorphism, 

males typically have 8-15% longer canines, but this is thought to relate to behavioral displays 

and is not correlated to body mass or skull length (Gittleman and Van Valkenburgh, 1997; 

Kim et al., 2012).  

 

2.3.4 Ethical approval. 

No specimens were specifically euthanised for this thesis, and all were collected post 

mortem.  Non-native British species were donated to the study from several sources: Chester 
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Zoo, Knowsley Safari Park, Twycross Zoo, West Midlands Safari Park and the National 

Museum of Scotland.  Specimens that came from the National Museum of Scotland had been 

donated to them by other organisations including Port Lympne Wild Animal Park and 

Hamerton Zoo.  These details, where known, are stated in Table 2.2. The wild British species 

specimens, Vulpes vulpes, were supplied by a gamekeeper and via the Animal and Plant 

Health Agency (APHA) York.   The domestic species specimen, Canis lupus familiaris, was 

donated by a dog rescue organisation via the University of Liverpool Institute of Veterinary 

Science.  All specimens used were covered by the University of Liverpool Ethical Approval 

Regulations (Reference: RETH000553 and VREC 480), and in addition, some of the outside 

agencies also required ethical approval forms, which were filled in before specimens were 

donated. 

 

2.3 Imaging 

Digital imaging of specimens is widely used in morphological studies. It provides a long term 

record of biological material which would naturally degrade under normal conditions, and 

data can be digitally examined and reconfigured into virtual three dimensional models used 

to further explore form and function.   The work in this thesis uses two imaging modalities, 

computed tomography (CT) and magnetic resonance (MR).  

 

2.3.1 Computed Tomography (CT) 

CT imaging is non-invasive, relatively quick and inexpensive to perform and the equipment 

required is widely available in both clinical and research settings. CT captures detail of the 

bony morphologies of the specimen whilst preserving the surrounding tissues, and can be 

performed on both living and ex vivo specimens.  A great advantage of CT imaging is that it 

allows for all aspects of the specimen to be visualised, not just the external surfaces as seen 

in photographic or surface scanning techniques.  Unlike conventional radiography, where a 
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two-dimensional image of a three-dimensional (3D) object is produced, CT allows for the 

imaging of individual body slices and virtual 3D rendering of scanned specimens (Hsieh, 2009; 

Seeram, 2009).  The image produced is spatially accurate with no superimposition of 

overlying structures.  Some studies use direct measurements from CT scans (Herring, 2007; 

Drake et al., 2017), whilst others use them as a basis for further analyses, for example to 

recreate the bony morphologies for finite element techniques (Kupczik et al., 2007; Cox et 

al., 2011; Smith et al., 2013 Toro-Ibacache et al., 2016). 

CT uses multiple X-rays to generate a composite radiographical image.  During scanning an 

X-ray source rotates around the specimen producing many separate beams that pass through 

the specimen at different angles.  The energies of the X-rays exiting the specimen are 

recorded by multiple detectors (Buzug, 2008; Hsieh, 2009).  The degree to which the X-rays 

are attenuated by biological tissues is determined by their material density.  The specimen is 

scanned in sequential slices. Each slice is made up of a square grid of pixels. As each pixel has 

a third dimension, the depth of the slice, it is referred to as a voxel, which describes a volume 

rather than an area. The sum of the attenuation of the X-rays is calculated for each voxel of 

the specimen.  Computer software converts this information into a digital image for each 

slice. Regions of high density, such as bone, appear white, whilst regions of low density, such 

as gas appear black, with all potential intensities of density appearing as gradations in 

between. In this way, an image is produced for each slice.  As each slice is made up of many 

voxels, it is possible, if the voxels are isometric, to reslice the data into alternative orthogonal 

and oblique views, allowing for visualisation from different aspects of the specimen 

(Wolbarst et al., 2013). Serial slices can be reconstructed to re-assemble the entire 

morphology (Carver and Carver, 2012).  Using segmentation software, tissues of similar 

densities can be identified and reconstructed to enable virtual three-dimensional models to 

be built (Chapters Three, Four and Five).  Contrast resolution describes the ability to 

distinguish between tissues with similar grayscale values. Spatial resolution refers to the 
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degree to which different structures can be differentiated due to the number of pixels per 

slice.   Signal to noise ratio (SNR) is a measure of noise (McNitt‐Gray, 2006).  SNR is a measure 

of the true signal from the specimen compared to the level of background noise originating 

from pixels that deviate from normal levels.  There is a trade-off between spatial resolution 

and SNR. High SNR is desirable as it indicates lower levels of noise on the image.  Thicker CT 

slices give a higher SNR but increasing slice thickness decreases spatial resolution in the Z 

axis.  For high spatial resolution images, thin slices and a high number of pixels per slice are 

required.  

There are two potential disadvantages to using CT imaging.  The first is the high levels of 

radiation exposure generated during scanning, although this is only a concern when using 

this modality to image live patients and is not pertinent to this work (Carver and Carver, 2012; 

Mazonakis and Damilakis, 2016).  The second disadvantage is that the detail of skeletal 

muscle and other soft tissue structures is not well differentiated using CT imaging. This is due 

to the similar X-ray attenuation properties of muscle, fascia, tendon and ligament.   

 

2.3.2 Magnetic resonance imaging.  

In order to obtain more detailed electronic images of the jaw adductor muscles and 

postorbital ligaments, Magnetic Resonance (MR) scanning was performed. As with CT 

scanning, MR scanning captures internal and external structures of the specimen.  The 

advantage of MR images over CT images is that they can distinguish between soft tissues, 

and MR is the modality of choice for imaging muscle, tendon, ligament and neurovascular 

tissues. However, due to the low water density and fast signal decay in skeletal material, MR 

images are less well able to reflect the fine detail of the bony structures (Hashemi et al., 2010; 

Farncombe and Iniewski, 2013; Wolbarst et al., 2013; Dale et al., 2015; Miller, 2015).  MR is 

another imaging modality that produces images of sequential slices of spatially positioned 

biological material.  Again, each serial slice is made up of many voxels, which, providing they 
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are isometric, can be reconfigured to view different slice views or segmented to reconstruct 

volumes.    Instead of using X-rays, MR depends upon the magnetic properties of the single 

protons of the hydrogen atom nuclei within the tissues of the specimen (Hashemi et al., 2010; 

Wolbarst et al., 2013; Dale et al., 2015).  The higher density of hydrogen protons in soft tissue 

structures results in enhanced soft tissue structure resolution.  Conversely, the lower density 

of hydrogen protons in skeletal material results in poorer resolution of bony material.  In the 

initial stages of scanning a powerful external magnetic force is applied to the outside of the 

specimen. This force is applied by the MR scanner to the sample within the scanner tube. 

The hydrogen atoms within the specimen align, either parallel or antiparallel, relative to the 

magnetic field. The hydrogen atoms then precess, that is they rotate around the axis of the 

magnetic field. However, they do not precess simultaneously and are said to be out of phase.  

The frequency of the precession in a given magnetic field is named the Larmor frequency.  A 

second magnetic field is then locally applied via a coil perpendicular to the first, at the same 

frequency as the Larmor frequency.  This is the radiofrequency pulse.  The hydrogen nuclei 

realign to the coil force as it is switched on.  As the hydrogen nuclei alter their net alignment 

they transmit energy which is detected, recorded and spatially located.  The computer 

analysis of the signal between both conditions is the basis for the magnetic resonance image. 

The different characteristics of tissues are utilised to run different imaging sequences with 

different weightings.  T1 or T2 weighted images describe the magnetic characteristics of the 

hydrogen nuclei, and the rate at which they realign to their original spin orientation as the 

coil force is switched off. Proton density weighted images discriminate between the differing 

densities of protons within each tissue.  

 

2.3.3 Method 

To capture details of both soft tissue and bony morphologies, most specimens in this thesis 

were scanned using either or both computer tomography (CT) and magnetic resonance (MR) 
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modalities. CT scanning was used to capture the detailed bony morphologies of the head and 

allowed for differentiation of cortical bone, trabecular bone and dental tissues.  CT scanning 

was performed on fully defrosted specimens.  Specimens were scanned at the University of 

Liverpool either at the Small Animal Teaching Hospital using a Siemens Somatom Volume 

Zoom (Siemens AG, Munich) or a Toshiba Prime Aquilion (Toshiba Medical Systems, Europe), 

or at the Philip Leverhulme Equine Hospital using a GE Lightspeed Plus (GE Medical Systems, 

Milwaukee).  Current and voltages used were 120 kV and 200 mA.  

MR was used to capture the details of the jaw adductor muscles and the postorbital ligament. 

MR scanning was performed on fully defrosted specimens. Specimens were imaged using a 

3T Siemens Trio (Siemens Medical Solution, Erlangen, Germany) magnetic resonance scanner 

at the Liverpool Magnetic Resonance Imaging Centre at the University of Liverpool.  CT and 

MR slice thickness and pixel spacing used in this thesis are reported in Table 2.3. Scanning 

was performed before dissection occurred to ensure soft tissues as well as bony elements 

were scanned, and that no artefacts were created during the manual manipulation of the 

specimens. The specimens that did not undergo imaging were the 16 Vulpes vulpes 

specimens used in the ex vivo strain gauge experiments (Chapter Five).  

 

Table 2.3 Image slice thickness and pixel spacing for all scanned specimens. 

Specimen MR slice 
thickness 
mm 

MR pixel 
spacing 

CT slice 
thickness 

CT pixel 
spacing 

Alopex lagopus 2 1.00 0.424 0.5 0.194 

Canis lupus 1 1.00 0.424 0.5 0.417 

Canis Lupus 2 1.00 0.424 0.5 0.357 

Canis Lupus 3 1.00 0.424 0.5 0.34 

Canis lupus familiaris 1.00 0.424 x x 

Canis mesomelas 1.00 0.5 0.625 0.283203 

Chrysocon brachyusus 1.00 0.424 1.25 0.388672 
Cuon alpinus 1 1.00 0.424 0.5 0.283 

Lycaon pictus 1,2 1.00 0.424 1 0.29296875 

Lycaon pictus 3 1.00 0.424 0.5 0.3203125 

Lycaon pictus 4 1.00 0.424 0.5 0.333 

Nyctereutes procyonoides 1.00 0.424 0.5 0.177 

Otocyon megalotis 1.00 0.424 0.5 0.177 
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Speothos venaticus 1.00 0.424 1.25 0.292969 

Vulpes corsac 1 1.00 0.424 0.625 0.187500 

Vulpes corsac 2 1.00 0.424 0.5 0.172 
Vulpes corsac 3 1.00 0.223 0.5 0.192 

Vulpes corsac 4 1.00 0.223 0.5 0.162 

Vulpes vulpes 1,2,3,5,6 1.00 0.424 0.5 0.203125 

Vulpes vulpes 7 1.00 0.424 x x 
Vulpes zerda 1.00 0.223 2.0 0.136 

 

 2.3.4 Muscle imaging and validation 

To determine which MR protocol was best able to distinguish between muscle masses, a 

short study was performed.  One specimen was scanned (Canis lupus familiaris) using three 

different protocols (T1 weighting, T2 weighting and Proton density), and the resultant scans 

visually assessed.  The proton density (PD) sequence gave the best signal intensity for 

collagenous tissues such as fascia, ligament and tendon, and consequently allowed the 

different divisions of the muscles to be more clearly identified (Figure 2.1).  Consequently, all 

specimens were scanned using the PD sequence.  

Previous studies have demonstrated a strong correlation with gross cadaveric findings of 

human skeletal muscle mass with those reconstructed via MR imaging (Mitsiopoulos et al., 

1998; Sanal et al., 2009; Balius et al., 2013; Storey et al., 2016; Pinares Toledo et al., 2018).  

To verify if this is also applicable in canid masticatory apparatus and that individual muscles 

could be correctly identified and measured, a validation test was performed. Four Vulpes 

vulpes specimens were scanned using MR. One of the specimens was subsequently frozen 

and bandsawed into approximately 1cm axial slices.  Slices were compared with the 

corresponding specimen’s MR axial images to identify the individual muscle masses of 

temporalis, masseter and the pterygoids (Figure 2.2 A, B).  The three other Vulpes vulpes MR 

datasets were loaded into Seg3D software (CIBC, 2016), and individual muscles identified and 

reconfigured as muscle volumes (Figure 2.2.C).  Volumes were converted into mass using the 

values of 1.056g cm3 for mammalian muscle (Murphy and Beardsley, 1974).  These three 

specimens were then dissected to determine jaw adductor muscle masses.  Reduced major 
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axes (RMA) regression tests and t-tests were performed to establish any differences in mass 

between the two sample groups. RMA regression analyses were used to account for possible 

errors in both variables.   

 

Validation results 

Muscle masses reported from dissections and calculated from MR scans are reported in Table 

2.4. RMA regression slope was 1.02 (r2 0.99, CI 0.98, 1.04) (Figure 2.3) and not statistically 

different to the expected slope of 1. The t-test t value between the dissection and MR derived 

values was -0.07108 the p-value was 0.944217. The result was not significant. Both of these 

statistical tests imply that muscle masses determined from MR reconstructions were 

statistically indistinguishable than those determined by gross dissection techniques, and that 

either method is reliable for determining muscle mass values.  

 

2.3.5 Combined computer tomography and magnetic resonance scans.  

Several easily distinguishable bony landmarks that were common to both the CT and MR 

datasets were selected and used to co-register both datasets using Avizo software (FEI 

Systems, Oregon, USA).  This combined both imaging modalities into one series, which 

enabled the visualisation of muscles and other soft tissue structures relative to the 

reconstructed skull (Figure 2.4).  This allowed for identification of muscle attachment sites 

(Chapter Three, part 3.3.3) and was also further explored to consider if landmarking the 

muscle boundaries could be used for shape analysis of muscles (Chapter Three, part 3.3.2.1). 

This technique was performed for each species in the dataset. Where more than one 

specimen represented the species, the individual identified as being closest to the mean 

shape was chosen (Chapter Three, part 3.3.2.3).  
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Figure 2.1 MR axial slices of Canis lupus familiaris, A, T1 weighted sequence, B, T2 weighted 

sequence, C, PD weighted sequence.  
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Figure 2.2 Vulpes vulpes. A: Bandsawed axial section, B: MR axial slice, C: Individual MR muscle slices 

reconfigured to render jaw adductor muscle volumes. T: temporalis, M: masseter, P: pterygoids, 

B:brain. 
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Table 2.4. MR and dissection muscle volumes validation study. 

* Calculated from values in Murphy and Beardsley (Murphy and Beardsley, 1974).   

 

 

 

 

 

 

 

 

 

 Figure 2.3 RMA regression of mass from MR vs Mass derived from dissection. 

 

Specimen Muscle Voxels (individual 
voxel volume 
7.63285E-05cm3 

Volume 
cm3 from 
MR 

Mass(g) 
from MR 

Mass(g) 
from 
dissection* 

Vulpes vulpes 

2 

Male 8.5kg 

Temporalis 801798 61.2 64.6 66.1 

Masseter 300969 23.0 24.2 22.9 

Pterygoids 78480 6.0 6.3 7 

Vulpes vulpes 

3 

Female 4.7kg 

Temporalis 420517 32.1 33.9 35.9 

Masseter 147553 11.3 11.9 11.1 

Pterygoids 50955 3.9 4.1 4.9 

Vulpes vulpes 

5 

Male 6.3kg 

Temporalis 586172 44.7 47.2 48 

Masseter 212125 16.2 17.1 19.3 

Pterygoids 64606 4.9 5.2 5.7 
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Figure 2.4 Canis lupus, co-registed MR and reconstructed skulls from CT scans. Pink dots and 

numbers indicate landmark placement sites.  
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2.4 Dissection and the gross anatomy of the jaw adductor muscles. 

2.4.1 Review  

Dissection, the structured dismantling of cadavers, has long been used in morphological 

studies to document and explore the form of biological material (Hildebrand et al., 1995).   It 

has two main advantages. Firstly, that empirical data is gathered (Jones, 1997; Budras et al., 

2007; Evans and De LaHunta 2016).  This is may be used as a primary source for further 

analysis, or to validate other studies.  Secondly, dissection also brings the understanding that 

the complexity of real anatomy cannot be summarised into numerical data, and it is only with 

close examination of real specimens that true biological condition can be described. 

However, access to real specimens also brings an understanding of how errors in acquisition 

or recording of samples are easily made. For example, muscle fascicle lengths vary greatly 

within a single muscle and it cannot be ignored that muscle samples naturally includes other 

tissues such as tendon, fat, fascia and neurovascular tissue.  Dissection also revealed how the 

fascia in particular has a structural and unifying role in supporting the muscles and uniting 

them with their neighboring structures (Korf et al., 2008).  

Dissection has three major disadvantages.  Firstly, it can only be performed on ex-vivo 

specimens, which limits the number of available specimens.  Secondly, it must be performed 

in a sequential order, running from superficial to deep, which has the potential to overlook 

key topographical relationships. Thirdly, it is by nature destructive and no specimen can be 

dissected twice. It is essential that detailed notes and photographs are kept throughout the 

process.   

In this thesis a combination of observations from both imaging modalities and dissection 

were used to integrate anatomical knowledge to inform further analyses, for example when 

calculating the muscle attachment surface areas (Chapter Three) or describing the muscle 

attachment sites in the finite element models (Chapter Four).   
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2.4.2 Method 

This part of the thesis describes the gross anatomy of the jaw adductor muscles found in 

twelve species of Caninae. This is the most extensive descriptive work on wild canid species 

masticatory muscle to date.  A total of 23 heads were dissected to determine the anatomy 

of the jaw adductors (Table 2.2). At least one representative from each of the species used 

in this thesis was dissected.  After removal from the body, all heads were stored in either 

refrigerators or freezers.  In some specimens, the fur and skin were present on receipt of the 

sample (Figure 2.5), whilst in other samples they had been removed, but no underlying 

tissues were disturbed. No fixative solution was applied to any specimen, that is they were 

all fresh or defrosted from frozen.  Consequently, they were expected to suffer from 

minimum amounts of shrinkage, unlike specimens that have been stored in alcohol, formalin 

or other preserving fluids (Fox et al., 1985; Tolhurst and Hart, 1990; Brenner, 2014; Hayashi 

et al., 2016).  Frozen specimens were defrosted before any analyses.  Specimens were 

dissected on one side, either left or right, where necessary avoiding any pre-existing damage.  

No individual was judged to have a preferential working side judging from dental wear.  

Specimens were photographed throughout the dissection process to capture the details of 

morphology that cannot be reduced to numerical observations. These included the extent 

and thickness of the fascial coverings, the tendinous components of the muscles and the 

complexity of the layers of the muscles. Photography was performed using a digital camera 

(Sony DSC-H200) that in most cases was positioned approximately perpendicular to the 

sagittal, axial and coronal planes of each specimen. Oblique views were also used to capture 

deeper structures, or to cover several aspects of the areas of interest.  

The masticatory muscles were photographed in situ and then removed.  During the 

dissection, any large amounts of fat or connective tissue were removed from any muscles, 

but I acknowledge that small quantities of these and other tissue types, for example tendons, 
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fascial sheets and neurovascular bundles, also contribute to the muscle mass.  Details 

observed and measured from the muscle architecture where used in physiological cross 

sectional area calculations (Chapter Four, part 4.2.3.2), and as with other studies using this 

method, the non-muscular components are not taken into account in this thesis.  As each 

muscle and its subdivisions were removed, the origin and insertion points were recorded 

photographically.  Individual muscles were wrapped in damp cloth and stored in labelled 

polythene bags to prevent dehydration.  Individual muscles and their constituent 

subdivisions were subsequently weighed using Redwag WPS600/C/2 digital scales, accurate 

to 0.001g, and dissected for further analyses.  The dissection photographs in this chapter 

represent a small number of the many taken and aim to give a representative overview of 

the diversity of the material.  

Each specimen was skinned, and the muscles of facial expression and superficial connective 

tissue and fascia removed (Figures 2.6 and 2.8).  The digastricus muscle, a jaw abductor was 

removed and was not used in any part of this study (Figure 2.7).  The masseter was the first 

of the jaw adductor muscles to be dissected and removed as this partially covered both the 

temporalis and pterygoid muscles. The temporalis was removed next as this then enabled 

the pterygoids to be visualised and accessed.  Muscle masses and muscle subdivision masses 

are reported in Table 2.5.  
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Figure 2.5 Lycaon pictus, intact head, with fur, skin and superficial structures in place.  

 

 

 
 

.  

Figure 2.6 Lycaon pictus, fur and skin removed. Any superficial non- masticatory muscles such as 

platysma, interscutularis, occipitalis and zygomaticus were removed.  
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Figure 2.7 Lycaon pictus. The digastricus muscle (white asterisk) was dissected and removed. As a 

jaw abductor this muscle, although associated with mastication, was not included in any part of this 

study. 

  

 

 

Figure 2.8 Canis mesomelas. The superficial layer of temporal fascia was contiguous with that 

covering the masseter and also ran forward to the maxillary region. This was photographed and then 

removed. The deep layer of fascia was more robust and was dissected with the temporalis muscles 

(see Figures 2.18 and 2.19). 
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2.4.3 Dissection notes on the masseter muscle.  

The masseter muscle is the second largest of the jaw adductors in carnivorans (Getty, 1975; 

Evans and De Lahunta, 2016;  Singh et al., 2018).  The mean mass of the masseter in the 

specimens dissected in this study contributed 30% to the total jaw adductor mass. The 

masseter/zygomaticomandibularis system was the most morphologically complex part of 

the jaw adductor muscles.  For further details on masseter muscle nomenclature see 

Chapter One, part 1.3.2.3.  The masseter was subdivided into three layers, superficial, deep 

and zygomaticomandibularis, although the division between the superficial and deep layers 

was often unclear, particularly in the larger species where many additional leaflets were 

observed.   All layers were to some extent merged with those that lay next to them, and so 

definitive boundaries of each muscle belly were not always possible to ascertain. In these 

instances, the boundaries were determined by observing the orientation of the fascicles: 

the superficial muscle fascicles ran in a caudoventral orientation, whilst those of the deep 

masseter ran more ventrally, and the zygomaticomandibularis fascicles had a rostroventral 

orientation.   Although the specific architecture of each of the masseteric subdivisions was 

recorded (Table 2.5) all calculations, regarding mass and reduced physiological cross-

sectional areas were calculated using the sum of the individual parts of the masseter, as 

the divisions were very indistinct.  Turnbull describes similar observations relating to the 

masseter complex of the domestic cat, Felis silvestris (Turnbull, 1970).  He noted that even 

when subdivisions of the muscles appear clearly separated at their origin, they soon 

merged with each other and the intermingling of fibres, occurred throughout all layers of 

the masseter.  In addition, many fascicles were muscular at one end, and tendinous at the 

other.  In these instances, the tendinous portion could be at either the origin or insertion.  

As morphological descriptions tend to oversimplify structures there may be no ideal 

method to accurately capture the complexity of this muscle.   
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Figure 2.9 Lycaon pictus. Superficial masseter (white asterisk) caudoventral aspect. The fibres of 

superficial masseter run caudoventrally and insert partially on the lateral surface of the caudal 

mandible, whilst other fascicles run around the ventral border to insert on the ventromedial 

surface of the caudal mandible and the tendinous raphe of the pterygoids. 

 

 

 

Figure 2.10 Lycaon pictus. Superficial masseter (white asterisk), lateral aspect. 
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Figure 2.11 Nyctereutes procyonoides. The origin of superficial masseter is by way of a robust 

tendon of origin (white asterisk) from a small bony prominence on the maxilla, dorsal to UM2. In 

all species muscle fibres also arose from the rostral half of the ventral zygomatic arch.  

 

 

 
Figure 2.12 Canis lupus. Division of the superficial masseter. All species dissected revealed more 

than one easily identifiable layer of the superficial masseter.  The muscle has a significant 

tendinous component, which although visually evident, was difficult to separate from the muscular 

element. In some of the larger species (Canis lupus, Cuon alpinus, Lycaon pictus, Chrysocyon 

brachyurus) the superficial leaflet of the superficial masseter folds back on itself (white asterisk). 
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Figure 2.13 Canis lupus. Showing the complex arrangement of superficial masseter leaflets (white 

asterisk).  The muscle fascicles ran in many different directions and many had a great amount of 

tendinous component, particularly toward the muscle insertion on the angular process of the 

mandible.  
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Figure 2.14 The deep masseter was complex, and all species revealed more than one easily 

identifiable layer (white asterisk).  The deep masseter arises from the ventral zygomatic arch and 

inserts onto the lateral caudal mandible.  There were many leaflets of muscle, which were 

especially evident in the larger species (Figure 2.14A, Lycaon pictus). The smaller species appeared 

to have a more straightforward arrangement of layers (Figure 2.14B, Vulpes corsac). Some leaflets 

arose from the arch and inserted by way of aponeuroses, onto other divisions of the muscle.  Many 

of the muscle fascicles of such subdivisions were notably short (Figure 2.14A, blue arrow). 
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Figure 2.15. In two species, Otocyon megalotis and Nyctereutes procyonoides, the mandible 

exhibits a preangular process to which some of the fascicles of the deep masseter insert. Figure 

2.15A illustrates the usual canid condition with no preangular process (Alopex lagopus), and 2.15B 

shows the pronounced preangular process in Nyctereutes procyonoides, a similar sized species.  

The white asterisk indicates the deep masseter, the blue arrow indicates the angular process and 

the white arrow indicates the preangular process. This extra prominence has the effect of 

lengthening the fascicles of this part of the masseter and re-orientating them into a more vertical 

position. This may reflect some functionality of the masseter, as an expanded area for the insertion 

on the caudal mandible is the condition seen in herbivorous mammals, who are more accustomed 

to utilising crushing and grinding actions of the cheek teeth.  
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Figure 2.16A, Alopex lagopus, and B Canis mesomelas.  The zygomaticomandibularis muscle (white 

asterisk), arises from the medial and caudal zygomatic arch and inserts onto the masseteric fossa 

and the area just ventral to this.  At its origin, the fascicles can be difficult to isolate from those of 

the temporalis and, as the muscle runs rostroventrally some of its fascicles become blended with 

those of the deep masseter.  
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2.4.4 Dissection notes on the temporalis muscle 

The temporalis muscle is the largest of the jaw adductors in the carnivorans (Getty, 1975; 

Evans and De Lahunta, 2016; Singh et al., 2018).  The mean mass of the temporalis in the 

specimens dissected in this study contributed 62% to the total jaw adductor mass (Table 

2.5). Its large area of origin covers most of the lateral cranium, arising from the parietal, 

temporal frontal and occipital bones. In larger species the left and right temporalis muscles 

originate at midline, but in the smaller species there is a marked sagittal space on the skull 

that is free of all overlying muscle (Figure 2.17).  Temporalis inserts onto the coronoid 

process and medial vertical ramus of the mandible.  The arrangement of the temporalis 

muscle, with its long fascicles, is less efficient at force production than the more lateral and 

ventrally sited masseter, but it has the advantage of not restricting jaw opening, and so is 

favoured in animals that require a wide gape (Gans, 1982; Eng et al., 2009; Santana 2016).  

In all samples, the division of the temporalis into three discrete parts was clear.  
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Figure 2.17 The extent of temporalis (white asterisk and black dotted lines) occupying the temporal 

fossa in A, Lycaon pictus and B, Vulpes zerda. In the three smallest species (Vulpes zerda, 1150g, 

Vulpes corsac 2850g and Otocyon megalotis, 4200g) the temporalis originated lateral to midline. In 

all other species the temporalis originated at midline. In species over species over 10kg, a 

pronounced sagittal crest was present, and increased the surface area available for the origin of 

temporalis.  
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Figure 2.18 The substantial deep temporal fascia was seen in all species, even the tiny Vulpes 

zerda. It arises from the midline sagittal crest, the nuchal crest, the dorsal zygomatic arch and is 

contiguous with the orbital ligament (blue arrow).  

 

 

 

 

 
Figure 2.19 Canis mesomelas. The deep temporal fascia is much more substantial than the 

superficial layer, and some of the muscle fascicles of temporalis originate from it.  In this way, 

fascia is linked to the action of the muscle and the fascicles can be shorter (and therefore more 

efficient) than if they arose from bone.  This arrangement is also reported in the ursid species and 

felids (Davis, 1964; Turnbull, 1970). The orbital ligament is identified by the blue arrow.  
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Figure 2.20 Lycaon pictus. Temporal fascia removed to reveal the extent of the temporalis muscle.  

 

 

 

 

Figure 2.21 Vulpes vulpes. In this specimen the zygomatic arch has been removed to reveal the 

extent of the suprazygomatic division of the temporalis muscle (white asterisk). This is the smallest 

division of temporalis and originates from the base of the zygomatic process of the temporal bone.  
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Figure 2.22 Lycaon pictus. The suprazygomatic division of temporalis (white asterisk) inserts the 

most laterally and cranially of any of part of temporalis, on the rostral vertical ramus of the 

mandible. It has the longest muscle fascicles of any of the jaw adductor muscles. 

 

 
Figure 2.23 Nyctereutes procyonoides. The suprazygomatic division of temporalis has a tendinous 

component on its medial aspect (white asterisk).  
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Figure 2.24 Lycaon pictus. Superficial temporalis (white asterisk). A large and extensive muscle 

originating from as far medially as midline and as far caudally as the nuchal line of the 

supraoccipital, parietal and temporal bones.  Rostrally the limit of superficial temporalis is the 

orbital ligament (blue arrow).  The origin is limited to a relatively narrow strip around the margins 

of the lateral calvarium as it overlies the deep temporalis. Insertion is limited to a relatively small 

area on the coronoid process of the mandible, chiefly on the dorsal medial aspect but also to a 

small area on the most dorsal lateral aspect. The muscle is broadly fan shaped.  A proportion of the 

superficial temporalis, especially the part near its origin on the maxilla and zygoma, is made up of 

tendinous material (white arrow).  

 

 

 

Figure 2.25 Alopex lagopus. Superficial temporalis, reflected. This figure shows the thickness of the 

superficial temporalis (white asterisk) and the extent of its coverage of deep temporalis (black 

arrow).  
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Figure 2.26 Vulpes vulpes. The deep temporalis (black asterisk). A fan shaped muscle, with its origin 

more ventral and lateral than that of the superficial temporalis. It arises from the lateral cranium 

and inserts onto the medial vertical ramus of the mandible as far ventrally as the level of the 

ventral extent of the masseteric fossa. In some of the larger species a number of fascicles from 

deep temporalis merge with those of both zygomaticomandibularis ventrolaterally, and pterygoids 

ventromedially. There is a large tendinous component to the muscle which becomes more 

pronounced towards its insertion.  

 
 

2.4.5 Dissection notes on the pterygoid muscles 

The pterygoid complex consists of two muscles, the larger and more extensive medial 

pterygoid, and the much smaller lateral pterygoid (Figure 2.28 and Figure 2.29).  The medial 

pterygoid muscle originates on the pterygoid, palatine and sphenoid bones, and the lateral 

pterygoid muscle originates from part of the sphenoid bone (Figure 2.30).  Both insert on 

the caudal medial mandible. One specimen (Vulpes vulpes 7) was dissected to determine 

the contribution of the lateral pterygoid to the total pterygoid mass.  Dissection values 

found that the lateral pterygoid made up approximately 3% of the total pterygoid mass in 

Vulpes vulpes (lateral pterygoid 0.28g, medial pterygoid 8.71g), and 0.27% to the total jaw 

adductor muscle mass.  In some mammals the lateral pterygoid is reported as having two 

distinct heads, superior and inferior (Grant, 1973; McNamara, 1973; Gibbs et al., 1983; 
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Murray, 2012), but I found no clear distinction in any of the canids dissected.  This finding 

is in accordance with previous authors (Getty, 1975; Ström et al., 1988; Tomo et al., 1995; 

Gioso and Carvalho, 2005; Evans and De Lahunta, 2013).  The mean mass of the combined 

medial and lateral pterygoids in the specimens dissected in this study contributed 9% to 

the total jaw adductor mass (Table 2.5).  In both the medial and lateral pterygoid, the 

fascicles run caudoventrally and laterally from their origin on the pterygoid, sphenoid and 

palatine bones, to insert onto the medial aspect of the caudal part of the mandible.  The 

medial pterygoid also has some fascicles inserting onto the tendinous raphe of the 

superficial masseter (Figure 2.27).  The action of the medial pterygoid is to adduct the jaw. 

However, the action of the lateral pterygoid in the carnivorans is unclear and somewhat 

disputed.   Some authors describe it as a jaw adductor or probable jaw adductor due to the 

orientation of the fascicles and close association with the medial pterygoid (Tomo et al., 

1995; Evans and De Lahunta, 2013; Singh et al., 2018).  Other authors describe it as a 

possible jaw protractor or joint stabilizer (Kawamura et al., 1968, Turnbull 1970).  All concur 

that its role is likely to be insignificant due to its small size and the bony constraints of the 

temporomandibular joint (Turnbull, 1970; Ström et al., 1988; Herring, 2007; Hartstone-

Rose et al., 2012). Throughout this thesis, the medial and lateral pterygoid muscles were 

considered and referred to as one muscle, the pterygoids.   
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Figure 2.27 Canis lupus. The pterygoids (white asterisk) insert partly onto the medial aspect of the 

caudal mandible, and partly onto the tendinous raphe of the superficial masseter (black arrow).  

 

 

Figure 2.28. Vulpes vulpes. The pterygoids consist of two muscles, the large medial (blue asterisks) 

and much smaller lateral pterygoids (white arrow).  
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Figure 2.29 Ex situ pterygoid muscles. Vulpes vulpes. The lateral pterygoid (LP) is much smaller than 

the medial pterygoid (MP), contributing approximately 3% to the total pterygoid mass. 

 

 

 

Figure 2.30 Vulpes vulpes, mandible and zygomatic arch removed, and sphenoid plate cleaned and 

digitally highlighted to show the origin of medial (MP) and lateral (LP) pterygoid muscles. 
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Table 2.5 Mean muscle subdivisions and contribution to individual muscle masses, mean individual muscle masses and their contribution to total jaw adductor mass. 
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Alopex lagopus (1) 2.2 4.9 18.9 43.1 22.8 52.0 8.1 54.3 2.5 16.4 4.4 29.3 4.5 69.3 23.6 7.1 

Canis lupus (3) 10.6 6.0 73.4 40.9 95.5 53.1 34.1 40.2 26.4 31.2 24.0 28.7 25.7 62.0 29.1 8.9 

Canis mesomelas (1) 3.7 7.9 18.5 39.7 24.4 52.4 10.0 49.3 4.3 21.2 6.0 29.5 6.7 63.3 27.6 9.1 

Chrysocyon brachyurus (1) 9.5 8.9 48.2 45.5 48.4 45.6 26.0 42.2 8.6 13.9 27.1 44.0 12.2 59 34.4 6.8 

Cuon alpinus (1) 5.9 7.3 48.5 59.5 27.2 33.2 15.61 38.3 14.7 36.4 10.3 25.3 10.4 61.5 30.6 7.8 

Lycaon pictus (3) 12.2 8.3 76.7 51.9 58.8 39.8 41.7 46.2 28.5 31.5 20.1 22.3 19.5 57.4 35.1 7.6 

Nyctereutes procyonoides (1) 1.8 9.2 8.1 41.8 9.5 49.0 4.5 42.9 3.5 33.1 2.6 24.1 3.1 58.6 32.0 9.4 

Otocyon megalotis (1) 0.8 6.7 6.1 44.3 6.6 49.0 3.7 56.8 1.5 21.5 1.4 21.5 2.3 64.2 29.1 6.7 

Speothos venaticus (1) 2.3 5.4 22.1 51.7 18.3 42.9 11.5 46.7 3.0 12.2 10.1 41.1 5.1 58.9 34.0 7.0 

Vulpes corsac (4) 0.5 3.5 6.01 41.7 7.9 54.8 3.3 51.0 1.7 25.3 1.6 23.8 2.2 62.3 28.2 9.5 

Vulpes vulpes (1) 2.8 6.0 21.8 45.7 23.1 48.3 9.4 49.2 3.3 17.4 6.4 33.3 5.8 65.8 26.3 7.9 

Vulpes zerda (1) 0.2 4.1 2.8 51.6 2.4 44.3 1.3 54.3 0.7 29.1 0.4 16.7 0.9 62.3 27.2 10.5 
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2.5 Discussion. 

Many previous studies have taken a broad approach and compared canids in relation to other 

families within Carnivora or even other orders, with a view to identifying interfamilial or 

inter-order differences (Christiansen and Adolfssen, 2005; Wroe et al., 2005: Wroe et al., 

2007). The challenge of this thesis was to capture interspecific differences between closely 

related species to identify adaptations in form and function that are reflected by dietary or 

behavioural correlates.  Despite the limited sample size, a broad range of canid morphologies 

and habits is represented within this dataset.  The diversity of scale covers two orders of 

magnitude in the Canidae, which is reflected in the dataset used in this thesis. Interspecific 

differences are greater than intraspecific ones (Table 2.5). Both CT and MR imaging 

modalities were used to capture the internal and topographical morphology of at least one 

individual animal from each species.  Imaging datasets were used in subsequent chapters to 

identify and test interspecific differences. 

The canid jaw adductor muscles adhere to the mammalian plan that comprises the 

temporalis, masseter and pterygoids.  To reflect their carnivorous diet, where a wide gape 

and strong jaw adduction is required, the temporalis muscles dominate, making up the 

largest constituent of the total jaw adductor mass, with a mean of 62% (Table 2.5). The 

masseter has a mean of 30% contribution and the pterygoid has a mean of 9% contribution.  

This is broadly in line with findings from other authors regarding the make-up of the jaw 

adductor muscles within the carnivorans (Table 2.6).  In carnivorans the temporalis makes up 

between 49.7% and 73.3%, the masseter between 18% and 40.5% and the pterygoids 

between 5% and 12.5%.  This is in contrast to herbivorous mammals where the masseter 

muscles dominate jaw closure and make up to 54% of the jaw adductor mass in the horse or 

up to 80 % in some rodents (Turnbull, 1970; Cox et al., 2012).  The pterygoids make up to 

30.9% contribution to total jaw adductor mass in the herbivorous species, much greater than 
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seen in the carnivorans (Table 2.6).  This is attributable to the pterygoids, in concert with the 

contralateral masseter, performing translational movements of the mandible, an action not 

seen in canid jaw movements.  It was notable in all species that the divisions between the 

individual muscles, as well as between their subdivisions was often indistinct, and absolute 

separation was impossible as many fascicles crossed between bellies.  This observation has 

also been noted in other carnivorans by previous authors (Davis, 1955, 1964; Turnbull, 1970; 

Hartstone-Rose et al., 2012).  In their work on felid masticatory muscles Hartstone-Rose et 

al. ( 2012) speculated that the reduced functional compartmentalisation of the jaw adductors 

in carnivores has led to lesser degree of morphological separateness in the jaw adductor 

muscles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

128 

Table 2.6 Comparative mammalian jaw adductor muscle percentage contributions to total jaw 
adductor muscle mass as reported by previous authors. 
   % contribution to total jaw adductor mass 

Author Family Species Masseter Temporalis  Pterygoids 

Turnbull (1970) Equidae Equus caballus 54.5 14.5 30.9 

Felidae Felis catus 35.2 54.3 10.5 

Erinaceidae Echinosorex gymnura 26.9 61.2 11.8 

Didelphidae Didelphis viginiana 34.2 57 8.9 

Cervidae Odocoileus virginianus 46.1 29.3 24.6 

Bovidae Ovis aries 52.6 23.5 23.9 

Sciuridae Sciurus niger 61 19.4 19.6 

Muridae Rattus norvegicus 54.1 32.6 13.2 

Hystricidae Hystrix cristata 71.8 16.6 11.5 

Davis (1955, 1964) Ursidae Tremarctos ornatus 26.8 64 8.4 

Ursidae Ursus americanus* 28 65.1 6.7 

Canidae Canis lupus familiaris 26.6 64.4 8.9 

Felidae Panthera onca 28.2 64.1 7.6 

Ursidae Ailuropoda melanoleuca 36.6 59.7 3.6 

Procyonidae Procyon lotor 23 69.2 7.6 

Ursidae Ursus maritimus 21.1 73.3 5.5 

Hartstone-Rose et al. 

(2012) 

Felidae Caracal caracal 31 59.3 9 

Felidae Leptailurus serval 18 69 12.5 

Felidae Leopardus pardalis 32 62.4 5.3 

Felidae Lynx rufus 40.5 49.7 10 

Felidae Neofelis nebulosa 39 56 5 

Felidae Panthera onca 33 59.5 7 

Felidae Panthera pardus 30 62 8 

Felidae Panthera uncia 31 61 9 

Felidae Panthera tigris 35 59 7 

*Dissected by Stark (1935), reported in Davis (1955). 
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